
Chapter 9

Selected Discussion and

Comments

9.1 Introduction

The purpose of this Chapter is to present a brief discussion on topics which are related

to the experimental design, discussed in Chapter 5, and/or outcomes of this study.

Like any other Monte Carlo study, the outcomes of this experiment are influenced by

the design of the experiment. That is, the various conclusions that are drawn based

on the outcomes of the experiment are subject to the specific form of the model

as well as to the various component assumptions made in the experimental design.

Thus, before making final conclusions on the outcomes of the study, it is important to

examine the restrictiveness of some of the important assumptions made in designing

the experiment. For example, as discussed in Chapter 5, the observations on the

explanatory variables x 1 and x2 are kept fixed for all replications in the Monte Carlo
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experiment. This assumption can be restrictive given that the explanatory variables

in a tobit model have a random character. It is perhaps reasonable to raise the

question what happens if the explanatory variables were allowed to vary from sample

to sample. Similar issues can be raised that are related to the various components of

experimental design such as the direction of censoring.

Specifically, this Chapter focusses on the effects of the following on the outcomes

of the experiment.

(i) The effects of considering random explanatory variables as compared to fixed

explanatory variables.

(ii) The effects of left-hand censoring versus right-hand censoring of observations.

(iii) The importance (effects) of the constant term in the estimation of results asso-

ciated with the tobit model.

The Sections below present a short discussion on these issues and provide more

information in relation to each of the above points. Note that these discussions are not

exhaustive. Nevertheless, they provide important information regarding the flexibility

of the experimental design as well as the outcomes of the experiment.

9.2 Random Explanatory Variables

Recall that, as discussed in Chapter 5, the experiment in this study is designed so that

the observations on the explanatory variables x1 and x2 do not vary from sample to

sample. This is designed in order to enable one to investigate the effects of violations
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of the assumptions about the error term with minimum variation due to other factors

including the explanatory variables.

However, in practice, this assumption can be restrictive because of the random

character of the explanatory variables in the tobit model. For example, in a household

expenditure study where the expenditure on durables, y, is expressed as a function

of income, x, it is reasonable to treat the x's as random because, in practice, (y, x) is

selected at random through something like a random household survey. Thus, given

this and other similar examples, it is relevant to raise this issue in our experiment

and ask what happens if the observations on the explanatory variables are allowed to

change from sample to sample. That is, whether the outcomes from the experiment

will be affected significantly by considering random explanatory variables.

One way of assessing this effect is to produce results from an experiment which al-

lows the observations on the explanatory variables to vary from sample to sample and

compare these results with those obtained by using fixed explanatory variables (i.e.,

based on the original design of the experiment). In order to examine this, the experi-

mental design which is discussed in Chapter 5 is modified in such a way that a new set

of explanatory variables are selected in each replication of the experiment. Note that

all other details of the experimental design remain the same except in this case a new

set of explanatory variables are generated for each of the 3000 samples in the Monte

Carlo experiment, so that the results can be comparable to those obtained from the

original design using fixed explanatory variables. The summary statistics obtained

using random explanatory variables are given in Table 9.1 for selected estimators.

Table 9.1 depicts results for 112S, 3SE and MLE using random explanatory vari-

ables for the three distributions and a 25% degree of censoring. The interpretation
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of Table 9.1 is similar to the results reported in Chapter 6 (for example see Table 6.1

in Chapter 6). That is, we obtained the estimated mean (EM), the standard error

(SE), the bias (BIAS) and the root mean square error (RMSE) for each coefficient.

Furthermore, since the objective is to compare these results with their correspond-

ing estimates obtained based on fixed explanatory variables, the relative root mean

square errors (RRMSE) is computed for each coefficient to indicate any changes in

reliability of the estimates. The RRMSE is the ratio of the RMSE of a coefficient

obtained using random explanatory variables to its corresponding RMSE obtained

when the explanatory variables were fixed. That is,

A , RMSEV3k )Irandom X's
k . 1, 2.RRMSE (Pk) =

RMSEV301fixed X's

As stated above, the RRMSE is used to indicate whether there exists any signifi-

cance difference between the RMSE obtained with and without allowing the explana-

tory variables to vary from one sample to the other. For example, as shown in Table

9.1, given a sample size of 100, a 25% degree of censoring and normally distributed

errors, the RMSE of Si using the I-12S estimator is given by 0.206. The corresponding

RMSE using fixed explanatory variables is equal to 0.190 (see Table 6.1 in Chapter 6).

The RRMSE is therefore the ratio RRMSE=0.206/0.190=1.084. Others are obtained

in a similar way.

Given the results tabulated in Table 9.1, one can make the following general

points. Under normality, the MLE estimator performs the best followed by the 3SE.

The difference between the MLE and 3SE is quite marginal. It is also clear that the

MLE is less efficient under the skewed distribution compared to the symmetric distri-

butions. These conclusions are generally consistent with earlier results (see Chapter
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1.000 1.000 1.000 1.000 1.000

0.989 1.141 1.108 1.018 1.010
0.258 0.416 0.404 0.192 0.255
-0.011 0.141 0.108 0.018 0.010
0.258 0.437 0.418 0.193 0.255
1.102 2.526 1.883 0.869 1.099

0.986 0.957 0.958 0.930 0.934
0.197 0.208 0.294 0.123 0.220
-0.014 -0.043 -0.042 -0.070 -0.066
0.198 0.212 0.297 0.141 0.229
1.064 1.812 1.650 1.021 1.060

1.001 1.059 1.032 1.044 1.035
0.189 0.188 0.247 0.112 0.212
0.001 0.059 0.032 0.044 0.035
0.189 0.196 0.249 0.121 0.215
1.068 1.921 1.390 1.034 1.086

0.990 1.035 1.030 1.023 1.006
0.181 0.133 0.165 0.133 0.177
-0.010 0.035 0.030 0.023 0.006
0.181 0.137 0.168 0.135 0.177
0.978 0.958 0.977 0.978 0.978

