THE FINITE SAMPLE PROPERTIES OF THE
ESTIMATORS OF THE TOBIT MODEL:
A MONTE CARLO STUDY

By

Getachew Asgedom Tessema
B.Sc. (AAU), Dip.Stats., M.Ec. (UNE)

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF
PHILOSOPHY
OF THE UNIVERSITY OF NEW ENGLAND
March 1995
Acknowledgements

This study was made possible through the assistance of the Australian Government Overseas Postgraduate Research Scholarship Scheme (OPRS) and the University of New England Research Scholarship (UNERS). I am indeed very grateful to both institutions.

I would like to express my deepest gratitude to my supervisors, Professor William E. Griffiths and Associate Professor Howard E. Doran, for the generous support and most stimulating guidance and encouragement they provided during the period of study. I would like to thank Mr. Tim J. Coelli who patiently answered many of my computer programming questions at the early stages of the study. Also, I am deeply indebted to Professor Adrian Pagan for his invaluable comments and useful discussions at different occasions.

My deepest appreciation and thanks to the Department of Econometrics, University of New England, Armidale, for providing the unusually warm and friendly working environment. To all members of the Department, I am very grateful. Many thanks to Associate Professors George E. Battese and D.S. Prasada Rao, who constantly provided moral support and encouragement. Special thanks to a good friend
and colleague, Rebecca Valenzuela, for her enthusiastic encouragement and understanding throughout the years. My appreciation is also due to Mrs. Marlene Youman and Mrs. Sue Nano for their excellent administrative and secretarial services.

Last, but not least, my wholehearted love and gratitude go to my wife, Almaz, who provided the inspiration and constant support and encouragement throughout this period of anxiety and uncertainty. Without her, this study would not have been possible. And also, to my daughter, Timnit, who provided stimulus and some welcome distraction towards the end. My love and appreciation is extended to my mother, my sisters and brothers for their constant support and encouragement, both morally and spiritually.
Abstract

This study examines the small sample properties of some of the estimators of the tobit model. These estimators include, among others, the maximum likelihood estimator (MLE), Heckman’s 2-step (H2S) estimator and its weighted version, the weighted Heckman’s 2-step (WH2S) estimator, other Heckman-type 2-step estimators based on the unconditional expectation of the model, nonlinear and ordinary least squares estimators. Further, an improved Heckman-type estimator which is referred to as the three-step estimator (3SE) and its weighted version, the weighted three-step estimator (W3SE), are suggested and their properties investigated.

The study investigates the effects of sample size, degree (level) of censoring and error distribution on the properties of the estimators. Furthermore, it examines, among other things, the effects of correlation between the explanatory variables and the estimated inverse of Mill’s ratio on the performance of the (Heckman-type) estimators.

Under normally distributed error terms, the MLE estimator performed better than all estimators, followed by the 3SE estimator. The loss in efficiency of the 3SE, compared to the MLE, is quite marginal. However, both the MLE and 3SE estimators appear to be less efficient under the skewed (chi-square) distributed error terms. On the other hand, given a low level of censoring, the MLE estimator performs well under
the students'-t distribution. If the degree of censoring is high, the MLE estimates under the students'-t distribution can be less efficient than the 3SE estimator.

The H2S estimator, although less efficient compared to 3SE or MLE estimators, performs well in terms of bias. However, it can be highly inefficient depending on the level of censoring and/or the degree of correlation between the explanatory variables and the estimated inverse of Mill's ratio. More specifically, if the correlation between the explanatory variables and the estimated inverse of Mill's ratio is high, the H2S estimator can be even worst than the biased ordinary least squares estimator.

The nonlinear least squares estimators are generally inefficient and computationally very slow (unattractive) compared to the 3SE and MLE estimators. More importantly, they are very sensitive to the degree of censoring, and convergence is not always guaranteed.

