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Abstract 

Accurate estimation of inventory estimates, such as aboveground tree biomass, is a 

fundamental aspect of studies on carbon stocks of forest ecosystems since it reflects the 

accumulation of organic carbon and ecosystem productivity. Diameter at Breast Height 

(DBH) and tree height are the two main variables used for numerous forest inventory 

parameters, including stand stem volume and biomass. The significant variability within 

these factors, however, can challenge the acceptable levels of precision and bias required for 

inventory estimates at the operational Planning Unit.  

In Hanging Rock State Forest, New South Wales, Australia, despite the similar genetic 

sources, edaphic (geology and soil type) and climatic (temperature and rainfall) variables as 

well as similar initial stocking rate, the radiata pine (Pinus radiata D. Don) trees displayed 

significant height and DBH variation within even-aged compartments. The aim of this 

research was to determine the significant factors causing these variations and identify the 

relationships between height and DBH variables with these factors. The knowledge of intra-

compartment variability in tree height and DBH is important as these small area inventories 

are used for operational yield predictions and facilitate local silvicultural and harvesting 

decisions. 

Airborne Light Detection and Ranging (ALS or LiDAR) system has demonstrated the ability 

to provide accurate metrics from stand attribute estimates. LiDAR offers a cost-effective, 

operationally flexible and robust sampling tool for forest managers. With the use of LiDAR, 

substantial data from tree canopy structure and its surrounding spaces can be acquired. In this 

study, not only LiDAR was used to derive different tree structural metrics, such as height and 

stocking, but also different terrain information such as slope, aspect as well as solar radiation 

was calculated from the highly accurate Digital Elevation Model (DEM). 
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The results of this study demonstrated significant relationships between DBH and height of 

radiata trees with slope and aspect, solar radiation and stand density (P < 0.01 or P < 0.001). 

Overall taller trees and trees with larger diameters were common on southerly aspects and on 

gentle slopes (<20°). Also larger and taller trees were associated with low values of summer 

and winter radiation. A significant relationship was also seen between tree height and DBHs 

and stocking (P < 0.001), where taller trees were associated with high stocking while larger 

diameter trees were found on lower stocking sites. These results indicate initially the capacity 

of LiDAR to capture sub-compartment variation in these tree-level attributes and further 

define these factors suitable for use as a sub-compartment stratification variable as well as for 

possible inclusion in different P. radiata models for better and accurate resource predictions. 
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