The response of aquatic communities to water quality, land use, flow variability and extraction in an unregulated Australian coastal river

July 2014

Lisa Thurtell

M. App. Sc. (University of Canberra)

A thesis submitted for the degree of Doctor of Philosophy

The University of New England
I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree or qualification.

I certify that any help received in preparing this thesis, and all sources used, have been acknowledged.

...
Acknowledgements

This thesis has been completed with the valuable assistance of Dr Darren Ryder and Professor Andrew Boulton. I would like to thank them for their positive feedback, advice and encouragement. I’d also like to thank Dr Keith Bishop for his assistance during the initial stages of this study.

This study was generously supported by Midcoast Water. I’d like to acknowledge the invaluable assistance of Anna Kaliska, Narelle Hennessy and the laboratory team. I am also indebted to the many people who assisted me in the field, particularly Greg Gill.

I was also very fortunate to have met many supportive and generous landholders who allowed me access to their properties, particularly David and Kath Neeley, Caparra Creek.

I would also like to extend my gratitude to my family and fantastically supportive partner Graham Hopkinson. His enthusiasm and encouragement during the difficult periods experienced through this journey gave me the strength to complete this thesis.
Contents

Certification .. ii
Acknowledgements ... iii
List of Figures ... vii
List of Tables ... xii
Abstract .. 14
Chapter 1 General introduction ... 16
 1.1 Nutrient origins and pathways in riverine systems ... 21
 1.2 Short-term temporal changes in nutrient pathways ... 23
 1.3 Nutrient behaviour in lotic and lentic environments ... 25
 1.3.1 Thermal stratification ... 25
 1.3.2 Primary production .. 26
 1.4 Macroinvertebrates and flow relationships ... 28
 1.5 The Manning River system and resource management issues 29
 1.6 Aims and hypotheses ... 30
 1.6.1 Thesis structure .. 30
Chapter 2 Study area ... 32
 2.1 Geology .. 37
 2.2 Climate .. 38
 2.3 Climate change ... 39
 2.4 Hydrology ... 40
 2.5 Low flows in the Manning catchment .. 42
 2.6 Water use ... 44
 2.7 Water Sharing Plan .. 45
Chapter 3 Nutrient origins and pathways in the Manning Valley .. 48
 3.1 Introduction ... 48
 3.1.1 Catchment-relevant nutrient threshold values ... 49
 3.1.2 Response of periphyton to nutrients ... 50
 3.1.3 Aims and hypotheses ... 52
 3.2 Study sites ... 53
 3.2.1 Water quality threshold values - reference sites ... 56
 3.2.2 Experimental nutrient enrichment sites .. 66
 3.3 Methods ... 69
3.3.1 Field sampling...69
3.3.2 Nutrient enrichment design..71
3.3.3 Data analysis..72
3.4 Results ..75
 3.4.1 Temporal trends..75
 3.4.2 Reference sites ...81
 3.4.3 Water quality thresholds...86
 3.4.4 Validation of catchment scale threshold values ..96
 3.4.5 NDS experimental results...104
3.5 Discussion ..108
 3.5.1 Regionally-derived water quality thresholds ..108
 3.5.2 Deviation of non-reference sites from water quality thresholds.................110
 3.5.3 Hydrologic influences on water quality...113
 3.5.4 CNP ratios influence on primary productivity ..116
 3.5.5 Conclusion ...118

Chapter 4 Nutrient response to flow, water depth, temperature and macrophytes in the Manning River pools...119

 4.1 Introduction ..119
 4.1.1 Stratification and nutrient behaviour ...119
 4.1.2 Diel influences on nutrient behaviour...120
 4.1.3 Nutrient cycling in the Manning River...121
 4.1.4 Aims and hypotheses ...125
 4.1.5 Study Site ..126