0.993 1.014 1.012 0.935 0.933
0.141 0.083 0.137 0.084 0.152
-0.007 0.014 0.012 -0.065 -0.067
0.141 0.085 0.137 0.106 0.166
0.953 1.000 1.000 0.972 1.044

1.002 1.022 1.025 1.043 1.029
0.132 0.072 0.132 0.076 0.146
0.002 0.022 0.025 0.043 0.029
0.132 0.075 0.0132 0.087 0.149
1.023 1.000 1.031 1.080 1.000

Sample	 Estimator
Size
(1) (2) (3)

True values 1.000

100 II2S EM 0.990
SE 0.205
BIAS -0.010
RMSE 0.206
RRMSE 1.084

3SE EM 0.985
SE 0.114
BIAS -0.015
RMSE 0.115
RRMSE 1.008

MLE EM 1.001
SE 0.097
BIAS 0.001
RMSE 0.097
RRMSE 0.980

200 II2S EM 0.987
SE 0.143
BIAS -0.013
RMSE 0.143
RRMSE 0.947

3SE EM 0.990
SE 0.078
BIAS -0.010
RMSE 0.079
RRMSE 0.988

MLE EM 0.999
SE 0.067
BIAS -0.001
RMSE 0.067
RRMSE 0.957
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Table 9.1: Results for Estimators using Random Explanatory variables, given a 25%
Degree of Censoring for the three Distributions.
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6). However, the main interest here is that whether there is any significant difference

in reliability resulting from the random character of the explanatory variables. As

can be seen from the values of the RRMSE, the reliability of the MLE and 3SE esti-

mates remain almost the same as those obtained using fixed explanatory variables in

the original design for all samples, provided that the errors are normally distributed.

The RRMSEs of the MLE and 3SE estimators under the chi-square distribution also

reveal that the outcomes of the experiment are not affected significantly by varying

the explanatory variables and provide almost identical results as the sample size in-

creases. However, Table 9.1 also indicates that the reliability of the estimators can

deteriorate significantly under the students'-t distribution if the sample size is small

and the X's are random. It is, however, interesting to note that as the sample size

increases both experiments (i.e., with or without varying the observations on the ex-

planatory variables) provide almost identical results for all estimators and the three

distributions (i.e. the RRMSE r.d 1.000 in all cases). For example, given a sample

size of 200, a 25% degree of censoring and the students'-t distribution, the RMSEs of

the coefficients for the 3SE using random explanatory variables are identical to those

obtained using fixed explanatory variables (i.e., RRMSE=1.000).

In general, the results in Table 9.1 depict that there is enough evidence to conclude

that the randomness of the explanatory variables, compared to fixed explanatory

variables, has little or no effect on the outcomes of the experiment. That is, the

variations in results are mainly attributed to the changes in error structure as well

as factors such as the degree of censoring and sample size. In other words, the main

conclusions drawn from the original experimental results (i.e., Chapter 6 to 8) would

not be altered if one had to allow the explanatory variables to vary from sample to



CHAPTER 9. SELECTED DISCUSSION AND COMMENTS	 245

sample instead of using fixed explanatory variables.

9.3 Left Vs Right Hand Censoring

One of the important components in this study is investigating the effects of the

degree of censoring on the performance of the various estimators. Recall that the

degree of censoring represents the proportion of observations corresponding to the

zero values of the dependent variable, i.e., y i = 0 to the total number of observations

in the sample. As discussed in Chapters 6 to 8, the quality of the estimators decline

in general for higher degrees of censoring. However, the main interest here is not the

level (degree) of censoring but its direction.

In this study we considered three distributions for the error term of which two of

them are symmetric (i.e., the normal and the students'-t distributions) and a skewed

(i.e., the chi-square) distribution. The combined effects of the error distributions and

the degrees of censoring on the performance of the estimators depend, among other

things, on the type of distribution, the level of censoring and sample size. However,

another important aspect which is particularly relevant to the chi-square distribution

is the direction (left versus right) of censoring of the observations. It is, perhaps,

important to examine the direction of censoring in relation to the skewed distribution

(i.e., the chi-square distribution) and its effects on the outcomes of the experiment

for the following reasons.

In general, there are two likely situations that exist between the direction of cen-

soring and the error distributions considered in this experiment. If the errors are

symmetric, then both left-hand and right-hand censoring are likely to have the same
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effects on the outcomes of the experiment. However, this may not be true for the

skewed distribution. That is, left and right-hand censoring are likely to have dif-

ferent effects on the observations generated from the skewed distribution and hence

the outcomes of the experiment. This can be explained intuitively using Figure 9.1

(a) and (b) below. Figure 9.1, (a) depicts a left-hand censoring of the chi-square

distribution with four degrees freedom. The shaded part indicates the observations

which correspond to the zero values on the dependent variable y i . In this case, it is

clear that the skewness (right-hand tail) of the distribution is less likely to be affected

by the censoring of the observations. That is, the observations that contribute more

towards the skewness of the distribution are not censored as the censoring is in the

opposite tail of the distribution. On the other hand, Figure 9.1 (b) shows when the

direction of censoring is to the right, a situation where both censoring and the tail

(skewness) of the chi-square distribution are in the same direction. That is, in (b)

we have a situation where the observations which contribute most to the skewness of

the chi-square distribution are being censored. In other words, as can be seen from

Figure 9.1 (b), the chi-square distribution becomes less skewed and perhaps may be

approximated by the normal distribution. This implies that, just by comparing the

above Figures (a) and (b), the effects of the direction of censoring are likely to be

different under the chi-square distribution. Specifically, it can be said that the results

from a right-hand censored chi-square distribution (i.e., Figure 9.1, (b)), compared

to a left-hand censoring (Figure 9.1, (a)), are likely to be closer to those of the sym-

metric (or normal) distribution. Thus, it is important to examine whether the results

based on a right-hand censoring of observations are significantly different from those

obtained using left-hand censoring (i.e., the original design of the experiment). This
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Figure 9.1: Left-hand Vs Right-hand Censoring of the Chi-square Distribution.

