
Chapter 1

Introduction

Economists frequently encounter situations where the observations on the dependent

variable in a regression model are limited to a certain range. For example, in labour

supply functions where hours worked is explained as a function of wage rate and a

number of other independent variables, the dependent variable cannot be negative,

and it will be equal to zero for all those individuals who do not work. Thus, in this

and other similar situations, the stochastic specification of the function takes into

account the non-negativity of the dependent variable as well as the clustering of a

number of observations at zero. If traditional least squares techniques are applied to

estimate the model, the resulting estimates will generally be biased and inconsistent

and therefore are no longer appropriate.

In economics, this model was first suggested by Tobin (1958) who analysed house-

hold expenditure on durables by considering the fact that the dependent variable

cannot take negative values. Tobin's model and its generalisations are usually known

as tobit models because of their relationship to the probit model. Tobit models are
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also known as censored or truncated regression models. A model is called censored

if all the independent variables are observable but the dependent variable cannot be

observed outside a specified range. If, on the other hand, both the dependent and

the independent variables are not observable outside a certain range, it is referred to

as a truncated regression model.

In recent years numerous applications of tobit models have appeared over a wide

range of areas in economics. Examples of applications include labour supply models

[Heckman (1976, 1979), Keely, Robins, Spiengelman and West (1978) and Wales and

Woodland (1980)], demand for housing [Lee and Trost (1978)], modelling for public

decision [Foot and Poirier (1980)], household expenditure models [Jarque (1987)],

Demand for imports [Wu (1992)]. Theoretical and empirical surveys on tobit models

were given by Amemiya (1981, 1984).

The increase in applications of tobit models has been associated with the increase

of survey data for which tobit model analysis is well suited and with the availability

of computer technology. On the other hand, many types of tobit models have been

suggested and various estimation methods proposed. In fact, Amemiya (1984, p.4)

stated,

`... models and estimation methods are now so numerous and diverse that

it is difficult for econometricians to keep track for all the existing mod-

els and estimation methods and maintain a clear notion of their relative

merits'.

Examples of papers which are related to the theoretical aspects of various estima-

tors and their properties include those of Amemiya (1973, 1978, 1981), Goldberger

(1980, 1981), Greene (1981a, 1981b, 1983, 1990), Heckman (1979), Olsen (1978),
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White (1980b), Powell (1984, 1986b), Peracchi (1990) and Chib (1992). Furthermore,

related models have been studied in the statistical literature of physical sciences [ for

example, Scheme and Hahn (1979), Aitkin (1981)].

However, almost all the theoretical studies are concerned with the asymptotic or

large sample properties and/or computational ease of alternative estimators. In other

words little attention is given to the finite (small) sample properties of the various

estimators. Thus the purpose of this study is to make a contribution towards this

end. Specifically, we use Monte Carlo techniques to assess the relative performance

of the various estimators of the model.

Moreover, this study suggests an improved estimator for the tobit model along

the lines of the existing Heckman's estimator and provides the asymptotic properties

of the estimator. Furthermore, the finite sample properties of the proposed estimator

are also investigated and compared along with other existing estimators of the model.

1.1 Objectives of the Study

This study is aimed towards a performance comparison of several estimators of the

tobit model through a Monte Carlo experiment. There are many types of tobit models;

this study will concentrate on the estimators that are relevant for what is known as

the standard tobit model. Along the lines of existing Heckman two-step estimators

of the tobit model, the study also proposes an alternative three-step estimator and

its weighted version, the weighted three-step estimator, for the standard tobit model.
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In general the objectives of this study can be summarized as follows:

1. To investigate the relative performance of the alternative estimators that

have been proposed in the literature. That is,

1.1 To investigate the relative efficiency of the various estimators.

1.2 To investigate whether the asymptotic distributions of the various esti-

mators are good guides to the finite sample properties of the estimators

and to determine the sample sizes where the asymptotic distributions

of the estimators can be used as good guides.

1.3 To examine whether the asymptotic covariance matrices are accurate

(or good) estimates of the finite sample covariance matrices and their

implications for hypothesis tests and/or confidence intervals of coeffi-

cients.

1.4 To assess the relative effects of relaxing the assumption of normally

distributed disturbances which is a standard assumption in almost all

cases.

1.5 To investigate the effects of the degree of censoring on the performance

of the estimators of the model.

2. To propose an alternative estimator for the standard tobit model and pro-

vide its asymptotic properties. Furthermore, to investigate the finite sam-

ple properties of the suggested estimator and compare the results with

those of the other estimators.

3. To investigate the use of the alternative, but asymptotically equivalent,

variance-covariance matrix estimators in the estimation of variances and
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their implications in statistical inference, i.e., for hypothesis testing and/or

confidence intervals of the coefficients of the model. This is particularly

relevant in the maximum likelihood framework.

4. To examine the effects of correlation between the explanatory variables on

the performance of the estimators.

5. To provide specific recommendations that can be used as a guide in applied

research.

Note that the sequence of these objectives does not necessarily imply one is more

important than the other. Some of these objectives will be elaborated upon later in

this study under their respective chapter or topic headings.

1.2 Outline of the Study

The main focus of this research is concerned with the small sample performance of

the estimators of the standard tobit model. Thus, although there are many types of

tobit models, it is the aim of this research to concentrate on the literature that is

most relevant to the standard tobit model.

Chapter 2 starts with the definition and the specification of the standard tobit

model, the model whose estimators are to be investigated in this thesis. Then, the

various estimators of the model and their properties are discussed in the subsequent

sections of the Chapter. These estimators include, among others, the maximum

likelihood estimator, Heckman's two-step estimator and its weighted version, the

weighted Heckman's two-step estimator, nonlinear least squares estimators and other
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Heckman-type estimators of the model. This Chapter also provides a brief review

of the non-parametric, bounded influence and Bayesian methods of estimation of the

tobit model.

Chapter 3 proposes an alternative estimator for the tobit model along the lines

of the existing Heckman's two-step estimator. This estimator is referred to as the

three-step estimator. The properties of the proposed estimator, i.e., its consistency

and asymptotic distribution, are derived and discussed in this Chapter. Further, this

Chapter provides some generalizations of the three-step procedure in estimating the

standard tobit model as well as other similar models.

In Chapter 4, studies which are related to the small sample properties (Monte

Carlo and/or simulation studies) viz-a-viz the model defined in Chapter 2 are dis-

cussed. Although there are many types of tobit models and related small sample

studies in the literature, this Chapter concentrates mainly on those studies that are

most relevant to the finite sample properties of the estimators of the standard tobit

model.

Chapter 5 deals with the design of the Monte Carlo experiment which is employed

in this study. This Chapter starts by defining the specific form of the model to be

investigated in the Monte Carlo experiment. Once the model is specified it is fol-

lowed by the various details that are involved in the data generation and estimation

processes of the experiment. The main points discussed in this Chapter include the

generation of the explanatory variables of the model, the determination of the true

values (parameter values), the determination of sample sizes and the degrees of cen-

soring. Further, this Chapter discusses the various distributions considered for the
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random error term of the model. Other important issues such as the generation mech-

anism of the random variates associated with each distribution as well as the output

statistics to be computed in the Monte Carlo experiment for comparison purposes are

included.

The main comparisons and findings of the experimental results begin in Chapter

6. This Chapter presents a detailed analysis and comparison of most of the estimators

discussed in Chapters 2 and 3 of the study. A total of 11 estimators are included at

the beginning of the Chapter. These estimators are compared using several criteria,

as outlined in Chapter 5. A few estimators are then selected on a step by step basis

depending on their relative performance. While comparing the various estimators,

this Chapter also raises several questions and issues some of which are considered for

further analysis in the subsequent chapters of this study.

Chapter 7 is entirely devoted to a further investigation of the small sample prop-

erties of the maximum likelihood estimator of the model, which is one of the most

frequently used estimators in applied research. This Chapter is motivated by the

findings and questions raised in Chapter 6 as well as by taking into consideration

the wide use of the maximum likelihood estimator in applied research. The Chapter

provides more information with regard to the consistency of the maximum likelihood

estimator under a variety of conditions. Furthermore, this Chapter presents a de-

tailed analysis on the performance of the alternative, but asymptotically equivalent,

variance-covariance matrix estimators in the estimation of variances of the coefficients

of the model as well as their implications for hypothesis testing and/or construction

of confidence intervals for the coefficients of the model.

Chapter 8 examines the effects of correlation between the explanatory variables
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and the estimated inverse of Mill's ratio on the performance of the estimators of the

model; in particular on the performance of Heckman's two-step and the three-step es-

timators. The main purpose of this Chapter is to examine the advantages of using the

three-step estimator proposed in this study as compared to the usual Heckman's two-

step estimator which often is characterized by a strong and unavoidable correlation

problem.

This is followed by Chapter 9 which presents selective discussion on various topics

related to this study. These topics cover a range of issues that are related to the design

of the experiment as well as the outcomes (findings) of the study. This Chapter is

designed to provide more information regarding the flexibility (or restrictiveness) of

the experimental design as well as to examine the implications of some of the findings

of the experiment for applied research.

Finally, Chapter 10 presents the summary, conclusions and recommendations of

the study.



Chapter 2

Review of Literature

2.1 Introduction

Tobit models refer to regression models involving dependent variables for which ob-

servations are limited to a certain range. In economics, the tobit model was first

suggested in the pioneering work of Tobin (1958). He investigated the relationship

between household expenditure on durable goods, income and a number of other

explanatory variables by taking into account the non-negativity of the dependent

variable in the model. The name `Tobit', which refers to Tobin's probit, was nick-

named by Goldberger (1964) because of its relevance to probit models. Tobit models

are also referred to as censored or truncated models. They are called truncated if the

observations outside a specified range are totally unobserved and censored if one can

observe at least the exogenous variables.

Although the tobit model was first suggested by Tobin in 1958, there was very

slow progress both in theoretical and empirical applications in the economic literature

9
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between this time and the 1970's. However, in the last two decades, a vast amount of

applied and theoretical papers have appeared in a wide range of areas in economics.

As a result many types of tobit models have been suggested and various estimation

methods proposed. Amemiya (1981, 1984) provides a survey on the theoretical and

empirical applications of the model [see also the books by Manski and McFadden

(1981), Maddala (1983), Amemiya (1985), Judge et al. (1985) and Greene (1991)].

It is clear that the literature on tobit models is vast, covering from the simplest

single equation tobit model to more complex tobit models involving simultaneous

equations. Amemiya (1984) used five classifications for convenience, and defined the

standard tobit model suggested by Tobin (1958) as Type-I. Similarly, there are many

estimators that have been suggested in the literature to estimate the parameters of

these models. Of course, like any other models, most of the estimators of the model

are quite similar and are usually generalizations of the simplest cases of the model.

The main focus of this Chapter is to discuss the various estimators of the standard

tobit model (Type-I Tobit) and their properties. In other words, although there are

many types of generalisations of the tobit model, the review of the literature is limited

to those estimators which are most relevant to the standard tobit model. However,

as mentioned above, it is also important to note that many of the properties of these

estimators may apply to other types of tobit models with some adjustments.