 4.2 Methods ...131
 4.2.1 Field sampling..131
 4.2.2 Laboratory analyses ...132
 4.2.3 Data analyses..133

 4.3 Results ..134
 4.3.1 Effects of water temperature and flow on stratification............................134
 4.3.2 Stratification persistence ..137
 4.3.3 Ecological consequences ...157

 4.4 Discussion ..160
 4.4.1 Pool water quality responses to low flows ..160
List of Figures

Figure 1-1 Conceptual model of stream biogeochemical processes and interactions with stream biota under low flows ... 17
Figure 1-2 Conceptual model of winter high flow, summer low flow influences on the pools of the Manning River, New South Wales (NSW) .. 23
Figure 1-3 Conceptual model of winter high flow, summer low flow influences on riffles of the Manning River, NSW .. 28
Figure 2-1 Manning catchment .. 33
Figure 2-2 The lower Manning River downstream of Mount George 34
Figure 2-3 Gloucester catchment, cleared grazing areas on slopes 34
Figure 2-4 Lower Manning River downstream of Ida Lake, indicating grazed banks and substantial macrophyte growth .. 35
Figure 2-5 Lower Manning riffle site indicating cobble and gravel beds and riparian vegetation 35
Figure 2-6 The Little Manning River, an upstream tributary of the Manning River .. 36
Figure 2-7 Long-term (1890-2012) annual average rainfall recorded at Gloucester, NSW 39
Figure 2-8 Long-term (1890-2012) annual average rainfall recorded at Wingham, NSW 39
Figure 2-9 A) Daily and B) Annual discharge at at Barrington River at Forbesdale 41
Figure 2-10 A) Daily and B) Annual discharge at Manning River at Killawarra 42
Figure 2-11 Recurrence intervals for peak annual flows in the Barrington River at Forbesdale 43
Figure 2-12 Recurrence intervals for peak annual flows in the Manning River at Killawarra 43
Figure 2-13 Licensed entitlements at 50th percentile and 95th percentile flows in the Manning River 2004/05 .. 44
Figure 2-14 Low flows in the lower Manning River .. 46
Figure 2-15 Lower Manning River pool early morning 47
Figure 3-1 Locations of Manning catchment long-term water quality sites 54
Figure 3-2 Locations of catchment reference sites .. 57
Figure 3-3 Caparra Creek at Jack Fahey Bridge (Looking downstream) 58
Figure 3-4 Upper Craven Creek at Craven Creek Rd (Looking upstream) 58
Figure 3-5 Little Manning River at Curricabark Road (Looking downstream) 59
Figure 3-6 Rowleys River at Nowendoc Road (Looking downstream) 62
Figure 3-7 Barrington River at Rocky Crossing (Looking downstream) 63
Figure 3-8 Gloucester River at Faulkland Road (Looking upstream) 63
Figure 3-9 Bobo Creek at Gloucester Road (Looking upstream) 64
Figure 3-10 Dingo Creek at Belbourie Bridge (Looking downstream) 65
Figure 3-11 Lansdowne River at Upper Lansdowne Rd (Looking downstream) 65
Figure 3-12 Site 1 Little Manning River (Looking upstream) 66
Figure 3-13 Site 2 Little Manning River (Looking upstream) 66
Figure 3-14 Site 3 Little Manning River (Looking upstream) 67
Figure 3-15 Site 1 Caparra Creek (Looking upstream) 67
Figure 3-16 Site 2 Caparra Creek (Looking downstream) 68
Figure 3-17 Site 3 Caparra Creek (Looking downstream) 68
Figure 3-18 Sampling occasions and percentile flows 69
Figure 3-19 Position of trays in riffle and randomised block arrangement 72
Figure 3-20 Manning River discharge at Killawarra gauge (208004) during non-continuous sampling periods (1994-1998 and 2008-2009). .. 75
Figure 3-21 Total annual discharge (ML) at Killawarra Gauge (208004) during non-continuous sampling periods 1994-97, 2008-09 .. 76
Figure 3-22 Comparison of historical electrical conductivity to 2008/09 data for selected Manning catchment reference sites using mean and standard error ... 77
