
Chapter 7

The MLE: Consistency, Variance

Estimation and Hypothesis

Testing

7.1 Introduction

The maximum likelihood estimator is widely used in estimation and inference for

many applied studies of tobit models [see Deagan and White (1976), Jarque (1987),

Addesina and Zinnah (1993)]. On the other hand, some studies have indicated that,

unlike the regular regression models, the MLE of the tobit model may have serious

consequences such as inconsistency if we assume normality of the error term and this

assumption is incorrect.

The purpose of this Chapter is to investigate the properties of the MLE estimator

further so that, combined with the results presented in Chapter 6, we may be able to
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make some specific conclusions. Specifically, the main objectives of this Chapter can

be summarised as follows:

1. To provide more information on the consistency (or inconsistency) of the MLE

under various error distributions based upon the asymptotic results of the MLE

estimator. It is important to note that, throughout the Chapter, the asymptotic

results that will be used in this analysis are those derived under the correct

specification of the model, i.e., normality of the error terms. These results

will then be evaluated empirically using observations generated from various

distributions. In other words, the purpose of this Chapter is to investigate

the effects of misspecification by making use of the asymptotic results of the

estimator.

2. The second major objective is to examine the effects of the alternative, but

asymptotically equivalent, variance-covariance matrix estimators suggested in

the literature for estimating the variances of the coefficients of the model. In

practice, one can use any one of (four) alternative variance-covariance matrix

estimators, of which three of them are usually associated with particular algo-

rithms used for maximization to obtain the ML estimates. However, the choice

of one of these variance-covariance matrix estimators is unlikely to be neutral for

estimation of the variances if the assumption of normality does not hold. Thus,

it is important to examine the unbiasedness (or robustness) of the alternative

variance-covariance matrix estimators in the presence of misspecification.

3. Another main purpose which is closely related to the variance-covariance matrix

estimators is their implications for hypothesis testing and/or construction of
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confidence intervals for the coefficients of the model. That is, the difference in

magnitude between the true and the estimated variances from the alternative

variance-covariance estimators may not necessary lead to different conclusions

in hypothesis testing unless the differences are substantial (significant).

It is therefore the purpose of this Chapter to examine whether the different

variance-covariance estimators lead to the same conclusions in hypothesis test-

ing and/or construction of confidence intervals for the coefficients of the model.

But first, we summarize some of the findings of the preceding Chapter regarding

the maximum likelihood estimator.

As we have discussed in Chapter 6, the Monte Carlo results indicate, among

others, three major points regarding the MLE of the model. These points may be

summarized as follows:

(i) Under normality of the error terms, the MLE performs well in terms of bias.

Further, although there seems to be some bias for the students'-t and chi-square

distributions when the sample size is small and the degree of censoring high,

the MLE appears to do well otherwise.

(ii) The asymptotic variances of the MLE provide good approximations of the true

(Monte Carlo) variances of the estimators, given that the errors have a normal

distribution. This is consistent with our expectations since the expressions for

the asymptotic variances are obtained under the assumption of normality of the

error terms. But, interestingly, it is also evident that the MLE performs fairly

well if we assume normality when in fact the errors have the students'-t distri-

bution. However, this is not true for the chi-square distributed errors. That
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is, the Monte Carlo variances under chi-square distributed errors overestimate

their corresponding asymptotic variances in almost all cases.

(iii) Not surprisingly, the t-tests and 95% confidence intervals for the coefficients of

the model are quite good under the normal distribution. However, results for

the non-normal distributions are relatively inferior than those for the normally

distributed errors.

The above points raise some important questions regarding the performance of the

MLE estimator. (i) Given that the biases reported for the students'-t and chi-square

distributions decline as the sample size increases, can one conclude, on the basis of

this information, that the MLE is sensitive to the violations of the assumptions about

the error term of model. (ii) The evidence on the variances, t-tests and confidence

intervals suggests that the results for the MLE under the non-normal distribution

does not seem to be as good as those of the normal distribution. Once again, does

this imply that the MLE is not robust under the non-normality of the disturbances

of the model. The remaining sections of this Chapter present further investigation on

the properties of the MLE which may be helpful to answer these and other related

questions.

Specifically, Section 7.2. investigates the consistency (or inconsistency) of the

MLE under the various distributional assumptions of the model. Section 7.3. presents

a detailed analysis on the use of the alternative variance-covariance matrix estima-

tors of the MLE and their implications for hypothesis testing and/or construction of

confidence intervals for the coefficients. Finally, Section 7.4. summarises the results.
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7.2 Consistency of the ML Estimator

This Section evaluates whether the MLE is consistent or not under various distribu-

tional assumptions. In order to do this, we need to discuss briefly the asymptotic

results of the MLE first. Note that, as stated above, the asymptotic results are de-

rived on the assumption of normality of the error terms of the model. These results

are then evaluated empirically, assuming normality, while the errors are generated

from the different distributions, in order to examine the effects of misspecification,

which is a common problem in applied research.

Recall the likelihood function of the tobit model which is given by

L 11[1 —	 H1/2 exp{—(yi — x:i3)/2o-2 1 (7.1)
o	

i (270.2 ) 

where the first product is evaluated over the No observations for which y, = 0 and

the second product is evaluated over N1 observations for which y, > 0. Note that fi

and Fi are, as defined before, the density and distribution functions of the standard

normal distribution, respectively.

The log-likelihood function is given as

log L = z_do log(1 — Fi) E log 	
1	 1 I	 ,\

1	 2 1/2	 — xip)2	(7.2)

where > is the summation over the No observations for which y i = 0 and E l is the

summation over the N1 observations for which yi > 0.

Note that the term 'normal-based' will be used frequently in this Chapter to

indicate that the asymptotic results (expressions) are derived assuming normality of

the error terms.

1
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Given this, the maximum-likelihood estimators of the parameters of the tobit

model are obtained as a solution of the first partial derivatives. That is, if a is a MLE

of 0 = (0', o- 2 ) then it should satisfy the first order condition'

a log L
ae = 0

ii

(7.3)

In general, solving equation (7.3) provides equations which are non-linear in 0.

This implies that an iterative procedure should be used to generate a value for the

ML estimator O. It also implies that since we do not have explicit expressions for 0,

we rely on the properties of 8 of which equation (7.3) plays an important role. Some

of the important results are presented below in a general context.

Under certain regularity conditions, it is straightforward to show that [see Dhrymes

(1970, p. 114), Stewart (1991, p. 123), Davidson and Mackinnon (1993, p. 255)],

E ia log Ll
[	

_,--_ 0	 (7.4)ae 

V 
a log L	 L

	

a2 log	l
[ ae	 — E [ aeae,

i	 l
=1(8)	 (7.5)

That is, (7.3) is a random variable with mean zero and variance given by the

information matrix, 1(8). This is usually denoted as:

a log L 
— [0, 1(9)]ae

Further, equation (7.5) implies that

'The full expressions of first and second derivatives of the normal-based log-likelihood function
are given in (2.16)-(2.20) in Chapter 2 of this study.

and

(7.6)
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E [_N-1 a2 to Li 
= 

N_11(9) (7.7)
as

NoteNote that, under certain regularity conditions, it is assumed that the expression

in (7.7) converges in probability to a nonsingular matrix Q such that

plim [— N-
ia2 log L

= lim N -11(0) = Q3050,i	 N--K>o

Now, given the above results, expanding (7.3) in a Taylor series around the value

0 gives

(7.8)

Slog L
ae

a log L &log L -
= 0 = 	 + 	 (0 – 0) + R

g	 ae	 met
(7.9)

where R is the remainder of the series.

Assuming that the remainder, R, is relatively small and the second derivative

exists and is non-singular, we have

[a2 log Li —1 a log L
CO – 0) L-:'	 (7.10)

me, j	 ae

Equation (7.10) is very important and shows how one can overcome the difficulties

of not having an explicit expression for the MLE. Further, given the arguments in

(7.7) and (7.9) and using equation (7.10) we have

0_0) = [_N-1 32 log Li -1 7, ,_ 1 3 log L
me, 	 1 "	 36)

which implies that for b. to be consistent

[plim — N- 1 a 239logo ,L] -1 
plim N

_1 a log L

ae

= Q-1 x o = o

plim(fi — 0) =

(7.11)

(7.12)
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The relationship in (7.12) holds for ML estimators in general if the model is

correctly specified. Similarly, Amemiya (1973) has shown that, under the assumptions

of the model, it is also true for the tobit MLE. The main objective of this Section

is, however, to investigate whether (7.12) holds when it is derived from (7.2), but, in

fact the errors are non-normal. Specifically, the main interest is to evaluate (7.12)

empirically using observations generated from several distributions when in fact the

first and second derivatives are derived from the normal-based log-likelihood function.

To discuss (7.12) further, let IN (8) indicate the empirical inconsistency obtained

for a given distribution of the error term and a sample size, given that 8 is known.

That is, define

IN(8) = M
 —m=,

1 [52 log LI-1 
N

-1 a log L	
m-

ae 	
= 1, 2,..., 3000.	 (7.13)

M i N me 

given the derivatives come from the normal-based likelihood. It is also important to

note that (7.13) uses the actual parameters but the ys are generated based on the

various distributions.

Given this, there are two important points that can be deduced from the relation-

ships in (7.12)-(7.13) above.

(i) Note that from (7.12) IN(8) must be equal to zero for sufficiently large sample

size, given that the model is correctly specified. That is, if we evaluate (7.13)

using observations generated from the normal distribution we expect the value of

IN (8) to be zero or sufficiently close to zero (i.e., IN(0) f. '2 0). This is because, as

discussed above, the results in (7.12)-(7.13) are derived from the normal-based

log-likelihood function given in (7.2).
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(ii) However, if (7.12)- (7.13) are derived from the normal-based log-likelihood func-

tion and if we evaluate (7.13) using observations which are generated from the

non-normal distributions, then the empirical inconsistency IN(9) may not be

equal to zero and its magnitude gives an indication of the inconsistency under

misspecification of the log-likelihood.

The advantage of using (7.13) as an indicator in the analysis of consistency is

that it provides for the effects of the error distribution explicitly by exploiting the

asymptotic properties of the MLE estimator. Further, it can be computed without

having to obtain values for the MLE during the simulation run.

Given this, we compared the consistency (inconsistency) of the MLE under various

distributions, sample sizes and degrees of censoring. The results of the Monte Carlo

comparison are discussed in the following section.

7.2.1 Monte Carlo Comparisons for Consistency

Below, we obtain results for the three distributions; namely, the normal, students'-t

and chi-square distributions. For each distribution, empirical inconsistencies of the

coefficients are estimated using (7.13) over M = 3000 replications for the small,

medium and large samples, and varying degrees of censoring based on the experimen-

tal design discussed in Chapter 5. The results are summarized in Table 7.1. Note

that, although our discussion focuses mainly on the results related to 131 and 02, we

have reported results for the constant term, Po, as well.

As can be seen from Table 7.1, the empirical inconsistencies of all coefficients under

normality of error the terms are as expected. That is, the values of the empirical



25% Degree of Censoring 50% Degree of Censoring
Normal Students'-t Chi-square Normal Students'-t Chi-squad

(3) (4) (5) (6) (7) (8)

0.0040 -0.0714 -0.1220 -0.0000 -0.2150 -0.2107
0.0000 0.0290 0.0362 0.0010 0.0636 0.0389
0.0043 0.0332 0.0216 -0.0091 0.0536 0.0292

-0.0058 -0.0597 -0.1106 -0.0033 -0.2171 -0.1919
0.0021 0.0249 0.0324 0.0018 0.0767 0.0382
0.0009 0.0228 0.0241 0.0004 0.0675 0.0343

-0.0005 -0.0584 -0.1419 0.0022 -0.2282 -0.2136
0.0001 0.0242 0.0431 -0.0003 0.0686 0.0429

-0.0004 0.0264 0.0283 0.0021 0.0498 0.0392

Sample Para-
Size	 -meter

( 1 )	 (2)

100 po
pi
02

200	 190

400 po
pi
132  

Table 7.1: Empirical Inconsistency (/ N (0)) of the MIX Estimator for the three dis-
tributions and Sample Sizes.
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inconsistencies for the coefficients are equivalent (or almost equivalent) to zero, i.e.,

IN (6) (_1_-0 for all sample sizes. This implies no inconsistency, given that the assumption

of normality is correct. However, the results for the non-normal distributions appear

to be slightly different from those of the normal distribution.

Under the students'-t distribution, the empirical inconsistency for both /3 1 and

02 is about 3 percent when the sample size is small, and about 2 percent for both

medium and large samples, provided that the degree of censoring is low, [see Column

(4) of Table 7.1]. These values, although relatively larger than their corresponding

estimates under the normal distribution, may be considered sufficiently close to zero.

This implies that, given a low level of censoring, there seems to be little (or no)

inconsistency of coefficients for the t-distributed error terms. Whereas, the empirical

inconsistency in /3o is relatively higher and ranges from -0.0714 for the small sample

size to -0.0584 for the large sample size.

The results under the skewed distribution (chi-square) are similar to that of the

students'-t distribution for A. and /32 for all sample sizes, given a 25% degree of

censoring. That is, the average inconsistencies of A . and 02 are between 2 to 4 percent

for all sample sizes [see Column (5) of Table 7.1]. These results are comparable to

the biases reported in Chapter 6. However, given a 25% degree of censoring, the

inconsistency in /30 for the chi-square distribution appears to be substantially larger.

Further, the inconsistency in 130 does not seem to decline even for larger sample

sizes. In fact, in order to see whether the inconsistency of /30 declines or not for very

large sample sizes, we obtained results by considering a sample size of 1000 and a

25% degree of censoring; it was found that the inconsistency in /30 under the skewed

distribution remains as high as for the small sample sizes. Thus, except for 00 , the
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results in Table 7.1 indicate that inconsistency may not be a serious problem under

the chi-square distribution as well, given that the degree of censoring is low.

Further, higher degrees of censoring were considered to examine whether or not

the inconsistency of the estimators is affected by the proportion of limit observations

on the dependent variable, yi . The results for the three distributions and sample

sizes, given a 50% degree of censoring are shown in Columns (6) to (8) of Table 7.1.

As before, the values for the empirical inconsistency of the coefficients under the

normal distribution are equivalent (or approximately equivalent) to zero as would be

expected. That is, the MLE estimator provides consistent estimates even for small

sample sizes and high degrees of censoring, provided that the assumption of normality

of the error of the model is actually correct. Again, the results for the non-normal

distributions are slightly different.

Given the students'-t distribution, the empirical inconsistency of /31 and /32 , al-

though still small, almost doubled for the 50% degree of censoring compared to that

for the 25% degree of censoring [see Column (7) of Table 7.1]. But most notably,

the results also show that the inconsistency of go has increased substantially with

increases in the degree of censoring. For example, given a sample size of 100 and

t-distributed error terms, the empirical inconsistency of /30 is given by -0.2150 for the

50% degree of censoring compared to -0.0714 for the 25% degree of censoring. The

results are similar for the medium and large samples implying that the inconsistency

in 13o can be substantial under the students'-t distribution and becomes as high as

that of the chi-square distribution, if the degree of censoring is not small. On the

other hand, the empirical inconsistencies of /31 and /32 under the skewed distribution

does not appear to be affected much by the increase in the degree of censoring [see
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Column (8) of Table 7.1].