In general, the review of literature in this Chapter is organized as follows: Sec-

tion 2.1 defines the specification of the standard tobit model. The properties of the

traditional least squares estimators and their limitations in estimating the standard

tobit model are discussed in Section 2.3. Sections 2.4 through 2.8 present the various

theoretically feasible estimators of the model and their properties. These estimators
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include, among others, the maximum likelihood estimator, the Heckman's two-step

estimator and its variations, and some nonlinear least squares estimators. Highlights

of semi-parametric, bounded-influence and Bayesian estimators of the models are also

provided in Section 2.9. Section 2.10 presents some useful results associated with the

tobit model. Finally, a summary appears in Section 2.11.

2.2 The Standard Tobit Model

As stated above, the overall objectives of this study relate to the estimators of the tobit

model and their finite sample properties, with particular emphasis on the standard

tobit model. The standard tobit model is defined as follows:

yi* = oci1 /3 + ui,	 i = 1,...,N.	 (2.1)

Yi = Y: if y: > 0,

= 0 if y: <0.	 (2.2)

where ei is a (lxk) vector of explanatory variables which are assumed to be observed,

/3 is a (kxl) vector of unknown parameters to be estimated,

u is an (Nxl) vector of random disturbances, u i , which are assumed to be indepen-

dently and identically distributed drawings from N(0,a2),

y* is an (Nxl) vector of values on the latent variable, y:,

y is an (Nxl) vector of observations on the dependent variable, y i , consisting of

positive (non-limit) observations corresponding to the positive values of y: and zero

(limit) observations corresponding to those observations for which y: < 0.
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Since there are many generalizations of the tobit model, the model specified in

(2.1)-(2.2) above is usually referred to as the standard tobit model, or simply the

tobit model. It is also sometimes referred to as the Type-I tobit model, according to

Amemiya's (1984) classification of five types of tobit models.

The model (2.1)-(2.2) is also known as the censored regression model. It is called

censored because all the values on the explanatory variables are observed (known) but

the dependent variable, yi , is observed only when the latent variable, y:, is positive.

On the other hand, if all explanatory variables were observed (sampled) only for those

observations for which y: is positive, the model would be referred to as a truncated

regression model. In other words, in a truncated model we have no information re-

garding y: < 0. One of the main distinctions between a censored and a truncated

regression model is that in a censored regression model one can use the available data

to estimate the probability that an observation yields complete data, whereas in a

truncated model one cannot. It is clear that there are many similarities between the

two models and many results may apply to both cases with some adjustments. How-

ever, this study will concentrate solely on the estimation of the censored regression

(standard tobit) model defined in (2.1)-(2.2).

Given this model, the main interest is to estimate and cr 2 on the basis of N

observations on the variables y i and xi . Estimation of these parameters using or-

dinary least squares techniques provides estimates which are generally biased and

inconsistent. The properties of these estimators are discussed in the next section.

Alternatively, a number of consistent estimators have been suggested for the estima-

tion of the parameters of the tobit model; some of these estimators will be considered

subsequently in this Chapter.
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2.3 Properties of Least Squares Estimators of the

Tobit Model

It is well known that the conventional ordinary least squares estimators for the tobit

model defined in (2.1)-(2.2) are biased and inconsistent. However, it is important to

understand the properties of the least squares estimators and their limitations. In

order to do this we first define the following:

Let No be the number of observations for which y i = 0, and N1 be the number of

observations for which yi > 0 such that N = No + N1 . Further, we define fi and Fi

to be the density function and the cumulative distribution function of the standard

normal random variable, respectively, evaluated at z i 43/cr. That is,

= 	  –,e
\7271-

12	
(2.3)

and
2%	 1

Fi = f 	 t2 (2.4)

Suppose we consider the observations in which the dependent variable is positive

(i.e. yi > 0). That is

> 0] = xZ 3 +E[uilN > 0]

	

= x',13	 [ui dui >	 (2.5)

Note that if the conditional expectation of the last term in the right hand side

of equation (2.5) is zero, then the least squares estimator of would be unbiased.

However, this is not generally the case, implying that the least squares estimator that

uses the N1 positive observations of y i is biased.
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Further, if we assume normality as in the tobit model, equation (2.5) can be shown

by straightforward integration to be

> 0] = 33:0	 o-A(zi ),	 (2.6)

where A(Zi) Azi)1 F(zi ) which is known as the hazard rate in reliability theory and

its inverse is known as Mill's ratio.

As can be seen from equation (2.6), applying least squares omits the term o-A(zi)

which is not independent of It is this omission that leads to a biased and incon-

sistent estimator of 13. However, the magnitude and direction of the bias is unknown

without making further assumptions. Goldberger (1981) assumed that the exclud-

ing the first element which is assumed to be constant, are normally distributed and

evaluated the asymptotic bias of the least squares estimator. Specifically, Goldberger

(1981) defined (2.1) as

Yi = Oo x i /31 + ui
	

(2.7)

where x2 is assumed normally distributed with mean zero and variance E and is

distributed independently of ui . Note that the assumption of zero mean does not

involve any loss of generality since any non-zero mean can be absorbed by the constant

term. Goldberger (1981) then obtained

1 	 -y
plim -= 1	 p22,

where

where o-2 = o- 2 /1 E/1 .

2 /and p2 
= Cry P1

(2.8)
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Based on this result it can be shown that 0 < < 1 and 0 < p < 1, thus (2.8)

implies that Si shrinks the estimate of f3 to zero with the degree of shrinkage being

uniform for all elements of /31 . However, if x i,: is not normal the result may not hold.

Similarly, Greene (1981a) showed the biasedness of the least squares estimator

when applied to the model using all the limit and non-limit observations. In this case

we consider the unconditional expectation which yields the equation

E[yj] = F(zi )(x ii i3) + cTf zi)	 (2.9)

Following the same assumptions as Goldberger (1981), and expressing (2.1) as

(2.7), Greene (1981a) obtained the following result:

plim	 = F(0o/ cfv)•01
	 (2.10)

where 131 is the least squares estimator of ,(31 from the regression of y, on using

all the observations. The result in (2.10) is an interesting result since it implies

that /31 can be consistently estimated by (N/N1 )/31 , which is sometimes referred to

as the corrected least squares estimator (COLS). A similar consistent estimator can

be obtained for /30 . A Monte Carlo study by Flood (1985) who compared Greene's

(1981a) COLS estimator and the maximum likelihood estimator of the tobit model

indicates that, under normality of the error terms, the COLS estimator is biased even

when the sample size increases. However, the bias of the COLS disappears when the

exogenous variables are generated from a normal distribution, a situation which is

unlikely to be the case in applied research.

In general we conclude that the least squares estimators using both the positive

observations on yi , or all the N observations, do not provide good estimators for the
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tobit model. Thus, alternative estimators have been devised; they are discussed in

the following sections.

2.4 The Maximum Likelihood Estimator (MLE)

The maximum-likelihood procedure can be applied to obtain consistent estimators

of the parameters, /3 and cr2 . Maximum likelihood estimation of the standard tobit

model proceeds as follows. For convenience we assume that, without loss of generality,

the first N1 observations contain the non-zero observations and the remaining No

observations contain zero observations on yi . We know that for the observations for

which yi are zero, we have

Pr(yi = 0) = Pr(ui <	 = 1 — Fi	 (2.11)

since the normal distribution is symmetric. For the observations for which y i are

greater than zero, we have

Pr(yi > 0)-f	 > 0) = Fi f(Yi	 52)
Fi

(2.12)

1
70-2)1/2 ex13 { — (yi — x:0)2 /2a2 }	 (2.13)
(2 

Note that fi and F, are as defined in (2.3)-(2.4) the density and distribution functions

of the standard normal distribution, respectively.

Thus the likelihood function is given by

L = 11[1. —	
1
	 exp{—(y i — xi/3)/2u2 }1 (270.2),„
	 (2.14)
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where the first product, fl,is evaluated over the No observations for which y i = 0

and the second product, II, is evaluated over N1 observations for which yi > 0.

The log-likelihood function is

log L = E log(1 — Fi)	
1

E log 	  E 
1

(yj —
0	 1 (27r-u2)1/2	 2o-2

(2.15)

where E is the summation over the No observations for which y i = 0 and E is the

summation over the N1 observations for which y i > 0.

The first derivatives of log L for a maximum are

clog L	 1	 fi xi	 1
+ —E(yi — 43)x,

a /5.	—	 a-2

clog L (x
1
)3)fi 

30.2 	 2o-3 L) 1 — Fi	 20.2 +	 (yi 43)2

and the second derivatives of log L are given by

(2.16)

(2.17)

1

	

xix:	 (2.18)
&log L	 1 	 A 	 [fc: — 12 (1 —	 —
amp,	a () (1 — Fi) 2 	 o-	 o- 2

a2 log L	 1 	 fi 	 1

	

2 (1	 Fi xxii ,3)2 	 (1	 Fi )	 xifi 
30-2 a (3,	 2o-3	 (1 — Fi)2

2.19)

&log L 1	 [ 
12 — Fi )(x":0)3 — 3(1 — Fi)(xiif3)a( 0-2 ) 2	 4u5 0 (1 — Fi ) 2 a-2

(xii.0)2 1 + 
N1	 1

a 	2a-4	 43)2.
(2.20)
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where the following were used to obtain the above results,

	

OF.,: 	 1
= fi xi,

a

	

a Fi	 1
ao-2 = — 20.3 xi0fi,

aft —
 

	

i3 	 --3-0. X ipiiXi,a

	

a fi 	 (xiii3) 2 — o-2

	(90.2	 2o-5

The maximum-likelihood estimators of the parameters of the tobit model are

defined as a solution to the equations obtained by equating the partial derivatives

(2.16) and (2.17) to zero. These equations are nonlinear in the parameters and hence

must be solved using iterative methods. Amemiya (1973) proved that the tobit MLE

estimators are strongly consistent and asymptotically normal with the asymptotic

variance-covariance given by the inverse of the information matrix, defined by

02 log Lir
V(0) = {E [ mei

	

N	 N

Eaisixi Ebixi

	

i=i	 i=i
(2.21)

N	 N

Eb •X •t z	 ECi
i=1	 i=1

where

-1
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a,, =
1

a-2 (zif, f2
1 —

i
 Fi 

Fi
)

bi =
1 ( 2f	 Zifi 

2(73 V; ji+jt 1 — Fi  '

1	 z? f?3

	

ci = —	 zi fi + z, f,	 '	 2Fi
4(74 	1 — Fi 	) '

Amemiya (1973) showed that the tobit likelihood function is not globally concave

with respect to the original parameters, 0 and 52 . However, Olsen (1978) proved the

global concavity of log L based on the reparameterization a = [310- and h = lIcr. This

implies that a standard iterative method such as Newthon-Raphson or the method

of scoring always converges to the global maximum of log L. In terms of the new

parameters, log L is written as

1
log L = E log[1 — F(xce)] + N1 log h — — E(hy., — x,a)2 ,	 (2.22)

o	 2 1

The normal equations of the reparameterized version are

	

clog L _	 —*t)
, +	 (2E(hyi — x:a)xi	 (2.23)

act	 —	 Le F

f(

(---xa )	 1

clog L
ah

N1
(hyi — xa)yi

1
(2.24)

The second derivatives of the likelihood function based on the new parameters are

less cumbersome than the corresponding expressions (2.18) through (2.20). These are

&log L _	 f(—*e) (/	 f(—x"ia)) 	 E ,	 (2.25)xza 	  xixi —	 xix,
.9aace	 () F(—*‘)	 F(—*e)	 1
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a2log L E yixiaaah

52 log L	 N1	
2

ah2— —T2 -

(2.26)

(2.27)

From which Olsen (1978) obtained the matrix of second derivatives as

82 log L	 02log L 
aaaai	 aaah

62 log L	 02log L 
aka.,	ah2

E xi.« -0 1—Fi	%

0

1—F,
0

h2

->1	 El xiYi

(2.28)

El Yixi	 2

— El yi

Note that in order for log L to have a global maximum the matrix given by (2.28)

must be negative definite. Since the expression xiia — [1 — F(x'ia)]- 1 f(*c) < 0, the

right hand side of (2.28) is the sum of two negative definite matrices and hence is a

negative definite matrix. The implication of this result is that the likelihood function

of the tobit model has a single maximum. Recently, Greene (1990) investigated the

possibility of multiple roots of the tobit loglikelihood function based on the original

parameters and showed that the problem of multiple roots in the tobit model is

less obvious than suggested in earlier literature. Further, because of the invariance

property of maximum likelihood estimators one can obtain a unique solution in terms

of the original parameters of the tobit model.