Figure 3-23 Comparison of historical oxidised nitrogen to 2008/09 data for selected Manning catchment reference sites using mean and standard errors ... 78
Figure 3-24 Comparison of historical total phosphorus to 2008/09 data for selected Manning catchment reference sites using mean and standard error ... 79
Figure 3-25 Relationship between total nitrogen and discharge in the Manning River at Charity Creek Bridge and Killawarra, 2002 to 2007 ... 80
Figure 3-26 Relationship between total phosphorus data and discharge in the Manning River at Charity Creek Bridge and Killawarra, 2002 to 2007 ... 81
Figure 3-27 pH mean and SE from Manning catchment reference sites 2008-09 compared to ANZECC/ARMCANZ thresholds .. 82
Figure 3-28 pH and discharge relationships for the Little Manning River, 2008-2009 ... 82
Figure 3-29 Areas of basalt within the Manning catchment ... 83
Figure 3-30 Phosphorus concentrations using mean and SE, Manning catchment reference sites, 2008-09 compared to ANZECC/ARMCANZ thresholds .. 83
Figure 3-31 Nitrogen concentrations using mean and SE, Manning catchment reference sites, 2008-09 compared to ANZECC/ARMCANZ thresholds .. 84
Figure 3-32 Discharge mean and SE across Manning catchment reference sites, 2008-09 .. 85
Figure 3-33 Principal Components Analysis of environmental variables at reference sites, vectors showing the contributions of variables to the axes .. 86
Figure 3-34 Exceedance of upper thresholds for electrical conductivity, Manning catchment reference sites. A) Long-term data, B) 2008-2009 .. 87
Figure 3-35 Exceedance of upper thresholds for turbidity, Manning catchment reference sites. A) Long-term data. B) 2008-2009 .. 88
Figure 3-36 Relationship between turbidity and discharge in the Manning River, 2001 to 2007 ... 89
Figure 3-37 Exceedance of upper thresholds for total phosphorus, Manning catchment reference sites. A) Long-term data B) 2008-2009 .. 90
Figure 3-38 Exceedance for upper and lower pH threshold values, Manning catchment reference sites compared to ANZECC/ARMCANZ thresholds .. 91
Figure 3-39 Exceedance for upper and lower saturated dissolved oxygen threshold values, Manning catchment reference sites, compared to ANZECC/ARMCANZ thresholds .. 92
Figure 3-40 Saturated dissolved oxygen and discharge for Lansdowne River and Bobo Creek, 2008-09 ... 92
Figure 3-41 Exceedance of 80th percentile thresholds in Manning catchment reference sites for soluble reactive phosphorus compared to ANZECC/ARMCANZ thresholds .. 93
Figure 3-42 Exceedance of 80th percentile thresholds for oxidised nitrogen compared to ANZECC/ARMCANZ thresholds .. 94
Figure 3-43 Relationship between discharge and oxidised nitrogen in A) Gloucester River and Craven Creek, B) Lansdowne River, 2008 09 .. 94
Figure 3-44 Exceedance of 80th percentile thresholds for total nitrogen compared to ANZECC/ARMCANZ thresholds ...95
Figure 3-45 Exceedance of 80th percentile thresholds for electrical conductivity at non-reference sites compared to regionally-derived thresholds ...97
Figure 3-46 Relationship between discharge at Killawarra and electrical conductivity in Bakers Creek, 2007 ...97
Figure 3-47 Exceedance of 80th percentile thresholds for ammonium at non-reference sites compared to regionally-derived thresholds ...99
Figure 3-48 Exceedance of 80th percentile thresholds for oxidised nitrogen at non-reference sites compared to regionally-derived thresholds ...100
Figure 3-49 Exceedance of 80th percentile thresholds for total nitrogen at non-reference sites compared to regionally-derived thresholds ...101
