Faculty of Science University of New England Armidale, NSW

Factors Affecting Growth of Cyanobacteria in Malpas Dam:

Causes and Consequences

By Robert Woods July 2004

Submitted to Faculty of Science at the University of New England, Armidale, for the degree of Master of Resource Science.

ATTENTION USERS

This thesis contains various representations that are in colour in the original. This may include maps, charts, graphs, photographs, or other similar diagrams.

If you would like to look at the original you will need to approach the Information Desk.

Colour copies are available on request :-

- On campus users fill in the Document Request Form available from the Information Desk. You will be required to **PAY** for these pages at the existing charge of \$2.75(gst incl.) per page.
- Off campus users place a Document Request via any of the mechanisms available to external students. See http://www.une.edu.au/library/external/index.htm You will be required to PAY for these pages at the existing charge of \$2.75(gst incl.) per page.
- Libraries and other institutions please contact the Document Delivery Service through an Inter-Library Loan request for a quote.

Charges for other representations that may be included in this thesis are as follows:

 Maps \$3.85(gst incl.) per page Overheads \$0.55(gst incl.) Videocassettes \$3.30(gst incl.) CD-Roms - \$22.00(gst incl.)

Document Services Unit contacts

Inter Library Loans/Document Delivery: 02 6773 3473

External Students' Library Helpline: 02 6773 3124

Russell Nicholson Lending Services Librarian

Declaration

I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree or qualification.

I certify that any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

Robert Woods

Acknowledgments

Often it is easy to off-handedly give thanks to various people and sources that may have contributed in their own little way to a project. In the past I have given such paragraphs the miss and gone straight to the body of reports and books etc. giving little attention to those behind the scene necessary to such endeavours. Well, I can honestly say, those people deserve every credit, acknowledgement and more. Without them little would be accomplished. For me these people included my long suffering supervisor Richard Faulkner and the recent troupe of brains including Simon Murray and Janelle Wilkes who helped paste this monster together. Andrew Boulton in the early days was also helpful along with Bruce Whan, Treveor Stace and Marian Costigan. Armidale City council provided invaluable assistance in the gathering of data and financial aid as to did the crew from Armidale DIPNR whilst both family and friends provided the sanity needed to continue the trudge towards the light.

To all of you, thankyou very much.

Executive Summary

Blooms of cyanobacteria in Malpas Dam, a small reservoir on the New England Tablelands of NSW have been a recurrent aspect of the hydrological cycle in the dam since its construction in 1968. Specific concerns regarding their ability to produce toxins and their direct impact on various other aspects of water quality such as dissolved oxygen levels have made the management of cyanobacteria in the dam a prime objective for Armidale Dumaresq Shire Council (ADSC), the management body responsible for the dam.

The general causes of cyanobacteria blooms in freshwater are widely understood however for each locality the exact combination of these factors can vary. In Malpas Dam previous research has indicated that the dam is eutrophic and regularly suffers from thermal and oxygen stratification, factors which are commonly the controlling influences on the establishment of cyanobacteria blooms. However the specific conditions which facilitate the growth of cyanobacteria in the dam remained a mystery.

The research contained in this report includes the assessment of a range of water quality parameters in the dam and relates those to the establishment of cyanobacteria colonies. Further monitoring of catchment inputs to the dam was also performed and the influence these have on conditions in the dam in respect to cyanobacteria growth were evaluated.

Monitoring of dam water quality parameters was undertaken from January 1998 to July 1999 at a Site 1 near to the offtake point from the dam. Parameters measured included: Ortho-phosphorus, total oxidized nitrogen, turbidity, Chlorophyll-*a*, water temperature, dissolved oxygen concentration, secchi depth and algal counts and identification.

It was found that although there were numerous medium to strong relationships between these variables, the growth of cyanobacteria was limited to periods when the mean water column water temperature was between 14-20°C and the mean water column turbidity did not exceed 6NTU. The range of water temperatures identified here extends from October to June and represent the window during which blooms may occur. Nutrients were abundant (>50 μ g/L TON and >20 μ g/L Ortho-P) during the entire monitoring period.

