Path dependence: an approach for framing constraints on adaptation in Australian dairy farms

Lisa Kay Cowan
B.A. English (University of Washington, Seattle WA, USA)
M. Soc. Pol. & Plan. (Charles Sturt University, Wagga Wagga, NSW)

A thesis submitted for the degree of
Doctor of Philosophy of the University of New England

March 2014
Acknowledgements

There are a number of people that I would like to acknowledge for their support.

First, I would like to thank Victoria’s Department of Environment and Primary Industries for supporting this research. I would especially like to express my appreciation to my departmental supervisors and leaders who helped advocate for the continued backing of my research in challenging circumstances.

To my PhD Supervisors, thank you for the consistent and unfailing support throughout my research journey. Your ideas, constructive feedback and advice have truly guided me through this thesis. Geoff, you introduced me to systems theory, the catalyst for this thesis, and supported my interest in pursuing this research. For this I am grateful. Your knowledge of farm systems and your ability to get to the heart of the matter was invaluable. Ray, your capacity to synthesise concepts and bring in an alternative perspective was incredibly helpful. Your feedback was always thoughtful and challenging. I greatly respect your knowledge as well as methodological capabilities. Vic, you have most closely taken this journey with me. You patiently listened for hours to my “verbal processing” before something came out that made sense. You gently guided me when I went off course and rode the bumps with me. You have always been there to respond to emails, answer phone calls and for visits when I needed you. You are a mentor to me and I am perpetually in awe of your intellect.

To the dairy farmers who opened up their homes and shared the stories of their farms and families with me, I offer my deepest appreciation. You are the experts about dairy farming in the region and without your help this research would have no practical foundation or meaning.

To my work colleagues in the Practice Change/Service Design/Social Research team over the past several years, I am grateful for your support. You gave me the time and space to keep ploughing ahead, even when it meant you had to take on more work. Your moral support was also appreciated. I especially want to acknowledge two inspirational colleagues, Fiona Johnson and Jean Sandall, who offered early encouragement in this endeavour.
Mom, research has taught me that knowledge is cumulative, built on the backs of the giants that were there before us. It is with the greatest respect and love that I say you were my foundation. You taught me to not be afraid of hard work and have always believed in my capabilities, for that I thank you.

To my father, thank you for helping instil in me a love of a good challenge and the self-belief that I could do this.

Carmel and Peter, thank you for all of the ways that you supported me throughout the years.

Simon, from the start you have been steadfast in supporting me throughout this PhD journey. I am eternally grateful to you for all that you have done in enabling my quest for knowledge. You are truly my partner and husband.

To my children Liam and Fiona, thank you for your patience, humour and help in keeping me grounded in reality throughout my research.
Abstract

Climate change is a salient issue for southern Australia, which has been identified as one of the regions most vulnerable to climate change in the world. The potential impacts of climate change on farms could be profound and may require that producers adapt their farms to a much greater degree than currently undertaken. Generally speaking, it is expected that climate change will require considerable change to agriculture, with the responsibility for this change lying squarely with producers, many of which are small family businesses. In this thesis I explored the capacity of producers to adapt their farms in the face of climate change. Underpinning this exploration was a question regarding the role, if any, for public policy to support producers with managing climate change impacts.

I made a case that producers are constrained in the set of options available to them regarding feasible adaptations to their farms. These constraints are multifaceted and reflected in the sequential and cumulative changes made to the farm through time. Understanding the capacity to adapt the farm, then, logically needed to consider these dynamic constraints. I developed an integrated model of constraints on farms, drawing on farm control theory, value chain functions and image theory to identify a comprehensive set of constraints on farm decisions. Path dependence was then used to frame consideration of the dynamic interaction among constraints in farms.

The model was applied to 16 family dairy farms in northern Victoria. Producers were interviewed about the history of decisions regarding the family farm. Data were converted to narratives which were then analysed. Patterns of constraints were identified, using the integrated model. Using path dependence theory, these identified constraints were mapped as critical junctures and reinforcing decisions to reveal the dynamic interaction among constraints. Insights for understanding constraints on farms were then discussed, using examples associated with responses to drought, exiting dairy production and fertility management.