Figure 3-50 Relationship between discharge at Waukory in the Avon River and a) total nitrogen b) total phosphorus, 2007 ...101
Figure 3-51 Discharge measured in the Avon River at Waukivory and the Gloucester River at Gloucester, 2004 to 2012 ...102
Figure 3-52 Exceedance of 80th percentile thresholds for total phosphorus at non-reference sites compared to regionally-derived thresholds ...103
Figure 3-53 Exceedance of 80th percentile thresholds for soluble reactive phosphorus at non-reference sites compared to regionally-derived thresholds ...103
Figure 3-54 Mean chlorophyll-a mass (g m⁻²) recovered from each of the eight nutrient treated agar pots at Caparra Creek and the Little Manning River, February 2012 ...105
Figure 3-55 Discharge in upper Manning River during incubation period at Caparra Creek and Little Manning River ...106
Figure 3-56 Principal Components Analysis of chlorophyll-a mass (g m⁻²) for treatments at Caparra Creek and Little Manning River with vectors showing the contributions of variables to the axes ...107
Figure 3-57 Riparian impacts in the Manning catchment. A) Cattle accessing the lower Gloucester B) Streambank erosion the Manning River ...112
Figure 3-58 Box-whisker plot comparing nitrate concentrations in Manning River Catchment, 2006/07 ...115
Figure 4-1 Factors influencing nutrient availability and cycling in river pools ...121
Figure 4-2 Ida Lake water temperature profiles and discharge at Killawarra, January 2007 to June 2007 ...122
Figure 4-3 Bungay Pool water temperature profiles and discharge at Killawarra, December 2006 to May 2007 ...123
Figure 4-4 Water temperature in Railbridge pool macrophyte beds, January 2007 to May 2007 ...124
Figure 4-5 Water temperature in Woodside pool macrophyte beds, January 2007 to May 2007 ...124
Figure 4-6 Macrophyte biomass and summer heating potential in shallow pools located in the Gloucester and Lower Manning Rivers, June/July 2006 ...125
Figure 4-7 Manning River deep and shallow pool sites ...127
Figure 4-8 Ida Lake buoy marking deepest part of the pool with temperature data loggers attached ...128
Figure 4-9 Aerial view of Ida Lake ...129
Figure 4-10 Aerial view of Railbridge ...129
Figure 4-11 Macrophyte growth in Railbridge Pool, November 2008.................................130
Figure 4-12 Prolific aquatic plant and epiphytic growth in lower Manning River, August 2007130
Figure 4-13 Discharge in the Manning River at Killawarra during the experiments and sampling
times, December to February 2009132
Figure 4-14 Ida Lake water temperature profile surface, 12m depth and bottom, November 2008
to January 2009...134
Figure 4-15 Dissolved oxygen and water temperature at various depths in Ida Lake, Manning
River, 2pm 20th January 2009...135
Figure 4-16 Dissolved oxygen and water temperature at various depths in Bungay Pool, Manning
River, 2pm 6th January 2009..135
Figure 4-17 Nocturnal water temperature profiles, Ida Lake, 20th January 2009136
Figure 4-18 Nocturnal water temperature profiles, Railbridge Pool, 4th February 2009137
Figure 4-19 Water temperature and dissolved oxygen profiles, Ida Lake, 3pm 12 January 2009....138
Figure 4-20 Water temperature and dissolved oxygen profiles, Bungay Pool, 11am 10 January
2009..140
Figure 4-21 Water temperature profile, Ida Lake, February to March 2009...........................139
Figure 4-22 Water temperature and dissolved oxygen profiles, Ida Lake, 1pm 2 October 2009......139
Figure 4-23 Water temperature and dissolved oxygen profiles, Bungay Pool, 12pm 3 October
2009..140
Figure 4-24 Nocturnal dissolved oxygen saturation profiles, Ida Lake, 20th January 2009........140
Figure 4-25 Nocturnal pH profiles, Ida Lake, 20th January 2009141