To obtain the maximum likelihood estimates standard iterative procedures such

as Newton-Raphson or the method of scoring can be used. The latter procedure
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uses the information matrix in place of the negative of the Hessian. However, the

well known Newton-Raphson requires the second partial derivatives. If we define i)2

to be the second-round estimate, given an initial estimate 61 , the Newton-Raphson

iteration is defined by

62 = 61 —  (92 log L(0) 

[ me,

1 -1 clog L(0) 

aeel e1
(2.29)

Once e2 is obtained the iteration may continue for 63 and so on, until the iteration

converges to a desired degree of precision. Tobin (1958) suggested the same procedure

and in order to speed up convergence of the estimation process, he proposed an initial

estimator based on a linear approximation of the reciprocal of the Mill's ratio. Tobin's

(1958) procedure was as follows: Equate the right hand side of equation (2.16) to 0

to obtain

—a
 Eixi

0 1 F . + D yi — xiii3)xi = °i	 1
(2.30)

Premultiply (2.30) by IT 12a4 and add it to the equation obtained by equating

(2.17) to 0. The result is

2	 1	 i

	

0" = —AT	 0,i, — x:/3)Yi	 (2.31)
An 1

Equation (2.30) involves a non-trivial function fi /(1 — Fi ) which is the inverse of

the Mill's ratio. Tobin (1958) approximates fi /(1 — Fi ) by a linear function of the

form a + b(x'ifi I cr) and substitutes in the left hand side of equation (2.30) , to obtain

— a E[a + b(48 I o-)xi] + E(yi — x:0)xi = 0	 (2.32)
a	 1

Then, solving for 0 from equation (2.32) and inserting it in equation (2.31) yields

a quadratic function of a. Once an estimate of a is obtained /3 can be estimated

linearly from equation (2.32). However, Amemiya (1973) showed that Tobin's (1958)
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initial estimator is inconsistent, and he proposed an alternative consistent estimator.

He also showed that the second-round estimator based on his initial estimator is

consistent and asymptotically normal. Amemiya's (1973) estimator was simple:

Consider equation (2.6) which is given by

E(yilyi > 0) =	 o-A(xiii(3/a)	 (2.33)

and

E(yt!lyi > 0) = (4(3)2 + a(xii(3)A(x:a) + o.2
	

(2.34)

in which from (2.33) and (2.34), Amemiya (1973) obtained

	

E(y2IYi > 0 ) = ( xiiP)E(YilYi > 0) +
	

(2.35)

Equation (2.35) can be written as

y! =	 cr2 Ci , for i such that yi > 0	 (2.36)

where E(Ci lyi > 0) = 0.

Equation (2.36) is a linear regression model containing an endogenous explanatory

variable. Thus, although it does not contain terms involving A(.), applying OLS

directly to (2.36) leads to an inconsistent estimator because of the violation of the

assumption of independence between the explanatory variable and the disturbance

term of the model. Amemiya (1973) then proposed the estimation of equation (2.36)

using an instrumental variable such that the explanatory variable (yx i , 1) is used

in place of (yi xi , 1), where yi is the predictor of yi obtained by regressing yi on xi

using N1 observations. Amemiya's (1973) initial estimator is important especially in

more complicated tobit models. However, based on a simulation study of a single
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replication of sample sizes of 1000 and 5000, Wales and Woodland (1980) indicated

that it is rather inefficient.

Fair (1977) suggested an alternative procedure for obtaining the maximum like-

lihood estimators of /3 and o.2 based on the normal equations (2.16) and (2.17). His

procedure was as follows:

For the purpose of tractability let us rewrite equation (2.31)

2	 1
= /7- E(Yz — x:0)Yz—1 1

(2.37)

Further, multiply equation (2.16) throughout by a and equate to zero, to obtain

_ E  fi xi	 1
F1 — 

+ —0. E(yi — 48)xi = 0

Finally, solving for from equation (2.38) yields

_1
(	

_i
0 = E x:x i E xyi — a E XiXi E X:'yi

1	 1	 1	 0

where ryz = afi /(1 — Fi).

In matrix notation this can be written as

= (X'X)'X'Y — a(X/X)-1X,;70

= /3RSapCx)-1x0/1,0

(2.38)

(2.39)

(2.40)

where Y is an (Nixl) vector of positive observations on the endogenous variable

and X is the corresponding (N1xk) matrix of explanatory variables, Xo is an (Noxk)

matrix of explanatory variables corresponding to the zero observations of Y, 70 is an

(Noxl) vector of the -yi 's for yi = 0 and /3 is the ordinary least squares estimate of

for the non-zero observations.
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The expression given by (2.40) shows the relationship between the ordinary least

squares estimator based on the non-zero observations and the tobit ML estimator

explicitly.

Fair (1977) suggested the following procedure for computing the tobit ML esti-

mates.

1. Compute Otis and (X/X) -1X0' .

2. Choose a value of 0, say, /3 (1) , and compute a2 from (2.37). If this value of

a2 is less than or equal to zero, take for the value of a2 some small positive

number. Let 0 (1) denote the square root of the chosen value of a2.

3. Compute the vector -yo using 3 (1) and o- (1) . Denote this vector as -y (1)

(A

	 •

(A standard FORTRAN function is available to compute the distribution

function Ft.)

4. Compute /3 from (2.40) using a(1) and -yo ) . Denote this value as /3(1) . Let

0(2) = 01) + S(73-(1) _ i3 (1)N ,) where 0 < S < 1.

where S is a damping factor which is useful in this sort of procedure.

5. Using 0(2) as the new value of 0, go to step (2) and repeat the process

until the iteration converges.

Fair (1977) provided an empirical example in which two samples of size 601 (of

which 150 are non-zero and 451 are zero observations) and 6366 (of which 2053

are non-zero and 4313 are zero observations) were involved. He analyzed his data

using a program called LIMDEP, which is fairly widely used, and found that both

Newton's and his method converged to the same answer. He also noted that although
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Newton's method required fewer iterations to converge, the computer time needed in

his procedure was much less than the iteration time needed using Newton's procedure.

However, the convergence and speed of Fair's procedure is sensitive to changes in the

starting value of A and some times even convergence may not be possible. If, however,

it converges, then the variance-covariance matrix can be obtained using (2.21).

Given the assumptions of normality and homoscedasticity, as assumed in the tobit

model, the maximum likelihood estimators are consistent and asymptotically efficient.

Further, assuming that the residuals are independent the MLE remains consistent but

not efficient under serial correlation (see Robinson (1982)). However, the properties

are sensitive to non-normality and heteroscedasticity of the errors. If the assumption

of normality of the disturbances is violated, as Goldberger (1980) and Arabmazar

and Schmidt (1982) indicate, the maximum likelihood estimators may lead to incon-

sistent estimates. Further, as shown by Hurd (1979), Maddala and Nelson (1975)

and Arabmazar and Schmidt (1981), heteroscedasticity of the disturbances can cause

inconsistency of the parameter estimates, even when the shape of the error density

is correctly specified. Arabmazar and Schmidt (1981) also noted that the asymptotic

biases of the censored regression model are not as large as those obtained by Hurd

(1979) for the truncated model.

In general, the maximum likelihood estimators are not robust to the assumptions

of the model. This is in contrast to the classical regression model which is generally

consistent under a wide variety of conditions. Further, except for the simplest cases,

the derivatives of the loglikelihood function of the tobit model are very complicated

and hence the computational cost of the maximum likelihood estimators can be very

high.
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2.5 Heckman's Two-step Estimator (H2S)

Heckman (1976, 1979) proposed an alternative estimator which yields consistent es-

timates of the parameters based on a two-step procedure. Heckman's two-step esti-

mator (H2S) was originally suggested for a system of two equations, but can be used

in a single equation with some adjustments. Heckman's paper appears to generalise

earlier studies in the economics literature which include those of Gronau (1974) and

Lewis (1974). The two-step estimator uses the observations for which yi > 0 and

proceeds as follows.

Consider the conditional expectation for which y i > 0. That is, rewrite equation

(2.6) as

E^yil yi > 0] = x":0	 o-A(x iia),	 (2.41)

where A(xj'a) = f(x j'a)/F(xii cx) and a = Nig are as defined before.

Equation (2.41) can be written as

yi = xi13 + a-A(x ii a) + Ei
	 (2.42)

where ci = yi —	 > 0), E(Ei) = 0, E(EiEj) = 0, i j and the variance of Ei is

given by

v(E.i) = 0_2 — 0_2xitamxtia) — 0.2A(xita)2	 (2.43)

Note that, as discussed earlier in this Chapter, a and hence A(.) are unknown in

equation (2.42). Thus, ordinary least squares estimates from regressing y i on are

biased estimates. Heckman (1976, 1979) treated the bias as a result of an omitted

variable and he suggested a two-step procedure which involves the estimation of the

omitted variable using the probit maximum likelihood estimator in the first step,
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and then the application of ordinary least squares in the second step after replacing

the omitted variables by their consistent estimates. Specifically, Heckman's two-step

estimator proceeds as follows:

Step 1. Estimate a by the probit maximum likelihood estimator, say a. The likelihood

function is given by

L =11[1. — F(xiia)] II F(xiia)
	

(2.44)
o	 1

where the products II and fl , as defined before, are evaluated over the No and
o	 i

N1 observations, respectively.

Then, the ratio a = 13/o- can be easily estimated by maximising (2.44) using

standard iterative procedures. Note that one can only estimate a, not /3 and a

separately. Once & is estimated then A(xA can be obtained by straightforward

substitution. These values are consistent since the probit maximum likelihood

estimator, &, is consistent. Further, it can be shown that & is asymptotically

normal and the asymptotic variance-covariance matrix is given by [see Amemiya

(1978, p.1196)]

V(&) = (rD1 X) -1 .	 (2.45)

where X is an (Nxk) matrix of all observations and D1 is an (NxN) diagonal

matrix whose diagonal elements are given by F(x",:a)' [1 — F(*)0] -1f(xlici)2.