Given these results, a few points can be generalized with regard to the consistency

of the MLE estimators under the various distributions of the error terms.

Obviously, no inconsistency is observed even for the small sample sizes and high

degrees of censoring, provided that the errors are normally distributed. More

importantly, the inconsistencies in 131 and 02 under the non-normal distribu-

tions, although they appear to be relatively larger than those of the normal dis-

tribution, are not generally substantial. In other words, it can be said that there

appears to be little inconsistency of the MLE estimates under the students'-t

and chi-square distributions except for the constant term of the model. As to

the constant term of the model, it can be inconsistent under the skewed distri-

bution even for larger samples and lower degrees of censoring. It is also clear

that the constant term can be inconsistent under the students'-t distribution,

if the the degree of censoring is not small.

Note that the constant term, as shown in Chapter 2, is useful in estimating the

probability and cumulative distributions of the normal random variable which

in turn are important to estimate results such as the response of dependent

variable, y, for a unit change in an explanatory variable, say x 1 . Thus, in

general, the constant term can be important in applied research, depending on

the research objectives. If, however, one assumes that the constant term is not

important, then the results discussed above indicate that the MLE estimator of

the tobit model appears to be robust in terms of consistency of the coefficients

to changes in distributional assumptions of the error term. The significance of
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these results is that they are obtained by making use of the asymptotic theory

and provide more information as to the effects of the error distribution without

the need for obtaining the values for the MLE.

These results are also in agreement with those in Chapter 6 in which it was

concluded that bias is not a serious problem in MLE for the three distributions,

except for small samples and high degrees of censoring where the bias increases

for the non-normal distributions.

Note that, as discussed in Chapter 2, Arabmazar and Schmidt (1981, 1982)

indicated that the MLE estimator of the tobit model can be sensitive to the

distribution of the error term. That is, if the assumption of normality is violated

the MLE may lead to inconsistent estimates. This, in general, appears to be

in contrast to the results discussed above. However, it should also be noted

that the findings given in Arabmazar and Schmidt (1981, 1982) are based on

analysis of a special case of the tobit model which contains only the constant

term. We would have a similar finding if one had to make conclusions on the

consistency of the coefficients in our model based only on the results reported

for the constant term under the non-normal distributions. In other words,

also noted by Arabmazar and Schmidt (1982, p.1055), the relevance of the

conclusions from a model with only a constant term to other coefficients in a

more general model can be questionable.

Finally, it should be noted that many applied researchers are more interested in

making inferences about the population characteristics than in just the point es-

timates obtained based on a particular sample size. Under these circumstances,
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whether the normal-based MLE performs well or not under non-normal error

terms depends on the reliability of inference procedures such as hypothesis tests

and/or confidence intervals for the coefficients of the model. If it is true that

the normal-based MLE provides reasonably reliable inferences from hypothe-

sis testing and/or confidence intervals when the errors are non-normal, then

there is very little need for other, probably more complicated, estimators of

the model. That is, if normal-based procedures are robust, then there is not

much gain from using more complicated estimators such as the non-parametric

and/or semi-parametric estimators of the model.

The next Section presents a thorough examination of the performance of the

MLE estimator in statistical inference under the three distributions and various

sample sizes and degrees of censoring. More specifically, it evaluates the different

variance-covariance estimators of the model and their implications for hypothesis

testing and/or confidence intervals for the coefficients of the model. But first we

present a brief review of the asymptotic distribution of the MLE estimator.

7.3 Asymptotic Distribution of the MLE

The asymptotic distribution of the MLE estimator follows from the results in Section

7.2 above. Once again, we summarize the useful normal-based asymptotic results

below. Technical details and proofs will be excluded. However, appropriate references

will be cited when necessary.

Following equation (7.11) and using an alternative scaling we have
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co _ 0) = [_ N-1 32 log Li -1 N_1/2 a log L
(7.14)aeae, 	ae

We know from (7.12) that the first part of the right hand expression of equation

(7.14) converges asymptotically to a non-stochastic matrix. The only stochastic ele-

ment in the right hand side expression of (7.14) is the later part, i.e., N-112 21251180

But from the results in (7.6) and by applying a central limit theorem (CLT), it can

be shown that N- 112 2-1-9-6--- is asymptotically normal, [see Dhrymes (1970. p.123),ao

Davidson and Mackinnon (1993, p.262)]. Therefore it follows that \M" (0 - 0) is also

asymptotically normal. That is'

v-i-v co _ 0) _21_, r_ N-1 a2 log 1- 1. N-11, a log L
7.15aoae , 	ae	 (	 )

It follows that, under certain regularity conditions, that the random variable

Nig (e-0) is normally distributed with zero mean and asymptotic variance-covariance

matrix given by

1
V 

(v-A7 co - 0)) = piim_g[7_00)] _ ipiim [ 11\MT 0 log Li alao9g,Lil
i_.-. 1	 d6

plim 
1

— [7-1(0)]-1
N

where 7-1(0) is referred to as the Hessian matrix; and is defined as

(7.16) 

(4, = a2 log L
1-1v ' 	aeae, 

and the outer product of the gradient vector, g(e), is defined by 

2 The symbol -.1.- indicates that, asymptotically, both the left and the right hand side expressions
have the same limiting distribution
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N a log Li a log Li

C(9) = E ae	 ae ,i=i

where a log Li me is the contribution of the ith observation to the gradient vector. The

expression given by (7.16) can be simplified further. That is, assuming that the model

is correctly specified and given suitable regularity conditions, the Hessian, 1-(0), and

the outer product, GM, matrices are asymptotically equivalent forms of the Fisher's

information matrix, —1(9), [see Kendall and Stuart (1967 p.53-55), Davidson and

Mackinnon (1993, p.263)]. An immediate consequence of this is that

1	
plim 

11 N a log Li a log Li
—plim—

N
[7-00)] = ii , r,

LN — ao	 50,i.1

lim-
1 

[1(0)]=
N

(7.17)

where 1(9) is as defined in (7.5).

Now, equation (7.17) implies that the variance-covariance matrix of the MLE

can be estimated based on a number of asymptotically equivalent alternatives, tak-

ing the advantage of the information matrix equivalence. That is, in practice the

variance-covariance matrix of the MLE can be calculated using any one of the fol-

lowing alternative estimators, and by evaluating these estimators at the maximum

likelihood estimates.

Let 9 be, as defined earlier, the maximum likelihood estimator of 9 = (0', a2).

Then, the variance-covariance matrix estimators of O are defined as follows:

(i) The variance-covariance matrix estimator based on the Hessian matrix which

is defined as
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vHes.(i), 1 &log L 
[	 499(90'

j -18 

(7.18)

(ii) The variance-covariance matrix estimator based on the information matrix,

given as

a2 log L 

8=8	

-1	
(7.19)

where the full expression of the above expectation is given by equation (2.22)

in Chapter 2 of this study.

(iii) The third alternative variance-covariance matrix estimator is based on the ma-

trix of outer products of the first derivatives of the log-likelihoods. This is

defined as

[A a log Li a log Li
Vo.p.(8) = 2,

i=1 ae	 ae,
(7.20)

where a log Limo is, as defined before, the contribution of the ith observation

to the gradient vector.

These different covariance matrix estimators are usually associated with the com-

puter algorithms employed for maximization. The estimators in (i) and (ii) may be

used for Newton-type and method of scoring algorithms, respectively. While the use

of the outer product matrix given in (iii) is closely associated with the method sug-

gested by Berndt, Hall, Hall and Hausman (1974), which is usually referred to as the

BHHH algorithm.
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However, although convenient, this does not necessarily imply that one has to use

the same procedure for both the estimation of parameters and the covariance matrix.

In other words, it is possible to use one of the algorithms to estimate the parameters

and another for the covariance matrix estimator.

Another alternative covariance matrix estimator which is not associated with any

of the procedures discussed above is one which is based on the general variance-

covariance matrix given by (7.16). This estimator is usually referred to as the robust

(White-type) covariance matrix estimator and is defined by

vRob. (19) = vH„ . (a) vo .p . (fi) l vHes. (ö)
	

(7.21)

where VHes. (ö) and Vo .p. (ö) are as defined in (7.18) and (7.20), respectively.

This estimator can be viewed as analogous to the heteroscedastic consistent covari-

ance matrix estimator of the regular regression model which was suggested by White

(1980b). The estimator was further discussed by MacKinnon and White (1985) who

proposed some finite sample corrections for the covariance matrix estimator in a linear

regression context. White (1982, 1983) generalized the estimator further to accom-

modate more general models and misspecifications. Specifically, White (1982) showed

that in the presence of misspecification the variance-covariance matrix estimator in

(7.21) provides a robust covariance matrix estimator for the coefficients of the MLE

estimator. Similarly, tests such as Wald and Lagrange multiplier can be robustified

by the use of this covariance matrix estimator. He also showed that if the model is

correctly specified the robust covariance matrix estimator, VRob. (0), is asymptotically

equivalent to the inverse of Fisher's information matrix.

Note that what is important here is that all the covariance matrix estimators
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should give approximately the same results for large samples, given that the model is

correctly specified. Otherwise, according to White (1982), any significant differences

between these covariance matrix estimators are usually considered as an indication

of model misspecification.

This, however, does not seem to be true in finite samples. Studies which are

related to the finite sample properties of these covariance matrix estimators indicate

that even when the model is correctly specified the covariance matrix estimators

may yield significantly different results [Griffiths, Hill and Pope (1987), Calzolari and

Fiorentini (1990)].

In particular, Calzolari and Fiorentini (1990) studied the finite sample properties

of the variance-covariance matrix estimators of the standard tobit model. They noted

that the variances obtained based on both the Hessian and the information matrices

yield almost identical results but can be substantially different from those of the other

estimators. This conclusion is similar to that of Griffiths, Hill and Pope (1987) who

investigated the properties of the variance-covariance estimators of the probit model.

In general, these studies concluded that the choice of a particular variance-covariance

estimator is not neutral in the estimation of variances of the coefficients of the model.

However, as stated at the outset of this Chapter, the interest of this Section

focusses on the following two points.

Unlike the regular regression model, the tobit model is likely to be more sensitive

to misspecification. That is, the effects of incorrectly assuming normality of the

error terms is likely to have some effect on the estimation of the variance-

covariance matrix and this effect may vary from one distribution to the other.
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It is therefore worth investigating the robustness of the alternative variance-

covariance matrix estimators to the violations of the assumptions about the

distributions of the error term of the model.

Moreover, an important aspect of the variance-covariance matrix estimators

is their implication for statistical inference about the coefficients of the model.

Thus, this Chapter further investigates whether the different variance-covariance

matrix estimators lead to the same (or sufficiently close) conclusions for hypoth-

esis testing and/or construction of confidence intervals for the coefficients of the

model.

In general, the following Section investigates the finite sample properties of the

alternative variance-covariance matrix estimators in the estimation of variances as

well as for hypothesis testing and/or confidence intervals of the coefficients of the

model under a variety of error distributions, sample sizes and degrees of censoring.

7.3.1 Monte Carlo Comparison of Variance Estimators

This Section presents a Monte Carlo comparison of the alternative variance-covariance

matrix estimators discussed in the preceding section. The four alternative estima-

tors discussed above are considered in this comparison. These include the variance-

covariance matrix estimators based on

(i) The information matrix, VInf.•

(ii) The Hessian matrix, VH„..

(iii) The outer product of the gradient vector, VO.P.•
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(iv) The robust (White-type) variance estimator, VR„b.•

Further, since the interest is mainly in the variances of the coefficients, only the

diagonal elements of the variance-covariance matrices are considered in the analysis.

Thus, average variances are computed based on 3000 replications for each coefficient

using the four different variance estimators. The estimated variances are then com-

pared to see how close they estimate the true variances of the coefficients. Recall

that the true (Monte Carlo) variances of the coefficients are computed using equation

(5.13), in Chapter 5.

The summary statistics are given in Tables 7.2 to 7.4 for all sample sizes, degrees

of censoring and distributional assumptions of the error term. For instance, Table 7.2

presents the true as well as the average estimated variances of the coefficients of the

model for the three sample sizes and distributions, given that the degree of censoring

is 25%. As can be seen from Table 7.2, Columns (1) and (2) present, respectively, the

sample size and the error distribution of the model. The true (Monte Carlo) variances

of the coefficients are listed in Column (3). The corresponding average estimated

variances are given in Columns (4), (5), (6) and (7) which are obtained using the

estimators, Vinf., VHe3., Vo .p. and VRob . , respectively. Finally, the last two Columns

(8) and (9) of the Table depict, respectively, the percentage (%) of times where the

estimated variances obtained using Vo .p. are greater than those of Vin f . and VHes.)

respectively. These are computed to indicate whether there exists any systematic

difference between the three variance estimators. Tables 7.3 and 7.4 present similar

statistics for the medium (50%) and high (75%) degrees of censoring, respectively.

Given this, the following discussion concentrates on the main differences and/or

similarities that may be observed within a particular variance estimator, compared to



CHAPTER 7. THE MLE: A FURTHER ANALYSIS 	 183

Table 7.2: Comparison of Variance Estimators of the MLE Estimator for all Sample
Sizes and Distributions, Given 25% Degree of Censoring.