Figure 4-26 pH profile, Bungay Pool, 2pm 6th February 2009..141
Figure 4-27 Nocturnal electrical conductivity profiles, Ida Lake, 20th January 2009142
Figure 4-28 Electrical conductivity profile, Bungay Pool, 2pm 6th February 2009...............142
Figure 4-29 Redox potential within Ida Lake, 3pm 12th January 2009..............................143
Figure 4-30 Nocturnal total nitrogen profiles, Ida Lake, 20th January 2009144
Figure 4-31 Nocturnal ammonium profiles, Ida Lake, 20th January 2009144
Figure 4-32 Nocturnal total phosphorus profiles, Ida Lake, 20th January 2009145
Figure 4-33 Nocturnal soluble reactive phosphorus profiles, Ida Lake, 20th January 2009146
Figure 4-34 TN:TP ratios from Ida Lake nocturnal nutrient profiles, 20th January 2009147
Figure 4-35 TN:NOx ratios from Ida Lake nocturnal nutrient profiles, 20th January 2009147
Figure 4-36 TP:SRP ratios from Ida Lake nocturnal nutrient profiles, 20th January 2009148
Figure 4-37 Diurnal patterns of TP concentrations at Bootawa oﬀ-take, January –February 2009...149
Figure 4-38 Nocturnal dissolved oxygen saturation profiles, Railbridge Pool, 4th February 2009150
Figure 4-39 Nocturnal pH profiles, Railbridge Pool, 4th February 2009151
Figure 4-40 Nocturnal total nitrogen concentrations, Railbridge Pool, 4th February 2009152
Figure 4-41 Nocturnal ammonium concentrations, Railbridge Pool, 4th February 2009152
Figure 4-42 Nocturnal nitrate/nitrite concentrations, Railbridge Pool, 4th February 2009153
Figure 4-43 Nocturnal total phosphorus concentrations, Railbridge Pool, 4th February 2009154
Figure 4-44 Nocturnal soluble reactive phosphorus concentrations, Railbridge Pool, 4th February
2009..154
Figure 4-45 TN:TP ratios from Railbridge Pool nocturnal nutrient profiles, 4th February 2009155
Figure 4-46 TN:NOx ratios from Railbridge Pool nocturnal nutrient profiles, 4th February 2009156
Figure 4-47 TP:SRP ratios from Railbridge Pool nocturnal nutrient profiles, 4th February 2009......156
Figure 4-48 Principal Components Analysis of nutrient and environmental variables at different depths in Ida Lake, with vectors showing the contributions of variables to the axes. ..157
Figure 4-49 Principal Components Analysis of nutrient and environmental variables at different depths in Railbridge Pool, with vectors showing the contributions of variables to the axes. ..159
Figure 4-50 Redox potential and pH range found in soil surface environments ..165
Figure 4-51 Nitrogen concentrations in Lake Ida under low flow conditions, January 2007167
Figure 4-52 Phosphorus concentrations in Lake Ida under low flow conditions, January 2007167
Figure 5-1 Impacts to riffle habitat under low flows...169
Figure 5-2 Manning River macroinvertebrate riffle sites and location of Killawarra gauge site177
Figure 5-3 A. Ida Lake riffle in October 2008 (discharge ~ 7 m3 s$^{-1}$ at Killawarra Bridge); B. Feb 2009 (discharge ~ 3.5 m3 s$^{-1}$ at Killawarra Bridge)*; C. Aerial view ..178
Figure 5-4 A. Railbridge riffle in October 2008 (discharge ~ 7 m3 s$^{-1}$ at Killawarra Bridge); B. Feb 2009 (discharge ~ 3.5 m3 s$^{-1}$ at Killawarra Bridge)*; C. Aerial view...179
Figure 5-5 A. Woodside riffle in October 2008 (discharge ~ 7 m3 s$^{-1}$ at Killawarra Bridge); B. Feb 2009 (discharge ~ 4 m3 s$^{-1}$ at Killawarra Bridge)*; C. Aerial view..180
Figure 5-6 A. Bungay riffle in October 2008 (discharge ~ 7 m3 s$^{-1}$ at Killawarra Bridge); B. Feb 2009 (discharge ~ 4 m3 s$^{-1}$ at Killawarra Bridge)*; C. Aerial view ..181
Figure 5-7 A. MCW riffle in October 2008 (discharge ~ 7 m3 s$^{-1}$ at Killawarra Bridge); B. Feb 2009 (discharge ~ 4 m3 s$^{-1}$ at Killawarra Bridge)*; C. Aerial view ..182