The model was assessed as a comprehensive and useful framing of constraints in farms and several principle insights were identified that were associated with:

- the salient constraints that exist in farms.
• the diversity of paths in farms due to constraints associated with the producer and family,
• the dire consequences that can result from compounding constraints, and
• the role of capability in determining farm decision options.
A number of implications for producer adaptation to climate change and the role of policy to support adaptation were then identified.

Overall, the research presented a picture of a future in dairy farming that will be characterised by a diminishing ability to cope with increasing variability. There appears to be an expectation that producers need to act now by adapting their farms to increase their capacity to manage increased variability. Yet producers are already constrained in their change options, due to path dependence as an accumulation of dynamic constraints.

If policymakers wish, or are pressured, to assist producers in this context, it may best be provided through support that enables preparation. Such policy support should focus on the provision of specific and relevant information and useful adaptation options. Central here are having information ready when producers are receptive to the need for change, and the maintenance of relationships with producers that enable greater understanding of their context-specific constraints. The development of technologies that enable flexibility is critical to supporting preparation on farms.

These findings suggest that timely preparation will not always be possible. Policy to then support producers to cope with the consequences of impacts will likely be inefficient, because of the diversity in constraints that exist in farms. Given an increased likelihood of failed businesses, policy to support agricultural adjustment may be useful.

This presents considerable challenges for developing appropriate responses to support farm adaptation to climate change. These findings suggest that support should emphasise generating and maintaining information to support the needs of diverse farms. Government also needs to be prepared to respond when producers are receptive to this information. This implies a need for increased breadth and flexibility on the part of government research, development and extension services.
Certification

I certify that the substance of this thesis has not already been submitted for any other degree and is not currently being submitted for any other degree or qualification.

I certify that any help I received in preparing this thesis and all sources used have been acknowledged in this thesis.
Table of Contents

Acknowledgements .. iii

Abstract .. v

Certification .. vii

Table of Contents ... ix

List of Tables .. xv

List of Figures .. xvii

Glossary of terms ... xix

1 Increasing variability and farms .. 1
 1.1. Introduction ... 1
 1.2. Long-term trends and variability ... 3
 1.3. Understanding adaptation .. 6
 1.4. Constraints on adaptation .. 8
 1.5. Dairy production in northern Victoria .. 13

2 Existing research for understanding constraints in farms .. 15
 2.1. Introduction ... 15
 2.2. General systems theory ... 16
 2.2.1. Farms as purposeful open systems ... 18
 2.2.2. System stability ... 20
 2.2.3. Questions remaining .. 21
 2.2.3.1. How to define system components and relationships in a meaningful way? 21
 2.2.3.2. How to distinguish different types of constraints on the farmer? 23
 2.2.4. Framing how producers manage variability .. 23
 2.2.4.1. Control and regulation .. 23
 2.2.4.2. Limitations .. 29
 2.2.4.3. Critical leverage points .. 30
 2.2.4.4. Risk management .. 32
 2.3. Path dependence .. 34
2.3.1. Three domains