Step 2. Replace A(xiia) by A(ei et) in equation (2.42) and then regress y i on xi and 5(xiia)

to obtain consistent estimates of 13 and a, based on the observations for which

yi > 0, i.e., using only the N1 observations.
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To discuss Heckman's two-step estimator further, equation (2.42) can be written 

y = xp + + (E + 77) (2.48)

where Y is an (Nix1) vector of the non-zero observations on the dependent variable,

X is a (Nixk) matrix of explanatory variables corresponding to Y, ■ is an (Nix1)

vector whose elements are 51/4(*e), and e and rl are vectors of N1 elements of ei and

, respectively.

Further, equation (2.48) can be written as

	

Y=27-1-(6-1-77),
	 (2.49)

where 2 (.x,) and	 = ( IT, o-)'.

Thus, Heckman's 2-step estimator of is defined by

	

= (2' 2) -1 2'Y.	 (2.50)

Heckman (1976, 1979) showed that 1, is consistent and asymptotically normal with

mean and the asymptotic variance-covariance matrix given by [see also Amemiya

(1984), p.13]

= a2 (z iz)- 1 z i [ E + (I - E)x(rpos)- lx/(i - E)]Z (Wz) - 1	 (2.51)
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where cr2 E = E(ee') is an (N1 xN1 ) diagonal matrix whose diagonal elements are

var(e) as defined in (2.43) and the matrices X and D1 are defined after (2.45).

Note that the expression given by (2.51) may be estimated consistently by replac-

ing the unknown parameters by their consistent estimates or by (Z/Z)'Z'AZ(Z/Z)-1,

where A is a diagonal matrix with the i t' diagonal element given by [yi — x ij —

O-A(xA 2 , which follows the idea of White (1980b).

It should be noted that the expression in the square brackets in the right hand side

of equation (2.51) arose because A is unknown and had to be estimated. However, if A

were known, equation (2.42) could be estimated directly using least squares estimates

and the exact variance-covariance matrix would be o-2(Z/Z)-1Z'EZ(Z/Z)1.

The H2S estimator is consistent and has been used widely in applied research

because of its simplicity. However, it is inefficient. Wales and Woodland (1980)

and Nelson (1984) presented some evidence on the inefficiency of the H2S estima-

tor relative to the maximum likelihood estimator. One of the main reasons for the

inefficiency is the existence of strong multicollinearity between the explanatory vari-

ables and the estimated hazard function, (x",:6e), in the model. A recent paper by

Nawata (1993) shows that there almost always exists a high (negative) correlation

between the explanatory variables, X's, and the estimated hazard function, A(x/i6e),

which is the main cause of the inefficiency of the H2S estimates. This is an important

line of discussion because the improvements that are suggested later in this study

are basically designed to avoid the multicollinearity problem; they will be discussed

thoroughly in the next Chapter.

Below, we consider alternative techniques of estimating equation (2.42); specifi-

cally, we discuss the estimation of the model using weighted least squares, nonlinear
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least squares and nonlinear weighted least squares based on the observations for which

yi > 0.

2.6 Weighted Heckman's two-step Estimator

It should be noted that equation (2.42) represents a regression model with a het-

eroscedastic error variance, implying that the Heckman two-step estimates are not ef-

ficient. Heckman (1976, 1979) suggested that asymptotically more efficient estimates

can be obtained using weighted least squares in the second step of the procedure with

the weights given by (2.43). This estimator is referred to as the weighted Heckman's

two-step (WH2S) estimator.

Let the resulting estimator using the N1 observations be denoted by ''yw. It is

consistent and asymptotically normal with mean -y and the asymptotic variance-

covariance matrix given by [see Amemiya (1984), pp. 12-16]

V-1,w = o-2 {Zi [E + (I — E)X(rD1 X)-1 XV — E)] 1 Z1 1	 (2.52)

where o 2 E, Z, Di are as defined in (2.43), (2.49) and (2.45), respectively.

Note that the weighted Heckman's two-step estimator provides asymptotically

more efficient estimates than its counterpart, the Heckman two-step estimator. How-

ever, neither the 112S estimator nor the WH2S avoid the multicollinearity problem

discussed in the preceding Section. Thus, given that multicollinearity is a serious

problem in the model, the gains in efficiency from the WH2S relative to the II2S

estimator may not be that large.

Further, the expression for the weights in (2.43) involves a non-trivial element A(.)
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which in turn involves the estimation of the density and cumulative distribution func-

tions of the normal random variable. Thus, the estimates of the weights themselves

may not be consistent if the normality assumption does not hold in practice.

2.7 Nonlinear Estimation based on Conditional

Expectation

It is clear that the expression given by (2.42) can be viewed as a nonlinear problem.

Thus, one can estimate the model using nonlinear least squares based on the positive

(NLSP) observations on Y. That is, 13 and a can be estimated simultaneously by

minimizing the sum of squares

S S(0' , a) = E[yi — xi/3 — aA(3413 a)]2
	

(2.53)
i=i

with respect to the parameters, and a.

It should be noted that even if eii3 is linear in /3 it involves a nonlinear estimation

problem in view of the dependence of A(.) on and a . The properties of nonlinear least

squares are well established in the econometric literature [see for example, Jennrich

(1969), Amemiya (1983a)]. The asymptotic properties of nonlinear least squares

estimators are generally obtained in such a way that results for the linear regression

model hold asymptotically for a nonlinear regression model by treating the partial

derivatives of the nonlinear regression as the regression matrix.

Let /5,N be the nonlinear least squares estimator obtained by minimizing equation

(2.53) based on the N1 observations. Hartley (1976) proved the asymptotic properties

and showed that '5IN is consistent and asymptotically normally distributed with mean
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-y and its asymptotic variance-covariance matrix given by [see also Amemiya (1984,

1985)]

vi, -= 02(s's)s/Es(sis)-'
	

(2.54)

where

S = (EX, D2 A),	 (2.55)

where D2 is an (N1xN1 ) diagonal matrix whose ith element is given by [1 + (xA 2 +

(x"i a)A(x iia)] and cr2 E is as defined in (2.43).

Alternatively, the parameters in (2.42) can be estimated using nonlinear weighted

least squares with the weights given by (2.43). That is to say, the parameters 0 and

cr can be estimated simultaneously by minimizing with respect to the parameters the

weighted sum of squares of the residuals which is given by

N1 ( [yi xii13 crA(*)r
 —

WSS(13', 0") = 
i=1 1 - eiceA(ei a) — A(ea)2)

(2.56)

Similarly, if we let '=yNw to be the nonlinear weighted least squares estimator

based on the N1 observations, it can be shown that it is asymptotically normal with

mean -y and the asymptotic variance-covariance matrix is given as [see Hartley (1976),

Amemiya (1984, 1985)]

VI,,,,,, = 0-2(s/E-1s)-1	 (2.57)

where S is given by (2.55) above.

The minimization of these nonlinear functions involves partial derivatives which

are not in a closed form. Thus the solutions of the normal equations are obtained

using standard iterative procedures such as the Newton-Raphson method. In practice,

the nonlinear estimators of the tobit model have not been used, mainly because they
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are not as easy as the MLE. Convergence may not be guaranteed in the nonlinear

estimation procedure.

Note that the above estimators are based on the conditional expectation of the

model given by (2.42). However, one may also obtain similar estimators using the

unconditional expectation of the model given by (2.9). These estimators are discussed

in the section below.

2.8 Two-step Estimators based on Unconditional

Expectation

In the preceding section we discussed estimators of the model which are developed

using the conditional expectation of the model and which use only those observations

for which yi > 0. Wales and Woodland (1980) suggested that a similar procedure

may be applied using the unconditional expectation which uses all the observations.

That is, including the observations for which y i > 0 as well as those observations

for which yi = 0. Further discussions of the estimators based on all observations,

and their asymptotic distributions, include those of Stapleton and Young (1984) and

Amemiya (1984, 1985). The estimation procedure using all observations proceeds as

follows:

Consider the unconditional expectation of y i , given in (2.9) as

E[yi ]	 F(x'ia)•(43) + o f (x'i ce)	 (2.58)

Equation (2.58) can be written as

yz = F(x"i a)[(x ii,6) oA(x"a)] + SZ	 (2.59)
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where Si = yi — E[yi] such that E[Si] = 0, EVA] = 0, i � j, and

V(Si ) = cr2 F(x/ia){(x:a)2 + (x'i ct)A(x'i a) + 1 — F(x"i a)[xiia + A(x ii a)1 2 1	 (2.60)

Further, equation (2.59) can be written as

yi = F(xii &)[xiii3 + o-5t(x ii et)] +[F(x'ia)— F(xAcciii3 + a[f(x"i a)— f(xli&)1+ Si (2.61)

which is equivalent to

yi = F(x:a)[xiii3 + cr5(x:&)]+ Si+ i	 (2.62)

where

4.i = [F(4a) — F(xAx":13 + a[f(x:a) — f(4&)]

In matrix notation (2.62) can be expressed by

Y = i)-y + a +
	

(2.63)

where D is an (NxN) diagonal matrix whose elements are F(44 2 = (X, 51/4) is an

(Nx k + 1) matrix, S and are vectors of order N whose elements are Si and &

respectively, and X and 'y are as defined in (2.45) and (2.49), respectively.

Note that the models given by (2.59) and (2.63) have the same form as the previous

models given by (2.42) and (2.49), respectively. One noticeable difference between

the two sets of models is that while models (2.42) and (2.49) were derived using

N1 observations, the other two are based on all observations, N. Next, we consider

the models (2.59) and/or (2.63) and apply estimators which are analogous to those

discussed in the preceding section, namely, the least squares, weighted least squares

and nonlinear least squares estimators.
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2.8.1 Heckman's two-step Estimator based on the Uncon-

ditional Expectation (H2SU) of the Model

One way of estimating model (2.63) is to apply ordinary least squares in the second

step of the procedure. This estimator is analogous to the H2S estimator discussed in

Section 2.4 and was first suggested by Wales and Woodland (1980). It should be clear

that the first step still involves the estimation of a using the probit MLE. Once a is

estimated then one can use the method of least squares to estimate the parameters

in (2.63).

Let ;2y. be the H2SU estimator of 7 based on all observations. Then, from (2.63),

it is defined as

,5,, = (.i522)-12hy	 (2.64)

where b is defined in (2.63).

Stapleton and Young (1984) derived the asymptotic properties of =y. They proved

that '5, is consistent and asymptotically normally distributed with mean 7 and the

asymptotic variance-covariance matrix is given by [see also Amemiya (1984), pp. 14-

15].

V5, = o-2 (VD2 Z) -1 Z'D 2 QZ(VD 2W	 (2.65)

where cr2fi is an (NxN) diagonal matrix whose i t' elements are Var(8i ) given by

(2.60).

Again, the model given by (2.59) or (2.63) has a heteroscedastic error variance

implying that more efficient estimates can be obtained using weighted least squares

in the second step of the procedure, with the weights given by (2.60).
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Let the weighted Heckman's two-step estimator based on the unconditional ex-

pectation (WH2SU) of the model be denoted by 7yw. Then 5,w is consistent and

asymptotically normal with the asymptotic variance-covariance matrix given by

1/;;,,w = o-2 (VD 2 S2 -1 Z) -1 	(2.66)

where cr2 52 is as defined in (2.65) above.