(a) Left-hand Censored Chi-square curve

(b) Right-hand Censored Chi-square curve
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question has important implications in providing more information on whether the

skewed distribution is actually represented or not in the experiment and its relation-

ship with the direction of censoring. In other words, it enables one to check whether

the data generation process is free of bias against any of the distributions considered

in the experiment.

As before, it is possible to examine the effects of using right hand censoring instead

of left-hand censoring by making some adjustments to the experimental design. Note

that the design of the experiment, discussed in Chapter 5, is based on a left-hand

censoring which is similar to Figure 9.1 (a). The main purpose is to modify the

experiment in such a way that the censoring and the tail (skewness) of the chi-square

observations overlap with each other as in Figure 9.1 (b). A simple way of having

such a design is to multiply the chi-square observations by negative one so that the

tail of the distribution will lie on the same direction as the censoring. This is the

same as Figure 9.1 (b) except in this case the tail of the distribution will be to the left

instead of to the right-hand side. In this way one can examine the two cases easily

without changing the remaining details of the experimental design.

Following this procedure, we estimated results for selected estimators and the

summary statistics are given in Table 9.2. Table 9.2 depicts results for the H2S, 3SE

and MLE estimators based on a right hand censoring of the chi-square distribution,

given a 25% degree of censoring and for the small and medium sample sizes. It is

important to note that the term `right-hand censoring' is used to indicate the situation

in Figure 9.1 (b), where the observations at the right-hand tail of the distribution

are censored. The results in Table 9.2 also include two other conditions. As can be

seen from the table, Columns (3) and (4) depict results for the estimators when the
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Table 9.2: Results for Estimators based on a 25% Left-hand Censoring for the Chi-
square Distribution.

Sample	 Estimator 	 Fixed X's 	 Random X's
Size	 01	 02	 131	 132 

(1)	 (2)	 (3)	 (4)	 (5)	 (6)

True values 1.000 1.000 1.000 1.000

H2S EM 0.955 0.963 0.960 0.969
SE 0.183 0.248 0.200 0.256
BIAS -0.045 -0.037 -0.040 -0.031
RMSE 0.189 0.253 0.204 0.258
RRMSE 1.092 1.090 1.179 1.112

3SE EM 1.042 1.057 1.042 1.052
SE 0.101 0.183 0.101 0.179
BIAS 0.042 0.057 0.042 0.052
RMSE 0.110 0.192 0.109 0.187
RRMSE 0.797 0.889 0.790 0.866

MLE EM 0.981 0.991 0.979 0.989
SE 0.079 0.168 0.079 0.161
BIAS -0.019 -0.009 -0.021 -0.011
RMSE 0.081 0.168 0.082 0.162
RRMSE 0.692 0.848 0.700 0.818

H2S EM 0.962 0.974 0.968 0.979
SE 0.136 0.174 0.135 0.175
BIAS -0.038 -0.026 -0.032 -0.021

RMSE 0.142 0.176 0.139 0.177
RRMSE 1.029 0.928 1.001 0.978

3SE EM 1.047 1.059 1.051 1.061
SE 0.069 0.123 0.069 0.127
BIAS 0.047 0.059 0.051 0.061
RMSE 0.084 0.136 0.086 0.141
RRMSE 0.771 0.855 0.789 0.887

MLE EM 0.979 0.988 0.981 0.990
SE 0.054 0.109 0.054 0.114
BIAS -0.021 -0.012 -0.019 -0.010
RMSE 0.058 0.110 0.057 0.114
RRMSE 0.617 0.738 0.606 0.765

100

200
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explanatory variables are fixed. That is, the only change on the original design is the

direction of censoring of the chi-square errors. The remaining Columns (5) and (6)

list results when one uses random explanatory variables as well. Finally, since the

interest is to compare these results with those obtained based on the original design

of the experiment we have computed the relative root mean square error (RRMSE)

for each coefficient. As before, the RRMSE of a coefficient is the ratio of the RMSE

obtained with the changes in the direction of censoring to its corresponding RMSE

obtained from the original experiment. Specifically, the RRMSE is given by

RM S E(1301RHC k = 1,2.RRMSE(Pk)=
RMSE(A)ILHC'

where RHC and LHC indicate the right-hand (as in Figure (b)) and left-hand (as in

Figure (a)) censoring of the chi-square observations, respectively.

For example, as shown in Table 9.2, given a sample of 100 and a 25% degree of

censoring, the RMSE of ,61 using the H2S estimator is 0.189. Its corresponding value

based on the original design was 0.173 (see Column (7) of Table 6.1 in Chapter 6).

The RRMSE is therefore given by the ratio RRMSE=0.190/0.173=1.092. Similarly,

the RRMSE for :6+2 is given by 1.090. These ratios are relatively larger if one allows the

explanatory variables to vary from sample to sample as well (see Table 9.2, Columns

(5) and (6)). These results imply that the reliability of the H2S estimator declines if

one uses right-hand (instead of a left-hand) censoring of the chi-square distribution.

This is contrary to our expectations. However, as the sample increases the H2S

estimator yields similar results in both cases (e.g., when N=200 the RRMSE1.000

in all cases).

On the other hand, the 3SE and the MLE estimators reveal more interesting
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results. In all cases, the RMSE of the coefficients are less than their corresponding

RMSE obtained based on the original design; implying an improvement in reliability of

the 3SE and MLE estimates under the chi-square distribution, resulting from changes

in the direction of censoring. Specifically, when the chi-square distribution is censored

towards its tail then the RMSE of the 3SE and MLE estimates can improve up to

20 and 40 percent, respectively, compared to the results obtained from the original

design. This is not surprising because, as discussed earlier in this Section, there

appears to be little skewness on the chi-square errors and hence improved results.