2.3.1.1. Institutional domain

2.3.1.2. Industry and market economy

2.3.1.3. Organisation and firm

2.3.2. Fundamental elements of path dependence in the literature

2.3.2.1. Critical juncture

2.3.2.2. Reinforcement mechanisms

2.3.2.3. Irreversibility

2.3.2.4. Real options analysis

2.3.3. Implications from the path dependence literature

2.3.3.1. Identifying critical junctures in farms

2.3.3.2. Different paths, different path dependence

2.3.3.3. The constraint of technical efficiency

2.3.3.4. Farm finance

2.4. Framing consideration of the producer in constraints on decision-making

2.4.1. Images

2.4.2. Types of decisions

2.4.3. Decision-making process

2.4.4. Implications from image theory

2.4.4.1. Hierarchy

2.4.4.2. Profitability and compatibility

2.4.4.3. Changing signals and increased uncertainty

2.4.4.4. Learning

2.4.4.5. Other constraints on decision-making

2.5. Developing a model of a firm

2.5.1. Firms as value chains

2.5.2. Adapting the value chain model

2.5.3. Priority functions in farming

2.5.4. Accessing farm inputs

2.5.5. Support systems

2.5.6. Higher-order objectives

2.5.7. Developing a conceptual model of path dependence

3 Developing and testing a conceptual model of constraints on farm decisions

3.1. Introduction

3.2. Developing a conceptual model

3.2.1. Defining the farm and variability management in farms
3.2.2. Identifying constraints on managing variability in farms ____________________________ 79
 3.2.2.1. Dimensions of constraints from farm control theory ___________________________ 79
 3.2.2.2. Dimensions of constraints from the value chain ____________________________ 80
 3.2.2.3. Dimensions of constraints from image theory _____________________________ 81
 3.2.2.4. Dimensions of constraints from path dependence __________________________ 82
 3.2.3. An integrated model ___ 83

3.3. Research design __ 85
 3.3.1. Scope of the study __ 86

3.4. Methods of data collection __ 88
 3.4.1. Sampling criteria ___ 88
 3.4.2. Process for inviting participation ___ 89
 3.4.3. Interview process ___ 89
 3.4.4. Developing farm narratives ___ 91

3.5. Process of analysis ___ 93
 3.5.1. Congruence and dissimilarity across dimensions of constraints ________________ 94
 3.5.1.1. Organising and coding data for analysis ________________________________ 94
 Approach to coding ___ 98
 3.5.1.2. Analysing data for patterns across dimensions of constraints _____________ 99
 3.5.2. Decision mapping to reveal path dependence ________________________________ 99

3.6. Quality criteria for the research ___ 100
 3.6.1. Internal validity ___ 102
 3.6.2. External validity ___ 103
 3.6.3. External reliability ___ 104
 3.6.4. Internal reliability __ 104

4 Analysing path dependence in farms __ 107

4.1. Introduction ___ 107

4.2. Farm and farmer characteristics __ 108

4.3. Analysis of relationships across dimensions of constraints _____________________ 110
 4.3.1. Changes to plans that were not adaptations ________________________________ 114
 4.3.2. Changes to goals that were not adaptations ________________________________ 117
 4.3.3. The value image __ 122
 4.3.4. Identifying changes in value chain functions _______________________________ 131
 4.3.4.1. Technology development __ 132
 4.3.4.2. Procurement __ 134
4.3.4.3. HRM and infrastructure ... 136
4.3.4.4. Infrastructure change identified in isolation: the importance of finances 137
4.3.4.5. Primary functions.. 140
 Managing Milk Prices .. 142
4.3.5. Implications from pattern analysis ... 143

4.4. Analysis of path dependence through decision mapping 144
 4.4.1. Sources of critical junctures.. 145
 4.4.1.1. Drought- and flood-related critical junctures 146
 4.4.1.2. Policy change-related critical junctures 147
 Modernisation as an example of a policy-derived critical juncture 149
 4.4.1.3. Changes in Markets ... 154
 4.4.1.4. Family and personal context critical junctures 155
 Personal and family goals .. 155
 Family tragedy .. 158
 Changing family labour, management and ownership 159
 4.4.1.5. Imperative for increased productivity as a source of critical junctures 160
 Changing enterprises ... 163
 Opportunities and threats associated with feed production 164
 Land Development ... 166
 Herd ... 169
 Herd management ... 172
 4.4.2. The role of reinforcing decisions in farm constraints 176
 4.4.2.1. Critical junctures not linked to reinforcing decisions 179
 Closely interrelated critical junctures .. 181
 Current critical junctures .. 183
 Critical junctures associated with increasing productivity imperative 183
 Problem with a new practice ... 184
 Higher-order change .. 185
 4.4.2.2. Coded data that was not identifiable as an explicit reinforcing decision 186
 4.4.2.3. Exiting dairy ... 192
 Geoff converts to cropping (Narrative 7) 192
 Paul converts to cropping (Narrative 16) 194
 Matt focuses on agistment (Narrative 13) 195
 Owen focuses on beef cattle (Narrative 15) 196
 Insights associated with considering those who exited dairy 198
 4.4.3. Implications from decision mapping .. 201
 4.4.3.1. A persistent imperative for increasing productivity 201
 4.4.3.2. Limited options .. 202
List of Tables