These estimators have not been used in applied research because they are in-

efficient relative to the maximum likelihood estimator under the assumptions of the

model. It is also clear that, similar to the H2S and WH2S estimators discussed above,

these estimators are likely to suffer from multicollinearity problems. Nevertheless, it

is important to examine their relative performance under various conditions.

2.8.2 Nonlinear Estimation based on the Unconditional Ex-

pectation

Clearly, the model given by (2.59) can be treated as a nonlinear problem in the

parameters. Hence, nonlinear least squares and nonlinear weighted least squares

estimators can be applied to estimate the parameters of the model.

The nonlinear least squares estimator, denoted by 5/ N , of is obtained by mini-

mizing the sum of squares

ssu(/3',0-)
	

F(x2Oics).x":13 — a f( xii016 )1 2
	

(2.67)
i=1

with respect to the parameters, and cr.

Alternatively, one can estimate the weighted nonlinear least squares estimator,
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-5,Nw, by minimizing the following weighted sum of squares with respect to the pa-

rameters. That is,

ssmig , a) ,	 Om — F(43 / 0-)• x"ii3 — cf f(x/i13/42)
Wii=1 \

(2.68)

where the weights=wi are given by (2.60).

These estimators are consistent; however, since Si is not normal the nonlinear

procedure is not maximum likelihood. Further, they are not computationally easier

than the MLE. The asymptotic properties of these estimators were provided by Sta-

pleton and Young (1984) following White's (1980c) results for nonlinear least squares

estimators in the presence of heteroscedasticity. Interestingly, Stapleton and Young

(1984) showed that the nonlinear least squares estimator, -5,N , has the same asymptotic

distribution as -5, , the Heckman's two-step estimator based on all observations. Sim-

ilarly,  the weighted nonlinear least squares estimator 'YNW, has the same asymptotic

distribution as -5,w [see also Amemiya (1984, 1985)].

Finally, given the estimators of the tobit model discussed in the Sections above,

it is worth noting some of the important points:

The two-step estimators, -5, and --Y cannot be ranked on the basis of their asymp-

totic covariance matrices. This is because the difference between the matrices

given by (2.51) and (2.65) is generally neither positive nor negative definite.

This implies that a preference for one of the two estimators depends on param-

eter values.

Similarly, one cannot make definite comparisons between the covariance ma-

trices given by (2.51) and (2.54), or between the covariance matrices given by
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(2.52) and (2.57). Therefore, the choice between the corresponding estimators

1, and 1,N and 5,w and ''NW, respectively, depends on the empirical values.

Further, the estimators '7N and 5 N y IT have the same asymptotic distributions

as 5, and ''y'w, respectively. Thus, it would be interesting to see their relative

performance in finite samples. In general, little is known about the relative per-

formances of all these estimators in finite samples under various specifications

of the model, a gap which this study attempts to fill.

The following Sections of this Chapter provide some highlights of other estimators;

semi-parametric, bounded-influence and Bayes estimators of the standard tobit model

are considered.

2.9 Highlights of Other Estimators

The literature on tobit models is quite extensive. Thus, it is difficult in this study to

provide an exhaustive review of all the available estimators and their properties. It is

also important to recall that one of the main objectives of this study is to investigate

the small sample properties of the estimators that could be used in applied research

with reasonable computational skill and resources. Thus the computational ease and

availability of statistical/econometric packages needs to be taken into consideration.

On the other hand, it is important to provide some highlights of the recent devel-

opments and citations of the relevant literature. Some of these developments include

the semi-parametric estimators, the bounded-influence estimators and the Bayesian

estimation of the tobit model. A short discussion of these estimators follows.
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2.9.1 Semi-Parametric Estimators of the Model

In a standard linear regression model, the least squares estimators are unbiased and

consistent for a wide class of distributions of the disturbances. However, the situ-

ation is quite different for tobit models. That is, the assumption of normality of

the disturbances, which is a common feature for both the MLE and Heckman's two-

step estimators, is essential for the proofs of consistency. In general, these proofs

are sensitive to violations of the assumptions of the model. This situation led to

the development of estimators which are robust (or less sensitive) to the functional

form of the distribution of the disturbances. Contributions to the development of

the semi-parametric estimation methods include those of Manski (1975, 1985) and

Cosslett (1983) for qualitative response models, and those of Powell (1984, 1986a,

1986b), Duncan (1986) and Ruud (1986) for tobit models.

Specifically, Powell (1984) proposed the least absolute deviations (LAD) estimator

which is obtained by minimizing with respect to f3 the function

SN (/3) = ( 1 /N) l' iYi — max10, xi/3}i
	

(2.69)
i=i

Powell (1984) proved that the LAD estimator is consistent under the assumption

that the conditional error distribution has median zero. The estimator is a non

parametric estimator due to the fact that the median (which is the solution to SN (13) in

this case) of the censored variable does not depend, unlike the mean, on the functional

form of the density function of the disturbances.

However, although consistent, equation (2.69) involves serious computational prob-

lems for applied work. Note that (2.69) is not a differentiable function which implies
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that conventional gradient vectors cannot be used directly to solve for the param-

eters, 0. Solving (2.69) by converting into a nonlinear program also involves some

numerical problems such as the minimand may admit several minima or it may not

have a unique minimum.

Paarsch (1984) conducted a Monte Carlo study in which he compared the tobit

MLE, Heckman's two-step estimator, and Powell's LAD estimator under the nor-

mal, Laplace and Cauchy distributions. It was found that, for normal and Laplace

distributions, the MLE performed better than the other two estimators. Powell's

LAD estimator performed better than the tobit MLE for the Cauchy distribution.

However, when the sample size is small the LAD estimator appeared to be neither

accurate nor stable. Nawata (1992) proposed an alternative algorithm based on a

linear search procedure and evaluated the LAD estimator using a Monte Carlo ex-

periment designed after Paarsch's (1984) experiment. Nawata (1992) also noted that

the LAD estimator appears to do well under the Cauchy distribution, given that the

sample size is very large. However, the LAD estimator is very unstable even for mod-

erate sample sizes and the computational cost of the LAD estimator as compared to

the MLE or H2S estimators remains incomparably high. Nawata's (1992) paper also

questions the reliability of the results obtained for the LAD estimator in Paarsch's

(1984) paper. In general, one major limitation of Powell's (1984) LAD estimator is

its computational difficulty even if the model is simple.

Alternatively, Powell (1986b) proposed a symmetrically censored least squares

(SCLS) estimator which is based upon symmetric censoring or truncation of the upper

tail of the distribution of the dependent variable. The SCLS estimator, although

useful, is more relevant to the truncated model than the censored regression model.
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The SCLS is defined by minimizing the following function with respect to /3

N
RN(I3) = E[(Yi — max{Yi/2 , x/i0})2i..i.

+/(yi > 243)[(yi /2)2 — (max{0, x:0})2]]
	

(2.70)

where I(A) is an indicator which takes the value 1 if A is positive 0 otherwise.

Like the LAD estimator, the SCLS does not require the assumption of identically

and independently distributed Gaussian errors. It is consistent and asymptotically

normal for a wide class of (symmetric) error distributions.

In addition to robustness to non-normality of the disturbances, the censored least

absolute deviations (LAD) estimator and the symmetrically censored least squares

(SCLS) estimator have an additional desirable property of robustness to heteroscedas-

ticity. However, these estimators can be inefficient under the correct specification of

the model (i.e., when the assumptions of the model actually hold), because they do

not make full use of the information on the parameters.

Other papers which are related to the semi-parametric estimation of the tobit

model include, among others, those of Buckly and James (1979), Horowitz (1986),

Duncan (1986), Moon (1989) and Blundell and Smith (1994). Interested readers may

refer to these and the references there in for details. These estimators, although

useful, are computationally difficult and their use in applied research is very limited.

More importantly, the small sample properties of these estimators are not known.

2.9.2 Bounded Influence Estimators of the Model

As discussed earlier in this study, the tobit MLE, although widely used in applied

research, is not robust to violations of the assumptions made for the disturbances.
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On the other hand, semi-parametric estimators such as the Powell's (1984) least ab-

solute deviations (LAD) estimator and Powell's (1986b) symmetrically censored least

squares (SCLS) have certain robustness properties, but since they disregard entirely

the information contained in the parametric assumptions, they can be inefficient when

the assumptions of the tobit model hold.

Bounded-influence estimators provide a compromise between efficiency and ro-

bustness. These estimators make use of the parametric assumptions and hence attain

high efficiency when the model is correctly specified, but are robust in Hampel's (1971)

sense; that is, their probability distribution changes only slightly for small changes

in the underlying probability distribution of the observation. These estimators are

also referred to as 'optimal bounded-influence estimators', since they have a bounded

influence function [Hampel (1974)] which guarantees protection from the effects of

small departures from the assumptions of the model. They, therefore, attain the best

trade-off between efficiency and robustness. They can also be viewed as weighted

maximum likelihood estimators, with weights depending on the particular choice of

the efficiency or robustness criteria. Earlier works on bounded-influence estimators

include those of Hampel (1978), Krasker (1980) and Krasker and Welsh (1982) for

the traditional linear regression model and the bounded-influence estimator for the

logit model which was proposed recently by Stefanski, Carroll and Ruppert (1986).

More recently, Peracchi (1990) introduced a new class of bounded-influence esti-

mators for the standard tobit model. He defined a class of bounded-influence esti-

mators which are all based on a score function related to the tobit model. Peracchi

(1990) provided an empirical example using household expenditure survey data of
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the Sudan and compared the results with other tobit estimators including the max-

imum likelihood estimator (MLE) and Powell's least absolute deviations (LAD) and

symmetrically censored least squares (SCLS) estimators. Peracchi (1990) noted that

the bounded-influence estimators provided results which are generally close to those

of the Powell's LAD and SCLS estimators. However, the bounded-influence estima-

tors appear to be relatively more precise than the semi-parametric estimators. The

results for the MLE were sensitive to a few extreme observations and look very poor

in some cases. Finally, Peracchi's results imply that the bounded-influence weights

may provide useful diagnostic information for identifying potential problems such as

outliers and influential observations.

2.9.3 Bayesian. Estimation of the Tobit Model

Bayesian methods are widely used in theoretical econometrics and statistics. Their

use in applied research, although relatively limited, has also increased rapidly in

recent years [see Koop (1994) who provides a survey on the applications of Bayesian

techniques in applied research]. The rapid growth in applications of Bayesian methods

is associated with advances in computer power and the availability of various Bayesian

techniques which make use of the computer power.

The main paper which focusses on Bayesian estimation of the tobit model is that

of Chib (1992). Other related works include those of Carriquiry et el. (1987) and

Sweeting (1987) in the biomedical sciences and Zellner and Rossi (1984) for the probit

model.

Chib (1992) considered the standard tobit model defined in this study and an-

alyzed the model in a Bayesian context. He provided a simple condition for the
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existence of posterior moments. He also developed suitable Monte Carlo procedures

based on symmetric multivariate-t distributions and Laplacian approximations. Ideas

such as data generation and augmentation and Gibbs sampling were also developed

and discussed. Chib's paper provided an example and demonstrates the feasibility

of Bayesian techniques for estimation of the model. The reader may refer to Chib

(1992) and the references therein for further discussion.