In fact, the results for the 3SE and MLE given in Table 9.2 are almost the same

(sometimes even identical) to those obtained under normality of the errors in the

original experiment (see Tables 6.1 and 6.9, Chapter 6).

In general, there appears to be enough evidence to conclude that the direction

of censoring is important as far as the chi-square distribution is concerned. That

is, if the direction of censoring coincides with the tail of the chi-square distribution

then the results under the chi-square distribution are likely to the same (or quite

close) to those obtained under the normal distribution. In other words, the results

may not actually indicate the effects of the skewness of the distribution. This has an

important implication for similar other studies which involve censoring (or truncation)

and skewed distributions.

9.4 The Effects of the Constant Term

As discussed in Chapter 7, the Monte Carlo results regarding the consistency (incon-

sistency) of the MLE indicated that in the presence of misspecification there appeared
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appeared to be little inconsistency in the coefficients of the model except for the con-

stant term. That is, if one assumes normality when in fact the errors are non-normal

(i.e., for the students'-t and the chi-square distributions), then the inconsistency in

the constant term, 00 , can be substantial while it is negligible for the remaining

coefficients in the model. On the other hand, it should be clear that, unlike the

regular regression model, one cannot generally assume that the constant term is not

important because the constant term is involved in estimating other results which are

associated with the tobit model. In other words, as discussed in Chapter 2, Section

2.10, the constant term of the tobit model plays an important role in deriving useful

results that are associated with the tobit model. Thus, it is difficult to make gen-

eral conclusions regarding the consistency (inconsistency) of the MLE without having

further information on the likely effects of the inconsistency in the constant term on

these results.

The purpose of this Section is therefore to examine the uses of the constant term

and its likely effects if estimated inconsistently. That is, to examine the consequences

of inconsistency of the constant term in the estimation of results such as the rate of

change in the dependent variable, y i , for a unit change in xj , j = 1, 2. In order to

discuss this further let us reiterate some of the main results that are associated with

the tobit model first. These results include (suppressing the observation subscript):

(i) The effects of unit change in x j on y:, given by

aE[y:] 
= 03 , j = 1,2.

ax,

(ii) The effects of a unit change in x j on yi,

aE[yii 
= 

F(x,,a).03
ax,

(9.1)

(9.2)
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(iii) The effects of a unit change in xi on the conditional expectation of yi,

a gy i ly i > 0] 
= 0 i R(xiia),

axe

where

f (x'icx)
R(xia) = 1 — (xiia).F(eict)

(  f (eict)) 2 1
xi,ja))	

and a = /3/cr.
F( 

Note that the equations (9.1)-(9.3) show that all coefficients including the constant

term play an important role in deriving the above derivatives or response equations.

More specifically, if one is interested in computing the response of the latent variable,

y:, as a result of a unit change in xi , then the constant term has no relevance.

However, the main interest is to examine those equations which involve the constant

term, i.e., equations (9.2) and (9.3). For example, if the inconsistency in the constant

term has very little effect on the values of the equations (9.2) and (9.3), then one can

conclude that inconsistency is not a problem even if the normality assumption of the

error term does not hold. Note that, in the discussions below, equations (9.1)-(9.3)

will be referred frequently as response equations or simply responses.

It is possible to examine the likely effects of inconsistency of the constant term on

(9.2) and (9.3) without requiring Monte Carlo results from the experiment. In other

words, one can examine the effects of the constant term based on the true values as

illustrated below.

Consider a particular case from the experimental design discussed in Chapter 5,

say, a sample size of 200 and a 25% degree of censoring. This implies /30 = —0.75,

A. = ,82 = 1. And let "±" i and 2 be the means of the observations on the explanatory

variables x l and x2 , respectively. Then, evaluating (9.2) and (9.3) at these true values,

(9.3)
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we have

aE[yi] =
F(.).,3i = 0.8970	 (9.4)

a--.7

and

OE[yi lyi > 0] =
R(.).13; = 0.7079	 (9.5)

axe

It is important to note that the values given above remain the same whether the

derivatives are with respect to x 1 or x 2 simply because /31 = /32 = 1 in this particular

case. Note that the values in (9.4) and (9.5) can be viewed as the changes in the

unconditional and conditional expectation of the dependent variable, respectively,

per unit change in x i when no inconsistency exists in the coefficients; and hence they

can be used as benchmark values for comparing inconsistency. Since the interest is

to examine the effects of inconsistency in (3 0 we can then vary the constant term by a

certain proportion (upwards or downwards) to account for inconsistency and compare

the resulting estimates with those obtained assuming no inconsistency. That is, we

can compute new sets of values for equations (9.2) and (9.3) by considering different

values for /30 (but keeping /A = /32 = 1) and these new sets of estimates can be

compared with their corresponding true (benchmark) values given by (9.4) and (9.5).

For example, suppose there exists a 10 percent bias in 00 (i.e., the new value for

00 .1.10 x-0.75=-0.825). Then, the resulting new set of estimates for the responses

(9.2) and (9.3) will be 0.8829 and 0.6862, respectively. Then, in order to compare these

new estimates with their corresponding benchmark values given above, we compute

the percent changes in the responses that resulted from the 10 percent inconsistency

in /30 as follows:

The percentage change in OE[y2]/0-±"i = F(.)./33 as a result of a 10 percent change
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in ► 0 is given by

%,A in F(.)13j = [(0.8790 — 0.8829)/0.8790] x 100 = 1.57%

Similarly, the percentage change in aE[y i lyi > 0] /ax; = R(.) ./3, as a result of a 10

percent change in 00 is

%0 in R(.)P = [(0.7079 — 0.6862)/0.7079] x 100 = 3.06%

In other words, a 10 percent inconsistency (bias) in the constant term is likely to

cause up to 1.57 and 3.06 percent changes in (9.4) and (9.5), respectively. Similar

comparisons can be made by considering varying proportions of inconsistency in 00.

