
Chapter 4

Small Sample Properties of Tobit

Models: Relevant Monte

Carlo/Simulation Studies

4.1 Introduction

In recent years a number of papers have appeared describing theoretical and empirical

applications of tobit models. Most of the theoretical papers are concerned with the

asymptotic properties of alternative estimators as well as with the development of

asymptotic test statistics. On the other hand, there have been only a few Monte

Carlo and/or simulation studies concerned with the small sample properties of the

various estimators and test statistics suggested in the literature. In other words, little

is known about the small sample properties of the estimators of the model. Some of

the few finite sample studies of the estimators of the standard tobit model include
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those of Wales and Woodland (1980), Paarsch (1984), Moon (1989) and Nawata

(1993).

In this Chapter, we discuss these and other available literature on the small sample

properties of estimators which are related to the standard tobit model, which is

defined in Chapter 2 of this study.

4.2 Small Sample Studies of Tobit Models

The first contribution to this information was made by Wales and Woodland (1980)

who studied various methods of estimating labour supply functions. In their study

they included the estimation of labour supply models using tobit models of the form

(2.1)-(2.2). Specifically, Wales and Woodland (1980) considered a model of the form

	

yi = Oo	 132X2i	 i = 1,2, ..., N.

yi = y7 if y: > 0,

= 0 if y: <O.

and

	

x ii = 'yo	 72z2i	 ei ,	 i = 1, 2, ..., N.

where ui and ei are normally distributed with zero means and variances o and cre2,

respectively, and correlation coefficient p. In their experiment the exogenous variables

x 2i , zli and z2i were independently distributed as uniform random variables with the

range [-1,1]. The /3's and -y's are unknown parameters to be estimated.

Given this model, Wales and Woodland (1980) considered various estimators of

the tobit model including the tobit maximum likelihood estimator (MLE), Amemiya's
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instrumental variables estimator and the nonlinear least squares estimator based on

the conditional expectation of the model, i.e., using the observations for which y i is

positive. Further, they considered sample sizes of 1000 and 5000 and an approximate

degree of censoring of 30%.

Wales and Woodland (1980) estimated the parameters of the model based on a

single replication and observed that the maximum-likelihood estimator was superior

to the others. It should be noted that, as discussed in Chapter 2, if the errors are

normally distributed the maximum-likelihood estimator is consistent and asymptot-

ically efficient. Hence the results reported by Wales and Woodland (1980) may not

be surprising. However, Wales and Woodland (1980) did not consider cases where

the assumption of normality did not hold. Further, although useful, their conclusion

was based on a single simulation rather than on repeated samples as in the case of a

Monte Carlo study.

One of the frequently cited papers with regard to the small sample properties of

the estimators of the standard tobit model is that of Paarsch (1984). Paarsch (1984)

studied the finite sample properties of tobit model estimators which included the

maximum likelihood estimator (MLE), Heckman's two-step estimator (H2S), Powell's

(1984) censored least absolute deviations (LAD) estimator and the ordinary least

squares estimator based upon the observations for which the dependent variable, yi,

is positive (OLSP).

Paarsch's model was of the form
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yi = Oo	 ui,	 = 1,2,...,N.	 (4.4)

yi = y: if y: > 0

	

= 0 if y: < O.	 (4.5)

where xii 's are the exogenous variables, 130 and 131 are the unknown parameters to

be estimated and ui 's are independently and identically distributed random variables

which are assumed to be normally distributed with mean zero and variance a-2 so that

(4.4)-(4.5) becomes the standard tobit model.

Given this model, Paarsch (1984) investigated the small sample effects of the

following on the estimators of the model.

(i) The effects of different distributions of the error term.

(ii) The effects of sample sizes.

(iii) The effects of degree of censoring.

The effects of distributional assumptions of the error term were investigated by

considering a variety of distributions, namely, the normal, Laplace and the Cauchy

distributions. He considered sample sizes of 50, 100 and 200 representing low, medium

and large sizes, respectively, to investigate the effects of sample size. To examine the

effects of the degree of censoring he considered 25% and 50% degrees of censoring.

Further, the explanatory variable, x it , was generated from the interval [0,20] by plac-

ing each observation equidistantly, the distance depending on the sample size. Finally,

while [A was fixed at one throughout the experiment, the constant term 00 was used
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to adjust the degree of censoring and takes different values depending on the type of

the error distribution and the required degree of censoring.

Paarsch (1984), based upon 100 replications of Monte Carlo results, pointed out

the following important points.

