UREA AND ELECTROLYTE EXCRETION BY SHEEP

by

Ian Robert Godwin

A thesis submitted to the University of New England
for the degree of Doctor of Philosophy.

December 1985
CONTENTS

Declaration ... i
Acknowledgements .. ii
Special Notes .. iii
Abbreviations .. iv
Review of the Literature .. 1

Scope of the Review .. 1
The Ruminant ... 1

The Rumen Fermentation .. 1
Carbohydrates ... 2
N Metabolism ... 4

Nutritive Value of Microbial Protein 7
The Rumen Ammonia Pool .. 7
Absorption of NH₃ .. 7
Recycling of N to the Reticulo-rumen 8
The Urea Pool and Plasma Urea Concentration 9
Possible Sinks of Plasma Urea ... 10

Body Fluid Compartments ... 10
The Control of Extracellular Fluid 12

The Effect of Increased Sodium Intake 12
How is the Extracellular Volume Monitored by the Body? ... 12
The Release of ADH from the Neurohypophysis 13

Glomerular Filtration ... 13
The Control of Glomerular Filtration Rate 14
Tubuloglomerular Feedback ... 16
Nervous Activity and GFR .. 18
The Intrarenal Distribution of GFR 18

Proximal Tubule .. 19
Descending Loop of Henlé ... 22
 Ascending Thin Limb of Henlé’s Loop 23
 Thick Ascending Limb of Henlé’s Loop 23
 Distal Convoluted Tubule ... 24
 Connecting Tubule .. 24
 Collecting Tubule .. 25
 The Renal Pelvis .. 25
 Ureter and Bladder .. 26
 The Renal Concentrating Mechanism 26
 The Kokko and Rector Model ... 27

Urea Excretion ... 30
The Effect of Antidiuretic Hormone (ADH) 33
Urea as a Diuretic .. 34
Sodium Excretion .. 35
Factors Influencing Na Excretion 37
Aldosterone .. 37
Prostaglandins .. 38
Antidiuretic Hormone ... 38
Natriuretic Hormone ... 39
Renal Nerves ... 39
Hormonal Effects ... 39
Regulation of Acid-base Balance by the Kidney 40
The Renal Handling of Ammonia 43
Bicarbonate Reabsorption 44
Acid Excretion ... 44

Experimental Section

Chapter 1 .. 47
The effects of continuous intraruminal urea and electrolyte infusions on renal function in sheep
 Methods .. 48
 Results ... 51
 Discussion ... 54

Chapter 2 .. 59
The effects of continuous intraruminal salt infusions on rumen and renal nitrogen and electrolyte dynamics
 Methods .. 61
 Results ... 64
 Discussion ... 68

Chapter 3 .. 76
The effects of metabolic acidosis and alkalosis on urea and electrolyte metabolism in sheep
 Methods .. 78
 Results ... 80
 Discussion ... 83

Chapter 4 .. 92
Renal function in the grazing sheep
 Methods .. 93
 Results ... 97
 Discussion ... 99

Chapter 5 .. 105
The renal effects of head-out water immersion in sheep
 Methods .. 106
 Results ... 108
 Discussion ... 109

Chapter 6 .. 112
Summary and Conclusions

References ... 116
Appendix 1 ... vi
Validity of endogenous creatinine and Cr51EDTA clearances as measures of GFR in sheep

Appendix 2 ... ix
Extracellular fluid volume determined from the distribution spaces of inulin and Cr51EDTA

Appendix 3 ... xi
Simple rapid method of rumen cannulation

Appendix 4 ... xiii
The effects of water diuresis on renal function in one sheep

Appendix 5 ... xvii
Variation in renal function over a 24 hour period

Appendix 6 ... xix
Plasma urea and electrolyte level of poll dorset sheep grazing a lush 'new growth' pasture

Appendix 7 ... xx
Losses of plasma and urinary constituents with storage

Appendix 8 ... xxii
On sampling urine samples

Appendix 9 ... xxiv
The effects of pH and inorganic phosphate level on red blood cell metabolism in vitro

Appendix 10 ... xxvi
Comparison of an ion selective electrode and steam distillation as methods of ammonia analysis

Appendix 11 ... xxvii
Reprints of publications arising from this thesis
DECLARATION

I declare that this thesis is my own composition, and is a report of my own research, not having been presented in any previous application for a degree. All sources of information have been indicated in the text and help given by others has been acknowledged.