Recall that, as discussed in Chapter 7, there appeared to be around 20% in-

consistency in 00 if one assumes normality when the errors are generated from the

non-normal distributions (i.e., the students'-t and chi-square distributions). In line

with this, results for various proportions covering up to 25 percent (upward as well

as downward) inconsistencies in (3 0 are summarized in Table 9.3 below. Column (1)

of the table lists changes in /3o ranging from -25 to +25 percent. The correspond-

ing values for the response of yi per unit change in x j , i.e., F(.)0j , are provided in

Column (2) and the percentage changes in F(.)03 as a result of the changes in [30

are given in Column (3). Similarly, Columns (4) and (5) present the value for R(.)0j

and the percentage changes in R(.)/3j , respectively. The negative and positive signs

in Columns (3) and (5) indicate whether the effects on the responses are downward

or upward effects, respectively. For instance, if 0 0 changes by 25% downwards (i.e.

the new value for 00 is 1.25 x-0.75=-0.9375) then the value of the response F(.)/33

changes from 0.8790 to 0.8593, implying a 4.20 percent downward effect. Similarly,

the value for R(.)Pj is given by 0.6533 implying a 7.71 percent decrease in the value
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Table 9.3: The likely Effects of Changes in the Constant term (/3o) on Responses
associated with the Tobit Model for N=200 and 25% Degree of Censoring

Changes	 F(.)fij	 %A in F(.)133	 R(.)133	 %A in R(.)33
in 00	(0.8970)*	 (0.7079)*

1.25 x -0.75 0.8593 -4.20 0.6533 -7.71
1.20 x-0.75 0.8675 -3.29 0.6643 -6.16
1.15 x-0.75 0.8754 -2.41 0.6753 -4.60
1.10 x-0.75 0.8829 -1.57 0.6862 -3.06
1.05 x-0.75 0.8902 -0.77 0.6971 -1.52
0.95 x-0.75 0.9036 +0.73 0.7186 +1.51
0.90 x-0.75 0.9098 +1.43 0.7292 +3.01
0.85 x-0.75 0.9158 +2.09 0.7397 +4.49
0.80 x-0.75 0.9214 +2.72 0.7500 +5.95
0.75 x-0.75 0.9268 +3.32 0.7602 +7.39

*Values in brackets are the true (benchmark) values

of the response. These results generally imply that there appears to be little effect

on the values of the responses even if the constant term is about 25 percent biased

(inconsistent). The evidence also shows that the effects of the constant term on the

responses decline further for lower values of inconsistency (bias) in [30 . For example,

as can be seen from Table 9.3, about 15 percent inconsistency in Po causes less that

5 percent change in the value of the responses. In general, Table 9.3 indicates that

inconsistency in 00 is unlikely to cause any significant problem, given that the degree

of censoring is small. The results for the small and large sample size are similar,

provided that the degree of censoring remains low.

However, the situation appears to be quite different when the degree of censoring

increases. Table 9.4 below depicts the likely effects of the constant term on the
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responses when the degree of censoring is increased to 50%. Note that the results in

Table 9.4 are obtained in the same way as those in Table 9.3 except 0 0 =-2.000 to

adjust the degree of censoring. From Table 9.4, it is evident that inconsistency in

130 can have serious consequences on the values of the responses. For example, a 10

percent inconsistency in ,Q0 can have upto 16 percent effect on the value of F(.)/33 . In

short, Table 9.4 depicts that the effects of the constant term on the responses can be

generally severe for higher degrees of censoring if 00 is estimated inconsistently.

Table 9.4: The likely Effects of Changes in the Constant term ([30 ) on Responses
associated with the Tobit Model for N=200 and 50% Degree of Censoring.

Changes
in [30

F(.)133

(0.5059)*
%t 	 in F(.)13.; R(.),8i

(0.3688)*
%A in R(.)(3.;

1.25 x-2.00 0.3138 -37.97 0.2744 -25.59
1.20 x-2.00 0.3501 -30.79 0.2911 -21.07
1.15 x-2.00 0.3878 -23.34 0.3088 -16.27
1.10 x-2.00 0.4266 -15.67 0.3276 -11.17
1.05 x-2.00 0.4661 -7.86 0.3477 -5.72
0.95 x-2.00 0.5457 +7.87 0.3912 +6.07
0.90 x-2.00 0.5851 +15.65 0.4147 +12.44
0.85 x-2.00 0.6236 +23.26 0.4393 +27.25
0.80 x-2.00 0.6609 +30.63 0.4649 +26.05
0.75 x-2.00 0.6966 +37.69 0.4915 +33.27

*Values in brackets are the true (benchmark) values

In general, the following points can be noted based on the above discussions.

Inconsistency in 130 can be ignored (or assumed irrelevant) if one is interested in the

response of the latent variable, y:. Further, inconsistency in [30 does not seem to have

any significant effects on the responses related to the dependent variable y i , (i.e., on



CHAPTER 9. SELECTED DISCUSSION AND COMMENTS 	 258

the values for (9.2) and (9.3)), provided that the degree of censoring is not large.

However, the values of the responses (9.2) and (9.3) can be misleading if the degree

of censoring is high and Po is estimated inconsistently. However, although useful,

these conclusions need to be tested in practice using a wide variety of econometric or

economic models.

9.5 Summary and Conclusions

In this Chapter we examined three major issues which are related to the design

as well as the outcomes of the experiment. Specifically, the main points discussed

in this Chapter include the following: (i) The effects of using random explanatory

variables as compared to fixed explanatory variables. (ii) The relationships between

the direction (left Vs right) censoring and the chi-square (skewed) distribution, and

their likely effects on the outcomes of the experiment. (iii) The effects of the constant

term in computing the responses (rate of changes) associated with the tobit model.

Note that since any Monte Carlo experiment of this kind is influenced by its

design, the first two are aimed to assess the flexibility (or restrictiveness) of the

data generation process considered in this experiment. This Chapter provides more

information regarding these points and the main conclusions are as follows.