Under normally distributed errors, the tobit MLE performed better than both

the H2S estimator and Powell's LAD estimator. The latter two appeared to be

biased in small samples sizes, although the bias shrinks quickly in large samples.

The LAD estimator appeared to be neither accurate nor stable for sample sizes

less than 100 and a high degree of censoring. But, for large sample sizes, the

LAD estimator performed much better than the H2S estimator under any of

the distributions considered in the study. He also indicated that the LAD

estimator performed better than the MLE when the errors are Cauchy. Note

that Powell's LAD estimator is computationally burdensome and hence its use

in applied research is very limited. Paarsch (1984) noted that three hundred

calculations for Powell's LAD estimator took 500-550 CPU minutes compared

to 60-70 CPU minutes for three hundred MLE and 30-40 CPU seconds each for

the OLSP and H2S estimators.

Finally, but not surprisingly, Paarsch (1984) reported that the least squares

estimator based on the observations for which the dependent variable is positive

(OLSP) performed poorly in all cases.

Note that Paarsch's results have been very influential in the finite sample studies of

the sample selection literature. Other studies which are similarly designed to that in

Paarsch's paper include those of Moon (1989) and Nawata (1993) and are discussed
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later in this Chapter. But first it is very important to examine the outcomes in

Paarsch's experiment and their implications for the tobit estimators.

Clearly, the results for the MLE under the correct specification of the model are

as anticipated. That is, the MLE performs better under normally distributed error

terms. This outcome is quite consistent with our expectations and is in agreement

with other similar studies such as those of Wales and Woodland (1980), Flood (1985)

and Moon (1989).

However, what is a most interesting result in Paarsch's paper is that the MLE is

preferable to both the H2S and the LAD estimators under the Laplace distribution.

Surprisingly, this result indicates the robustness of the MLE to non-normality of

the error terms. This is an outcome which is in contrast to previous claims such

as those of Goldberger (1980) and Arabmazar and Schmidt (1982) who indicated

that the MLE is not robust to the violations of assumptions about the error term.

Specifically, these studies indicated that the MLE is not only inefficient but also

inconsistent if the assumption of normality does not hold. Obviously, there seems to

be quite a significant deviation between these studies and those of Paarsch's (1984);

this deviation suggests the need for further research regarding the properties of the

MLE of the tobit model undtr,,non-normal distributions.

On the other hand, Paarsch's paper depicts that the MLE under the Cauchy

distribution did not perform as well as under the Laplace distribution and, in this case,

is particularly inferior compared to the semi-parametric LAD estimator. The reasons

for these substantial differences in the finite sample performance of the MLE are not

clearly explained. One possible explanation could be that the MLE did not perform

well because the Cauchy distribution, unlike the Laplace, does not have finite moments.
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It would be interesting to see whether the results for the Cauchy distribution hold for

other similar distributions, but with finite first and second moments.

Another important aspect which is worth discussing in a study of this nature

is the design of the experiment. It is clear that the outcome of any Monte Carlo

experiment is likely to be influenced by the design of its experiment, although the

significance of this influence may vary from one experiment to the other. One of the

problems with Paarsch's (1984) results is related to his experimental design. That

is, some of the outcomes in Paarsch's paper are attributed to a critically deficient

experimental design. For example, one of the estimators included in the experiment,

the II2S estimator, is known to be very sensitive to the multicollinearity between the

explanatory variables and the estimated inverse of Mill's ratio (see Chapters 2 and 3).

This implies that an experimental design which yields a high correlation between the

explanatory variables and the estimated hazard function, unless specifically designed

for that purpose, is likely to contribute to negative outcomes for this estimator. That

is exactly what has happened in Paarsch's experiments. A quick examination of his

experimental design reveals that almost all setups in the experiment yield a correlation

between the explanatory variable, x li , and the estimated hazard function, 51/4(xiii6e)

which is close to negative one (i.e., I, I f_`-2 1). Thus, it is not surprising that the

II2S estimator performed so badly in all cases as compared to both the MLE and

LAD estimators. For example, as reported in Paarsch (1984, pp. 210-212), given the

normal distribution and 25% degree of censoring, the Monte Carlo variances of the

coefficients for the II2S estimator are reported to be up to 75 times larger than those

of the MLE estimates and more than 30 times larger than those of the LAD estimators

for the large (200) sample size. The difference between the Monte Carlo variances of
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the MLE and the H2S estimators increased dramatically to several hundreds for the

smaller sample sizes (i.e., for sample sizes of 50 or 100) and 50% degree of censoring.

