The University of New England School of Rural Science

ASPECTS OF GLUCOSE SYNTHESIS IN SHEEP

by

G.J. JUDSON

Thesis submitted for the Degree of Doctor of Philosophy

TABLE OF CONTENTS

	rage
SUMMARY	I
STATEMENT	v
ACKNOWLEDGEMENTS	VI
PUBLICATIONS	VII
ABBREVIATIONS	VIII
GLOSSARY	IX
INTRODUCTION	1
SECTION 1	
LITERATURE SURVEY	4
Kinetics of Glucose Metabolism	4
General Theory and Characteristics of Tracer Methods	4
Compartmental Analysis	12
Tritium Labelled Glucose as a Tracer for Glucose Metabolism	15
(i) [6- ³ H]Glucose	16
(ii) [1- ³ H]Glucose	17
(iii) [2- ³ H]Glucose	18
(iv) [3- ³ H]Glucose	19
(v) [4- ³ H]Glucose	20
Factors Affecting Glucose Production	23
Effect of Diet and Starvation	23
Effect of Pregnancy and Lactation	27

Page

	Page
Fate of Ingested Carbohydrate	28
Formation of VFA	28
Digestion of Starch in the Small Intestine	32
Sources of Glucose Produced	35
Propionate	35
Protein	39
Lactate and Glycerol	42
Other Precursors	43
Regulation of Gluconeogenesis	43
Glucogenic Enzymes	43
Possible Significance of Substrate Availability	47
Hormonal Control	51
(i) Pancreatic Hormones	52
(ii) Adrenal Hormones	54
(iii) Other Hormones	55
SECTION 2	
EXPERIMENTAL	57
Materials and Methods	57
Experimental Animals	57
Diet and Feeding Regimen	57
Surgical Preparation of Animals	58
(i) Jugular-vein catheters	58
(ii) Rumen cannula	59
(iii) Abomasal cannula	59
(vi) Mesenteric-vein catheter	59
Radioactive Compounds	59
Administration of Tracer Solutions	60
(i) Single injection	60
(ii) Constant infusion	60

Page

Sampling Procedures	61
(i) Blood	61
(ii) Ruminal fluid	62
Chemical Methods	63
Analysis of Feed and Faeces	63
(i) Organic matter	63
(ii) Nitrogen	63
(iii) Gross calorific value	63
Plasma Substrates	63
(i) Glucose	64
(ii) Lactate	64
(iii) $D(-)-\beta-Hydroxybutyrate$	65
(iv) <i>a-Amino-nitrogen</i>	65
(v) Urea	65
Assay of Radioactive Glucose	66
Radiochemical Purity of Plasma Glucose	68
Assay of Radioactivity in Infusates	69
Assay of Tritiated Water	71
Assay of Blood Bicarbonate	72
Analysis of VFA	73
(i) Total VFA	73
(a) Ruminal fluid	73
(b) Blood	73
(c) Chromatography of VFA	74
(ii) Assay of labelled propionate	76
(a) Sample preparation	76
(b) Preparation of silica-gel column	76
(c) Isolation of propionate	76

	Page
Mathematical Analysis of Tracer Dilution Curves	7
Constant Infusion of Tracer	7
Single Injection of Tracer	75
SECTION 3	
EFFECT OF DIET ON GLUCOSE SYNTHESIS	80
PART A: THE CONTRIBUTION OF PROPIONATE TO GLUCOSE SYNTHESIS IN SHEEP GIVEN DIETS OF DIFFERENT GRAIN CONTENT	8
Introduction	8
Experimental	8
Results	8
Irreversible Loss of Plasma Glucose	8
Effect of Diet on the Concentration and Molar Proportions of VFA in Ruminal Fluid	8
Propionate Production Rates in the Rumen and the Conversion of Propionate into Glucose	8
Discussion	8
PART B: THE CONTRIBUTION OF PROPIONATE TO GLUCOSE SYNTHESIS IN SHEEP GIVEN ROUGHAGE DIETS OF DIFFERENT PROTEIN AND ENERGY CONTENT	9
Introduction	9
Experimental	9
Results	2 9
Irreversible Loss of Plasma Glucose	9
Effect of Diet on the Concentration and Molar Proportions of VFA in Ruminal Fluid	9
Propionate Production Rate and the Conversion of Propionate into Glucose	9
Discussion	10