There appears to be enough evidence to suggest that the use of random explana-

tory variables does not lead to results which are significantly different from those

obtained based on fixed explanatory variables in the experiment. That is, the various

results and conclusions made throughout the experiment (Chapters 6 to 8) are mainly

as result of changes such as the error distribution, sample size and level of censoring.
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Another interesting outcome in this Chapter is with regard to the relationships

that exist between the direction of censoring and the chi-square (skewed) distribution.

The results indicate that if the experiment was designed so that the censoring and

the tail (skewness) of the distributions are in the same direction, then the results of

the experiment under the chi-square distribution would be as good as those under

the normal distribution. In other words, the chi-square distribution is likely to be

approximated by the normal distribution unless the experiment is designed in such

a way that the censoring and the skewness (tail) of the distribution lie on opposite

sides of the distribution. Otherwise, the Monte Carlo results can be misleading as

they do not take the skewness of the distribution into account.

The third point discussed in this Chapter, the effects of the constant term, is

raised based on the outcomes of the experiment. In particular, when discussing the

inconsistency of the MLE (see Chapter 7), the results indicated that inconsistency can

be a problem only for the constant term while no substantial problem of inconsistency

was observed for other coefficients. Thus, assuming that the constant term can be

inconsistent in some cases, we examined its likely consequences on the responses

associated with the tobit model. For example, the effects of the constant term on the

response of yi as a result of a unit change, say, in x i (i.e., 8E[y2]/axe j = 1, 2).

The results indicated that inconsistency in /30 does not seem to have any significant

consequences if the degree of censoring is small. Further, we also know that the

constant term is not required in the estimation of the response of the latent variable

y7 as a result of a unit change in x j . However, there appears to be some evidence that

the response functions associated with the dependent variable, y i , can be misleading

if the constant term is estimated inconsistently. This happens if the assumption of
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Another interesting outcome in this Chapter is with regard to the relationships

that exist between the direction of censoring and tjab the chi-square (skewed) distri-

bution. The results indicate that if the experiment was designed so that the censoring

and the tail (skewness) of the distributions are in the same direction, then the results

of the experiment under the chi-square distribution would be as good as those under

the normal distribution. In other words, the chi-square distribution is likely to be

approximated by the normal distribution unless the experiment is designed in such

a way that the censoring and the skewness (tail) of the distribution lie on opposite

sides of the distribution. Otherwise, the Monte Carlo results can be misleading as

they do not take the skewness of the distribution into account.

The third point discussed in this Chapter, the effects of the constant term, is

raised based on the outcomes of the experiment. In particular, when discussing the

inconsistency of the MLE (see Chapter 7), the results indicated that inconsistency can

be a problem only for the constant term while no substantial problem of inconsistency

was observed for other coefficients. Thus, assuming that the constant term can be

inconsistent in some cases, we examined its likely consequences on the responses

associated with the tobit model. For example, the effects of the constant term on the

response of yi as a result of a unit change, say, in x 3 (i.e., 3.E[yi]/Ox 3 j = 1, 2).

The results indicated that inconsistency in 00 does not seem to have any significant

consequences if the degree of censoring is small. Further, we also know that the

constant term is not required in the estimation of the response of the latent variable

yz as a result of a unit change in x j . However, there appears to be some evidence that

the response functions associated with the dependent variable, yi , can be misleading

if the constant term is estimated inconsistently. This happens if the assumption of
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normality of errors does not hold and the degree of censoring is high.

Finally, it is important to note that, although this Chapter provides some high-

lights on some of the important components related to the experimental design as

well as to the outcomes of the experiment, the depth of this investigation is not ex-

haustive due to time and other constraints. Obviously, it would be interesting to see

whether a different data generation mechanism (for example, using real economic or

other data) would lead to similar conclusions.



Chapter 10

Summary, Conclusions and

Recommendations

Tobit models refer to regression models in which the observations on the dependent

variable are observed only within a limited range. The tobit model was first sug-

gested in the pioneering work of Tobin (1958) who analysed the relationship between

household expenditure on durables and household income, by realizing the fact that

the dependent variable cannot be negative, and takes the value zero for those house-

holds who had no expenditure on durables. If traditional least squares techniques are

applied to estimate the parameters of the model they provide estimates which are

biased and inconsistent and therefore are not appropriate.

In recent years numerous applications of tobit models have appeared covering

a wide range of areas in the economics literature. The increase in applications for

tobit models has been associated with an increase in survey data for which tobit model

analysis is well suited as well as the development of econometric/statistical techniques

261
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and computer technology. Theoretical and empirical surveys on tobit models were

provided by Amemiya (1981, 1984). The books by Manski and McFadden (1981),

Maddala (1983), Amemiya (1985), Judge et al. (1985) and Greene (1991) also provide

useful resources. As a result, many types of variations of the tobit have been suggested

and various estimation techniques have been proposed to estimate the parameters of

the model. However, almost all the theoretical studies have been concerned with

the asymptotic properties and/or the computational ease of alternative estimators.

Hence, little attention has been paid to the finite sample properties of the various

estimators of the model.

Thus, the purpose of this thesis was to make a contribution towards filling this

void. In particular, as there are many generalizations of the tobit model, this

study investigates the finite sample properties of the estimators of the standard

tobit model (sometimes called the censored regression or simply the tobit model)

through a Monte Carlo experiment.

Further, along the lines of the existing Heckman's two-step estimator of the

tobit model, this study suggests an alternative three-step estimator for the

tobit model and its finite sample properties have been investigated along with

other estimators of the model.

Given the above general objectives, the standard tobit model was defined in Chap-

ter 2. Following the definition of the model, we reviewed the various estimators of the

model and their properties. These estimators included, the maximum likelihood esti-

mator (MLE), the Heckman's two step (H2S) and its weighted version, the weighted

Heckman's two-step estimator (WH2S), the Heckman-type estimators proposed by
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Wales and Woodland (1980), and nonlinear estimators of the model. Some high-

lights on recent developments with regard to semi-parametric, bounded influence and

Bayesian estimation of the model were also discussed. Of these estimators, only the

MLE and the H2S estimators have been used (and continue to be used) widely in ap-

plied research. However, previous studies related to tobit estimators have indicated

that these estimators may have serious consequences. Specifically, the MLE can be

inconsistent (not only inefficient) if the assumption of normality does not hold, which

is usually the case in applied research [Goldberger (1980), Arabmazar and Schmidt

(1982)]. This is in contrast to the traditional regression model where estimation by

maximum likelihood provides consistent estimates under a wide variety of situations.