Table 1.1. Main adaptive capacity constraints in Australian primary industries suggested to date..............9
Table 2.1: Some basic systems concepts ..22
Table 2.2: Farm control concepts ..25
Table 2.3: General hierarchy of critical leverage points in systems..31
Table 2.4: Examples from domains of path dependence research in the literature36
Table 2.5: Path dependence concepts ...46
Table 3.1 Sampling criteria for interviews ..88
Table 3.2 Data collected through interviews ...91
Table 3.3 Constructs defined for coding ...96
Table 3.4 Coding process employed in the research ...98
Table 3.5 Tools to manage quality employed in this research ...101
Table 4.1: Data regarding current dairy producer interviewees ...108
Table 4.2: Data regarding ex-dairy producer interviewees ..109
Table 4.3: Patterns of intersections across dimensions of constraints ...111
Table 4.4: Data coded as adaptations and goal changes ...113
Table 4.5: Changes to plans and operations or technology development that were not adaptations115
Table 4.6: Changes in goals that were not adaptation or changes in value chain120
Table 4.7: Expressions of values, guiding principles and beliefs in the farm narratives124
Table 4.8: Changes to procurement simultaneously coded with other functions135
Table 4.9: Sources of critical junctures identified in the farm narratives ...146
Table 4.10: Summary of results of decision mapping ...179
Table 4.11: Critical junctures that were not identifiable as linked to reinforcing decisions180
Table 4.12: Coded data that was not linked to a critical juncture ..187
Table 4.13: Summary of contextual factors influencing calving pattern decisions of dairy producers204
Table 4.14: Summary of the two main responses to fertility issues by producers207
Table 4.15: Summary table of producer experiences with drought ..219
List of Figures