Figure 5-8 A. Abbotts riffle in October 2008 (discharge ~ 7 m3 s$^{-1}$ at Killawarra Bridge); B. Feb 2009 (discharge ~ 4 m3 s$^{-1}$ at Killawarra Bridge)*; C. Aerial view ..183
Figure 5-9 Barrington and Gloucester Rivers - macroinvertebrate site locations185
Figure 5-10 Barrington River macroinvertebrate site 2 - A. Riffle, late afternoon, looking downstream; B. Barrington River site 2, aerial view ...186
Figure 5-11 Gloucester River macroinvertebrate site 1 - A. Riffle, late afternoon, looking downstream; B. Gloucester River site 2, aerial view ...186
Figure 5-12 Dingo Creek macroinvertebrate site locations ..187
Figure 5-13 Dingo Creek macroinvertebrate site 1 - A. Riffle, early morning, looking downstream; B. Dingo Creek site 1, aerial view ...187
Figure 5-14 Manning River discharge at Killawarra gauge, October 2008 to February 2009189
Figure 5-15 Barrington River discharge at Forbesdale gauge, Gloucester River at Gloucester gauge and Dingo Creek discharge at Belbourieu gauge, May 2012 ...190
Figure 5-16 Velocity and depth at Ida Lake riffle under a) 3.5 m3 s$^{-1}$ at Killawarra and b) 7 m3 s$^{-1}$ at Killawarra..194
Figure 5-17 Velocity and depth at Railbridge riffle under a) 3.5 m3 s$^{-1}$ at Killawarra and b) 7 m3 s$^{-1}$ at Killawarra..195
Figure 5-18 Velocity and depth at Woodside riffle under a) 3.5 m3 s$^{-1}$ at Killawarra and b) 7 m3 s$^{-1}$ at Killawarra..195
Figure 5-19 Velocity and depth at Bungay riffle under a) 3.5 m3 s$^{-1}$ at Killawarra and b) 7 m3 s$^{-1}$ at Killawarra..196
Figure 5-20 Velocity and depth at MCW riffle under a) 3.5 m3 s$^{-1}$ at Killawarra and b) 7 m3 s$^{-1}$ at Killawarra..196
Figure 5-21 Velocity and depth at Abbotts riffle under a) 3.5 m3 s$^{-1}$ at Killawarra and b) 7 m3 s$^{-1}$ at Killawarra..197
Figure 5-22 Macroinvertebrate taxa richness for Manning River and reference sites vs total phosphorus ...198
Figure 5-23 Macroinvertebrate taxa richness for Manning River and reference sites vs total nitrogen ..198
Figure 5-24 Simuliidae abundance for Manning River and reference sites vs total phosphorus199
Figure 5-25 Simuliidae abundance for Manning River and reference sites vs total nitrogen199
Figure 5-26 Average and SD of periphyton chlorophyll-a at Manning River and reference sites200
Figure 5-27 (A) Filamentous algae frequently observed at Manning River riffles – Bungay Pool; (B) Filamentous-free cobbles observed at reference sites - Barrington River ..200
Figure 5-28 Macroinvertebrate Simuliidae and community abundance, Manning River and reference riffle sites ..201
Figure 5-29 Macroinvertebrate total abundance within flow type, Manning River riffle and reference sites ..203
Figure 5-30 Total macroinvertebrate taxa numbers at Manning River and reference sites203
Figure 5-31 Functional feeding group distribution in the Manning River and reference sites204
Figure 5-32 MDS plots comparing macroinvertebrate communities collected from 3 flow types at Manning River site ...206
Figure 5-33 MDS plots comparing macroinvertebrate communities collected from 3 flow types at Manning River sites and associations with environmental variables ..207
Figure 5-34 MDS plots comparing macroinvertebrate communities at reference sites and associations with environmental variables ..208
Figure 5-35 MDS plots comparing macroinvertebrate communities at reference sites209
Figure 6-1 Interactions of biophysical components and nutrients in an upland stream219
Figure 6-2 Macrophyte and periphyton responses to flows in the Manning River, 2007224
Figure 6-3 Manning River mean annual discharge at Killawarra, 2002-2007228