The influence that turbidity has on cyanobacteria will be dependent on the timing of increased turbidity levels. The major controlling force for this is the occurrence of significant rainfall events in the Malpas Catchment. From the monitoring carried out at 'Willow Glen' station on the Gara River it was determined that rainfall events greater than 8mm/Day resulted in a significant increase in turbidity and nutrient levels in discharge. This condition represents a threshold at which catchment inputs have the potential to influence in-dam water quality.

The response of dam water quality at Site 1 to catchment inputs was reliant on the overall magnitude of rainfall events. Events which contributed greater than 2000ML impacted at Site 1 less than 10 days after first entering the dam. The effects of events less than this tended to be buffered by the shallow elongated region extending from Gara River inlet to the main body of the dam and did not show any obvious presence at Site 1.

Table of Contents

/

Acknowledgementsi Executive Summaryii Table of Contentsiv		
	_	esvii
		sxii
LISTO	r Plate	s xiv
4.0	1	
1.0		uction
	1.1	Background1
~ ~	1.2	Aim
2.0	-	s Locality5
	2.1	Malpas Catchment5
		2.1.1 Land Uses
		2.1.2 Topography/Geography
		2.1.3 Climate7
		2.1.4 Vegetation
		2.1.5 Hydrology
	2.2	Malpas Dam10
		2.2.1 Dam Statistics
		2.2.2 Aquatic Fauna 10
		2.2.3 Sediments 11
3.0	Cyano	bacteria12
	3.1	Background12
	3.2	The Cyanobacteria Cell
		3.2.1 Cell Structure
		3.2.2 Reproduction and Colonial Formation
	3.3	Photosynthesis
	3.4	Nitrogen Fixation
	3.5	Nutrition
		3.5.1 General Nutritional Requirements
		3.5.2 Response to Nutrient Limitation
	3.6	Mobility
	3.7	Deleterious Impacts of Cyanobacteria Blooms
		3.7.1 Toxicity
		3.7.2 Treatment and Removal of Toxins from Freshwater
		3.7.3 Polysaccharide Production
		3.7.4 Trihalomethane Precursors
		3.7.5 Taste and Odours
		3.7.6 Treatment Plant Operation
		3.7.7 Recreational and Aesthetic Uses
4.0	Catch	ment Surface Runoff
	4.1	Surface Runoff Mechanisms
	•••	

	4.2	Effecti	ve Rainfall	32
		4.2.1	Interception	32
			Depression Storage	
			Infiltration	
			4.2.3.1 Slope, Aspect and Surface Area	
			4.2.3.2 Land-use, Vegetation and Organic Matter	
			4.2.3.3 Soil Moisture	
			Evapotranspiration	
			4.2.4.1 Evaporation	
			4.2.4.2 Transpiration	
			4.2.4.3 Determination of Evapotranspiration	
	4.3		Characteristics	
	4.4		f Modelling and Prediction	
			•	
			Stochastic Models	
5.0	Meth		ies	
	5.1	-	s Dam Monitoring	
	•••		Site Selection	
			Water Sample Collection	
			Parameters of Interest	
			Sample Analysis and Preservation	
	5.2		Monitoring	
	0.2		Sampling Site Selection	
			Water Sample Collection and River Gauging	
			Sample Preparation and Analysis	
			Hydrograph Analysis	
6.0	Malp		Results	
	6.1		Quality in Malpas Dam	
			Water Temperature	
			pH	
			Dissolved Oxygen	
			Turbidity	
			Colour	
			Total Suspended Sediments	
			Secchi Depth	
			Dissolved Reactive Phosphorus (DRP)	69
			Total Oxidised Nitrogen (TON)	
			Filterable Iron, Copper and Manganese	
			Algae	
		6.1.12	Chlorophyll-a	74
	6.2	Statist	ical Analysis and Discussion of Malpas Water Quality	75
			Wilk-Shapiro Test for Normality	
		6.2.2	Pearson Correlation Coefficients	76
			Regression Analysis and Threshold Levels	
		6.2.4	Analysis of Variance	
			6.2.4.1 Dissolved Reactive Phosphorus	82