Sample	 Distrib-	 True 	 Estimated Variances using
Size	 -ution	 Variance Yin f .	 VH es.	 VO .P.	 VRob.
(1)	 (2)

% VO .p. > than
Vinf	 VH
(8)	 (9)(3) (4) (5) (6)

0.0569 0.0554 0.0556 0.0594
0.0094 0.0091 0.0091 0.0099
0.0348 0.0326 0.0327 0.0355
0.0647 0.0503 0.0502 0.0719
0.0112 0.0083 0.0084 0.0138
0.0343 0.0309 0.0309 0.0524
0.0790 0.0707 0.0712 0.0762
0.0136 0.0116 0.0116 0.0128
0.0453 0.0450 0.0449 0.0530

0.0282 0.0278 0.0278 0.0287
0.0048 0.0046 0.0046 0.0048
0.0174 0.0177 0.0177 0.0185
0.0278 0.0242 0.0242 0.0306
0.0048 0.0040 0.0040 0.0052
0.0164 0.0150 0.0150 0.0201
0.0367 0.0326 0.0330 0.0325
0.0061 0.0053 0.0054 0.0054
0.0214 0.0211 0.0211 0.0226

0.0147 0.0139 0.0139 0.0141
0.0024 0.0023 0.0023 0.0024
0.0082 0.0085 0.0085 0.0087
0.0187 0.0124 0.0124 0.0148
0.0031 0.0020 0.0021 0.0025
0.0084 0.0071 0.0071 0.0089
0.0180 0.0166 0.0167 0.0161
0.0032 0.0027 0.0028 0.0027
0.0105 0.0103 0.0103 0.0107

100	 Normal	 /3o
01
02

Students'-t 00
i3
02

Chi-square 00
01
/32

200	 Normal	 00

01
02

Students'-t /3

01
02

Chi-square Po

01
132

400	 Normal	 Po

01
02

Students'-t ,30
01
/32

Chi-square Po

01
02

(7)

	

0.0552 66.3
	

67.1

	

0.0090 69.1
	

69.3

	

0.0322 70.9
	

71.1

	

0.0519 83.1
	

83.4

	

0.0094 80.7
	

80.7

	

0.0315 82.2
	

82.2

	

0.0776 61.7
	

60.8

	

0.0131 63.5
	

62.3

	

0.0453 75.2
	

75.6

	

0.0276 62.6
	

62.8

	

0.0046 67.3
	

67.6

	

0.0176 67.2
	

67.8

	

0.0259 82.5
	

83.0

	

0.0046 77.4
	

77.0

	

0.0158 78.7
	

78.9

	

0.0367 46.4
	

41.2

	

0.0061 51.8
	

49.1

	

0.0218 66.0
	

65.7

	

0.0139 59.0
	

59.0

	

0.0023 60.9
	

62.0
	0.0085 61.1

	
61.1

	

0.0156 80.4
	

80.4

	

0.0027 69.7
	

69.6

	

0.0078 77.2
	

76.9

	

0.0185 34.6
	

29.6

	

0.0032 38.0
	

35.0

	

0.0105 63.4
	

64.0
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the true variances, as well as between the estimators as a result of changes in sample

size, distribution of the error term and degree of censoring.

As can be seen from Table 7.2, one can make the following general comments on

the different variance estimators. In almost all cases, the estimated variances based on

the information matrix, Vint and the Hessian matrix, VH„ . , provide identical results.

This observation is similar to previous related studies [see Calzolari and Fiorentini

(1990) and Griffiths, Hill and Pope (1987)]. But, what is more interesting about

this result is that the estimators yield almost identical results under the non-normal

distributions as well. Further, the variance estimators, Vint and VHes., provide results

which are lower than their corresponding true variances in almost all cases, except

for the normal distribution where the difference between the true and the estimated

variances is negligible (sometimes even identical). However, it is important to note

that the gap between the true and the estimated variances gets bigger under the

students'-t distribution. For example, as shown in Table 7.2, given a 25% degree of

censoring and a sample size of 100, the variances of the coefficients obtained using Vin f.

and VH„ . are about 10 to 35 percent lower than their corresponding true variances

under the students'-t distribution. This is compared to less than 6 and 8 percent for

the normal and chi-square distributions, respectively. Further, the difference between

the true and the estimated variances using both Vinf. and VH„ . under the students'-

t distribution increases to about 20 to 50 percent for the large sample size (400)

while the differences between the true and the estimated variances for the other two

distributions decline with increases in sample size.
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This implies that the variance estimators Vinf . and VHes. provide results which

appear to be biased downwards and this bias becomes substantial under the students'-

t distribution. The biases under the chi-square distribution are not as big as those

under the students'-t distribution and decline as the sample size increases.

On the other hand, the variance estimator based on the outer product matrix,

Vo .p . , provides average estimated variances which are larger than those of the VInf. .

and VHes. estimators in almost all cases. The VRo b . estimator, although it appears to

provide intermediate results, does not follow the same pattern in all cases. Again, the

difference between the variance estimators is quite small (negligible) under the normal

distribution where all estimators yield results which are quite close (sometimes the

same) to the true variances of the coefficients.

In general, the results indicate that the variances of the coefficients which are

obtained using both Vinf . and VHes. estimators are smaller than their respective true

variances especially under the students'-t distribution. These results, perhaps, may

be considered an indication that both Vinf . and VH„ , lead to underestimation of the

true variances under the symmetric but fat tailed distribution. Whereas the variances

obtained using the Vo .p. and VRob . do not seem to follow the same pattern.

One important question that could be raised in the comparison of the variance

estimators is whether the four variance estimators yield the same (or sufficiently close)

results under the correct specification of the model, i.e., when the errors are normally

distributed. As shown in Table 7.2, the variances of the coefficients using both the

Vint, VHes. and VRob. are almost identical especially for the medium and large sample

sizes. As indicated earlier, the former two yield the same results in almost all cases.

The variances obtained using the Vo .p. , although slightly different, are also quite close
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to the others. Specifically, given a 25% degree of censoring and normally distributed

error terms, the variances obtained from VD .p. are larger than those of Vinf . (and/or

VHes.) by approximately 8 percent for the small sample size, and less than 4 percent

for the medium sample size. These differences decline further for the large sample

size. Therefore, these results indicate that, under the normality of the error terms,

the variance estimator, Vo .p, , may yield results which are quite close to those of

others, provided that the degree of censoring is low. Thus, given that the errors are

normally distributed, the four variance estimators yield results which are quite close

(sometimes the same) to each other as well as to the true variances of the coefficients

of the model. The implication of this is, as will be discussed later in this Chapter,

that hypothesis tests and confidence intervals for the coefficients of the model will

lead to the same conclusion, irrespective of the variance-covariance matrix estimators.

In other words, the choice of the variance estimator appears to be neutral, given that

the errors are normally distributed.

Further, the situation appears to be similar for the 50% degrees of censoring and

normally distributed error terms, except for the small sample. Table 7.3 depicts

results for the variance estimators for all sample sizes and distributions, given that

the degree of censoring is 50%. The estimated variances under the normal distribution

depict that the variances of the coefficients obtained using Vo.p. are about 12 percent

larger than their respective variances estimated using Vinf . for the small sample size.

This percentage drops to about 3 percent when the sample becomes large. It is also

evident that the average variances from Vint and Vile,. remain very close to the true

variances. However, the difference between the Vinf . and Vo .p. can be as big as about

50 percent for the small sample size, and about 20 percent for the large sample size,
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Table 7.3: Comparison of Variance Estimators of the MLE Estimator for all Sample
Sizes and Distributions, Given 50% Degree of Censoring.

(3) (4) (5) (6) (7) (8) (9)

0.1239 0.1223 0.1230 0.1398 0.1187 70.9 73.6
0.0157 0.0156 0.0157 0.0181 0.0151 72.5 74.7
0.0449 0.0421 0.0421 0.0472 0.0415 71.7 72.7
0.2968 0.1336 0.1345 0.1809 0.2009 72.4 73.4
0.0327 0.0161 0.0162 0.0252 0.0235 73.9 74.4
0.0545 0.0434 0.0434 0.0679 0.0487 79.8 80.9
0.2237 0.1789 0.1807 0.1897 0.2116 53.5 53.2
0.0282 0.0222 0.0224 0.0245 0.0265 57.1 56.4
0.0644 0.0548 0.0550 0.0627 0.0594 68.3 68.8

0.0622 0.0618 0.0620 0.0662 0.0609 66.0 69.0
0.0079 0.0080 0.0081 0.0087 0.0079 67.1 69.1
0.0266 0.0252 0.0252 0.0269 0.0251 66.5 67.1
0.1553 0.0683 0.0688 0.0783 0.1137 59.5 58.8
0.0176 0.0086 0.0088 0.0109 0.0137 60.7 59.8
0.0316 0.0231 0.0229 0.0322 0.0277 75.5 76.5
0.1143 0.0902 0.0907 0.0859 0.1097 37.1 34.1
0.0147 0.0115 0.0116 0.0116 0.0139 47.1 45.3
0.0414 0.0373 0.0374 0.0403 0.0395 64.1 64.5

0.0308 0.0307 0.0308 0.0318 0.0305 62.2 64.2
0.0040 0.0039 0.0039 0.0041 0.0039 63.5 65.2
0.0112 0.0112 0.0112 0.0116 0.0112 64.0 64.6
0.1318 0.0345 0.0345 0.0361 0.0854 46.6 44.8
0.0135 0.0043 0.0043 0.0050 0.0094 49.6 47.7
0.0163 0.0121 0.0120 0.0157 0.0146 72.6 73.8
0.0547 0.0437 0.0439 0.0390 0.0543 19.0 14.9
0.0070 0.0056 0.0056 0.0052 0.0069 29.9 26.0
0.0167 0.0166 0.0165 0.0169 0.0176 51.8 53.0

Sample	 Distrib-	 True 	 Estimated Variances using	 % Vo .p. > than
Size	 -ution	 Variance Vrn f .	 VH es •	 VO .P.	 VRob.	 VInf .	 VH es .
(1)	 (2)

100	 Normal	 00
Pi
132

Students'-t 00
Pi
/32

Chi-square /3o
01

02

200	 Normal	 00
01
/32

Students'-t [30
f3
/32

Chi-square 00
01
02

400	 Normal	 ,(30

A.
/32

Students'-t 00
OIL
02

Chi-square Po
01
02
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if the degree of censoring is high. This can be seen from Table 7.4 below.

In general, as would be expected asymptotically, all three variance estimators may

yield the same (or sufficiently close) results under the normal distribution, given that

the degree of censoring is low. As the degree of censoring increases the variances

estimated using Vo .p. appear to be larger than their corresponding true variances

especially for the small and medium sample sizes. It is also evident that, as the

degree of censoring increases and if the sample size is small, the variances obtained

using the VRob . tend to underestimate their corresponding true variances (see Tables

7.3-7.4). Chesher and Jewitt (1987) made similar observations for the robust (White-

type) estimator in a linear regression framework.

However, unlike the results from the normal distribution, the four variance esti-

mators appear to be different under the non-normal distributions. In particular, the

difference between the true and the estimated variances becomes quite substantial

under the students'-t distribution and varies from one variance estimator to another.

For instance, given a degree of censoring of 25% and a medium (200) sample size,

the variances of 131 and 132 using Vo .p. are given by 0.0052 and 0.0201, respectively,

under the students'-t distribution. These results are about 8 to 22 percent larger than

their respective true variances and over 30 percent larger than the average variances

estimated by using the Vin f . or VH„ . • The relative difference between the estimated

and true variances as well as among the variance estimators under the students'-t dis-

tribution increases dramatically for higher degrees of censoring (see Table 7.4). Note

that the large differences between the variances under the students'-t distribution is

aggravated due to the fact that the variances obtained using both Vin f . and VH„ . , as

discussed earlier, are below their corresponding true variances and hence much more
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Table 7.4: Comparison of Variance Estimators of the MLE Estimator for all Sample
Sizes and Distributions, given 75% Degree of Censoring.

% Val,. > than
VInf.	 VHes.

(3) (4) (5) (6) (7) (8) (9)

0.5542 0.5191 0.5294 0.7640 0.4643 83.0 85.4
0.0488 0.0458 0.0467 0.0672 0.0406 82.0 84.4
0.0911 0.0826 0.0834 0.1066 0.0779 80.4 82.7
2.1815 0.7486 0.7569 1.4313 1.0922 76.9 78.5
0.1492 0.0627 0.0645 0.1437 0.0817 78.6 80.5
0.2225 0.1292 0.1301 0.2728 0.1522 84.5 85.9
0.9886 0.7407 0.7514 1.0226 0.7927 70.6 72.6
0.0876 0.0654 0.0664 0.0968 0.0675 73.1 74.9
0.1653 0.1460 0.1478 0.2045 0.1449 78.2 79.8

0.2735 0.2599 0.2625 0.3186 0.2445 74.4 77.0
0.0244 0.0232 0.0234 0.0287 0.0218 74.4 76.3
0.0516 0.0491 0.0494 0.0559 0.0478 72.2 74.4
1.7907 0.4164 0.4107 0.5638 0.9202 59.9 60.7
0.1211 0.0356 0.0358 0.0565 0.0677 62.9 63.3
0.1429 0.0767 0.0765 0.1272 0.1002 75.8 77.7
0.4411 0.3564 0.3566 0.3714 0.4258 51.7 51.5
0.0388 0.0323 0.0323 0.0361 0.0366 59.1 59.0
0.0837 0.0758 0.0760 0.0876 0.0793 67.3 69.1

0.1289 0.1289 0.1293 0.1426 0.1254 67.9 70.3
0.0115 0.0116 0.0117 0.0129 0.0113 67.4 69.4
0.0229 0.0230 0.0230 0.0246 0.0226 64.8 67.4
1.9360 0.2447 0.2382 0.2601 0.8431 39.7 38.9
0.1110 0.0207 0.0208 0.0273 0.0531 46.7 46.2
0.1225 0.0445 0.0441 0.0722 0.0707 70.0 71.4
0.2154 0.1715 0.1708 0.1564 0.2160 32.5 30.5
0.0189 0.0156 0.0156 0.0151 0.0186 40.7 39.9
0.0426 0.0392 0.0392 0.0412 0.0420 57.0 58.1

Sample	 Distrib-	 True 	 Estimated Variances using
Size	 -ution	 Variance Vint	 VHes.	 VO.P.	 VRob.
(1)	 (2)
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lower than those of Vo .p. . It is also clear that the quality of the various estimators

generally declines for the high degree of censoring coupled with the students'-t dis-

tribution for all sample sizes. It is not, however, clear why the relative performance

of the various estimators appeared to be inferior under the students'-t distribution

compared to the skewed distribution.

On the other hand, the gap between the true and the estimated variances from

the four variance estimators under the chi-square distribution does not seem to be

as high as that of the students'-t distribution. In fact, it is interesting to note that

the four variance estimators provide results which are very close (sometimes even the

same) to the true variances for the medium and large samples, given that the degree

of censoring is not high (see Tables 7.2 and 7.3). If the degree of censoring is high

(75%), the difference between the true and the estimated variances under the chi-

square distribution starts to increase but still remains much lower than the relative

differences observed under the students'-t distribution (see Table 7.4).

Further, it is also important to note that, not only does Vo .p. provide variances

which are larger that those of Vin f . and VH„ . , the difference between the estimators

appears to be systematic. As shown in Columns (8) and (9) of Table 7.2, VO.P.

provides larger variances than Vinf . and VH„ . in most cases for all sample sizes and

distributions, even when the model is correctly specified. For example, given a sample

size of 100 and a 25% degree of censoring, the variances obtained using Vo JD. are about

70 percent of the time larger than the variances obtained using Vint or VII". under

the normal distribution. Similarly, Vos provides larger variances than both Vin f,

and Vile,. about 80 percent of the time under the students'-t distribution. Similar

observations can be made for the medium and large samples as well as for higher
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degrees of censoring (see tables 7.3-7.4). However, there does not appear to be a

similar relationship between the estimators under the chi-square distribution except

for the small sample size.

Finally, given the discussions above, the following points can be concluded regard-

ing the variance-covariance matrix estimators of the MLE of the tobit model.

In general, the variance estimators based on the information matrix, Vin f . , and

the Hessian matrix, VHeS., provide identical results in almost all cases. Further,

the variance estimator based on the outer product matrix, V, 0 .p. , yields results

which are larger than those of Vin f . and VHes. in almost all cases and these

differences appear to be systematic for all but the chi-square distribution.