List of Tables
Table 2-1 Area of land uses in Manning River Basin 1996-1997 ..36
Table 2-2 Vegetative communities of the Manning catchment ..37
Table 3-1 Water quality variables and source of data collected at long-term Manning catchment sites ..55
Table 3-2 Physical characteristics of Manning catchment reference sampling sites.................60
Table 3-3 Details of Hydrolab multiprobe and field turbidity meters ...70
Table 3-4 Nutrient treatments and the salts used to amend the 1% agar71
Table 3-5 ANZECC and ARMCANZ (2000) default water quality threshold values for NSW coastal rivers..74
Table 3-6 Results of ANOVA main test for significant differences in electrical conductivity over time ..76
Table 3-7 Results of ANOVA main test for significant differences in oxidised nitrogen among sites and times ...77
Table 3-8 Results of ANOVA main test for significant differences in total phosphorus between times and sites ...78
Table 3-9 Catchment-scale low-risk threshold values for upland and lowland streams in the
Manning catchment ... 96
Table 3-10 Caparra Creek and Little Manning River nutrient summary. 106
Table 3-11 Results of ANOVA main test for significant differences in chlorophyll-a mass (g m⁻²)
between treatment and streams and their significant interactions 107
Table 3-12 Mean nutrient concentrations for mid-north coast catchments, NSW 111
Table 3-13 Area of land use in mid-north coast catchments 1996/97 .. 112
Table 4-1 Manning River pool characteristics .. 126
Table 4-2 Details of Hydrolab multiprobe and field turbidity meter ... 132
Table 4-3 Coefficients of the eigenvectors in the linear combinations of variables making up the
principal components, and eigenvalues and variance accounted for by each axis for Ida Lake data 158
Table 4-4 Coefficients of the eigenvectors in the linear combinations of variables making up the
principal components, and eigenvalues and variance accounted for by each axis, performed on
Railbridge Pool data ... 159
Table 5-1 Ecological consequences of high nutrient concentrations in riffle 170
Table 5-2 Review of macroinvertebrate responses to velocity, duration and water temperature.... 173
Table 5-3 Physical characteristics of Manning River riffle study reaches (measured at
approximately 80th percentile discharge) ... 183
Table 5-4 Nutrient concentrations in the Manning catchment, 2001-2012 184
Table 5-5 Physical characteristics of Tributary study reaches (measured at approximately 80th
percentile discharge) .. 185
Table 5-6 Field sampling measurements and methods .. 191
Table 5-7 Details of Hydrolab multiprobe and field turbidity meter .. 191
Table 5-8 Water quality variables .. 192
Table 5-9 Results of PERMANOVA main test for significant differences in total macroinvertebrate
abundance between Manning River sites and flow types .. 202
Table 5-10 Results of PERMANOVA main test for significant differences in total macroinvertebrate
abundance between reference sites and flow types .. 202
Table 5-11 Results of PERMANOVA main test for significant differences in total macroinvertebrate
abundance between all sites and flow types .. 202
Table 6-1 Summary of findings .. 216
Abstract