When the model is estimated by the method of MLE, the variance-covariance matrix for the coefficients of the model can be estimated based on a number of asymptotically equivalent covariance matrix estimators, namely, the information matrix, the Hessian matrix, the outer product of the gradient vector and the robust (White-type) covariance matrix estimator. A detailed examination of these covariance matrix estimators in the estimation of variances and for hypothesis testing for the coefficients of the model reveals that the choice of one of the (four) alternative estimators appears to be neutral, provided that the model is correctly specified (i.e., under normality of the errors). However, if one assumes normality when in fact the errors are generated from the non-normal (i.e., the students'-t and chi-square) distributions, the robust (White-type) covariance matrix appears to be slightly better than others; followed by the covariance matrix estimator based on the outer product of the gradient vector.
Contents

Acknowledgements iii

Abstract v

1 Introduction 1
 1.1 Objectives of the Study 3
 1.2 Outline of the Study 5

2 Review of Literature 9
 2.1 Introduction 9
 2.2 The Standard Tobit Model 11
 2.3 Properties of Least Squares Estimators of the Tobit Model 13
 2.4 The Maximum Likelihood Estimator (MLE) 16
 2.5 Heckman's Two-step Estimator (H2S) 26
 2.6 Weighted Heckman's two-step Estimator 30
 2.7 Nonlinear Estimation based on Conditional Expectation 31
 2.8 Two-step Estimators based on Unconditional Expectation 33
2.8.1 Heckman's two-step Estimator based on the Unconditional Expectation (H2SU) of the Model .. 35
2.8.2 Nonlinear Estimation based on the Unconditional Expectation 36
2.9 Highlights of Other Estimators .. 38
 2.9.1 Semi-Parametric Estimators of the Model 39
 2.9.2 Bounded Influence Estimators of the Model 41
 2.9.3 Bayesian Estimation of the Tobit Model 43
2.10 Some Useful Results .. 44
2.11 Summary and Conclusions .. 45

3 An Improved Heckman Estimator and its Properties 48
 3.1 Introduction .. 48
 3.2 The Three-step Estimator (3SE) 49
 3.3 Asymptotic Properties of the 3S estimator 53
 3.3.1 Consistency ... 53
 3.3.2 Asymptotic Distributions of $\hat{\sigma}_{3S}$ and $\hat{\beta}_{3S}$ 57
 3.4 Some Generalizations of the 3S Estimator 64
 3.5 Summary and Conclusions 70

4 Small Sample Properties of Tobit Models: Relevant Monte Carlo/Simulation Studies 72
 4.1 Introduction .. 72
 4.2 Small Sample Studies of Tobit Models 73
 4.3 Summary and Conclusions 82
7.2.1 Monte Carlo Comparisons for Consistency 169
7.3 Asymptotic Distribution of the MLE 175
 7.3.1 Monte Carlo Comparison of Variance Estimators 181
 7.3.2 Implications of the Variance Estimators for Hypothesis Testing 193
7.4 Summary and Conclusions 207

8 The 3SE Vs H2S Estimator: The Effects of Correlation 211
 8.1 Introduction .. 211
 8.2 An Overview of the H2S and 3S Estimators 212
 8.3 The Design of the Experiment 215
 8.3.1 The Model .. 215
 8.3.2 The Data Generation Process 217
 8.4 Comparison of Results 219
 8.5 Summary and Conclusions 236

9 Selected Discussion and Comments 239
 9.1 Introduction .. 239
 9.2 Random Explanatory Variables 240
 9.3 Left Vs Right Hand Censoring 245
 9.4 The Effects of the Constant Term 251
 9.5 Summary and Conclusions 258

10 Summary, Conclusions and Recommendations 261
 Appendix A: Output Tables 272

References ... 281
List of Tables

3.1 Correlation between ξ and $\Phi(\xi)$ 69

6.1 Results for Estimators using only N_1 observations given $N=100$ and
25% Degree of Censoring for the three Distributions. 114

6.2 Results for Estimators using only N_1 observations given $N=200$ and
25% Degree of Censoring for the three Distributions. 116

6.3 Results for estimators using only N_1 observations, given $N=400$ and
25% degree of censoring for the three distributions. 117

6.4 The Effects of the Degree of censoring for Estimators using only N_1
observations, given $N=100$ and normally distributed error terms. . . 119

6.5 Results for Estimators using only N_1 observations given $N=100$ and
50% Degree of Censoring for the three Distributions. 120

6.6 Results for estimators using only N_1 observations, given $N=100$ and
75% degree of censoring for the three distributions. 122

6.7 The effects of the degree of censoring for estimators using only N_1
observations, given $N=400$ and normally distributed error terms. . . 124

6.8 Comparisons of H2S and 3SE estimates, given a Sample Size of 100,
25% degree of Censoring and the three distributions. 127
6.9 Summary Notes on the Relative Performance of the Various Estimators

6.10 Results for Estimators using all observations given N=100 and 25% Degree of Censoring for the three Distributions

6.11 Results for Estimators using all observations, given N=400 and Degree of Censoring of 25% for the three Distributions