Under normally distributed error terms, the three estimators, namely, Vin f.,

VHes. and VRob . provide average variances which are quite close (if not identical)

to the true variances. Further, Vo .p. provides similar results, provided that

the degree of censoring is not high. In general, as would be expected, there

appears to be little difference between the true and estimated variances for all

four estimators under the normal distribution.

Whereas, under non-normality of the error terms, the performance of the vari-

ance estimators varies depending on the sample size, degree of censoring and

type of distribution. In particular, the two variance estimators, Vin f . and VHes.

yield variances which are relatively lower than their corresponding true vari-

ances under the students'-t distribution. This can be considered as an indica-

tion that the two estimators understate the true variances of the coefficients.

On the other hand, the evidence shows that the robust VRob. estimator appears
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to be relatively better under the non-normal distributions especially under the

skewed distribution. Vo .p. appears to be the second best under the non-normal

distributions in general.

Finally, the most important point here is that the choice of a particular variance-

covariance matrix estimator appears to be neutral under the normal distribution

except if the sample size is small and a high degree of censoring. However,

the relative performance of the variance estimators is likely to be substantially

different if one assumes normality of the error terms when in fact they are not

normal. That is, when the model is not correctly specified. This is particularly

clear from the results obtained under the students'-t distribution.

However, our results are not conclusive as to whether one variance estimator is su-

perior (or relatively robust) than the other in terms of their reliability for hypothesis

testing and/or confidence intervals for the coefficients of the model. In other words,

although hypothesis tests and/or confidence intervals of the coefficients are likely to

be the same or close under the normal distribution irrespective of the variance es-

timators, this may not be the case under the non-normal distributions. Thus, the

implications of the different variance estimators for hypothesis testing and/or con-

struction of confidence intervals needs to be investigated. This is discussed thoroughly

in the following Section.
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7.3.2 Implications of the Variance Estimators for Hypoth-

esis Testing

In the preceding section we compared the alternative variance-covariance matrix es-

timators in the maximum likelihood framework of the tobit model. These estimators

included, the variance-covariance matrix estimator based on the information matrix,

Vrn.f., the variance-covariance matrix estimator based on the Hessian matrix, VHes.,

the variance-covariance matrix estimator based on the outer product of the gradient

vector, Vp, and the robust (White-type), VRob . , variance-covariance matrix estima-

tor.

The main conclusions, among others, included that there exists very little variation

among the four variance estimators, provided that the errors are normally distributed

and the degree of censoring is not high. However, under non-normality of the error

terms, the variances obtained using the different estimators can be substantially dif-

ferent from the true variances as well as from each other. In other words, the choice

of a particular variance-covariance estimator does not appear to be neutral in the

maximum likelihood framework of the tobit model if the model is misspecified.

However, just comparing the average variances, while useful in indicating the dif-

ferences between the variance estimators, does not necessarily imply the superiority of

one estimator over the other in terms of their reliability for hypothesis testing of the

coefficients of the model. It is quite possible that, unless the differences are substan-

tial, different variance estimators may lead to the same conclusion if used for testing

hypothesis about the parameters of the model. This is most likely to be the case

under the normal distribution where the average variances of the coefficients based
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on the alternative variance estimators appeared to be closer to the true variances in

most cases.

Thus, the performance of the estimators depends on their reliability in hypothesis

testing and/or confidence intervals of the parameters of the model, which is the main

purpose of the discussion below.

Specifically, we test the hypothesis:

Ho : 137, = 1

H1 : f31,	 1,	 k = 1, 2.	 (7.22)

To test the hypothesis we use the test statistic given by

(7.23)

where /3k is the sample estimate of Pk and Var((3 k ) is the variance of A which is

obtained using the four alternative variance-covariance matrix estimators discussed

above.

Under the null hypothesis, the statistic t is asymptotically distributed as a normal

random variable. A nominal 5% level of significance is considered so that the expected

percentage of rejections whenever the null hypothesis is true is equal to 5%.

Alternatively, a 95% confidence interval can be constructed such that:

P[13k — z x s.e(A) < Pk < A + z X s.e.001 = 0.95	 (7.24)

which is equivalent to

P(-1.96 < t < 1.96) = 0.95	 (7.25)

where t is defined by (7.23) and a standard z value at a 5% significance level is 1.96.
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Given this, we obtained the percent of coefficients contained in the 95% confidence

intervals using the four variance-covariance matrix estimators in the estimation of the

variances of the coefficients. The summary statistics for the 95% confidence intervals

of 01 and 02 , based on the three variance estimators, are given in Tables 7.5 to 7.7

for all sample sizes, degrees of censoring and distributional assumptions of the error

term. The following discussion concentrates on whether these results are the same or

close enough to the desired (expected) level, i.e. 95%.

Table 7.5 depicts results for the 95% confidence intervals using the four variance

estimators, given a 25% degree of censoring. These results show that the four variance

estimators perform quite well even for the small sample size, provided that the errors

are normally distributed. For example, given a sample size of 100 and normally

distributed error terms, the confidence intervals for 01 and 02 are, respectively, 94.43%

and 93.93% for Vm.f. , and 94.50% and 94.03% for VHes. . The corresponding values

of /31 and /32 , respectively, are 95.10% and 95.07% for Vo .p. , and 94.20% and 93.57%

for VRo b . . These results are quite close, especially for the Vo .p. , to the 95% closure

rate. The results improve further for the medium and large samples under the normal

distribution. This is also in line with variance comparisons discussed in the preceding

section.

However, as can be seen from Table 7.5, the four variance estimators may yield

slightly different results for the confidence intervals under non-normal error terms.

For instance, given a small sample size and students'-t distribution, 92.57 and 93.50

percent of the confidence intervals contain 0 1 and 02, respectively, using Vin f . as

compared to 94.97 and 96.70 percent for Vo .p. . The values for the VRo b . using the

same sample size and distribution are 94.63% and 93.90%, respectively, for 0 1 and
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Table 7.5: 95% Confidence Intervals using the four Variance Estimators of the MLE
for all Sample Sizes and Distributions, Given 25% Degree of Censoring.

95% Confidence Intervals using
Vint VH es Vo.p.	 VRob.

Sample Size	 Distrib-
ution

(1)	 (2) (3) (4) (5) (6)

94.43 94.50 95.10 94.20
93.93 94.03 95.07 93.57
92.57 92.70 94.97 94.63
93.50 93.70 96.27 93.90
91.80 91.96 92.37 93.80
93.93 93.93 95.03 94.27

94.17 94.20 94.77 93.96
95.43 95.40 95.70 95.23
93.47 93.47 95.13 95.43
94.30 94.20 95.83 94.73
89.50 89.73 89.17 92.43
94.80 94.80 95.03 95.07

94.43 94.43 94.67 94.17
95.87 95.77 95.73 95.70
90.37 90.37 92.23 93.90
92.90 92.90 94.60 94.10
87.00 87.23 86.07 89.73
94.10 94.20 94.43 94.03

100
	

Normal

02

Students'-t 01
132

Chi-square 01
132

200
	

Normal	 ,31

02
Students'-t I1

02
Chi-square

02

400
	

Normal
02

Students'-t
02

Chi-square
02
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132 . These results, although still not that far from the desired level, indicate that

the VIII" . tends to be slightly lower than the desired 95% confidence level. More

notably, the confidence intervals of the coefficients obtained using Vinf . do not seem

to improve when the sample size increases. For example, given a large sample size

and t-distributed errors, the confidence intervals for A and 02 using Vin f. are given by

90.37 and 92.90, respectively, which are even lower than their corresponding values for

the small sample size. These results reflect underestimation of the true variances of the

coefficients as discussed in the preceding section. On the other hand, it is interesting

to note that the results for VRob_ under the students'-t distribution appeared to be

as good as under the normal distribution. The results for the Vo .p. are also close to

those of the VRob. for the students'-t distribution (see Table 7.5 for N=200). These

results indicate that, relative to Vinf . and VHeS., VRob . appears to be robust for the

symmetric but fat tailed distribution.

Further, the confidence intervals of the coefficients under the chi-square distribu-

tion appear to be better under VRob . and Vo .p. as compared to those of Vin f. and VHe.g.,

for all sample sizes. In general, the results for the Vin f. and VH„ . , although as good

as the those of the other two estimators under the normal distribution, are relatively

inferior under the non-normality of the error terms.

The difference between the variance estimators for hypothesis testing of the co-

efficients, similar to that of the variance comparisons, gets more visible when the

degree of censoring increases. Table 7.6 presents results for the 95% confidence in-

tervals for all sample sizes and distributions, given a 50% degree of censoring. As

can be seen from the table, the results for Vin f . and VHeS. under the non-normal dis-

tributions appear to be well below the 95% closure rate. For example, as shown in
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Table 7.6: 95% Confidence Intervals using the four Variance Estimators of the MLE
for all Sample Sizes and Distributions, Given 50% Degree of Censoring.

Normal
	

01

02
Students'-t 01

02
Chi-square 01

02

Normal
	

o,
12

Students'-t oi
12

Chi-square o,
02

Normal
	

01
'32

Students'-t 01
02

Chi-square 01
02

100

200

400

Sample Size	 Distrib-	 95% Confidence Intervals using
-ution	 VIn f . VHes. Vo.p.	 VRob.

(1)	 (2) (3) (4) (5) (6)

95.13 95.00 96.00 93.83
94.10 94.20 95.03 93.53
91.60 91.60 93.53 94.13
93.80 93.77 96.13 94.53
92.73 92.80 92.90 94.23
92.50 92.47 93.76 93.27

94.80 94.90 95.57 93.83
94.03 94.07 94.63 94.00
87.70 87.77 89.30 93.73
93.50 93.47 95.57 94.97
91.47 91.40 90.43 94.27
93.93 93.93 94.53 94.60

94.93 95.13 95.30 94.50
94.47 94.40 94.57 94.23
82.77 83.00 82.43 93.60
92.73 92.60 94.33 94.57
88.97 89.13 87.13 93.13
94.50 94.47 94.40 95.00
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Table 7.6, given a large sample size (400) and the students'-t distribution, only 82.77

and 92.73 percent of the confidence intervals contain the true parameters, /(31 and 02,

respectively, when using Vinf .. The respective values using VRob . are given by 93.60

and 94.57 percent. These values, especially those of On indicate that the hypothesis

tests based on both Vin f . and VHes . can be sometimes misleading if the assumption of

normality of the error term is not correct. Similar observations can be made for the

chi-square distribution where VRob . appears to do well compared to others.

The results for the high degree of censoring (i.e., 75%) are summarized in Table

7.7 for all sample sizes and distributions. As can be seen from Table 7.7, all the

estimators perform fairly well under the normal distribution, except for VRob . where

the confidence intervals appear to understate the desired 95% level for the small

and medium sample sizes. Further, it is evident that the results obtained based

on Vin f . can be relatively inferior to those of Vo .p. and VRob , under the non-normal

distributions. It is also clear that because the quality of the estimates generally

declines for all estimators for the high degree of censoring the distinction between the

estimators becomes less obvious.

Note that, as stated earlier in this Chapter, the main interest is to see whether

one or more of the estimators are more robust than others for hypothesis testing.

Thus, given the discussions above and in an attempt to establish a relative ranking

on the robustness of the estimators, the results in Tables 7.5-7.7 are evaluated further

as follows.

The values of the 95% confidence intervals can be considered as outcomes from a

Bernoulli experiment with N=3000 and with a probability of success equal to p = 0.95.

Now, given a significance level, say a = 0.05, one can construct a confidence interval
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Table 7.7: 95% Confidence Intervals using the four Variance Estimators of the MLE
for all Sample Sizes and Distributions, Given 75% Degree of Censoring.

Normal	 131
02

Students'-t /31
02

Chi-square 01
02

Normal
	

flu
02

Students'-t $1

02
Chi-square flu

$2

Normal
	

flu
$2

Students'-t flu
$2

Chi-square flu
$2

100

200

400

Sample Size	 Distrib-	 95% Confidence Intervals using
-ution	 Vinf. . VH es VO p	 VH0b.

(1)	 (2) (3) (4) (5) (6)

93.47 93.87 96.17 91.33
93.30 93.70 95.87 91.83
88.10 88.56 92.80 89.37
92.70 92.77 95.63 92.63
92.10 92.13 94.03 90.10
94.40 94.37 95.57 93.50

94.63 94.87 96.03 93.00
94.33 94.20 95.33 93.60
86.17 86.47 88.30 91.43
91.33 91.23 94.10 93.27
93.30 93.40 93.00 94.50
93.57 93.40 94.57 94.07

95.23 95.27 95.43 94.33
94.87 94.93 95.33 94.93
82.20 82.30 80.50 92.77
87.50 87.47 90.03 93.53
92.67 92.77 91.23 94.47
93.10 93.13 93.07 94.43
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for the 'true' proportion of successful interval estimates as

P(P — 1.96 x s.e.(p) < p < 13 + 1.96 x s.e.(p)) = 0.95	 (7.26)

where the standard error of p, s.e.(p), is given by

/3(1	 /3)	 \/0.95 x 0.05
s.e.(p)	 = 0.004

N	 3000

Thus, the 95% confidence interval for the true proportion p is

(94.22 < p < 95.78)	 (7.27)

Thus, the reliability or robustness of the alternative variance estimators for hy-

pothesis testing can be examined by comparing whether or not the values for the

confidence intervals reported in Tables 7.5 to 7.7 lie within the desired (expected)

limits given by (7.27).

Following this procedure, Table 7.8 below summarizes the number and percentage

of times that the estimated values of the confidence intervals lie within the interval

(7.27) for all sample sizes and degrees of censoring. These results are compared accross

the three distributions. Note that, as can be seen from Tables 7.5-7.7, each variance

estimator is examined using a total number of 27 different setups in the experiment

(i.e, 3 distributions x 3 sample sizes x 3 degrees of censoring = 27). So, for each

distribution we have 9 different setups (i.e., 3 sample sizes x 3 degrees of censoring

= 9 setups).

For example, as shown in Table 7.8, Column (1) lists the four variance estimators.

The first row of the table presents the three distributions and underneath are the

corresponding values. For instance, using Vin f . and given a normal distribution,

the number (No.) of times the proportion of successful interval estimates was not
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Table 7.8: Ranking on the Robustness of the Estimators.