Stream ecosystems are greatly influenced by their catchments through the contribution of water and nutrients. While nutrients are an essential component in driving biological stream functions and processes, the continuing impact of changing land use and diffuse inputs has increased nutrient loads within most aquatic environments around the world. These increasing nutrient loads have resulted in artificial or cultural eutrophication, impairing water quality and aquatic ecosystem function. It is hypothesised in this thesis that catchment properties and agricultural land use increase total nutrient concentrations within the Manning River system on the north coast of New South Wales, Australia. Increases in nutrient concentrations, coupled with reduced flows, will have ecological impacts through increases in primary productivity and algal biomass.

To assess how land use and river discharge influences biogeochemical processes, this study measured water quality under various flow conditions and assessed the responses of biota to flow and water quality changes. Regionally-derived nutrient thresholds were identified, as was the influence of discharge on in-stream nutrient concentrations and ratios. Nutrient enrichment experiments, nocturnal water quality investigations and assessments of macroinvertebrate community structure responses were also undertaken to better understand ecosystem functioning.

The determination of regionally-derived reference water quality thresholds to assist in the protection and restoration of aquatic communities in the Manning River used the reference condition approach. Water quality at reference sites was used as a benchmark against which to compare sites which have greater human disturbance, with nutrient concentrations from non-reference sites compared to threshold values derived from reference sites. The resulting comparisons indicated sites within many sub-catchments of the Manning River, spread across upland, mid and lowlands, did not meet the regionally-derived thresholds for the protection of aquatic ecosystems for moderately disturbed coastal systems. The degree to which these thresholds were exceeded was dependent on the magnitude and extent of disturbance within the subcatchment as the multitude of agricultural impacts, urban development and mining pursuits altered baseline concentrations of nutrients to varying degrees. These thresholds, if continually exceeded, may result in ecological impacts including a loss of sensitive species.

Under low flow conditions within lower Manning River sites, periphyton biomass increased and the chemical and physical environment was altered for macroinvertebrates through reductions in habitat availability and variability, and changes in food resources. Under these conditions macroinvertebrate taxa richness was reduced at lower Manning River sites when compared to the less-impacted tributary sites. Functional feeding groups were indicative of differences in macroinvertebrate community structure between Manning River and tributary sites. The dominance of collector/filterers at Manning River sites compared to the dominance by gatherers and scrapers at tributary sites demonstrated the importance of the variety and type of food resources and habitat.

Understanding the resistance, resilience and directional responses of streams to low flows and possible climate change impacts will inform and improve catchment management. For the
management of the Manning system, which is relied upon for a number of extractive purposes including town water supply, the reduction of nutrients is likely to improve ecological outcomes under low flow conditions. These low flow events, if more frequent and of greater duration, may result in the permanent loss of species that are unable to resist chronic impacts. This is particularly true for macroinvertebrates, as their central role in ecosystem functioning makes them sentinels and integrators of impacts such as climate change.

This study shows that the combined effects of catchment properties, land use and water quality greatly influence ecological responses to low flows. While there is some understanding of how biota of lotic systems respond to low flows at a broad scale, there is still limited knowledge of how ecosystem processes such as nutrient cycling may change under low flow conditions and, if and how the system recovers from sustained disturbances such as prolonged drought. By understanding what critical low flow levels result in adverse consequences for ecosystem process and functions, and recognising that factors other than flow influence the resilience of a system to impacts, improved management in catchment and flow management can result. As greater diversity within an ecosystem improves its capacity to resist impacts, the maintenance of biodiversity is essential to protect ecosystem functions under variable conditions. To do this effectively, an integrated, adaptive approach to provide flexibility and responsiveness to change is needed.