2.10 Some Useful Results

As a final remark regarding the use and the interpretation of results, it is important

to understand when and how the results of tobit models are used in applied research.

Recall that there are three regression functions which are associated with the model.

These are:

E[yn = xj73	 (2.71)

E[yi lyi > 0] = 43 + a f(x"ia)/F(x'ia)	 (2.72)

E[yi] = F(x"i a). gyi lyi > 0]

= F(xi'a)[x/i13 + a f(x"ia)/F(xj'a)]	 (2.73)

Further, if one is interested in the effects of a unit change in an explanatory variable

on any one of the above expectations then one can make use of the following useful

results.

(i) The effects of unit change in x; (suppressing observation subscript) on the latent

variable is given by
aE[yn 

_ 0, 3
	 (2.74)



[f(ei
a) 

1 (xi4F(eici)
eici)) 2f(  

F(x1,i oc) )1.

OE [yi l yi > 0] 
=ax; (2.76)
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(ii) The effects of a unit change in xi on yi , E[yi ] is given as

agyi] = F(x'ia)•f3
axe

(2.75)

(iii) Similarly, the effects of a unit change in xi on the conditional expectation of yi

is computed by

Thus, the use and interpretation of tobit results depends on the type of outcomes

that may be required from the research. It is also important to note that, unlike

the traditional regression model, all coefficients including the constant term play an

important role in computing the responses, as shown in items (ii) and (iii) above.

2.11 Summary and Conclusions

Tobit models refer to regression models in which the observations on the dependent

variable are restricted to a specific range. Since Tobin's (1958) paper where he sug-

gested the standard tobit model, many types of tobit models have appeared in the

literature, ranging from a single equation tobit model to more complex simultaneous

equation tobit models. As a, result, various types of estimators have been suggested

to estimate the parameters of the model.

In this Chapter, we reviewed those estimators of the model which are particularly

relevant to the estimation of the parameters of the standard tobit model which is

usually referred to simply as the tobit model. However, some of the properties of

these estimators may also apply to other types of tobit models with some adjustments.
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These estimators include, among others, the maximum likelihood estimator (MLE),

the Heckman's 2-step (H2S) and its weighted version, the weighted Heckman's 2-step

(WH2S) estimator, the Heckman-type 2-step estimator based on the unconditional

expectation of the model and its weighted version, and nonlinear estimators based on

the conditional as well as unconditional expectations of the model. Furthermore, some

highlights on recent developments with regard to semi-parametric, bounded-influence

and Bayesian estimation of the parameters of the model and the relevant citations are

provided. In general, comparison between these estimators using analytical methods

is either difficult or impossible.

Of these estimators, the MLE and the H2S estimator are widely used in applied

research. The MLE provides consistent and asymptotically more efficient estimates,

provided that the model is correctly specified. However, the MLE is not robust if

the assumptions of the model are violated. For example, some studies have indicated

that the MLE is not only inefficient but can also be inconsistent under non-normality

of the error terms of the model, which is in contrast to the traditional regression

model where the MLE is consistent under a wide variety of conditions. Despite these

warnings, the MLE of the tobit model is used to estimate the parameters of the model

in most applied papers.

Another estimator which is frequently used in applied research is the H2S es-

timator. The H2S estimator is consistent and usually preferable for its simplicity,

especially for tobit models involving simultaneous equations. However, it performs

poorly in finite samples because of unavoidable multicollinearity between the explana-

tory variables and the estimated inverse of the Mill's ratio. An improved estimator

along the lines of Heckman's estimator is suggested to avoid this problem and will be
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discussed in the next Chapter.

Other estimators have been used little in applied research, perhaps for a variety

of reasons. For example, among other things, the nonlinear least squares estimators

involve non-trivial complex functions and hence are not computationally easier than

either the MLE or H2S estimators. Also convergence may not be guaranteed. Sim-

ilarly, the semi-parametric estimators are computationally burdensome even for the

simplest cases. This is coupled with lack of available statistical/econometric packages

that incorporate these estimators. Most of all, there appears to be lack of a clear

evidence on the finite sample properties of most of the estimators of the model.

It is also important to note that the semi-parametric and Bayesian estimators of

the tobit model have been hardly used in applied research and no further analysis of

these estimators will be provided in this study. However, they have some potentially

attractive characteristics and there appears to be a need for further research in this

direction. For example, as shown by Newey (1987) and Peters and Smith (1991), the

semi-parametric estimators can be used for pre-testing for the normality of the errors

of the model.

The purpose of this study is, therefore, to provide unified and relatively com-

prehensive Monte Carlo evidence regarding the relative finite sample performance of

most of the estimators so that they can be used as a practical guide (indicators) in

applied research.



Chapter 3

An Improved Heckman Estimator

and its Properties

3.1 Introduction

In Chapter 2, we discussed most of the estimators of the standard tobit model. Of

these estimators, the H2S estimator is relatively simple and usually preferred in ap-

plied research for its computational ease. However, some studies have indicated that

the H2S estimator performs relatively poorly in finite samples [Wales and Wood-

land (1980), Nelson (1984), Paarsch (1984), Nawata (1993, 1994)]. One of the main

reasons, among others, is the presence of strong and often unavoidable collinearity be-

tween the explanatory variables and the estimated inverse of the Mill's ratio (hazard

function).

In this Chapter, we introduce an improved estimator which is along the lines of

Heckman's two-step estimator and which is referred to as the three-step estimator

48
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(3SE). The 3SE, although similar to the H2S estimator, does not suffer the serious

multicollinearity problem which characterizes the H2S estimator. Computationally,

the 3SE preserves the simplicity of the H2S estimator.

Section 3.2 discusses the main steps involved in the 3SE and the likely advantages

as compared to the H2S estimator. Then, the asymptotic properties (i.e., consistency

and the variance-covariance matrix) of the 3SE are derived in Section 3.3. Section 3.4

provides some generalisations of the 3SE. Finally, Section 3.5 presents the conclusions.

3.2 The Three-step Estimator (3SE)

Recall the conditional expectation of the model which is defined by

yi = x20 + cr A(Zia) + ei	(3.1)

where the various components of the model are as defined in Section 2.4.

Given this model, the H2S estimates are obtained by estimating a, say a, and

hence A(x/i iie) by the probit maximum likelihood estimator in the first step of the

procedure. Then, the coefficients of the model are estimated directly from (3.1) by

regressing yi on the x's and A(e,i 6e), using only those observations for which yi is

positive.

However, the H2S estimates are likely to be imprecise because of the multi-

collinearity problem between the explanatory variables of the model. That is, as

can be seen from (3.1), .\(ea) is expressed as a function of the x's and hence there

is an inherent problem of multicollinearity resulting from the particular form of the
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model. But most importantly, the severity of the multicollinearity problem arises be-

cause A(.) can be approximated by a linear function of the form A(x) = ad- b(x) over

a wide range of observations, where the values of a and b depend on the observations

on the x's [see Johnston and Kotz (1970, p. 123), Tobin (1958)].

In general, multicollinearity is unavoidable and often strong in the second step of

the H2S procedure and often leads to estimates which are relatively unreliable [see

Wales and Woodland (1980), Nelson (1984), Paarsch (1984), Nawata (1993, 1994)].

In particular, Nawata (1993) showed that there almost always exists a very high

(negative) correlation between the explanatory variables and the estimated inverse of

Mill's ratio, A(x"i a), and it is this correlation which causes the inefficiency of the H2S

estimator in most cases.

Another, perhaps less important problem, is that the estimated value of o- obtained

directly from (3.1) is not guaranteed to be positive, which is contrary to theoretical

expectations. Although there appears to be very little practical importance in the

interpretation of the estimated value of a., it indicates the degree of unreliability

involved in the H2S procedure.

Below, we propose an improved 3-step estimator (3SE), which is along the lines of

Heckman's estimator, but which avoids the above problems. The three major steps

involved in the 3SE are as follows:

Step 1. The first step of the 3SE, similar to the H2S estimator, involves the estimation of

a, say a, using the probit maximum likelihood estimator. The main departure

of the 3SE is in the following two steps.
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Step 2. The model in (3.1) can be rearranged as

yi = o[x ii a + A(x"ia)] + e i	 (3.2)

If the quantity in square brackets is known, equation (3.2) is a simple lin-

ear regression model with no constant term. Thus, once the right hand side

observations are estimated in Step 1, one can estimate o- by regressing yi on

[x2i3t + A(xA], using the N1 observations for which yi is positive. It is impor-

tant to note that both the left, y i , and right hand side, [xii & + 5t(x iia )], variables

in equation (3.2) are positive. This implies that the estimated value of or will

be positive, a case which is not guaranteed directly from the H2S estimator [see

Heckman (1976, p.482)]. Given this, the coefficients of the model, /3's, can be

estimated consistently by adding one more step as follows.

Step 3. Let &3S be an estimate of o- from equation (3.2) in Step 2. Then substituting

&3s in equation (3.1) and rearranging the model gives

yi — '6-3Ax ii eY) = xi/3 + ni + ei	 (3.3)

where ni = o-A(eia) — 6-355(xA.

Equation (3.3) can be written as

yi = x20 + 77i + ei	 (3.4)

where ." = yi — 6-3sA(xV3i).

Thus, the 3S estimates of the model are obtained by applying the method of

least squares on equation (3.4). That is, one can estimate the parameters of the

model by regressing & on the x's.
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Given this, the 3-step estimator (3SE) has two important advantages as compared

to the H2S procedure. These are:

(i) As can be seen from Step 2 above, the estimate of a from (3.2) is not only

positive, but can be estimated more precisely even if ei iie and A(x'i lls ) are indis-

tinguishable.

(ii) The most important aspect of the 3SE is that, unlike the H2S estimator, equa-

tion (3.4) consists only of the x's in the right hand side of the model and does

not involve 5k(x ii &), which is the main source of the multicollinearity problem

under the H2S procedure.

Before discussing the asymptotic properties of the 3S estimator let's consider the

following.

Consider equation (3.4), and using matrix notation, we have

	

ii- =x0+77 +E	 (3.5)

where Y = Y—a.3sA is an N1 x1 vector of observations on "th, Y and A are N1 x1 vectors

whose elements are yi and A(x ii&), respectively, X is an N1 xk matrix of explanatory

variables corresponding to Y, and 77 and E are vectors of order N1 whose elements are

77i and Ei, respectively.

Let (33s be the 3S estimator of /3. Then, from (3.5), it is defined by

f33S = (x ix. )- 1rk	 (3.6)

which can be expressed equivalently as

i33s = (xix)- lry –6-3spcxylx/A‘

	

= /3OLSP — 6.35 l'OLSP
	

(3.7)
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where 130Lsp is the least squares estimator obtained by regressing y i on x's using

only the observations for which y, is positive (OLSP); similarly 'YoLsp is obtained by

regressing A(x": 6e) on the x's using the N1 observations and &3S is the OLS estimator

of u obtained from (3.2), in Step 2.