		6.2.4.2 Total Oxidised Nitrogen	85	
		6.2.4.3 Filterable Metals		
	6.3	Malpas Dam Water Quality Summary		
7 0				
7.0		iment Results		
	7.1	Rainfall Review		
		7.1.1 Rainfall Temporal Pattern	90	
		7.1.2 Rainfall Intensities		
	7.2	Gara River Discharge	94	
	7.3	Water Quality		
		7.3.1 Manual Sampling of Gara River Water Quality	96	
		7.3.1.1 Statistical Analysis of Manual Samples	96	
		7.3.1.2 Gara River Water Temperature	97	
		7.3.2 Autosample Collection	98	
		7.3.2.1 Autosample Event Summary		
	7.4	Rainfall-Runoff Relationships		
8.0	Catch	ment to Dam Interaction and Impact on Cyanobacteria Growth	107	
9.0	Conc	lusion and Recommendations	110	
Refer	ences.		112	
	Appendices			

List of Figures

Figure 1.1	North-east NSW	1
Figure 2.1	Malpas Catchment	6
Figure 2.2	Mean monthly rainfall measured at Guyra Post Office	8
Figure 2.3	Mean daily maximum and minimum air temperature	8
	measured at Guyra Post Office	
Figure 3.1	Cell structure of Cyanobacteria (filamentous form)	15
Figure 3.2	The Z-diagram	20
Figure 4.1	Hortonian Overland Flow	30
Figure 4.2	Saturation Excess Overland Flow	31
Figure 4.3	Interception loss by Oak Motte canopy as a function of storm precipitation	.35
Figure 4.4	Solar radiation as a function of slope and aspect in	.37
Figure 4.5	Effect of vegetation on runoff and erosion	.38
Figure 4.6	The influence of vegetation type on surface runoff	39
Figure 4.7	Zones within the soil profile	41
Figure 4.8	Water held around a soil particle by forces of adhesion and cohesion	41
Figure 4.9	Relationship between soil water film thicknessand moisture tension	.42
Figure 4.10	Relationship between soil water content, hydraulic conductivity and tension head for unsaturated soil conditions	43
Figure 4.11	Infiltration Vs time for homogenous soil	.44
Figure 4.12	Average infiltration rates for different categories of soil	44

Figure 4.13	The effect of wind speed on evapotranspiration in hot-dry 47
	and humid-warm weather conditions
Figure 4.14	Soil infiltration rates for different categories of soil and51
	storm duration for similar return intervals
Figure 4.15	Runoff from convective and frontal storms on sandy soil51
Figure 4.16	% error of Hortonian type runoff simulations for52
	convective storms of varying temporal rainfall and depth
	to water table
Figure 6.1	Variation in water temperature at Site 1 over the period63
	1998 to 2001
Figure 6.2	Temporal variation in water temperature at Site 1 in64
	Malpas Dam.
Figure 6.3	pH as measured at Site 1 in Malpas Dam over the
	period 1997-1999.
Figure 6.4	Dissolved Oxygen profile at Site 1 in Malpas Dam65
Figure 6.5	Site 1 turbidity over depth and time66
	(median and standard deviation).
Figure 6.6	Site 1 Colour over depth and time with mean (red line)67
	and standard deviation (line) indicated for the water
	column.
Figure 6.7	Total Suspended Solids at Site 1 over time and depth68
	with medium (red line) and standard deviation
	(brown line) for the water column indicated.
Figure 6.8	Site 1 Secchi Depth over time and depth with mean 69
	(red line) and standard deviation (brown line) over the
	sampling period indicated.
Figure 6.9	Site 1 DRP over depth and time with median value69
	(red line) and 1 standard deviation (orange line) over
	entire water column.
Figure 6.10	Site 1 Total Oxidised Nitrogen over time and depth with70

medium and standard deviation (orange) over the entire water column indicated by horizontal lines (red and orange respectively.

- Figure 6.11 Filterable Iron concentrations at Site 1 in Malpas Dam......71
- Figure 6.12
 Filterable Manganese concentrations at Site 1 in71

 Malpas Dam.
- Figure 6.13 Filterable Copper concentration measured at Site 1 in72 Malpas Dam.
- Figure 6.14 Site 1 Anabaena populations over depth and time......73
- Figure 6.16 Chlorophyll-a concentrations at Site 1 in Malpas Dam......74
- Figure 6.17 Site 1 Moderate-strong Pearson correlation values for...... 76 parameters measured.

- Figure 6.23 Site 1 Temperature threshold for Anabaena circinalis81
- **Figure 6.24** Site 1 Threshold TON levels for Anabeana *circinalis*81 Growth.
- Figure 6.26 DRP error bar chart with standard deviation over time......83 and depth.
- Figure 6.27 DRP error bar chart with standard deviation over time......83 and depth.