SECTION 4

EFFECT OF SELECTED SUBSTRATES ON GLUCOSE SYNTHESIS	109
PART A: SHORT-TERM EFFECTS OF GLUCOSE INFUSIONS	111
Introduction	111
Experimental	111
Results	113
Irreversible Loss of Plasma Glucose	113
Plasma Glucose Concentrations	117
Fixation of Blood Bicarbonate into Plasma Glucose	119
Contribution of Propionate to Glucose Synthesis	120
Discussion	126
PART B: SHORT-TERM EFFECTS OF PROPIONATE, AMINO ACIDS AND BUTYRATE INFUSIONS	137
Introduction	137
Experimental	137
Results	139
Effect of Propionate on the Irreversible Loss of Plasma Glucose	139
Effect of Propionate on the Fixation of Blood Bicarbonate into Glucose	144
Effect of Propionate on Glucose Synthesis from Ruminal Propionate	149
Effect of Infusions of a Mixture of Amino Acids on Glucose Synthesis	153
Effect of Infusions of Butyrate on Glucose Synthesis from Propionate	156
Discussion	160
Effect of Propionate on Gluconeogenesis	160
Effect of Amino Acids on Gluconeogenesis	165
Effect of Butyrate on Gluconeogenesis	167

Page

SECTION	5
---------	---

TOTAL ENTRY AND RESYNTHESIS RATE OF GLUCOSE	171
Introduction	171
Experimental	
Results	
Description of SR-time Curves of Plasma Glucose	174
Parameters of Glucose Metabolism	177
Transfer of Carbon-14 between Plasma Glucose and Blood Bicarbonate	185
Transfer of Tritium between Body Water and Plasma Glucose	186
Discussion	191
GENERAL DISCUSSION AND CONCLUSIONS	203
BIBLIOGRAPHY	207
APPENDIX : SECTION 3	231
APPENDIX : SECTION 4	233
APPENDIX : SECTION 5	244
WATER HYDROGEN MODEL	247
Introduction	247
Results and Theory	248
Boundary Conditions	249
Formulation of Flow Equations	250
Solution of Equations	250
Discussion	252

4

SUMMARY

1. It was established that gluconeogenesis in sheep was affected by the quantity and quality of the diet.

With diets of similar digestible energy content but of varying proportions of maize to lucerne, the proportion of plasma glucose arising from propionate produced in the rumen was highest on the diet containing the greatest quantity of lucerne and decreased as the proportion of starch in the diet increased. The low volatile fatty acid concentrations and the reduced conversion of propionate to glucose on the high starch diets, despite similar propionate production rates and irreversible losses of plasma glucose, may have been due to starch escaping fermentation.

With different roughage diets, the irreversible loss of glucose increased linearly with the digestible energy and crude protein intake. As the correlation with protein intake was lower than that for energy intake and as the amount of protein which passes to the small intestine is to a large degree independent of the protein intake, it is suggested that protein intake is not causally related to the irreversible loss of plasma glucose. There was no apparent effect of diet on the proportion of plasma glucose derived from propionate or on the proportion of propionate produced in the rumen that was converted into glucose. This indicates for the roughage diets used, that the relative contribution of glucogenic products of ruminal fermentation, particularly propionate and amino acids, to glucose synthesis is similar.

2. Short-term infusions of glucose and of certain products of ruminal fermentation were found to alter the gluconeogenic rate in fed sheep.

Intravenous infusions of glucose suppressed endogenous production of glucose in direct proportion to that infused for sheep given lucerne or wheat. The animals only partly adapted to the glucose infusion; the amount suppressed was equivalent to about one-quarter of the glucose infused. The glucose was apparently more effective in suppressing the synthesis of glucose from substrates other than ruminal propionate. The lower proportion of glucose carbon arising from blood bicarbonate on the high-starch diet may have been due to the absorption of glucose from the alimentary tract.

In sheep given lucerne, glucose synthesis rate was positively correlated with intraruminal infusions of propionate and with intra-abomasal infusions of amino acids. Approximately one-third of the infused substrate was apparently converted into glucose. Intramesenteric-vein infusions of propionate also

stimulated gluconeogenesis but infusions of butyrate produced only a transient increase in the glucose production rate. As glucose synthesis from propionate was not altered butyrate may have initiated glycogen mobilization.