Normal Students'-t Chi-square	 Total 
Estimator	 01	 132 131	 /32	 131	 ,62	 131	 132 

(1)	 (2) (3) (4)	 (5)	 (6)	 (7)	 (8) (9)

Vap. No. 6	 8	 2	 4	 0	 7
%	 67 89 22	 44	 0	 78

VRob . No. 2	 4	 2	 4	 4	 7
%	 22 44 22	 44	 44	 78

7 9
26 33

7 7
26 26

8 19
30 70

8 15
30 56

Vin f . No. 7	 5	 0	 1	 0	 3
%	 78 56 0	 11	 0	 33

VH es . No. 7	 4	 0	 0	 0	 3
%	 78 44 0	 0	 0	 33

significantly different from 0.95 are 7 and 5 for pi and 02 , respectively. The respective

percentages, each of which are calculated out of 9 different combinations (setups), are

given by 78 and 56 percent. Results for the students'-t and the chi-square distributions

are presented in Columns (4) to (7) and can be interpreted in a similar way. The

interpretation of the last Columns (8) and (9) are also similar, except the total number

(No.) is obtained by adding the corresponding values of 01 and 02 over the three

distributions and the percentage (%) of these numbers are calculated out of the total

number of 27 setups (instead of 9 setups).

Given this, Table 7.8 reveals that Vint and Vries . , while performing quite well under

the normal distribution, are generally poor under the non-normal distributions. This

can be seen from the low overall performance ranging between 26 to 33 percent (see



CHAPTER 7. THE MLE: A FURTHER ANALYSIS 	 203

Columns (8) and (9) of Table 7.8). Further, Vo .p. appears to be as good as VRob . under

the students'-t distribution while the later is relatively superior under the chi-square

distribution. The overall performance of the estimators indicates that 110 .p. appears

to be the best providing the desired level of confidence intervals up to 70 percent of

the time. This is followed by the VRob . with an overall performance of about 30 to 60

percent for all distributions.

However, the results in Table 7.8 do not appear to reflect the real picture regarding

the robustness of the estimators that we discussed earlier based on the results provided

in Tables 7.5-7.7. The main reason for this is that the interval in (7.27) is relatively

narrow (more precise). That is, although most of the values of the confidence intervals

are quite close to the desired level, they are not close enough to lie within the desired

limits given by (7.27) making the comparison less realistic as far as the robustness

of the estimators is concerned. Thus, in order to obtain a more realistic comparison

between the various estimators one needs to consider a relatively wider confidence

interval which is discussed below.

Suppose, we are prepared to accept a margin of error, say, plus or minus 2 of the

desired level so that the confidence limits will be between 93.00 to 97.00 percent. In

other words, an estimator is considered robust in relative terms if it provides values

of the confidence intervals between 93.00 to 97.00. Given this, we compared the

robustness of the various estimators and the summary statistics is given in Table 7.9.

Note that the interpretation of Table 7.9 is the same as before except this time we

have used a relatively wider interval (i.e., 93.00 < p < 97.00).

As can be seen from Table 7.9, all estimators perform quite well under the correct

specification of the model. In particular, Vinf . , VHe s . and Vo .p. provide the desired
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Table 7.9: Further Ranking of Robustness of the Estimators.

Normal Students'-t Chi-square	 Total 
Estimator 01 P2 pi	 P2	 /3 	 02	 01 02

( 1 )	 (2)

1	 8	 11	 21
11	 89	 41 78

1	 8	 11	 21
11	 89	 41 78

2	 9	 14 26
22	 100	 52 96

6	 9	 20 25
67	 100	 74 93

results in all cases, provided that the errors are normally distributed. This is quite

in agreement with the results discussed above both in terms of variance estimation

and hypothesis testing. However, VRob . and VO .P. appear to perform better under

the non-normal distributions. Specifically, the results for VRob under the non-normal

distributions appear to be as good as those of the normal distribution. Further, the

overall results indicated by Columns (8) and (9) of Table 7.9 depict that VRob . is

relatively robust and provides the desired levels for hypothesis testing in most cases,

i.e., about 75 to 95 percent of the time. However, as stated earlier, the VRob . estimator

tends to underestimate the desired level (i.e., both in terms of variance and hypothesis

testing) under the normal distribution. The Vo do appears to the next best with an

overall performance ranging between 50 to 95.

Vin f. No.	 9
% 100

VRob . No.	 8
%	 89

VHes, No.	 9
% 100

Vo .p. No.	 9
%	 100

(3) (4) (5)

9 1 4
100 11 44

9 1 4
100 11 44

9 3 8
100 33 89

8 6 8
89 67 89

(6)	 (7)	 (8) (9)
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In general, the following points can be concluded with respect to the implica-

tions of the three variance-covariance matrix estimators for hypothesis testing and/or

confidence intervals of the coefficients in the ML framework of the tobit model.

Under normality of the error terms of the model, the four variance estimators

yield approximately the same (close) results in hypothesis testing leading to the

same conclusions about the parameters of the model. Note that, as discussed in

the preceding section, although there appears to be minor differences between

the true and average estimated variances in some cases, these differences do

not, however, imply the superiority of one estimator over the other in terms

of hypothesis testing, provided that the errors are normally distributed. Thus,

as would be expected asymptotically [see White (1982, 1983)], the choice of

any particular estimator appears to be neutral under the correct specification

of the model. Note that, if the degree of censoring is high, a sample size of at

least 200 may be required to obtain relatively reliable results under the normal

distribution.

Under non-normality of the errors, it is evident that the variance estimators

based on the information and Hessian matrices (i.e., Vin f . and VHes.) appear

to be generally inferior as compared to the other two estimators for all sample

sizes and degrees of censoring. Specifically, Vint and VHes. provide confidence

intervals which are relatively narrower than they should be, and hence the

probability of rejecting a true hypothesis can be substantial as the degree of

censoring increases. In other words, Vin f . and VHes . are relatively sensitive to

violations of the normality assumption of the model. Note that Vin f . is widely
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used in applied research in the estimation of the variance-covariance matrix of

tobit models.

Interestingly, the hypothesis testing results obtained using VRob . appear to be

relatively better than others under non-normality of the error terms. In partic-

ular, the performance of the VR ob , estimator under the chi-square distribution

is as good as under the normal distribution. The results for Vo .p. under the

chi-square distribution are relatively closer to those of VRob . . These results are

consistent with the variance comparisons discussed in the preceding Section.

In general, VRob . appears to be relatively robust to the violations of normality of

the error terms followed by Vo.p.. These results may imply that, as argued by

White (1982), any significance difference between the three variance estimators

may be considered an indication of misspecification of the model. It is, perhaps,

important to note that this conclusion may be considered relatively strong as

there are not huge differences between the estimators. On the other hand, the

three variance estimators may lead to the same conclusions in hypothesis testing

if the model is correctly specified.

Finally, recall that in Chapter 6, in terms of hypothesis testing, we concluded

that the MLE did not perform well under the non-normal distributions relative

to its performance under the normal distribution. Thus, as can be seen in the

present Chapter, the result would improve slightly by using the robust variance-

covariance matrix estimator, VRob. (or VO.P.).
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7.4 Summary and Conclusions

The method of maximum likelihood estimation is popular because of its desirable

properties such as consistency and asymptotic normality, under certain regularity

conditions. However, some studies have indicated that, unlike the regular regression

model, the MLE of the censored regression (tobit) model may have undesirable conse-

quences such as inconsistency if the assumption of normality of the errors is violated.

In other words, the MLE of the tobit model is sensitive to misspecification of the

model. This, however, does not seem to be generally true.

In this Chapter, we examined the consistency of the MLE under a variety of

distributions for the error term, namely, the normal, the students'-t and the chi-

square distribution. The effects of each distribution on the consistency of the MLE is

investigated based on the asymptotic properties of the MLE. The main conclusions,

among others, are that there seems to be very little (or no) inconsistency in /31 and

02 for both the students'-t and chi-square distributions. On the other hand, the

constant term (00 ) of the model can be inconsistent under the skewed distribution

even when the sample size becomes large. The evidence also shows that, if the degree

of censoring is high, the inconsistency in Po can be substantial under the students'-t

distribution. Note that, as discussed earlier in this Chapter, the constant term can

be important to obtain results related to the tobit model depending on the particular

objectives of the research.

However, assuming that the constant term is not very important, inconsistency

does not appear to be a serious problem for the MLE estimator if we assume normality

when in fact the errors are not (i.e., for the students'-t and chi-square distributions).
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These results are also consistent with the results discussed in Chapter 6 in which it

was concluded that the MLE performs quite well under the non-normal distributions

in terms of bias unless the sample is very small (100) and the degree of censoring

is high (75%). Clearly, the results under the normal distribution are as anticipated.

That is, no inconsistency is observed for all sample sizes and degrees of censoring,

provided that the model is correctly specified.

Note that when estimates are obtained using the MLE estimator, the variance-

covariance matrix for the coefficients can be obtained using a number of alternative

covariance matrix estimators. These estimators are based on the following (i) the

inverse of the information matrix, (ii) the inverse of the Hessian matrix (iii) the

inverse of the outer product of the gradient vector, and (iv) the robust (White-

type) covariance matrix estimator. Each one of the first three of these estimators is

usually associated with a particular algorithm employed in the estimation procedure.

These alternative estimators, although asymptotically equivalent under the correct

specification of the model, are not generally the same in finite samples, and are more

likely to be different if the assumption of normality does not hold in practice.

Therefore the performance of these variance-covariance matrix estimators in the

estimation of the variances of coefficients of the model is investigated under the dif-

ferent distributions, sample sizes and degrees of censoring. The results indicate that,

under normality of the error terms, the variances obtained using the information ma-

trix, Hessian matrix and the robust (White-type) estimators yield almost identical

results in almost all cases. Furthermore, given that the degree of censoring is low, all

four variance estimators may provide results which are quite close under the normal

distribution. It is also evident that Vint and Vies. yield almost identical results in
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all cases.

On the other hand, the alternative variance estimators may yield substantially

different variances of the coefficients, if the assumption of normality of the error

term is violated, that is, under the students'-t and chi-square distributions. Our

results also reveal that the variances obtained from the outer product matrix are

almost systematically larger than the variances obtained using the information and

Hessian matrices. In general, these results simply imply that the choice of a particular

covariance matrix estimator is not neutral in the estimation of variances of coefficients

in the ML framework especially in the presence of misspecification.

Thus, given that the different covariance matrix estimators yield different results

under non-normal distributions, we examined further the implications of the alter-

native covariance matrix estimators in hypothesis testing and/or confidence interval

construction for the coefficients of the model. Not surprisingly, the four covariance

matrix estimators lead to the same conclusions in hypothesis testing and/or confi-

dence interval construction, under normality of the error terms. However, the VRob.

estimator tends to be biased downwards if the sample size is small. However, under

non-normality of the error terms, hypothesis tests based on the robust (White-type)

estimator appear to be relatively superior to the others. In particular, hypothesis tests

based on the information and Hessian matrices are relatively more sensitive to viola-

tions of the assumptions about the error term of the model and provide confidence

intervals which are relatively narrower than they should be.

Finally, the following points can be deduced from the discussions in this Chapter:

(i) Although some studies have indicated that the MLE is inconsistent if the as-

sumption of normality is violated, the validity of the models considered in those



CHAPTER 7. THE MLE: A FURTHER ANALYSIS 	 210

studies to more general models is questionable. This study suggests that in-

consistency is not a serious problem for the coefficients of the model, except for

the constant term which may or may not have serious consequences in applied

research. The effects of the constant term in the estimation of responses will be

discussed later in Chapter 9.

(ii) As far as statistical inference is concerned, the MLE estimator performs quite

well regardless of the variance-covariance matrix estimator used to estimate the

variances of the coefficients, provided that the assumption of normality of the

errors holds. Under the non-normal distributions, the results vary slightly de-

pending on the variance-covariance matrix estimator employed to estimate the

variances of the coefficients of the model. This study suggests that the robust

(White-type) estimator is relatively superior under the non-normal distribu-

tions, and is as good as others under the normal distribution except for the

small sample size. The covariance matrix estimators based on the information

and Hessian matrices stand as the less preferable under the non-normal error

terms. These conclusions, of course, need to be tested in practice using a large

variety of econometric and/or economic applications.



Chapter 8

The 3SE Vs H2S Estimator: The

Effects of Correlation

8.1 Introduction

The Heckman's two-step estimator (H2S) is often used in the estimation of tobit mod-

els because of its computational ease. However, as discussed in Chapter 3, collinear-

ity between the explanatory variables, x's, and the estimated inverse of Mill's ratio,

A(x/i 6e), is unavoidable and often strong in the second step of the H2S procedure.

This is not the case for the three-step estimator (3SE), which is constructed to

avoid the multicollinearity problem. Thus, in finite samples, the H2S estimator is

likely to be less precise depending on the degree of correlation that exists between

the explanatory variables and the inverse of the estimated Mill's ratio.

The purpose of this Chapter is to investigate the effects of this correlation on the

performance of the estimators. Section 8.2 presents a brief review of the H2S and the

211
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3SE estimators. The experimental design which is used in this particular experiment

is presented in Section 8.3. The results are discussed in Section 8.4 and Section 8.5

presents the main conclusions.

8.2 An Overview of the H2S and 3S Estimators

In order to understand the design of the experiment in the next section, it is important

to summarize the main results and relationships of the H2S and 3SE estimators. These

results are extracted from the detailed discussions provided in Chapters 2 and 3 of

this study.

We recall the model given by

yi = xi/3 + CTA(X l a) + Ei	 (8.1)

where the various components of the model are defined in Chapter 2, Section 2.4.

Heckman's two-step estimator (H2S) involves the estimation of a and hence A(xiia)

using the probit maximum likelihood estimator in the first step of the procedure. Then

the method of ordinary least squares is applied to (8.1) after replacing a and A(xiia)

by their consistent estimates, say, & and A(x:et), respectively, based only on the N1

observations for which y i > 0.

The H2S estimator is straightforward and is often preferred because of its compu-

tational ease. However, some studies have indicated that the H2S estimator performs

relatively poorly in finite samples [see Wales and Woodland (1980), Nelson (1984),

Paarsch (1984), Manning, Duan and Rogers (1987), Hay, Leu and Rohrer (1987),
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Hartman (1991), Nawata (1993, 1994)]. The major reason is that even if no correla-

tion exists between the x's, there is always some correlation (often strong) between

the ei and A(x'i6e). Thus this correlation is inherent to the particular form of the

model. The correlation is usually strong because A(ea) is approximately linear in

the index eia for a wide range of observations on xi and hence strongly correlated

with xi. The reliability of the estimates from the H2S procedure depends on the

degree of correlation that exists between the explanatory variables in general and

between 5,(ei&) and xi in particular.

Further, contrary to theoretical expectations the estimated value of a obtained

by directly regressing (8.1) is not guaranteed to be positive. This problem is usually

ignored because it has very little practical importance in applied research. However,

it can be considered as an indication of the unreliability of the H2S estimator.

On the other hand, the three-step estimator discussed in Chapter 3, provides a

substantial improvement over the H2S estimator in that the above problems do not

occur. Computationally, the 3SE is also very simple.

In order to discuss the 3SE estimator further, let us summarize the main steps

involved in the estimation procedure. Note that the first step of the procedure is the

same as that of the H2S in which the probit maximum likelihood estimator is used

to obtain consistent estimates of a and hence A(x iia). The last two steps of the 3SE

are as follows.

