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Thesis abstract 
 

In spite of challenging and unpredictable environmental conditions, bats are among the most 

successful groups of Australian arid zone mammals. Yet knowledge about the thermal biology 

and energetics of desert bats is scarce. I used temperature-telemetry to obtain data on the thermal 

physiology, torpor patterns, thermoregulatory behaviour, foraging activity and roosting ecology of 

desert bats under natural conditions in relation to climate and season. The study species were the 

inland freetail bat (Mormopterus species 3, body mass, BM, 9 g, henceforth Mormopterus), the 

little broad-nosed bat (Scotorepens greyii, BM 6 g) and the inland broad-nosed bat (Scotorepens 

balstoni, BM 9 g). The study was conducted at Sturt National Park (New South Wales, Australia) 

over three summers (2010-13), two winters (2011-12) and one spring (2011). In addition, I used 

flow-through respirometry to collect data on the thermal, metabolic and hygric physiology of 

Mormopterus and S. greyii over air temperatures (Ta) from 5 to 42ºC during summer 2013.  

In summer, all three species employed torpor regularly (~60-84% of all bat-days) and torpor 

patterns and activity were affected by Ta. Total time bats spent torpid per day was ~7.2 h and 

similar among species. The longest torpor bout duration (TBD) ranged from 22.7 to 39.3 h. 

Entirely passive rewarming from torpor was often observed in all species and occurred on 44.8% 

of all arousals in S. greyii and on 29.4% in S. balstoni, whereas Mormopterus rewarmed passively 

on 72.6% of all arousals. This is the first observation of entirely passive rewarming in bats. 

During the most extreme hot weather in January 2013, the maximum skin temperature (Tskin) 

recorded was 45.8°C (Ta 47.9°C) in Mormopterus and 44.0°C (Ta 46.1°C) in S. greyii, and these 

are the highest Tskin values recorded in free-ranging bats. All three species of bats roosted in a 

similar roost type which was a dead, hollow tree trunk usually with multiple holes and cracks. 

However, S. greyii and S. balstoni roosted ~3.5 m above the ground in the dense tree stands, 

whereas Mormopterus roosted ~5.5 m above the ground usually in the sun-exposed roost trees 

located in open areas, which presumably, facilitated passive rewarming in this species. 

In winter, Mormopterus remained torpid for up to 7.7 days and arousals were often followed 

by foraging activity. However, under similar thermal conditions, TBD in Mormopterus was ~40% 

longer in summer than in winter. This, in addition to the lower mean maximum rates of active 

rewarming from torpor in summer, suggests that seasonal changes in torpor patterns are governed 

not only by temperature effects, but also physiological acclimation. Even in spring torpor was 

common in pregnant Mormopterus, and torpor bouts up to ~6 h were observed on the daily basis. 

Often in addition to the long main torpor bouts in summer, winter and spring, Mormopterus 



vii 
 

employed one or two short auxiliary bouts, which may represent a unique energy and water saving 

strategy used by this species throughout the year.  

The mass-specific basal metabolic rate (BMR) was 1.03 ± 0.04 ml O2 g–1 h–1 in 

Mormopterus and 1.15 ± 0.04 ml O2 g–1 h–1 in S. greyii, and both were 10-57% lower than BMR 

in similarly-sized temperate, subtropical and tropical bats. Torpor significantly reduced metabolic 

rate (MR) and evaporative water loss (EWL) and their minimum values in Mormopterus were 

only 2.7% (torpor metabolic rate, TMR) and 10.7% (torpor EWL) of that of normothermic bats in 

the thermo-neutral zone (TNZ); in S. greyii these values were 3.5% (TMR) and 15.4% (torpor 

EWL). The steady-state minimum TMR was 0.028 ± 0.007 ml O2 g–1 h–1 in Mormopterus and 

0.040 ± 0.015 ml O2 g–1 h–1 in S. greyii and Tskin of both species fell to ~6ºC. These TMR and Tskin 

values were similar to the values observed in other hibernators. Interestingly, even in the TNZ 

both species were able to reduce normothermic MR by up to 45% below BMR and Q10 values, 

calculated for torpid and normothermic bats, were generally high (> 3), suggesting that metabolic 

inhibition was involved in down-regulating MR in these desert bats. Both species tolerated Tas up 

to 42ºC (maximum Ta tested) without visible signs of stress, which was achieved via increases in 

evaporative cooling and adjustments in thermal conductance. The point of relative water economy 

(Ta at which metabolic water production (MWP) = EWL) was reached at higher Ta in 

Mormopterus (12.7ºC) than in S. greyii (7.0ºC), but the water balance of both species was more 

favourable than in tropical cave-dwelling bats. 

My study shows that torpor and passive rewarming combined with low BMR, low EWL, 

metabolic inhibition and high heat tolerance are crucial for these desert bats to successfully cope 

with the aridity of their environment. It demonstrates that heterothermy plays a key role in biology 

of desert bats and likely explains to some extent why these small bats are so successful in Central 

Australia. 

 

 