Further, the H2S estimator which in most cases is preferred for its simplicity, espe-

cially for models involving simultaneous equations, usually performs poorly in finite

samples [Wales and Woodland (1980), Nelson (1984), Paarsch (1984), Nawata (1994)].

The reason for its poor performance arises mainly because of unavoidable and often

strong correlation between the explanatory variables and the estimated inverse of

Mill's ratio; a problem which is inherent to the particular form of the model.

In Chapter 3, along the lines of H2S estimator, we proposed an alternative es-

timator for the tobit model which is referred to as the three-step estimator (3SE).

But, unlike the H2S estimator, the 3SE avoids the multicollinearity problem while it

preserves the simplicity of the H2S estimator. The 3SE estimator and its asymptotic

properties, i.e., consistency and asymptotic distributions have been derived. More-

over, a weighted version of the 3SE estimator, the W3SE, and other generalizations of

the three-step estimator, including its potential for extension to other similar models

such as the two-limit tobit model have been studied.
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Since the design of the experiment is an integral part of a study of this nature, an

important consideration was given to its design. Previous studies related to the finite

sample properties of the model and other related Monte Carlo/simulation studies

were examined carefully in Chapter 4. In Chapter 5, we presented the design of the

experiment on which the Monte Carlo experiment in this study was based. The first

objective of the experimental design was to define the specific form of the model. This

model involved two explanatory variables, three coefficients (including the constant

term) and a random disturbance term. The experiment was designed to investigate

the following effects on the performance of the estimators of the model: (i) The effects

of changes in error distribution, i.e., the effects of violating the assumption about the

error term of the model. (ii) The effects of degree of censoring. (iii) The effects of

sample size.

To achieve objective (i), we considered three distributions for the error term,

namely, the standard normal distribution, the students'-t distribution with three de-

grees of freedom and the chi-square distribution with four degrees of freedom. The

later two distributions represent possible diversions (violations) from the usual nor-

mality assumption of the error term. Further, three levels of censoring were considered

to investigate the effects of censoring, i.e., 25% (for low), 50 % (for medium) and 75%

(for high) levels of censoring. Similarly, the sample sizes of 100 (for small), 200 (for

medium) and 400 (for large) were considered to investigate the effects of sample size.

Other important details with regard to the data generation process: the generation

of the explanatory variables, the determination of the parameters (true values), the

generation mechanism of the random variates associated with the three error distri-

butions and other related matters were discussed thoroughly in Chapter 5.
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The analysis and discussion of results in this study are presented in Chapters 6

through to 9. In Chapter 6, we examined most of the estimators discussed in the

literature. Specifically, the analysis in this Chapter included the comparison of the

following estimators.

1. The ordinary least squares estimator using the positive observations on the

dependent variable (OLSP).

2. The Heckman's two step estimator (H2S).

3. The weighted Heckman's two-step estimator (WH2S).

4. The three-step estimator (3SE).

5. The weighted three-step estimator (W3SE).

6. The maximum likelihood estimator (MLE).

7. The nonlinear least squares estimator using the positive (non-limit) observations

on the dependent variable (NLSP).

8. The ordinary least squares estimator using all observations (OLS).

9. The Heckman's two-step estimator based on the unconditional expectation of

the model (H2SU).

10. The weighted Heckman's two-step estimator based on the unconditional expec-

tation of the model (WH2SU).

11. The nonlinear least squares estimator based on the unconditional expectation

of the model (NLSU).
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These estimators were compared using a wide range of criteria. The main findings

and conclusions included the following.

Overall, the MLE and the 3SE estimators provided the best results. The dif-

ference between the two estimators appeared to be quite small (marginal) in

terms of efficiency. Both estimators yield relatively more efficient estimates

under normality and less efficient estimates under the chi-square distribution.

The H2S estimator performed generally less efficiently compared to both the

3SE and MLE estimators. However, its performance deteriorates very rapidly

with increases in the degree of censoring. This is in contrast to the 3SE estimator

which is much more less sensitive to increases in the degrees of censoring.

The WH2S and the W3SE estimators performed slightly better than their cor-

responding unweighted versions, i.e., the H2S and the 3SE, respectively, under

normality of the errors. However, they are sensitive if the normality assumption

does not hold.

The nonlinear least squares estimators provided inefficient estimates compared

to the MLE and the 3SE estimates in all cases. More importantly, the nonlinear

least squares estimates are highly sensitive to increases in the level of censoring.

Computationally, they are very slow and convergence is not always guaranteed.

Not surprisingly, the least squares estimators yield biased estimates; with the

bias increasing linearly with the degree of censoring. Similarly, and perhaps

surprisingly, the Heckman-type estimators proposed by Wales and Woodland

(1980): the H2SU and its weighted version, the WH2SU, perform very poorly
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in all cases.

Given these and other outcomes as detailed in Chapter 6, several issues and questions

were raised while discussing the results. One of the main concerns of this study was

to see whether the MLE is inconsistent if one assumes normality when in fact the

errors are non-normal, as was indicated by previous related studies. The results in

this Chapter did not generally support this claim. That is, the MLE performed quite

well in terms of bias under the non-normal distributions; except when the sample size

was small (100) and the degree of censoring high (75%).