Figure 1.1: Illustration of conceptual model depicting relationship across degrees of adaptations the
progress of climate change .. 7
Figure 1.2: Determinants of vulnerability in agricultural systems .. 8
Figure 1.3: Determinants of the farm system behaviour ... 10
Figure 2.1. Model of influences that have shaped contemporary systems approaches 17
Figure 2.2: Example of the hierarchy of plans and goals in a farm business .. 19
Figure 2.3 : Types of system regulators ... 26
Figure 2.4: Characterising the flexibility mix in farm systems ... 28
Figure 2.5: An example of trading-off the capacity to manage variability for maximising production in the
selection of livestock breed .. 54
Figure 2.6. Elements of decision-making in image theory ... 59
Figure 2.7. Simple example of a decision hierarchy .. 62
Figure 2.8. Single and double loop learning .. 64
Figure 2.9: A value chain .. 68
Figure 3.1. A conceptual model for understanding the constraints on farm management of variability .. 83
Figure 3.2. Map of Victoria highlighting region where interviews were conducted 87
Figure 3.3 A simple diagram of the analysis process used in this research ... 95
Figure 3.4: Data uploaded to NVivo .. 98
Figure 4.1: Visual representation of value chain functions in the farm hierarchy 137
Figure 4.2. Hierarchy of constraints identified in pattern analysis ... 143
Figure 4.3: Simple illustrative example of dairy farm development through time 161
Figure 4.4. Example of identified linkages between critical junctures and reinforcing decisions 178
Figure 4.5: Sources of critical junctures in relation to other constructs of constraints 202
Figure 4.6: A cascade of critical junctures caused by problems integrating infrastructure changes within
the existing production system .. 212
Figure 4.7: A series of critical junctures associated with changing context ... 213
Figure 4.8. Water allocation and milk production in the Goulburn-Broken District of the MDB 218
Glossary of terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agistment</td>
<td>A farm practice of sending cows off of the farm for a period of time. A fee is paid to the manager of the property where cows are agisted. Agistment is generally used for managing young and dry stock.</td>
</tr>
<tr>
<td>Allocation, irrigation</td>
<td>The percentage of water allocated, within irrigation entitlements, to irrigators in the irrigation district.</td>
</tr>
<tr>
<td>Backbone</td>
<td>A term describing the main regulated irrigation supply channel into and within the G-MW irrigation area as determined by recent irrigation system reform, described as ‘modernisation’.</td>
</tr>
<tr>
<td>Bobby calves</td>
<td>Calves that are less than two weeks old and have been removed from their mothers</td>
</tr>
<tr>
<td>Carryover water</td>
<td>Leftover water from an irrigator’s allocation that is allowed to be carried over into the following irrigation season.</td>
</tr>
<tr>
<td>Check banks or border checks</td>
<td>Raised banks of soil that are used in flood irrigation to guide the flow of irrigation water within irrigation bays</td>
</tr>
<tr>
<td>Conserve feeding</td>
<td>A practice of feeding hay, grain and silage to stock that was grown, harvested and stored for the purpose.</td>
</tr>
<tr>
<td>Cow parking</td>
<td>A farm practice of sending cows off of the farm for a period of time. The cows are milked by the manager of the property where the cows are parked. This differs from agistment, in which the cow owner pays a fee for looking after the cows. Instead, payment is derived through the production of milk.</td>
</tr>
<tr>
<td>Deep lead bore</td>
<td>A bore that is accessing deep aquifer water that is recharged over a very long timeframe.</td>
</tr>
<tr>
<td>Delivery shares</td>
<td>An entitlement that is linked to the land and enables a certain amount of water to be delivered the farm. A delivery share determines the maximum amount of water that can be used on a property in a season. (i.e. the combination of carryover, high and low security water cannot be greater than the delivery share)</td>
</tr>
<tr>
<td>Deregulation of milk</td>
<td>The removal of both state and federal legislation to regulate the sourcing and pricing of whole milk. The deregulation process occurred in 1999-2000.</td>
</tr>
<tr>
<td>Dethridge wheel</td>
<td>A wheel used to calculate the water that is being taken onto a farm property at an irrigation outlet. In process of being upgraded to magflow meters or flume gates.</td>
</tr>
<tr>
<td>Drought constructs</td>
<td>Agricultural drought - when there is reduced irrigation water available to primary producers (can be the result of factors separate from meteorological drought, such as over allocation and policy change)</td>
</tr>
<tr>
<td></td>
<td>Meteorological drought - when observed rainfall total fall within the lowest 10 per cent of long-term precipitation records, which in the context of irrigation is manifested very clearly into changes in allocations</td>
</tr>
<tr>
<td>Dry cows</td>
<td>Cows that have been managed to stop lactation in the weeks up until calving</td>
</tr>
<tr>
<td>Empty cows</td>
<td>Cows that are not in calf, or pregnant</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Entitlement, irrigation</td>
<td>An ongoing agreement between the local water authority and an irrigator that ensures irrigator access to a designated amount of water, measured in mega litres (ML) from a specified consumptive pool. This includes both low and high security water as determined by reliability of water. This is also known as a water share.</td>