I.R. GODWIN
Department of Physiology,
University of New England,
Armidale, N.S.W.
December 1985
ACKNOWLEDGEMENTS

I thank first and foremost my supervisor Mr. V.J. Williams, not only for his excellent supervision, patience, advice and friendship, but also for allowing me the freedom to pursue my own research interests.

Mr. R.J.H. Morris supervised this work during Mr. Williams' absence on sabbatical leave and his valuable criticisms and knowledgeable discussions are gratefully acknowledged.

Dr. J.L. Corbett is thanked for gaining me access to the pastures at CSIRO Chiswick and for performing the in vitro digestibility determinations presented in Chapter 4.

Mr. J.A. Hamilton is thanked for his readiness to help and discuss various procedures.

Drs. H.I. Davies, H.E. Doran and V.F. Bofinger provided invaluable advice on statistical procedures.

Ms. N. Franklin and later Ms. B. Fraser gave valuable technical assistance. Messrs. I. Crompton, N. Irons and N. Seagrim spent long hours with the author during the conduction of the field studies reported in Chapter 4.

The prep. room staff of the Department of Physiology, are thanked for their friendship and willingness to help when required, especially Mr. G.A. Chaffey who spent many late nights with the author, assisting with the collection and analysis of samples. He also collaborated with the development of the rumen fistulation technique presented in Appendix 3.

Mr. J. Reid freely gave his time to discuss and advise computing procedures and Mr. H.A. Colbeck and the late Mr. L. Collins readily repaired and maintained cantankerous infusion pumps and automatic feeders.

Mr. H. Godwin of 'Alton Park', Dubbo freely provided access to stud animals and assisted in the collection of the data presented in Appendix 6.

Dr. N.S. Agar gave valuable help and stimulated my interest in the comparative aspects of red blood cell metabolism.

The studies reported in this thesis were primarily funded by the Australian Wool Corporation and due appreciation is extended to this body for their financial assistance.

I also thank my wife, Julie, for her support, patience and understanding and my three children, Michelle, Ben and Timothy for making everything worthwhile.
SPECIAL NOTES

Measured parameters in this thesis are expressed in SI units with the exception of nitrogen, which is expressed in grams or as a percentage in convention with the current literature.

Figures and tables associated with the experimental section of this thesis are located either within the text or at the ends of each chapter.

Statistical differences between means were not considered significant unless \(P < 0.05 \).

All animal experiments were approved by and conducted within the guidelines of the University of New England's Animal Welfare Committee.

The following papers arose wholly or in part from the studies reported in this thesis. Copies of available reprints are included in the appendices.

ABBREVIATIONS

ADH antidiuretic hormone
ATP adenosine triphosphate
BW body weight
d day
DPG 2,3-diphosphoglycerate
ECV extracellular fluid volume
EDTA ethylene diamine tetra acetate
ERPF effective renal plasma flow
FE fractional excretion
FF filtration fraction
GFR glomerular filtration rate
HCO₃ bicarbonate
Na-K-ATPase sodium-potassium-dependent adenosine triphosphatase
NH₃ ammonia
P plasma concentration
PAH para-aminohippuric acid
pCO₂ partial pressure of carbon dioxide
PCV packed cell volume
Pi inorganic phosphate
PTH parathyroid hormone
RBC red blood cell concentration
SNGFR single nephron glomerular filtration rate
TCA trichloroacetic acid
U urine excretion
UFR urine flow rate
URAL uric acid plus allantoin
VFA volatile fatty acids

v