Figure 6.28	Mean TON concentration over depth and time
Figure 6.29	Mean TON concentration over depth and time
Figure 6.30	Mean filterable Fe Concentration over time and depth87
Figure 7.1	Rainfall temporal distribution during the period
Figure 7.2	1997 rainfall records as measured at Willow Glen Station91
Figure 7.3	1998 temporal rainfall distribution as measured at92 Willow Glen Station.
Figure 7.4	1999 temporal rainfall distribution as measured at92 Willow Glen Station.
Figure 7.5	2000 temporal rainfall distribution as measured at93 Willow Glen Station.
Figure 7.6	2001 temporal rainfall distribution as measured at93 Willow Glen Station.
Figure 7.7	Commulative distribution of 20 minute rainfall intensity94 for all events greater than 5mm measured at Willow Glen Station for 1997-2001.
Figure 7.8	Commulative distribution of 6 minute rainfall intensity94 for all events greater than 5mm measured at Willow Glen Station for 1997-2001.
Figure 7.9	Total yearly discharge from Gara River
Figure 7.10	Total monthly flow from Gara River 1997-2001
Figure 7.11	Mean nutrient and turbidity variation during zero96 moderate flow measured manually at Willow Glen Station.
Figure 7.12	Correlation matrix of variables monitored at

Figure 7.13	Mean daily water temperature	97
Figure 7.14	Sample characteristics for the period	99
	December 8 th to December 20 th 1998.	
Figure 7.15	Sample characteristics for the period	100
	January 1 st to February 3 rd 1999.	
Figure 7.16	Automatic sampling at Willow Glen Station between	101
	June 8 th and July 5 th 1999.	
Figure 7.17	Scatter plot of observed effective discharge Vs	105
	predicted effective discharge (Model 1) for Year 2000.	
Figure 7.18	Scatter plot of observed effective discharge Vs	106
	predicted effective discharge (Model 2) for Year 2000.	
Figure 8.1	Rainfall and discharge measured at Willow Glen Station?	108
	for the period 27 th July-13 October 1998.	
Figure 8.2	Turbidity measured at Site 1 over August to October in	108
	1998.	

List of Tables

Table 2.1	Malpas Dam statistics10
Table 3.1	Common nitrogen fixing species of cyanobacteria21
Table 3.2	General nutrient requirements of Cyanobacteria23
Table 4.1	Interception of rainfall by common grass types
Table 4.2	Maximum dry soil buffer created by annual and
	perennial pasture and crop plants.
Table 4.3	Approximate average porosity, specific yield,
	and permeability of various material.
Table 4.4	Soil moisture content, weight fraction45
Table 5.1	Methods used for preparation and analysis of59
	water samples.
Table 5.2	Methods used for preparation and analysis of
	water samples (bioavailabe elements).
Table 6.1	Wilk-Shappiro normality test for Site 175
Table 6.2	Site 1 moderate regression values80
Table 6.3	Occasions of high mean water column turbidity
	within Malpas Dam.
Table 6.4	Australian guideline values for common water
	quality parameters.
Table 7.1	Malpas Catchment rainfall during the period 1997-2001 90
Table 7.2	Automatic sampling at Willow Glen Station between 100
	January 1 st and February 3 rd 1999.
Table 7.3	Automatic sampling at Willow Glen Station between101
	8 th June and 5th July 1999.

Table 7.4	Automatic sampling at Willow Glen Station between the 102	2
	27 th Jan and 25 th March 2000.	
Table 7.5	Gara River autosample summary data103	3
Table 7.6	Correlation of variables measured at104	4
	Willow Glen Station for the combined years of	
	1997, 1998, and 1999.	

List of Plates

Plate 1	Unicellular Cyanobacteria Cell (Mycrocystis spp.) 16
Plate 2	Filament of Anabaena circinalis cells (Anabaena spp.) 16
Plate 3	False branching (Scytenoema), true branching17
	(Stigonema) and Hormogonia
Plate 4	Young filaments germinating from akinetes17
	(Anabaena <i>spp</i> .)
Plate 5	Willow Glen sampling site during high flow61
Plate 6	Willow Glen sampling site during low flow61