6.12 The Effects of Sample Size on the Estimators using all observations, given 25% Degree of Censoring and Normally Distributed error terms

6.13 The Effects of Degree of Censoring for Estimators using all observations, given N=200 and Normally distributed error terms

6.14 The Effects of Degree of Censoring for Estimators using all observations, given N=200 and Chi-Square Distributed error terms

6.15 Summary Notes on the Relative Performance of the Various Estimators

6.16 Relative Root Mean Square Errors (RMSE) for all Sample Sizes and Distributions, given 25% Degree of Censoring

6.17 Relative Root Mean Square Errors (RMSE) for all Sample Sizes and Distributions, given 50% Degree of Censoring

6.18 Comparison of Variances of Estimators for all Sample Sizes and Distributions, given 25% Degree of Censoring

6.19 Comparison of Variances of Estimators for all Sample Sizes and Distributions, given 50% Degree of Censoring

6.20 95% Confidence Intervals of Estimators for all Sample Sizes and Distributions, given 25% Degree of Censoring

6.21 95% Confidence Intervals of Estimators for all Sample Sizes and Distributions, given 50% Degree of Censoring
7.1 Empirical Inconsistency ($I_N(\theta)$) of the MLE for the three Distributions and Sample sizes ... 170

7.2 Comparison of Variance Estimators of the MLE Estimator for all Sample Sizes and Distributions, Given 25\% Degree of Censoring 183

7.3 Comparison of Variance Estimators of the MLE Estimator for all Sample Sizes and Distributions, Given 50\% Degree of Censoring 187

7.4 Comparison of Variance Estimators of the MLE Estimator for all Sample Sizes and Distributions, given 75\% Degree of Censoring 189

7.5 95\% Confidence Intervals using the four Variance Estimators of the MLE for all Sample Sizes and Distributions, Given 25\% Degree of Censoring ... 196

7.6 95\% Confidence Intervals using the four Variance Estimators of the MLE for all Sample Sizes and Distributions, Given 50\% Degree of Censoring ... 198

7.7 95\% Confidence Intervals using the four Variance Estimators of the MLE for all Sample Sizes and Distributions, Given 75\% Degree of Censoring ... 200

7.8 Ranking on the Robustness of the Estimators 202

7.9 Further Ranking of Robustness of the Estimators 204

8.1 Comparison of Estimators under Various levels of Correlation, Given N=100 and 25\% Degree of Censoring ... 221

8.2 Comparison of Estimators under Various levels of Correlation, Given N=200 and 25\% Degree of Censoring ... 224
8.3 Comparison of Estimators under Various levels of Correlation, Given
N=400 and 25% Degree of Censoring............................... 227
8.4 Comparison of Estimators under Various levels of Correlation, Given
N=200 and 50% Degree of Censoring............................... 230
8.5 Finite Sample Root Mean Square Errors Relative to those of the MLE
estimator... 232
8.6 Finite Sample Standard Errors Relative to Asymptotic Standard Errors.235
9.1 Results for Estimators using Random Explanatory variables, given a
25% Degree of Censoring for the three Distributions............ 243
9.2 Results for Estimators based on a 25% Left-hand Censoring for the
Chi-square Distribution... 249
9.3 The likely Effects of Changes in the Constant term (β_0) on Responses
associated with the Tobit Model for N=200 and 25% Degree of Censoring256
9.4 The likely Effects of Changes in the Constant term (β_0) on Responses
associated with the Tobit Model for N=200 and 50% Degree of Censoring.257
A.1 The effects of Sample size for estimators using only N_1 observations,
given 25% degree of censoring and normally distributed error terms. 273
A.2 The effects of Sample size for estimators using only N_1 observations,
given 25% degree of censoring and chi-square distributed error terms. 274
A.3 Results for estimators using only N_1 observations, given N=200 and
50% degree of censoring for the three distributions............... 275
A.4 Results for estimators using only N_1 observations, given N=400 and
50% degree of censoring for the three distributions............... 276
A.5 Results for estimators using only N_1 observations, given $N=400$ and 75% degree of censoring for the three distributions.

A.6 Estimated Results for the MLE estimators for all Distributions and degrees of Censoring, Given a Sample size of 100.

A.7 Comparison of Estimators under Various levels of Correlation, Given $N=100$ and 50% Degree of Censoring.

A.8 Comparison of Estimators under Various levels of Correlation, Given $N=400$ and 50% Degree of Censoring.