In step two, because a = /3/a, equation (8.1) can be written as

yi = ojeja + A(eia)] + ei	 (8.2)

Equation (8.2) is a simple regression model with no constant term. Hence, a can
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be estimated by regressing y i on [x::& + ' (xii &)], using only those N1 observations for

which yi > 0. Further, since both the right and left hand side of the model (8.2) are

positive, by contrast with the H2S, the estimated value of cr will be always positive.

More importantly, cr can be estimated without any problem even if 03 1,i & and A(xVy)

are not distinguishable (i.e., with out multicollinearity problem).

Finally, the 0 coefficients of the model can be estimated by one additional step,

as follows.

Let 6-35 be the estimate of o obtained by regressing yi on [xii & --1- A(x ii 6e)]. Then,

substituting &3s in equation (8.1) and rearranging the model, gives

th. — /cisAxi,& ) = 43 + E % + ns
	

(8.3)

which can be written as

-th = X i 0 + E i + 77i	 (8.4)

where "th = yi — 6.3sA(x2&) and ni = o-A(o*Y) — "6-3Axii&).

Equation (8.4) is a simple linear model and hence one can estimate the coefficients

of the model by regressing -Yi on the x's using the N1 observations. There are two

important differences between the H2S and the 3SE estimators. (i) Equation (8.4)

does not involve A(x ii &) which is the main source of the multicollinearity problem in

the H2S procedure; (ii) The estimated value of o-, &3s, is guaranteed to be positive and

can be estimated with more precision in the second step of the three-step procedure.

Other details including the asymptotic properties of the estimators are provided in

Chapters 2 and 3.
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Given the above results, the main objective of this Chapter is to investigate the

effects of collinearity between the explanatory variables and the inverse of the esti-

mated Mill's ratio on the performance of the estimators, for different sample sizes

and degrees of censoring. Collinearity may arise in the model due to several reasons.

Some of these are: (0 Economic variables are usually correlated and this may increase

the degree of correlation between xi and A(eia). That is, if the x's are correlated with

each other this may then lead to a stronger correlation between xi and A(x ii c'ie). (ii)

We know that A(*e) can be approximated by a linear function of the index xiia in

a wide range of observations on the x's. Thus the correlation between xi and Via)

can be high. (iii) The level of correlation between xi and A(x'i 6e) can be high for

high degrees of censoring. This is because as the degree of censoring increases the

observations in A(xiia) may shrink to a certain range where A(ea) is approximately

linear in eia and hence

Given this, it is necessary to modify the design of the experiment provided in

Chapter 5 in such a way that the objectives of this Chapter can be met. These

changes are presented in the following Section.

8.3 The Design of the Experiment

8.3.1 The Model

The specific form of the model to be investigated is similar to the model discussed in

Chapter 5. The model is given by
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Y: = flo + Oixii + /32 x21 + ui,

yi = y: if y: > 0

= 0 if y: <0

i = 1, ..., N	 (8.5)

(8.6)

where X = (1, x 1 , x2 ) is an Nx3 matrix of observations containing a column

vector of l's corresponding to the constant term and observations on the explanatory

variables x 1 and x2,

y*, the latent variable, is an Nxl vector which is assumed to be observed only

when positive,

y is an Nxl vector of observations on the dependent variable consisting of N1

positive (non-limit) observations corresponding to the positive values of y* and No =

N — N1 zero (limit) observations,

/3=63o, 01, 132Y is a 3x1 vector of unknown parameters, and

u is an Nxl vector of identically and independently distributed normal random

errors with zero mean and variance o-2.

The objectives of the Monte Carlo experiment in this particular Chapter are to

investigate:

1. the effects of collinearity between the x's and A(x ii i3e) on the performance

of the estimators;

2. the effects of the degree of censoring; and

3. the effects of sample size.

Below is the data generation process which is used to achieve these objectives.
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8.3.2 The Data Generation Process

The data generation process of this experiment is based on the model defined in (8.5)

which is given by

Y:	 02x2i ui, = 1,	 N	 (8.7)

where the yrs, the x's, the ,8's and the u i 's are as defined in (8.5)-(8.6).

Given (8.7), the various components of the model are determined as follows:

(i) The explanatory variables, x's, of the model are generated in the same way

as in Chapter 5. That is, the observations on the explanatory variable

i = 1, ..., N, are generated from the interval [0,4] equidistantly where the dis-

tance depends on the sample size. The observations on the second explanatory

variable, X2i, i = 1, ..., N, are generated uniformly from the interval [-1,1] and

independently of xli.

(ii) The disturbance term of the model, u i , is assumed to be normally distributed

with mean zero and variance equal to one. That is, the error term is generated

from the standard normal distribution such that ui N(0, 1). Note that since

the objective is to investigate the effects of correlation combined with different

sample sizes and degrees of censoring, it is considered sufficient to examine

these effects under the correct specification of the model. That is, when the

assumption of normality about the error term holds.

(iii) The main departure in the design of this experiment, compared to that of

Chapter 5, is the determination of the coefficients of the model, particularly 01

and 02. Note that, in Chapter 5, the parameters 131 and /32 are set to be equal
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to one, (i.e., /9 = 132 = 1). However, in this case P i and 02 are determined in

such a way that different levels of correlation can be obtained between (si,i,fX)

and the index zi = x'i &, and

00 is used to determine the degree of censoring and hence takes different values

depending on the particular level of censoring.

It is important to note at this stage that the choice of the parameter values in

the data generation process is not neutral. This is because different sets of parameter

values lead to different levels of correlation and consequently affect the experimen-

tal results. In other words, the objective of this experiment can also be viewed as

investigating the effects of changing parameter values (or the effects of the data gen-

eration process); which indirectly is the same as investigating the effects of degree of

correlation. Note that most studies which are related to tobit (or sample selection)

models have concentrated on the effects of the error distribution, sample size and

degree of censoring. Thus the role of the data generation process such as the choice

of the parameters has been ignored.

Given this, let's define the following:

Let pi. be the correlation between the index z i = x'ia and (x'i 6i) using the

observations for which y, is positive. Clearly, j:)..i . can be used to indicate the level of

correlation that exists between the x's and 5■(x ii 6e). Hence, while the 3SE is unlikely

to be affected, the quality of the estimates from the H2S estimator depends on the

level of this correlation. The aim is therefore to investigate the relative performance

of the 112S and the 3SE estimators under various levels of the correlation, 13 . ... To

achieve this we proceed as follows.

As discussed above, Ä(x ii et) can be approximated as a linear function of the index



CHAPTER 8. THE 3SE Vs H2S ESTIMATOR 	 219

zi = xii a, where a = 13/cr, in a wide range of observations on Assuming that cT2 is

fixed (constant), which is equal to one in this case, one way of controlling the range of

observations in the x's is by changing the parameter values of the O's so that different

levels of /525,. can be obtained.

For example, given (0 and (ii) above, the values of (3 0 = —4.000, th = 4.000 and

02 = 0.500 yield an average correlation of f).A = —0.50 and a degree of censoring of

25%. If we want to increase the level of correlation, say, to j3 2 . = —0.90 but have the

same degree of censoring (i.e., 25%), it can be obtained by changing the parameter

values of Op pi and 02 to -0.950, 1.000 and 0.100, respectively. Various levels of

13.i ranging from -0.50 to -0.95 are obtained using a similar procedure for all sample

sizes and degrees of censoring. These values are determined based on preliminary

experiments.

Further, similar to the experimental design in Chapter 5, we considered three

levels of censoring, namely, low (25%), medium (50%) and high (75%). The effects

of sample size are also investigated by considering the sample sizes of 100, 200 and

400, respectively, for small, medium and large sample sizes. Finally, the results of the

experiment are computed based on 3000 replications (samples). The same seed was

used in all experiments. The results are discussed in the following section.

8.4 Comparison of Results

As noted earlier, the main purpose of this Chapter is to investigate the relative per-

formance of the Heckman's two-step (H2S) and the three-step (3S) estimators under
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various levels of correlation between the explanatory variables and the estimated in-

verse of Mill's ratio. The ordinary least squares estimator based on the observations

for which yi is positive (OLSP) and the maximum likelihood estimator (MLE) are

also included for comparison purposes.

Given this, consider Table 8.1 which presents results for a sample size of 100

and a 25% degree of censoring. Column (1) of the table lists different correlation

levels ranging from -0.50 (for low) to -0.95 (for high). Column (2) provides the

list of estimators and the parameters to be estimated. In Column (3) are the true

parameter values. Columns (4) and (5), respectively, present the estimated mean

and the standard errors of the estimates. Finally, Columns (6) and (7) depict the

Bias and the RMSE of the estimates, respectively. Other tables may be interpreted

in a similar way.

As can be seen from Table 8.1, when '/3- --=-0.50 the RMSEs of /3o, /31 and 02 are

0.412, 0.149 and 0.207, respectively, using the 112S estimator. The corresponding

estimates using the 3SE are given by 0.374, 0.138 and 0.206, respectively. These

results are close, implying that both the H2S and the 3SE estimators may provide

similar results provided that the correlation is small. Similarly, the performances

of the H2S and the 3S estimators remain fairly close to each other given that the

correlation is not large. This can be seen from the results corresponding to correlation

levels as high as -0.70 in Table 8.1. Note that bias is not a problem for all the

estimators except for the OLSP, as would be expected.

However, using the RMSE criteria, the gap between the H2S and the 3SE starts to

increase as the level of correlation increases and gets wider for high levels of correla-

tion. For instance, the RMSEs of the H2S estimates of A and 02 are about 26 and 67



( 1 )	 (2)	 (3)

-0.50	 H2S 00 -4.000
01 4.000
02 0.500

3SE 00 -4.000
01 4.000
02 0.500

OLSP po -4.000
01 4.000
02 0.500

MLE Po -4.000
01 4.000
02 0.500

oo -3.000
/3, 3.000
132 1.000
po -3.000
o, 3.000
132	 1.000
o. -3.000
/3, 3.000
02 1.000
/30 -3.000
/3,
	 3.000

/32 1.000

-0.60	 H2S

3SE

OLSP

MLE

-0.70	 H2S

3SE

OLSP

MLE

/30

o,
/32

/30

01
02
/30

131

/32

/30

/3,

/32

-2.000
2.000
0.500
-2.000
2.000
0.500
-2.000
2.000
0.500
-2.000
2.000
0.500
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Table 8.1: Comparison of Estimators under Various levels of Correlation, Given
N=100 and 25% Degree of Censoring.

Correlation	 True Estimated Standard

(,O)	 Estimator Value	 Mean	 Error	 Bias RMSE
(4) (5) (6) (7)

-3.994 0.408 0.056 0.412
3.983 0.148 -0.017 0.149
0.492 0.207 -0.008 0.207
-3.925 0.366 -0.075 0.374
3.976 0.137 -0.024 0.138
0.492 0.206 -0.008 0.206
-3.552 0.331 0.448 0.557
3.853 0.127 -0.147 0.194
0.498 0.205 -0.002 0.205
-4.015 0.309 -0.015 0.310
4.006 0.120 0.006 0.120
0.492 0.204 -0.008 0.204

-2.941 0.427 0.059 0.431
2.980 0.154 -0.020 0.155
0.998 0.0216 -0.002 0.216
-2.925 0.363 0.075 0.371
2.974 0.134 -0.026 0.136
0.997 0.215 -0.003 0.215
-2.419 0.315 0.581 0.661
2.810 0.121 -0.190 0.226
0.953 0.214 -0.047 0.219
-3.012 0.291 -0.012 0.291
3.003 0.113 0.003 0.113
1.004 0.208 0.004 0.208

-1.939 0.512 0.061 0.456
1.980 0.179 -0.020 0.180
0.499 0.194 -0.001 0.194
-1.941 0.355 0.059 0.360
1.981 0.132 -0.019 0.134
0.499 0.192 -0.001 0.192
-1.186 0.278 0.814 0.860
1.737 0.112 -0.263 0.285
0.504 0.187 0.004 0.187
-2.004 0.269 -0.004 0.269
2.001 0.107 0.001 0.107
0.501 0.186 0.001 0.186

Table 8.1 continued next page
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Cont'd from Table 8.1.

Estimated	 Standard
Mean	 Error Bias RMSE

(4) (5) (6) (7)

-0.713 0.611 0.037 0.612
0.989 0.190 -0.011 0.190
0.991 0.234 -0.009 0.234
-0.703 0.303 0.047 0.307
0.985 0.113 -0.015 0.114
0.989 0.186 -0.011 0.186
0.080 0.220 0.830 0.858
0.760 0.093 -0.240 0.258
0.788 0.167 -0.212 0.270
-0.755 0.241 -0.005 0.241
1.002 0.099 0.002 0.099
1.002 0.177 0.002 0.177

-0.888 0.875 0.062 0.877
0.978 0.269 -0.022 0.270
0.099 0.187 -0.001 0.187
-0.899 0.322 0.061 0.328
0.979 0.119 -0.021 0.121
0.101 0.173 0.001 0.173
0.057 0.215 1.007 1.029
0.606 0.092 -0.304 0.318
0.068 0.160 -0.032 0.163
-0.954 0.250 -0.004 0.250
1.001 0.100 0.001 0.100
0.104 0.168 0.004 0.167

-0.141 1.385 0.009 1.385
0.488 0.320 -0.012 0.321
0.494 0.395 -0.006 0.395
-0.121 0.253 0.029 0.255
0.491 0.099 -0.009 0.099
0.494 0.184 -0.006 0.184
0.636 0.182 0.786 0.807
0.303 0.081 -0.192 0.208
0.313 0.156 -0.187 0.243
-0.155 0.222 -0.005 0.222
0.500 0.092 0.000 0.092
0.504 0.178 0.004 0.178

Correlation	 True

VA)	 Estimator Value
(1)	 (2)	 (3)

-0.85	 H2S Po -0.750
/3 	 1.000
02 1.000

3SE Po -0.750
A 1.000
02 1.000

OLSP 00 -0.750
A 1.000

02 1.000
MLE Po -0.750

A 1.000
02 1.000

-0.90	 H2S j% -0.950
i3i	 1.000
02 0.100

3SE 00 -0.950
Pi 1.000
02 0.100

OLSP /30 -0.950
A. 1.000
I2	 0.100

MLE po -0.950
/31 1.000
02 0.100

-0.95	 H2S	 00 -0.150
Pi 0.500
I2	 0.500

3SE Po -0.150
Pi 0.500
02 0.500

OLSP l30 -0.150
01 0.500
02 0.500

MLE fio -0.150
A 0.500
02 0.500
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percent larger than their corresponding 3S estimates, respectively, when

The difference between the two estimators is much bigger for the constant term in

which the RMSE for the H2S estimator is almost twice that of the 3S estimator (see

Table 8.1). These relative differences are quite large compared to, say, less than 10

percent when /6 .0,.=-0.50 or at most 30 percent when /35.=---0.70.