</tr>
<tr>
<td>Environmental flows</td>
<td>Broadly, this can mean water released into the river system for environmental reasons. This phrase is often used to describe water in the pool of water available with the irrigation district that has been separated out for river health.</td>
</tr>
<tr>
<td>Farm apprenticeship</td>
<td>A training program that included on-the-job training and coursework at a technical college or university.</td>
</tr>
<tr>
<td>Farm management deposit account</td>
<td>A savings account that includes a tax benefit for farmers as they can deposit money pre-tax as long as it is left in the account for more than 12 months.</td>
</tr>
<tr>
<td>Feed pad</td>
<td>A designated area for feeding supplementary feed, sometimes constructed out of cement.</td>
</tr>
<tr>
<td>Feeding in the bail</td>
<td>Offering supplementary feed as pellets or grain to cows as they are milked.</td>
</tr>
<tr>
<td>Flume gates</td>
<td>A metered irrigation outlet gate that has replaced many of the Dethridge wheels used in managing the flow of irrigation water onto properties.</td>
</tr>
<tr>
<td>Goulburn-Murray Water (G-MW)</td>
<td>A regional water authority responsible for managing irrigation water and infrastructure in the district in which interviews were conducted.</td>
</tr>
<tr>
<td>High security water</td>
<td>The high reliability portion of an irrigator’s water entitlement. The expectation is that 100 per cent of high security water would be achieved 95 years out of 100. This is similar to the notion of permanent water. When irrigators describe the number of ML associated with their farms, this is what they are describing.</td>
</tr>
<tr>
<td>Imported feed</td>
<td>Feed that is brought onto the farm for use as stock feed. This can include grain, hay and silage. Also called purchased feed.</td>
</tr>
<tr>
<td>Lead feeding</td>
<td>A practice of transitional feeding, in which the farmer alters the feed given to cows up until and after calving to reduce the incidence of problems transitioning the cow back into milk production.</td>
</tr>
<tr>
<td>Low security water</td>
<td>The low reliability portion of an irrigator’s water entitlement. Low security water is available once there is enough water to meet the high security water needs in the consumptive pool for the current season and the minimum inflows for the following season. This is similar to sales water.</td>
</tr>
<tr>
<td>Magflow</td>
<td>A type of water meter used to measure the volume of water entering a farm property at an irrigation outlet. Superseding the Dethridge wheel on some properties.</td>
</tr>
<tr>
<td>Modernisation</td>
<td>A term used to describe recent irrigation system reform. The program has included the removal of water authority management of some parts of the public irrigation infrastructure, described at ‘rationalising’.</td>
</tr>
<tr>
<td>Murray Goulburn Co-operative</td>
<td>A milk supplier established in 1950 that is owned by Australian dairy farmers. It processes about 1/3 of Australia’s milk supply for the domestic and export market.</td>
</tr>
<tr>
<td>Permanent water</td>
<td>An older way of describing the high reliability portion of an irrigator’s water entitlement. This is similar to the high security water.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>Northern Victoria Irrigation Renewal Project (NVIRP)</td>
<td>The organisation that was created to deliver irrigation system reform, described as modernisation. Recently, NVIRP has been integrated into G-MW as a group called G-MW Connections.</td>
</tr>
<tr>
<td>Pugging</td>
<td>A term used to describe stock damage caused by hooves sinking into the soil creating deep divots and damaging pasture.</td>
</tr>
<tr>
<td>Sales water</td>
<td>An older way of describing the low reliability portion of an irrigator’s water entitlement. This is similar to low security water.</td>
</tr>
<tr>
<td>Shallow bore or spear point bore</td>
<td>A bore that accesses water in shallow aquifers (down to 30 metres). Water levels fluctuate more readily than deep lead bores, more closely aligned with climate.</td>
</tr>
<tr>
<td>Shandy</td>
<td>Refers to the mixing of saline groundwater with fresh water to reduce salinity of irrigation water.</td>
</tr>
<tr>
<td>Spur</td>
<td>A term describing the publicly owned parts of the irrigation system that are connected to the backbone.</td>
</tr>
<tr>
<td>Stock and domestic</td>
<td>Describes the use of water for household needs and watering of stock. This is separate from an irrigator’s irrigation entitlement.</td>
</tr>
<tr>
<td>Supplementary feed</td>
<td>Any feed given to stock other than via direct grazing. Supplementary feed includes conserved feed and imported feed.</td>
</tr>
<tr>
<td>Tatura Milk</td>
<td>A milk supplier established in 1907 that is now a wholly owned subsidiary of Bega Cheese. Tatura Milk produces a number of dairy products (e.g. infant formula and butter) for domestic and export.</td>
</tr>
<tr>
<td>Temporary water</td>
<td>Water that can be purchased on the temporary water market within a season.</td>
</tr>
<tr>
<td>Whole milk</td>
<td>Milk sold in liquid form, also referred to as fresh milk.</td>
</tr>
<tr>
<td>Whole farm plan (WFP)</td>
<td>A plan that is developed in a two stage process entailing a farm survey and design. WFPs are used to plan for farm development including the farm’s irrigation system layout. This includes consideration of land slope and paddock sizes.</td>
</tr>
</tbody>
</table>