3. In sheep given lucerne, estimates have been made for the total synthesis and resynthesis rate of glucose by using glucose labelled with tritium in positions 6, 3 or 2 with glucose labelled uniformly with carbon-14. Results show that recycling was less for tritium than carbon-14, particularly for tritium on positions 2 and 3 of glucose. Resynthesis of glucose carbon from blood bicarbonate was negligible as was the recycling of tritium through body water, although about 90% of the carbonbound hydrogen of plasma glucose was apparently derived from The recovery of tritium in body water from positions body water. 3 and 6 of plasma glucose together with the approximate estimates of the proportion of glucose oxidized indicates that about 20 to 30% of the intermediates of glucose metabolism are utilized in synthetic reactions. These results are consistent with the complete recovery of tritium in body water from position 2 of plasma glucose. It is suggested that monoexponential analysis of the initial portion of the disappearance curve of $[2-{}^{3}H]$ glucose

. hi

from plasma provides an estimate of the total synthesis rate of plasma glucose and in combination with $[U-^{14}C]$ glucose the extent of glucose resynthesis. Estimates obtained this way indicate that 20% of the glucose carbon is recycled.

STATEMENT

I certify that this thesis has not already been submitted in substance for any degree and is not being currently submitted for any other degree. I certify that any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

G.J. JUDSON

ACKNOWLEDGEMENTS

I sincerely thank Associate Professor R.A. Leng for his constant adivce and encouragement during the course of this study. My sincere thanks also go to Professor G.L. McClymont, Dean of the School of Rural Science, and to Dr. J.P. Langlands, C.S.I.R.O., Armidale, for their assistance during Associate Professor Leng's absence on sabbatical leave.

My personal thanks go to my colleagues in the Department of Biochemistry and Nutrition, Mr. R.G. White, Drs. J.V. Nolan, J.W. Steel and D.J. Farrell for their willing assistance and many helpful discussions. I thank Mr. F.M. Ball for his skilled laboratory assistance during the experiments presented in Section 5 and to Mr. A. Jones for the care of the experimental animals.

I am pleased to acknowledge that the work covered in Section 3, Part A was carried out in collaboration with Dr. J.R. Luick, visiting Fulbright Scholar and Mrs. E. Anderson of the Department of Biochemistry and Nutrition.

I am grateful to Professor G.L. McClymont who made it possible for me to carry out this work and to the Australian Wool Board for financial assistance.

Finally, I thank my wife who helped in the preparation of this thesis.

G.J. JUDSON

August, 1972.

PUBLICATIONS

G.J. Judson, E. Anderson, J.R. Luick and R.A. Leng (1968) The contribution of propionate to glucose synthesis in sheep given diets of different grain content. Br. J. Nutr., <u>22</u>, 69.

G.J. Judson and R.A. Leng (1968) Effect of diet on glucose synthesis in sheep. Proc. Aust. Soc. Anim. Prod. <u>7</u>, 354.

G.J. Judson and R.A. Leng (1972)
Studies of the control of gluconeogenesis in sheep: effect
of glucose infusion.
Br. J. Nutr. (in press).

G.J. Judson and R.A. Leng (1972) Studies of the control of gluconeogenesis in sheep: effect of propionate, casein and butyrate infusions. Br. J. Nutr. (in press).

G.J. Judson and R.A. Leng (1972) Estimation of the total entry rate and resynthesis of glucose in sheep using uniformly [¹⁴C]- and variously [³H]-labelled glucoses.

Aust. J. Biol. Sci. (in press).

ABBREVIATIONS

The following abbreviations have been used in this thesis:

ADP	adenosine 5'-diphosphate
ATP	adenosine 5'-triphosphate
CoA	Coenzyme A
Cyclic AMP	cyclic adenosine 3',5'-monophosphate
E.M.H.	Embden-Meyerhof pathway
NAD	nicotinamide adenosine dinucleotide
NADH	reduced nicotinamide adenosine dinucleotide
NADP	nicotinamide adenosine dinucleotide phosphate
NADPH	reduced nicotinamide adenosine dinucleotide phosphate
P.P.P.	pentose phosphate pathway
Rumen	reticulo-rumen
SR	specific radioactivity
VFA	volatile fatty acids

VIII

GLOSSARY

A glossary of those terms most frequently used in this thesis is given below. It was based in part on the recommendations of G.L. Brownell, M. Berman and J.S. Robertson to the International Commission of Radiation Units on the use of notation and nomenclature for tracer kinetics, published in 1968 in the Journal of Applied Radiation and Isotopes, volume 19, page 249.

- System: A set of compartments between which transfer of a certain defined substance occurs.
- Compartment: A kinetic entity in which it can be assumed that the defined substance is of uniform concentration and that the rates of movement within the compartment are very rapid with respect to movement to or from the compartment.

Pool size: Mass of defined substance within a compartment. Irreversible loss: The rate at which the defined substance (mass/unit time) leaves the sampled compartment never to return to that compartment.

Total entry rate: The rate of entry (mass/unit time) of all the defined substance into the sampled compartment.