The relative performance of the H2S estimator, compared to the 3SE or MLE,

deteriorates further for higher levels of correlation. More specifically, Table 8.1 depicts

that when j.) .25, =-0.95, the RMSEs of j3 and /32 under the 112S estimator are over 2

to 3 times that of the 3SE. The difference is even much bigger for the constant term

in which the RMSE of do for the H2S estimator is about 5 times that of the 3SE

estimator. Moreover, it is surprising to note that if the correlation is high the H2S

estimator performs badly even compared to the OLSP estimator in terms of the

RMSE criteria.

On the other hand, the 3SE provides results which are much better than the H2S

estimator and remain quite close to the MLE estimator in all cases. For example,

given a high correlation (i.e., j3 i.s, =-0.95) the difference in RMSEs of the coefficients

between the MLE and 3SE is at most 15 percent as compared to as large as six times

for the H2S estimator.

The results of the experiment also reveal similar conclusions for the medium sam-

ple size. Table 8.2 below depicts results under various levels of correlation, given a

sample size of 200 and a 25% degree of censoring. As can be seen from Table 8.2,

the difference in RMSEs between the H2S and the 3S estimators ranges from zero to

about 10 percent for the three coefficients, provided that the correlation is low, i.e.,

-0.50. Again, although the relative performance of the H2S and the 3S estimators
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Table 8.2: Comparison of Estimators under Various levels of Correlation, Given
N=200 and 25% Degree of Censoring.

Correlation	 True Estimated Standard
(130,)	 Estimator Value	 Mean	 Error	 Bias RMSE

(3) (4) (5) (6) (7)

-4.000 -3.969 0.295 0.031 0.296
4.000 3.990 0.107 -0.010 0.108
0.500 0.497 0.137 -0.003 0.137
-4.000 -3.956 0.259 0.044 0.263
4.000 3.986 0.097 -0.014 0.098
0.500 0.497 0.136 -0.003 0.136
-4.000 -3.545 0.243 0.455 0.516
4.000 3.850 0.090 -0.150 0.175
0.500 0.488 0.137 -0.012 0.137
-4.000 -4.006 0.217 -0.006 0.217
4.000 4.003 0.084 0.003 0.084
0.500 0.498 0.134 -0.002 0.134

-3.000 -2.962 0.323 0.038 0.325
3.000 2.987 0.116 0.013 0.117
1.000 0.996 0.147 -0.004 0.147
-3.000 -2.963 0.268 0.037 0.271
3.000 2.988 0.100 -0.012 0.101
1.000 0.996 0.140 -0.004 0.140
-3.000 -2.341 0.222 0.658 0.695
3.000 2.783 0.087 -0.217 0.233
1.000 0.941 0.138 -0.059 0.150
-3.000 -3.008 0.208 -0.008 0.208
3.000 3.002 0.082 0.002 0.082
1.000 0.999 0.137 -0.001 0.137

-2.000 -1.972 0.359 0.028 0.360
2.000 1.991 0.126 -0.009 0.127
0.500 0.495 0.136 -0.005 0.137
-2.000 -1.970 0.261 0.030 0.263
2.000 1.990 0.097 -0.010 0.098
0.500 0.495 0.135 -0.005 0.135
-2.000 -1.216 0.205 0.784 0.810
2.000 1.745 0.081 -0.255 0.267
0.500 0.450 0.132 -0.050 0.142
-2.000 -2.005 0.195 -0.005 0.195
2.000 2.002 0.077 0.002 0.007
0.500 0.496 0.131 -0.004 0.131

Table 8.2 continued next page

(1)	 (2)

	

-0.50	 112S	 /30
01
02

3SE /30
01
02

OLSP 00

/31
02

MLE 0'0
/31
02

	-0.60	 112S	 00

/31
/32

3SE 00

131
132

OLSP 00

/1
/32

MLE 00

/31
02

	-0.70	 112S /30
01
02

3SE po

/31
#2

OLSP po
/31
02

MLE 00

Pi
02
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Cont'd from Table 8.2

Correlation	 True Estimated Standard

(p5*)	 Estimator Value	 Mean	 Error	 Bias RMSE
(1)	 (2)

	

-0.85	 H2S 130
Pi
02

3SE /30
fl
i32

OLSP go

01
02

MLE 00
01
132

	-0.90	 H2S 00

/31
02

3SE 00

01
02

OLSP po
01
02

MLE 00

01
02

	-0.95	 H2S 130
01
02

3SE /30
01
/32

OLSP 00
,(31
/32

MLE /30
Pi
02

(3) (4) (5) (6) (7)

-0.750 -0.740 0.441 0.010 0.441
1.000 0.996 0.139 -0.004 0.139
1.000 0.991 0.175 -0.009 0.175
-0.750 -0.730 0.207 0.019 0.208
1.000 0.994 0.078 -0.006 0.078
1.000 0.990 0.141 -0.010 0.141
-0.750 0.078 0.145 0.828 0.841
1.000 0.755 0.063 -0.245 0.253
1.000 0.783 0.125 -0.217 0.250
-0.750 -0.752 0.162 -0.002 0.162
1.000 1.001 0.067 0.001 0.067
1.000 0.997 0.133 -0.003 0.133

-0.950 -0.943 0.618 0.007 0.618
1.000 0.997 0.193 -0.003 0.193
0.100 0.095 0.139 -0.005 0.139
-0.950 -0.930 0.231 0.020 0.232
1.000 0.994 0.087 -0.006 0.087
0.100 0.095 0.135 -0.005 0.135
-0.950 0.062 0.156 1.012 1.024
1.000 0.695 0.067 -0.305 0.313
0.100 0.071 0.123 -0.029 0.126
-0.950 -0.958 0.178 -0.008 0.178
1.000 1.002 0.072 0.002 0.072
0.100 0.095 0.132 -0.005 0.132

-0.150 -0.167 1.011 -0.017 1.011
0.500 0.499 0.242 -0.001 0.242
0.500 0.498 0.281 -0.002 0.281
-0.150 -0.133 0.176 0.016 0.178
0.500 0.496 0.069 -0.004 0.069
0.500 0.494 0.136 -0.006 0.136
-0.150 0.624 0.126 0.774 0.784
0.500 0.313 0.056 -0.187 0.195
0.500 0.318 0.115 -0.182 0.215
-0.150 -0.148 0.156 -0.002 0.156
0.500 0.500 0.065 0.000 0.065
0.500 0.498 0.132 -0.002 0.132
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starts to depart slowly as the level of correlation increases, the two estimators remain

fairly close for levels of correlation up to -0.70. For example, the RMSEs of the H2S

estimates are about 16 and 26 percent larger than their corresponding 3S estimates,

respectively, for the correlation levels of -0.60 and -0.70. But, this difference widens for

higher levels of correlation and the quality of the H2S estimator deteriorates rapidly.

This is evident from the results corresponding to 162 = —0.85 and -0.95. Specifically,

when /325 = —0.95 the RMSEs of 01 , 132 and /30 under the H2S are, respectively, about

2, 3 and 5 times larger than their corresponding 3S estimates. Whereas, the RMSEs

of the 3S estimates, as compared to the ML estimates, are only 2 to 3 percent larger

for /31 and 02 and about 15 percent for /30.

As to the effects of sample size, the results in Tables 8.1-8.2 also suggest that, as

the sample size increases and provided that the correlation level is not large, both the

H2S and the 3S estimators may provide similar results. This evidence is particularly

clear from Table 8.3 which depicts results for various levels of correlation, given a large

sample size (400) and a 25% degree of censoring. Specifically, given low correlation

(i.e., 3 5. =-0.50), the RMSEs for 00, 1@1 and 02, respectively, are given by 0.209, 0.077

and 0.095 for H2S compared to 0.186, 0.070 and 0.095 for the 3SE estimator. These

results are very close (some times the same) and imply that, given a low level of

correlation and a small degree of censoring, one needs a sample size of at least 400 to

obtain similar (or sufficiently close) results from both the H2S and 3SE estimators.

However, as the correlation increases, even slightly, the relative performance of the

H2S estimator starts to deteriorate and gets worse when the correlation is very high

even if the sample size is large. In other words, the H2S estimator, compared to the

3SE, is highly sensitive to the increases in correlation irrespective of the sample size.
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Table 8.3: Comparison of Estimators under Various levels of Correlation, Given
N=400 and 25% Degree of Censoring.

(3) (4) (5) (6) (7)

-4.000 -3.989 0.209 0.011 0.209
4.000 3.996 0.077 -0.004 0.077
0.500 0.497 0.095 -0.003 0.095
-4.000 -3.982 0.185 0.018 0.186
4.000 3.994 0.070 -0.006 0.070
0.500 0.496 0.095 -0.004 0.095
-4.000 -3.528 0.161 0.472 0.499
4.000 3.843 0.063 -0.157 0.169
0.500 0.467 0.094 -0.033 0.100
-4.000 -4.005 0.152 -0.005 0.152
4.000 4.002 0.060 0.002 0.060
0.500 0.498 0.093 -0.002 0.093

-3.000 -2.984 0.214 0.016 0.215
3.000 2.994 0.078 -0.006 0.078

1.000 0.998 0.098 -0.002 0.098
-3.000 -2.982 0.177 0.018 0.177
3.000 2.994 0.066 -0.006 0.066
1.000 0.998 0.097 -0.002 0.097
-3.000 -2.408 0.151 0.592 0.611

3.000 2.805 0.059 -0.195 0.204
1.000 0.972 0.095 -0.028 0.099
-3.000 -3.002 0.141 -0.002 0.141
3.000 3.000 0.056 0.000 0.056
1.000 0.999 0.096 -0.001 0.096

-2.000 -1.986 0.251 0.014 0.252
2.000 1.996 0.088 -0.004 0.088
0.500 0.499 0.097 -0.001 0.097
-2.000 -1.983 0.183 0.017 0.184

2.000 1.994 0.068 -0.006 0.068

0.500 0.499 0.096 -0.001 0.096

-2.000 -1.191 0.139 0.809 0.821

2.000 1.738 0.056 -0.262 0.268

0.500 0.449 0.094 -0.051 0.107

-2.000 -2.002 0.135 -0.002 0.135

2.000 2.001 0.054 0.001 0.054

0.500 0.500 0.093 0.000 0.093
Table 8.3 continued next page

Correlation	 True Estimated Standard

POD Estimator Value	 Mean	 Error	 Bias RMSE

(1)	 (2)

-0.50	 H2S p.

oi
12

3SE 00

01

02
OLSP 00

01

02

MLE /0
01

12

-0.60	 112S
	

oo
oi
/32

3SE i@o
01
02

OLSP
01
132

MLE 00
01
02

-0.70	 112S 13o
01
02

3SE /3o
01
12

OLSP 130

oi
02

MLE 00

01

/32
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Cont'd from Table 8.3

Correlation	 True Estimated Standard

(/),i0	 Estimator Value	 Mean	 Error	 Bias RMSE
(4) (5) (6) (7)

-0.745 0.320 0.005 0.320
0.998 0.102 -0.002 0.102
0.995 0.130 -0.005 0.130
-0.739 0.148 0.011 0.149
0.997 0.056 -0.003 0.056
0.994 0.100 -0.006 0.100
0.101 0.104 0.851 0.857
0.748 0.045 -0.252 0.256
0.755 0.089 -0.245 0.261
-0.752 0.115 -0.002 0.115
1.001 0.047 0.001 0.047
0.998 0.093 -0.002 0.093

-0.926 0.442 0.024 0.443
0.992 0.139 -0.008 0.140
0.100 0.098 0.000 0.098
-0.936 0.160 0.014 0.160
0.995 0.060 -0.005 0.060
0.100 0.096 0.000 0.096
0.065 0.108 1.015 1.021
0.693 0.047 -0.307 0.310
0.066 0.088 -0.034 0.094
-0.951 0.122 -0.001 0.122
1.000 0.049 0.000 0.049
0.101 0.093 0.001 0.093

-0.158 0.682 -0.008 0.682
0.500 0.171 0.000 0.171
0.496 0.186 -0.004 0.186
-0.145 0.124 0.005 0.124
0.498 0.049 -0.002 0.049
0.496 0.095 -0.004 0.095
0.636 0.088 0.786 0.791
0.306 0.039 -0.194 0.198
0.315 0.083 -0.185 0.203
-0.152 0.109 -0.002 0.109
0.501 0.045 0.001 0.045
0.497 0.091 -0.003 0.091

(1)	 (2)	 (3)

	

-0.85
	

112S	 -0.750
1.000

02 1.000
3SE po -0.750

1.000
02 1.000

OLSP	 -0.750
1.000

/32
	 1.000

MLE /30 -0.750
01 1.000
02 1.000

	

-0.90
	

112S
	

i3o -0.950
131	 1.000
1 2	 0.100

3SE
	

/3o -0.950
01 1.000
132 0.100

OLSP Oo -0.950
01 1.000
02 0.100

MLE f3o -0.950
01 1.000
02 0.100

	

-0.95
	

H2S	 -0.150
0.500

02 0.500
3SE po -0.150

Nl 0.500
02 0.500

OLSP /30 -0.150

/31 0.500
/32 0.500

MLE	 -0.150

/31
	 0.500

02 0.500
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Interestingly, the difference between the 3SE and the MLE estimators remains

marginal especially in ,8 1 and 02. For example, as shown in Table 8.3, given a high

correlation (i.e., /3.i.-0.95), the RMSEs of ,8 1 and 02 under the 3SE are given by

0.049 and 0.095, respectively. The corresponding estimates under the MLE are given

by 0.045 and 0.091, respectively. These results imply that the difference between the

3S and the ML estimators is only marginal. Note that these results are obtained

under normality of the error term a situation where the ML estimator is expected

to do well. Further, as shown in Chapter 6, the 3S estimator can be as good as (or

sometimes even better), if the assumption of the error term is violated, (e.g., under

the t-distribution).

Further, we examined the effects of the degree of censoring combined with various

levels of correlation. The summary statistics are given in Table 8.4 (and Tables A.7-

A.8 of Appendix A). For example, Table 8.4 below depicts results for a sample size

of 200 and a 50% degree of censoring. Before discussing the results in Table 8.4, it

is important to note that, as mentioned earlier in this Chapter, an increase in the

degree of censoring has an adverse effect on the level of correlation. That is, a high

level of censoring causes an increase in the level of correlation. To explain this point

a little further consider the following example. Recall that, given the data generation

process discussed in the preceding Section, a correlation level of, say, -0.70 and a 25%

degree of censoring are obtained by setting the parameter values of 00 , /31 and /32 to

be -2.000, 2.000 and 0.500, respectively, (see Tables 8.1-8.3). But, in order to increase

the degree of censoring, say, to 50%, one needs to change only the value of 00 to

-4.000 while (31 and 02 remain the same. However, as a result of increasing the degree

of censoring the level of correlation consequently increases to -0.85 and hence should
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Table 8.4: Comparison of Estimators under Various levels of Correlation, Given
N=200 and 50% Degree of Censoring.