The second term on the right hand side of (3.7) can be referred to as the correction

factor or the bias of the OLSP estimator. The expression (3.7) is also similar to that

of Fair's (1977) MLE estimator of the tobit model discussed in Chapter 2 of this

study. There are two points which are worth noting regarding the relationship given

by equation (3.7). These are: (i) It is clear that once A and &3s are estimated

from the first and second step, respectively, the 3S estimates of ,e, 133s, may be

obtained directly from (3.7) by correcting the bias of the OLSP estimator. (ii) More

importantly, Equation (3.7) shows the relationship between the OLSP and the 3SE

explicitly. It is also clear that the magnitude and the direction of the bias of the OLSP

estimator can be determined directly based on this relationship. Note that previous

studies have noted that one cannot determine the magnitude and the direction of

bias of the OLSP estimator without making further assumptions about the model

[see Goldberger (1981)].

3.3 Asymptotic Properties of the 3S estimator

3.3.1 Consistency

Note that, as discussed above, the first step of the three-step procedure (which is

the same as the first step in the 112S estimator) involves the estimation of a, say

a, using the probit maximum likelihood estimator. It is a well known result that &
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is a consistent estimator of a [see Chapter 2, Section 2.4 of this study]. The main

purpose here is to show that the estimators in the second and the third step of the

3S procedure, &3s and :63s are also consistent. To do this we proceed as follows:

First, let us assume the usual standard assumptions as follows:

Assumption 1: X is uniformly bounded, where X is, as defined in (3.5), an

N1 xk matrix of explanatory variables.

Assumption 2: limN,,,, (NIX ) exists.

Assumption 3: plim X'E/Ni = 0, where E is defined in (3.5).

Result 1: 

Let &3S be the 3-step estimator of a, then i2r3s is consistent.

Proof: 

Consider equation (3.2), given by

yi = Cr Zi	 (3.8)

where zi = xZa + A(eia). Define Zi =	 A(eia).

Then we have

yi =	 Vi	 Ci	 (3.9)

where	 vi = (zi — "Zi)cy.

Regressing yi on	 we obtain

6-3S
	 :0 -I vy

+	 V(v e)
	

(3.10)



1)— (a

= plim (ex'
X'X X'A
N1 	 N1

3, 1 X	 .5■1A

N1 	 N1

X'*
N1

5,'"
N1

1)

X' X
N1

'',C
N1
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Now, 6-3S is consistent if the following three conditions hold:

"i"i
plim (7,-,.—) is finite,

/v1

plim Liv ) = 0,
Ni
A/Z E

plim (—) = 0.
Ari

Let z = ZS where Z = [X, A] and S = (cY, 1)' implying V.' = S'Z'N.

Thus,

plim ---' 'i = plim (As' 2/2 S(	 (3.11)
Ni	Ni

We know that, since the probit MLE & is a consistent estimator of a, we have

(see Amemiya (1985) p. 369)

and therefore

plim (-7\T-2' ) = lim
N1--4co

exists

plim (—V:i ) = plim [8.' (-2' 2 d=[45' ( lim Z7,7.1 81 is finite.	 (3.12)
N1 	Ni	 N1–+00 1V1

Ni. A' 1
( a

For the second condition

-

,s/ V	 . 1	 X'
" 1)

_

(X A)pum (—plim
Ni )

= plim— ( a
(	 ) a —(X A)

= 0	 (3.13)
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Finally, the third condition is given by

,	 i'E	 =)	
plim ( a'Xie + --'e )plim (— 

Ni	 N1	 Ni

= plim eY/X/e ) + plim Al
N1	Ni

(3.14)

(3.15)

Now, we know that E is uncorrelated with & (see Amemiya 1985). Also, E and X

are uncorrelated (by Assumption 3). Thus, the first term in the right hand side of

(3.15) goes to 0. Further, in the view that A is expressed as a function of X and 6C it

is clear that A and E are not correlated.

Thus,
VE

plim ( ..1\--fj = 0	 (3.16)

Therefore, from (3.12), (3.13) and (3.16) it follows that &3s is a consistent esti-

mator of a.

Result 2:

Let ,k5 be the 3S estimator of 0, then /335 is consistent.

Proof:

Consider (3.5), which can be written as

Y — 6-3s5 ,--- J0+71 + E,	 (3.17)

where 77 = o-A — cT3s A and A = A(eia).

Then, (335 is defined by

i33S = /3 + (X' X) - 1 X'(77 + e)	 (3.18)

Thus, /335 is consistent if the following conditions hold:
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oirn (xie)
= 0Ni

plim (-X'71 ) = 0Ni

The first condition (3.19) is true by Assumption 3. Because &3S is consistent from

the previous argument, it follows that

plim (x '77) ___, oim ( axiA e3-35x1)
= 0

Ni )	 N1	 N1

Therefore, /33s is a consistent estimator of (3.

3.3.2 Asymptotic Distributions of &3s and ie3S

Consider (3.9), given by

Yi = aii + vi + ei 	 (3.21)

where	 vi = (Zi — Z‘i)Gr.

efis is defined as

^/ A\--1A/
&3S = 0" + (Z Z) Z (11 + E),

which then implies

N/ATJP3s — a) "±-i= N/Ni(V:i) -1 V(11 + e)
	

(3.22)

The expression in (3.22) implies that the right hand side has the same limiting

distribution as the left hand side.

Define

al= (v.)-- 1 v	 (3.23)
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Then, (3.22) can be written as

1N70-3s —
a= Niai(v +e) 	(3.24)

Now, consider

v = a(z — :i) = a(Z8 — A
a

= a (X A)	 – (X )
1

= o-[X(a – (X) + (A – A)]   

( a )  

(3.25)

By Taylor expansion of A around A, we have (see also Amemiya (1985, p.369))

( A — ') = — 7,3A,(a — a) + Or(N1 1 )5 

Substituting (3.26) into (3.25), we have

v= --a[X	
DA(a — a) + ---i,--;(6e — a)] + Op(Ni 1 )5 

Also using (3.17),
as

= (E — I)X,
Oa'

(3.28)

where E is an N1 xN1 matrix defined in (2.54) and I stands for identity matrix.

And hence substituting (3.28) into (3.27) gives

V = -01x( « - a) + (E — .0X(ex — a)] + Op(Ni1)

= —o-EX(6e— a) + Op(k-1). 	 (3.29)

Substituting (3.29) in (3.24) and because

a/o-Ex = ce o-EX + Op(N1 1/ 2 ) and

& — a = Op(N11/2)
	

(3.30)

(3.26)

(3.27)
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It follows that

5Vi(a3s — a) c-4 Ni al—aEX(et — a) + e] + 0 p(Ni 1/2).
	 (3.31)

Further, as shown in Amemiya (1985, pp. 366-370), (a—a) and & are uncorrelated.

It follows that,

(d(EXVWX/E)a)
VAT]. a'v - N(0, (72 lim

Ni .o.	 N1 ) (3.32)

and

/N1 a' 6 4 N(0, a2 lim
N1--.

Using (3.31), (3.32) and (3.33), it follows that

(dEa))NI.
	 (3.33)

(3.34)Vi
v-10.3s a) 

—>
	 0.2 crl RQ-1),

where

Q = lirn
N1,00 (

z' z
—) and
NI.

R = lim
N1 -.00

( zi(Exv(a)x/E + E)z)
NI

Therefore, the asymptotic variance of 53s is given by

V(6-3,5) = a2 d(EXV(&)rE + E)a.	 (3.35)

where a' = (z' z)- 1 z' , V(&) is the covariance matrix of the probit estimator, &, and

is defined by (2.48), in Chapter 2.

Now, to derive the asymptotic distribution of 435, consider (3.17), given by

Y — &3s); = xfi +77 +6 )	 (3.36)
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where 7/ = o-A – a3sA •

Then, 1335 is defined by

1335 = 3 + pcxy lx , ( 7, + e)

which implies

VNi(is — 0) a NO(' Xr i r(ri + e)	 (3.37)

Now, consider

Again, from (3.26), using Taylor's expansion of A around A, we have

(3.38)

(3.39)

substituting (3.28) in (3.39) and from (3.31), we have

71 = o-(1- – E)X(ex – a) + cridEX(6e – a)]A – (dc) A + Op(N37 1 )	 (3.40)

Thus, combining (3.37) and (3.40), we get

NI 1 V -103s – i3) 1--' \ I Ni. (X'X)' XII)

where

_ pcx) -1 X'v

N1 ) NINT

v = vi + v2 + Op(Nn and

vi = c – (a'e)A

V2 = o-RI – E)X((X – a) + [a'EX(& – a)]A}.

(3.41)
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Now, consider the properties of v 1 and v2,

E(vi ) = E[e — (a/e)A] = 0

and

E(v2) = E[cr{(I — E)X(a — a) + [a'EX(a — a)]Al]

	= cr{(I — )X E(& — a) + [ct'EX E(&	 — a)]A} = 0	 (3.42)

Further,

E(vivD = E[s — (a's)A][e — (a'e)A]'

= E[ee' — e(e'a)A' — A(cile)e' + (ctie)(ea)AA1

	

= o- 2 [E — EaA' — Act'E + (cilEa)AA1
	

(3.43)

Similarly,

E(v21/2)
	

E[u{(I — E)X(& — a) + [a'EXCa — aNAll

[o {(I — E)X(6e — a) + [ct'EX(a — a)]A}r

= o- 2 [(/ — E)XV(&)r(/ — E) + (I — E)XV(&)X1EaA'

--kAcilEXVWXV — E) + (cilEXV(&)X'Ea)AA1	 (3.44)

and

E[viv2]
	

E[e — (a's)A][o-{(I — E)X(6e — a) + [a'EX ((X — cx)]Al]

= aE[{(I — E)X(6es — a)E + [a/EX- (6e — a)e]Al

—(cileAR(/ — E)X(a — a)e + [a'EX(a — cx)e]A}]

= 0.	 (3.45)



X'v1 4 N(0, o-2 N1->co

X'v2 4 N(0, o- 2 
lim ()CU/VC)

VN,(133s — 0) 4 N(0, o-2R-1TR-1),

and

Thus,

(3.47)

(3.48)

(3.49)
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That is, because E and (a — a) are uncorrelated (see Amemiya (1985), p. 369-370),

v1 and v 2 are uncorrelated.

Thus, following Amemiya (1985), we have

NiCS3s — 0) c-± /N1

= (NII 1 X /X) -1 (N1 112X iv1 + N17-112 X'v2 )	 (3.46)

It follows that,

where

R = lira
oo

(X'X)

and

and

T = lira
N —÷ oo

(XVII + H2 )X 

(3.50)E — Ea — Act iE (dEa)AA',

II; (I — E)XV(&)X 1 (I — E)

+(I — E)XV(ex))C'Ea

+AdEXV(6e)X(I — E)

-1-(cc'EXV(a)rEa)AA' (3.51)
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Thus the asymptotic covariance matrix of i33s is given by

V(i33s) = o- 2 (X/X) -1 X'[Hi + H1]X(X'X) -1	 (3.52)

The expression (3.52) can be estimated consistently by replacing the unknown parame-

ters by their consistent estimates, or following White's (1980b) idea, using (X/X)-1X'BX(X'X)-1,

where B is a diagonal matrix whose ith diagonal element is given by [yi - 6-3sAi - x",;(33,5]2•

Similarly, one can estimate the variance of &3s (which is given by (3.35) in a similar way.

