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ABSTRACT

This thesis aims to explain the geomorphic history of the Armidale-Uralla
region in New South Wales. A subsidiary aim is to assess the validity of six
theories and concepts of landscape development; and to set the geomorphic
history of the Armidale-Uralla region into the east Australian context.
Detailed field mapping showed that the Tertiary basalts in the study area are
mainly valley-fill basalts, now relief-inverted. Their minimum age range is
33-22 my, and they may have been extruded from regional vents in the Glen
Innes area, 60-80 km to the north. Ferricrete occurs as both subsurface
horizons and as surface lag deposits, and is usually associated with basaltic
soil. It is often vesicular and nodular, with quartz sand. It is
post-basaltic, and has formed by the mobilisation and concentration of iron
minerals in basaltic soil profiles. There is no single 'ferricrete surface' in
the region. The three main silcrete types are: silicified sorted clasts;
silicified poorly sorted clasts; and silica-cemented brecciated chert.
Silicified clasts appear to be mainly the result of post-basaltic
silicification of pre-basalt stream sediments, many of which were probably
covered by basalt flows before silicification. There is no evidence of a
direct genetic relationship between the basalt flows and silicification of the
sediments. Thin section examination of quartz grains in ferricrete and
silcrete suggests grains are derived from both granitic and vein sources.
Silica-cemented brecciated chert has developed by silicification of fractured
chert bedrock.

The geomorphic history of the Armidale-Uralla region as we know it today
began in the mid-Permian, with the deformation and welding of the marine New
England region onto the Australian craton. This was followed by intrusion of
the New England Batholith, including the Mount Duval diapir, and prolonged
erosion and sedimentation. Palaeomagnetic dating of highly weathered
ferricrete indicates possible Jurassic volcanism. The early development of the
eastern highlands and Main Divide may be linked to the opening of the Tasman
Sea 80-60 my ago, and subsequent accelerated erosion near the new continental
edge. Tertiary basalt extrusions resulted in drainage modification as shown by
deep leads. Ferricrete and silcrete developed during and after the extrusions.

Landscape evolution in the Armidale-Uralla region after the intrusion of
the New England Batholith 250 my ago, probably involved an extended phase of
erosion, and possible Jurassic volcanism, followed by development of the Main
Divide by the late Mesozoic - early Tertiary. A series of valley-fill lava
flows between 33 and 22 my resulted in drainage modification and minor shifts
in the position of the Main Divide. Ferricrete and silcrete are thought to
have formed in this post-basaltic landscape during Miocene times. Subsequent
erosion has resulted in widespread relief inversion of basalt, and has exposed
silcrete, ferricrete, Eocene sediments and basement rocks throughout the
Armidale-Uralla region.
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