Correlation	 True Estimated Standard
(j).)	 Estimator Value	 Mean	 Error	 Bias RMSE

(3) (4) (5) (6)

-8.000 -7.943 0.671 0.057
4.000 3.984 0.212 -0.016
0.500 0.491 0.174 -0.009
-8.000 -7.909 0.561 0.091
4.000 3.974 0.182 -0.026
0.500 0.488 0.171 -0.012
-8.000 -6.909 0.475 1.091
4.000 3.677 0.159 -0.323
0.500 0.428 0.169 -0.072
-8.000 -8.021 0.431 -0.021
4.000 4.007 0.145 0.007
0.500 0.495 0.165 -0.005

-4.000 -3.924 0.845 0.076
2.000 1.977 0.256 -0.023
0.500 0.494 0.178 -0.006
-4.000 -3.936 0.486 0.064
2.000 1.980 0.158 -0.020
0.500 0.494 0.172 -0.006
-4.000 -2.287 0.362 1.713
2.000 1.501 0.127 -0.499
0.500 0.415 0.166 -0.085
-4.000 -4.020 0.345 -0.020
2.000 2.006 0.119 0.006
0.500 0.498 0.163 -0.002

-2.000 -1.970 1.144 0.030
1.000 0.990 0.301 -0.010
1.000 0.991 0.309 -0.009
-2.000 -1.975 0.347 0.025
1.000 0.993 0.112 -0.007
1.000 0.994 0.173 -0.006
-2.000 -0.259 0.223 1.741
1.000 0.552 0.083 -0.448
1.000 0.601 0.144 -0.399
-2.000 -2.012 0.250 -0.012
1.000 1.003 0.090 0.003
1.000 1.001 0.153 0.001

(1)	 (2)

	

-0.60	 112S
	

po
oi
#2

3SE Po
01
02

OLSP 130

131
02

MLE 00

01
12

	-0.85	 H2S 00
01
12

3SE 00
01
02

OLSP Po
Pl
02

MLE i3o
/31
02

	-0.95	 112S
	

Po
01
02

3SE Oo
01
12

OLSP Po
13,

02
MLE Po

131
02

(7)

0.673
0.212
0.175
0.568
0.184
0.172
1.190
0.360
0.184
0.431
0.145
0.165

0.849
0.257
0.178
0.490
0.160
0.173
1.751
0.515
0.186
0.345
0.119
0.163

1.144
0.302
0.309
0.347
0.113
0.173
1.755
0.456
0.424
0.250
0.090
0.153
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be adjusted accordingly (see Table 8.4). Other values for the level of correlation are

obtained in a similar way.

As shown in Table 8.4, the H2S and the 3SE are fairly close, provided that the

level of correlation is not large. In particular, when "i3.--=-0.60, the RMSEs of the

H2S estimator are about 2 to 18 percent larger than their corresponding 3S estimates

for all coefficients. However, the performance of the H2S, as compared to the 3S

or ML estimators, deteriorates as the correlation increases and the RMSEs of the

H2S gets incomparably large for higher levels of correlation. A further increase in

the degree of censoring implies much higher levels of correlation and hence a further

deterioration in the quality of the H2S estimates relative to those of the 3S or ML

estimates (see also Tables A.7 and A.8, Appendix A). It is important to note that

the relatively poor performance of the H2S estimator is almost entirely related to the

level of correlation. This is also consistent with the conclusions made in Chapter 6

regarding the H2S estimator. That is, the main reason why the H2S performed badly

for higher degrees of censoring is because an increase in the degree of censoring means

an increase in the level of correlation.

Finally, in order to have a clear indication on the relative performance of the

estimators, Table 8.5 below provides more information on the reliability (efficiency)

of the estimators relative to the MLE estimator. That is, as shown in Table 8.5, we

obtained the root mean square errors of the H2S, 3SE and OLSP estimates relative

to those of the MLE estimates; for low, moderately high and high levels of correlation

as well as for different sample sizes and degrees of censoring. As can be seen from

the table, the results reveal that the 3SE estimator remains quite close to the MLE

in all cases. Whereas, the H2S estimator performs badly sometimes even worse than
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Table 8.5: Finite Sample Root Mean Square Errors Relative to those of the MLE
estimator.

Correlation Esti-
( '13 2 , )	 -mator

100 200 
/0	 /31	 /32 

400
01	 /32 /0 A_	 132

Degree of Censoring=25%

-0.50 H2S 1.329 1.242 1.015	 1.364 1.286 1.022 1.375 1.283 1.021
3SE 1.206 1.150 1.009	 1.212 1.167 1.015 1.224 1.167 1.021
OLSP 1.796 1.617 1.005	 2.373 2.083 1.022 3.283 2.817 1.075

-0.85 112S 2.539 1.919 1.322	 2.722 2.075 1.316 2.783 2.170 1.398
3SE 1.274 1.151 1.051	 1.284 1.164 1.060 1.296 1.191 1.075
OLSP 3.560 2.606 1.525	 5.191 3.776 1.879 7.452 5.445 2.806

-0.95 112S 6.238 3.489 2.219	 6.481 3.723 2.129 6.257 3.800 2.044
3SE 1.148 1.076 1.033	 1.141 1.061 1.030 1.138 1.089 1.044
OLSP 3.653 2.261 1.365	 5.026 3.000 1.629 7.256 4.400 2.231

Degree of Censoring=50%

-0.60 H2S 1.599 1.487 1.052	 1.561 1.462 1.061 1.536 1.447 1.018
3SE 1.309 1.246 1.036	 1.318 1.269 1.042 1.279 1.233 1.018
OLSP 2.030 1.854 1.032	 2.761 2.483 1.115 3.795 3.408 1.080

-0.85 112S 2.609 2.266 1.086	 2.461 2.160 1.092 2.537 2.212 1.093
3SE 1.464 1.367 1.057	 1.420 1.344 1.061 1.430 1.329 1.047
OLSP 3.713 3.172 1.021	 5.075 4.328 1.141 7.307 6.141 1.299

-0.95 112S 4.564 3.378 2.037	 4.576 3.356 2.019 5.153 3.844 2.193
3SE 1.367 1.251 1.139	 1.388 1.255 1.131 1.392 1.281 1.131
OLSP 4.601 3.392 2.028	 7.020 5.066 2.771 10.170 7.422 3.877
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the OLSP estimator except when the correlation is small.

In general, the 3S estimator outperforms the H2S estimator in almost all cases and

the difference in relative performance between the two estimators becomes substan-

tially high even for moderately high levels of correlation, irrespective of the sample

size. If the correlation is high, say, about -0.95, then the H2S estimator can be even

less preferrable than the biased OLSP estimator using the RMSE criteria. Note that

all estimators perform quite well in terms of bias except the OLSP. They also have

the correct signs.

Another important aspect in the comparison of the estimators is to examine their

likely performance in hypothesis testing and/or construction of confidence intervals

under various levels of correlation, sample sizes and degrees of censoring. One way of

doing this is to compare the asymptotic standard errors of the estimators with their

corresponding Monte Carlo standard errors. As discussed in Chapter 6, this compar-

ison has very important implications for applied research. That is, if the asymptotic

standard errors of an estimator are lower than their corresponding Monte Carlo stan-

dard errors then the confidence intervals for the coefficients are likely to be narrower

(over precise) than they should be. On the other hand, asymptotic variances which

are larger than their corresponding true variances may imply confidence intervals

which are wider than the desired level. Note that the asymptotic standard errors

are computed as the square root of the diagonal elements of the variance-covariance

matrices of the estimators. The variance-covariance matrices of the estimators are

provided in Chapters 2 and 3 of this study. For example, the asymptotic standard

errors of the MLE are obtained as the square roots of the diagonal elements of equa-

tion (2.22), Chapter 2, which is the inverse of the information matrix. Others are
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obtained in a similar way.

Given this, Table 8.6 provides the finite sample (Monte Carlo) standard errors

relative to asymptotic standard errors of the estimators for different levels of corre-

lation, sample sizes and degrees of censoring. As can be seen for the table, it is clear

that the asymptotic standard errors of the MLE are good approximations of their

corresponding Monte Carlo standard errors. Similarly, the 3SE provides Monte Carlo

standard errors which are quite close to their corresponding asymptotic standard er-

rors in almost all cases. On the other hand, the H2S estimator provides finite sample

standard errors which are smaller than their corresponding asymptotic values in all

cases except when the correlation is small. These results indicate that confidence

intervals for the coefficients are likely to be wider than they should be if one uses the

H2S estimator, unless the correlation is small. In general, hypothesis tests and/or

confidence intervals based on the H2S estimator can be misleading if the correlation

between the explanatory variables and the inverse of Mill's ratio is high.

As a final remark, this Chapter also demonstrates the effects of the data generation

process on the performance of the estimators, a case usually overlooked in most

Monte Carlo studies related to the model. That is, most studies have concentrated

on the effects of the error distribution, sample size and degree of censoring on the

performance of the estimators (e.g., Paarsch (1984), Moon (1989)). The effects of

the data generation process such as the /3's and or X's is ignored. However, as

shown in this Chapter, different sets of parameter values may lead to different levels

of correlation and consequently implying different conclusions about the estimators,

particularly the H2S estimator which is very sensitive to the degree of correlation. In

other words, it is not surprising if the H2S estimator sometimes performs very poorly;
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Table 8.6: Finite Sample Standard Errors Relative to Asymptotic Standard Errors.

Correlation Esti-
( 1320	 -mator

100
00	 i3 	 132

200
/30	 01

400
132	 1%	 01	 132

Degree of Censoring=25%

-0.50 H2S 0.861 0.881 1.095 0.949 0.955 1.015 0.946 0.963 0.960
3SE 1.034 1.030 1.095 1.061 1.043 1.007 1.063 1.061 0.960
OLSP 0.925 0.948 1.068 0.984 0.968 0.986 0.920 0.951 0.931
MLE 1.013 1.017 1.096 1.009 1.000 0.993 1.000 1.017 0.958

-0.85 112S 0.741 0.742 0.839 0.752 0.780 0.902 0.794 0.823 0.935
3SE 0.984 0.974 0.954 0.932 0.918 1.000 0.961 0.966 1.010
OLSP 0.738 0.808 0.831 0.659 0.741 0.862 0.693 0.776 0.873
MLE 1.008 1.021 0.978 0.964 0.971 1.023 0.975 0.979 1.000

-0.95 H2S 0.858 0.788 0.940 0.940 0.890 1.004 0.868 0.868 0.912
3SE 1.024 1.021 1.039 1.011 1.000 1.071 1.016 1.021 1.055
OLSP 0.714 0.786 0.834 0.708 0.767 0.858 0.709 0.765 0.874
MLE 1.000 1.000 1.011 1.000 1.000 1.039 0.991 0.978 1.000

Degree of Censoring=50%

-0.60 H2S 0.921 0.918 1.144 0.895 0.910 1.017 0.920 0.925 0.934
3SE 0.997 0.980 1.136 1.033 1.028 1.000 1.018 1.016 0.942
OLSP 0.896 0.903 1.095 0.908 1.082 0.966 0.883 0.901 0.888
MLE 1.002 0.985 1.127 1.005 1.000 0.994 1.006 1.000 0.949

-0.85 H2S 0.830 0.839 1.128 0.743 0.762 1.017 0.749 0.777 0.967
3SE 0.963 0.958 1.157 0.915 0.913 1.029 0.895 0.911 0.926
OLSP 0.717 0.763 1.034 0.693 0.743 0.943 0.646 0.698 0.822
MLE 0.998 0.988 1.025 1.000 0.992 1.032 0.996 1.000 0.955

-0.95 112S 0.610 0.650 0.608 0.631 0.661 0.710 0.669 0.718 0.743
3SE 0.734 0.761 0.910 0.766 0.772 0.956 0.747 0.779 0.985
OLSP 0.451 0.529 0.708 0.454 0.515 0.795 0.439 0.517 0.759
MLE 1.044 1.039 1.009 0.992 0.989 1.000 0.994 1.016 1.046
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it may be due to the bias against the estimator resulting from the experimental design.

Thus, the validity of the conclusions made based on a particular data generation

process can be misleading and hence should be treated with caution. Some useful

discussion along this line is given by Leung and Yu (1994).

8.5 Summary and Conclusions

It is well known that the Heckman's two-step (H2S) estimator of the tobit model has

poor finite sample properties. This is because of the unavoidable and often strong

multicollinearity between the explanatory variables and the estimated inverse of Mill's

ratio. On the other hand, this is not the case for the three-step estimator (3SE) which

is suggested in this study.

In this Chapter, we examined the finite sample properties of the H2S and 3SE

estimators along with other estimators of the tobit model, namely, the ordinary least

squares based on those observations for which the dependent variable, y i , is positive

(OLSP) and the maximum likelihood estimator (MLE) of the model. The effects

of collinearity on the performance of the estimators is investigated under different

sample sizes and degrees of censoring. The main conclusions, among others, include

the following points.

Both the 112S and the 3S estimators may provide similar results, provided that

the correlation is not large. More specifically, our results suggest that the two

estimators may perform well for correlation levels as large as -0.70. However, as

the correlation increases the relative performance of the H2S estimator starts

to decline and deteriorates very quickly for higher levels of correlation. In
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particular, if the correlation is very high, say, -0.90 or more, the H2S estimator

performs badly, even compared to the biased OLSP estimator.

As to the effects of sample size, one needs a sample size of at least 400 to obtain

sufficiently close (or the same) results using both the H2S and the 3S estimators,

given that the correlation is small, i.e., -0.50. However, the performance of the

112S, compared to the 3SE, declines with increases in the level of correlation

even if the sample size is large. It is also evident that an increase in the degree of

censoring implies higher levels of correlation, hence leading to poor performance

of the H2S as compared to the 3S or MLE estimators.

On the other hand, the results depict that the 3S estimator, as would be ex-

pected theoretically, is quite robust to the level of correlation and provides

results which are quite close to the ML estimates in almost all cases. It is also

important to note that, as shown in Chapter 6, the 3SE appears to be robust

if the assumption of normality about the error term does not hold (e.g., see

results under the students'-t distribution).

In general, the 3S estimator outperforms the H2S estimator and the gap between

the two estimators can be substantial even for moderate levels of correlation. If

the correlation is very high, the H2S can be even less preferable than the biased

OLSP estimator in terms of the RMSE criteria. The evidence also indicates

that hypothesis tests and confidence intervals based on the H2S estimates can

be misleading if the correlation between the explanatory variables and the esti-

mated inverse of Mill's ratio is large. Specifically, the experimental results reveal

that the confidence intervals based on the H2S estimates are likely to be wider
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(less precise) than they should be if the correlation is not small. Clearly, all the

estimators perform quite well in terms of bias except for the OLSP estimator.

Not surprisingly, the OLSP estimator performs poorly in general.

Finally, it is quite clear that the 3S estimator outperforms the H2S estimator in

almost all cases. However, the most important point that needs to be stressed here

is that whether the three-step estimator could be extended to more general models,

where estimation by using MLE is not straightforward. Such models include the two-

equation tobit models discussed in Manning, Duan and Rogers (1987), Leung and Yu

(1994) or Type-II tobit models in general (see Amemiya (1985), Maddala (1983)).
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