Given that the MLE is widely used in applied research, the issue of consistency

was further considered in Chapter 7; in which, among other things, we analysed the

consistency (inconsistency) of the MLE under the three distributions by making use

of the normal-based asymptotic results of the MLE estimator. This analysis pro-

vided further insights regarding the consistency of the MLE. The results indicated

that inconsistency is not generally a serious problem if one assumes normality incor-

rectly. However, the results also implicated that, if the degree of censoring is not

small, inconsistency can be substantial for the constant term of the model under the

non-normal distributions, whereas it remains negligible for other coefficients of the

model. One of the important implications of this outcome is that, in the presence

of misspecification and if the degree of censoring is high then results which involve

the constant term can be misleading and need to be treated with caution. Note that,

unlike the traditional regression model, the constant term of the tobit model is im-

portant in deriving results such as the response (rate of change) of the dependent

variable due to a one unit change in an explanatory variable (see Chapters 2 and 9).
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Further, an important issue which was analysed in detail is related to the variance-

covariance estimation of the coefficients of the model in the ML framework. Note

that when estimates are obtained by maximum likelihood procedure, the variance-

covariance matrix for the coefficients can be estimated using a number of alternative,

but asymptotically equivalent, variance-covariance matrix estimators. These estima-

tors are based on (i) the information matrix (ii) the Hessian matrix (iii) the outer

product matrix of the gradient vector and (iv) the robust (White-type) covariance

matrix estimator. Significant differences noted between these estimates are usually

considered as an indication of misspecification. Given this, we examined the perfor-

mance of these estimators in estimating the variances of the coefficients under the

different distributions, sample sizes and degrees of censoring. Furthermore, the ef-

fects of the various variance-covariance matrix estimators for hypotheses testing for

the coefficients were examined. The main findings included the following.

Under normality of the errors, all four estimators provided variances which are

quite close (some times even the same) to the true variances of the coefficients as

anticipated. The evidence also suggests that the robust (White-type) estimators

tend to underestimate the true variances under the correct specification of the

model, if the sample is small. Specifically, a sample size of at least 200 is

required to obtain reliable results. Consequently, the MLE performed quite

well in hypothesis testing regardless of the choice of the variance-covariance

matrix estimator. In other words, the choice of the variance-covariance matrix

estimator appeared to be neutral, provided that the model has been correctly

specified.
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However, under the non-normal distributions, the variance-covariance matrix

based on the robust (White-type) estimator appeared to be relatively better

than others. The variance-covariance matrix based on the outer product matrix

performed as the second best. Interestingly, the variance-covariance matrix

estimators based on the information and the Hessian matrices yield identical

results in almost all cases (i.e., under normal and non-normal errors) but provide

confidence intervals which appeared to be slightly narrower (over precise) than

they should be.

Note that one of the significant contributions of this study is to suggest the three-

step estimator (3SE) for the model, which has been discussed in Chapter 3. As noted

earlier, one of the important characteristics of the 3SE estimator is that it avoids the

multicollinearity problem whereas the H2S estimator does not. In order to see this,

we investigated the finite sample properties of the H2S and the 3SE estimators under

various levels of correlation. Specifically, as shown in Chapter 8, we investigated the

effects of correlation between the explanatory variables and the estimated inverse

of Mill's ratio on the performance of the estimators. The estimators were analysed

by considering various levels of correlation ranging from -0.50 (for low) to -0.95 (for

high) as well as different sample sizes and degrees of censoring. The main conclusions,

among others, included the following.

The 3SE estimator performed better than the H2S estimator in almost all cases.

More importantly, the difference between the two estimators becomes substan-

tially large as the correlation level increases. If the correlation between the ex-

planatory variables and the estimated inverse of Mill's ratio becomes high then
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the H2S estimator can be even worse than the biased ordinary least squares

estimator (OLSP) of the tobit model. On the other hand, the 3SE estimator

provided results which are marginally close to the MLE estimator for all levels

of correlation. The results also indicated that the H2S estimator is likely to

provide confidence intervals which are wider than they should be.

In general, one can deduce the following important points, among others, based

on the outcome of this research.

Not surprisingly, the MLE performs the best when the model is correctly spec-

ified. It is also clear that the MLE performs quite well under the non-normal

distributions (i.e., the students'-t and the chi-square distributions) in terms of

bias and efficiency, except for the small sample size and high degree of cen-

soring. These results are similar to those of Paarsch (1984) and Moon (1989)

in which the MLE performed well under the under the normal as well as the

Laplace distribution. However, our results also indicate that in the presence of

misspecification there appears to be some inconsistency only for the constant

term of the model, a problem which arises if the errors are non-normal and

the degree of censoring is high. It is not clear why the constant term behaved

differently from others which requires further investigation.

Regarding hypothesis testing (or construction of confidence intervals) for the

coefficients of the model, the MLE estimator provides the desired preciseness

irrespective of the choice of the variance-covariance matrix, provided that the

model is correctly specified and if the sample is not small (100). Otherwise, the

robust (White-type) estimator tends to be biased downwards especially for small
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samples and higher degrees of censoring. In the presence of misspecification

(i.e., under the students'-t and the chi-square distribution) the robust (White-

type) variance-covariance matrix estimator appears to be better than others.

The variance-covariance matrix estimator based on the outer product matrix

becomes close second.

The 3SE estimator outperforms the II2S estimator in almost all cases and pro-

vides results which are quite close to the MLE. Further, it is simple to use and

potentially useful for the estimation of other models such as the two-limit to-

bit model. It would be more interesting to see if the 3SE estimator could be

extended to more general models where estimation by MLE is not attractive,

for example Type-II tobit models [see Amemiya (1984,1985), Maddala (1983)].

Specifically, the significance of the 3SE estimator will depend whether it can be

extended to more general Tobit models.

Finally, it should be noted that, like other Monte Carlo experiments, this study

has its limitations. Thus, the outcomes of this study need to be tested using

a wide variety of economic/econometrics models. Further, this study does not

include semi-parametric and other estimators of the model. Currently, these

estimators are hardly used in applied research mainly because they are com-

putationally cumbersome even for the simplest form of the model [see Paarsch

(1984), Moon (1989), Peracchi (1991)]. More research is needed along this line.
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