The analogous expressions of the asymptotic variance of the 112S estimator &2s and

the covariance of /32s can be obtained straightforwardly using inverse matrix methods from

equation (2.54) and are given by

V(er2s) = o- 2 74EXV(&)X'E + Ely)
	

(3.53)

and

V (/ 2S) = (7 2 (X/X)-1 X f [H1 + H2]X(X IX) -1	 (3.54)

where

Hi.

H2

= E - Ewa' - Aw'E + (w'Ew)AA',

= (I -E)XV(ii)X1(I - E)

+(I - E)XV(a).X/EwA'

+Aw'EXV(&)X'(I - E)

-1-(w'EXV(ei)XEw)AA'

(3.55)

(3.56)

where w' = (A/MA)- 1 A/M and M = I - X(X/X)-1X'.

In finite samples V(er3s) and 17(i3 3,5) are expected to be more efficient than V(&2s) and

V(P2s), respectively, because the former avoids the multicollinearity problem and because

of the restriction imposed in the second step of the 3SE estimator.
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3.4 Some Generalizations of the 3S Estimator

Note that we have shown that the 3S estimators of a and /3 are consistent and that

we have derived their limiting distributions. It should also be noted that, similar to

the H2S estimator, the 3SE is based on a model which has a heteroscedastic error

term. Thus, one can use weighted versions of (3.2) and (3.4) to obtain more efficient

estimates of a and /3 which are analogous to the weighted Heckman's 2-step estimators

discussed in Chapter 2.

Let the weighted 3-step estimators (W3SE) of a and 0 be denoted by c1w3 and

/3W3, respectively.

and

/31,173 = (x' A- 1 x)-i x l A-i.k (3.58)

where A = a2 [1-11 + 112]„ Y = Y — &3sA (as defined in (3.5)) and HI and .8'; are

given by (3.50) and (3.51), respectively.

It is straightforward to show that, under certain assumptions and following Amemiya

(1984), the W3SE estimators are consistent and have normal limiting distribution (see

also White (1984), Judge et al. (1988)), and their respective asymptotic variance and

covariance can be obtained using standard procedures as follows:

V(O-w3) = (zikli - 1 z)-1

= a2 {4EXV(&)XT + Er 1 z} 1 .	 (3.59)
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and

v(13w3) = (x/A-lx)-i

. a2 {XI H: + H1] -1X} 1[ 	 . (3.60)

Note that the 3S estimators and their weighted version, W3SE, discussed above,

are all based on the conditional expectation of the model and use only the N1 obser-

vations for which y i > 0. On the other hand, one can also apply similar procedures

using all observations. That is, one can use the 3-step procedure in order to improve

the 2-step estimators based on the unconditional expectation of the model. That is,

recall the model (see Section 2.8)

yi = F(x"ia)[x/i0 + a A(x'i ce)] + Si	 (3.61)

where E[8:] = 0, E[SA] = 0, i j, and V(8i ) = cr2Ci.

It is clear that this model is likely to suffer from multicollinearity as the explana-

tory variables are linearly related. That is, the arguments made against the H2S

estimator also apply similarly for (3.61). On the other hand, it is also possible to

apply the 3S estimator which avoids this problem. The specific steps required to

obtain improved 3S estimates from (3.61) are illustrated below:

Step 1. Estimate a using probit MLE, a, as before.

Step 2. Estimate a, say &3s, by regressing y i on F(x1i 6e)[ei & + A(ei(3‘)].

Step 3. Estimate the O's, say 133s, by regressing [yi — 53s f (x/i6e)]1 F(xii &) on ei.

Note that steps 2 and 3 avoid the multicollinearity problem. The consistency and

the asymptotic distributions of these estimators can be obtained using arguments
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which are similar to those used earlier in this Chapter. Furthermore, more efficient

estimates can be obtained by applying weighted least squares, analogously to the

weighted Heckman's 2-step based on the unconditional (WH2SU) expectation of the

model (see Section 2.8).

Note that, in line with the objectives of the study, the estimators discussed so far

are concerned with estimation of the standard tobit model. However, although there

are many alternative estimators of the model, in practice almost all applied papers

use either the maximum likelihood or the Heckman's two-step estimator to estimate

the parameters of the model. On the other hand, while the MLE is widely used

in the estimation of the standard tobit model (Type-I Tobit), the H2S estimator is

more important in the estimation of more general models (for example, Type-II Tobit

models) where estimation using the MLE is computationally difficult or highly costly

[see Amemiya (1984), Maddala (1983)]. Thus the importance of the 3S estimator

should be viewed not only as an alternative to the MLE for the simplest cases, but

with regard to its potential in the estimation of more complicated models, with its

advantage of avoiding the problem of multicollinearity. However, it is also important

to note that this does not necessarily imply that the 3SE can be applied directly to

all models that appear in the sample selection literature and that involve the H2S

procedure.

Below, we consider an example, other than the standard tobit model, and demon-

strate how the 3SE can be applied directly to improve the H2S estimator.

Consider the two-limit tobit model which is defined by
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yi = x'i1@+ ui ,	 i = 1,2,..., N.	 (3.62)

Yi = Lii if y: < Lli,

= y7 if L1 2: < y2 < L22:7

= L2i if y7 > L2i .
	 (3.63)

where y: and yi are, as defined in Chapter 2, the latent and the observed dependent

variables, respectively. 	 and L2i are, respectively, the lower and upper limits.

In practice, such models can be used to solve many economic problems. For

example, many insurance companies have a minimum and a maximum coverage and

values in between them. In commodity trading markets, there exist upper and lower

limits of price movements which are usually fixed based on the previous day's closing

prices [see Nelson (1976), Maddala (1983)].

The likelihood function of the model is defined by [see Maddala (1983, p.161)]

LOT, Cr lYio Xi) L li) L2i) II 
1 f (yi eif3)

F Lli Xij3)

CT	 Cr
Vi=Vi

II [1 _ F L2i 	)1

Vi=L2i	
o-

(3.64)

where fi and Fi are, respectively, the probability and cumulative density functions of

the standard normal random variable.

Given this, it is straightforward to obtain the first and second partial deriva-

tives for optimization. And standard iterative procedures can be used to estimate
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the parameters of the model [see Nelson (1976) for further discussion on computer

programs].

Alternatively, one can use a simpler two-step procedure to estimate the parameters

of the model as follows:

Consider the conditional expectation of yi

< yz < L2i) = x if3 + 	 —	 < ui < L2i — xii0)

=	 CYC	 (3.65)

where
f [(Liz —	 a] — f [( L 2Z — 43)1 a] 

FKLii —	 — F[(L 2i — xif3)/ o]

Now, the model in (3.65) can be used for a 2-step procedure. That is, given

that L 1 , and L2i are known, a two-limit probit model that uses just the number of

observations at the limits, Lli and Lei, and the number of observations between the

limits, provides consistent estimates of 13/a. The two-limit probit model has been

discussed in more detail by Rosset and Nelson (1975) and its likelihood function is

given as [see also Maddala (1983)]

L(,8', = HFli H(F2i Fli) H( 1 F2i)	 (3.66)
ni	 n2

where Fii = FKLii — 43)/u], F2i = FKL2i — et: 13) I al, and

n1 , n2 and n3 are, respectively, the number of observations corresponding to the lower

limit	 between the limits L li and Lei, and the upper limit Lei.

As shown by Rosset and Nelson (1975), this model can be easily maximized by

any of several well known methods and the estimates of the unknown parameters

can be estimated. Thus, the H2S estimator can be used because it makes use of
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this computational advantage. Note that we can only estimate the ratio a = 13/o

from (3.66). Then, the parameters 13 and a are estimated by regressing (3.65) after

replacing Ii by its estimate. A similar procedure can be applied to the unconditional

expectation of the model.

However, the main point of interest here is that the estimates from the second step

are likely to be imprecise if there exists a high correlation between the X's and the

estimated 4 in (3.65), as has been the case for the standard tobit model. If so, then

one can readily apply the 3S procedure to avoid the multicollinearity problem. In

order to see whether there exists multicollinearity between the explanatory variables

we use an empirical example which is similar to that of Nawata (1993). Specifically,

we generated random variables, &, from a uniform distribution over the interval [-

10,10] and L 1 and L2 were fixed at 0 and 4, respectively. Then we computed the

correlation between & and 43 (4'0. The results are given in Table 3.1 below.

Table 3.1: Correlation between and (1.(e)

[a, b] Correlation Coefficient, p

[-10, 10] -0.9916
(-09, 09] -0.9917
[-08, 08] -0.9925
[-06, 06] -0.9867
[-05, 05] -0.9772
[-05, 10] -0.9912

[ 0, 10] -0.9815

Clearly, Table 3.1 depicts that the correlation between the explanatory variables in

the second step, i.e., equation (3.65), of the procedure can be very high in magnitude.
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This simply implies that the 2-step estimates are likely to be inefficient because of the

presence of such multicollinearity. Therefore, the 3S estimator can be used directly

to avoid the multicollinearity problem and hence obtain more efficient estimates. In

fact, as shown earlier in this Chapter, there are no additional costs incurred in using

the 3S estimator directly in place of the H2S estimator without even checking the

presence of multicollinearity, given that it is directly applicable to the model as is the

case for the two-limit tobit model.

In general, the 3S estimator, while preserving the simplicity of the H2S estimator,

avoids the multicollinearity problem and may be .used in place of the H2S procedure

in many tobit models. The examples provided above demonstrate the useful poten-

tial for the 3S estimator in applied research. However, its use in models involving

simultaneous equations (for example, Type-II Tobit models) is a subject of future

research.

3.5 Summary and Conclusions

The Heckman's 2-step (H2S) estimator of the tobit model is widely used in applied

research. However, it has poor finite sample properties because of unavoidable mul-

ticollinearity between the explanatory variables and the estimated inverse of Mill's

ratio.

In this Chapter, we proposed an improved Heckman-type estimator which is re-

ferred to as the 3-step estimator (3SE). This estimator, while it preserves the sim-

plicity of the frequently used H2S estimator, avoids the problem of multicollinearity

which characterizes the H2S estimator. Furthermore, one can use a, weighted version
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of the 3SE, the W3SE, to obtain more efficient estimates of the parameters of the

model.

It is also shown that the 3SE estimator is consistent and has a normal limiting

distribution. It is expected that the 3SE will perform better than the H2S estimator

in finite samples because of its avoidance of the multicollinearity problem. Similarly,

the W3SE is expected to perform better in finite samples than its counterpart, the

weighted Heckman's 2-step (WH2S) estimator.

Further, the 3S estimator can be applied to improve the 2-step estimators based on

the unconditional expectation of the model. Some generalizations of the 3S estimator

with regard to its applications to other types of tobit models are also discussed and

specific examples provided. For example, the 3S estimation procedure can be readily

used in the estimation of the two-limit tobit model instead of using the H2S estimator

which again suffers from serious multicollinearity problems.

Finally, it would be interesting to see if the 3S estimator could be extended to

more general models, for example, the sample selection models considered in Man-

ning, Duan and Rogers (1987) and Leung and Yu (1994) or other models in general.

Research is underway in this direction.
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