The main reason for this is that there exists almost exact collinearity between the

explanatory variable and the estimated inverse of Mill's ratio in the experiment.

However, no explanation has been provided for such unbelievably large differences.

This, however, is not to argue in favour of the H2S estimator but to indicate the

severity and the consequences of biases that may be introduced with or without the

knowledge of the researcher in any experiment. Further, Paarsch (1984) used only

100 replications which may indicate that the accuracy (quality) of the results of the

experiment may be questionable. Finally, although the above discussion focusses on

specific experimental results in the literature, it is possible similar comments can be

made about many other studies [see Leung and Yu (1994) for further comments in

this direction]. This implies that an important consideration should be given to the

design of any experiment before one realizes the outcomes.

Flood (1985) compared the small sample properties of the maximum likelihood

estimator (MLE) and the corrected least squares estimator (COLS), proposed by

Greene (1981a, 1983) of the tobit model. He considered a model of the form (4.4)-(4.5)

and studied the effects of (i) non-normally distributed error terms, (ii) sample size,

(iii) degree of censoring, and (iv) normally distributed exogenous variables. The non-

normal distributions were generated from a mixture of normally distributed random

variables.

Flood's (1985) study involved actual data from the 1975-1976 survey of time

allocation among American adults containing a total number of 766 observations.

Flood's paper depicts the following point:
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Similar to the results of Wales and Woodland (1980) and Paarsch (1984), when

the errors are normally distributed, the MLE is superior to the COLS estimator.

Bias appears to be a problem for the MLE only for the smallest sample sizes.

However, the COLS is biased even when the sample size increases. Further,

there exists some evidence that the bias in COLS increases with the increase

in the proportion of limit observations (degree of censoring) in the sample. It

is important, however, to note that most of the bias in the COLS disappears

when the exogenous variables are generated from a normal distribution, which

is very unlikely to be the case in applied research.

There appears to be some bias for the MLE under non-normality of the error

terms. However, the COLS estimates are not sensitive to the particular choice

of distribution whether normal or non-normal. The COLS estimates appear to

be superior to those of the MLE for highly skewed distribution.

More recent studies of the small sample properties of tobit estimators include those

of Moon (1989) and Nawata (1993, 1994). Moon's (1989) paper was concerned with

a comparison of the semi-parametric estimators of the tobit model. These estimators

include Powell's least absolute deviations (LAD) estimator, the Buckley-James esti-

mator, Horowitz's distribution-free least squares estimator and its conditional version

which was proposed by the author. The tobit MLE was also included in the compar-

ison. Similar to that of Paarsch (1984), Moon (1989) considered three distributions,

namely, the normal, Laplace and Cauchy distributions for the error term. In general,

his design of the experiment was the same as that of Paarsch (1984) except that the

number of replications were increased from 100 to 500.
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Interestingly, Moon's paper also depicts that the MLE performs well under the

Laplace distribution when compared to the semi-parametric estimators of the

model. Obviously, the MLE is the best under normality of the error terms.

On the other hand, the LAD estimator seems to perform better under the

Cauchy distribution. However, bias appears to be a problem for small sample

sizes and higher degrees of censoring. These results are quite similar to those

of Paarsch (1984). Another, more serious problem with the semi-parametric

estimators is their computational difficulty which makes them undesirable in

applied research.

More recently, Nawata (1993, 1994) studied the finite sample properties of the

estimators of the tobit model but with a slightly different objective than most of

the papers discussed above. In particular, Nawata's (1993, 1994) papers are aimed

at investigating the effects of correlation between the explanatory variables and the

estimated inverse of Mill's ratio on the performance of the H2S estimator. His exper-

iments, also similar in design to that of Paarsch (1984), reveal that the poor finite

samples performance of the H2S estimator (for example, Wales and Woodland (1980),

Nelson (1984), Paarsch (1984)) can, in most cases, be attributed to the existence of

a high correlation between the explanatory variables and the estimated hazard func-

tion, A(.). Specifically, Nawata (1993) pointed out that there almost always exists

a high (and negative) correlation between the explanatory variables and the hazard

function and that this is the reason why the H2S estimator is less efficient.

Other related Monte Carlo studies in the sample selection literature include,

among others, those of Hartman (1991), Manning, Duan and Rogers (1987) and
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Leung and Yu (1994). Although similar, these studies involve sample selection mod-

els involving simultaneous equations in which the H2S estimator plays an important

role in the estimation of the parameters of the model. In general, these studies also

indicate that the H2S estimator can be inefficient in finite samples. In particular,

as discussed earlier in this Chapter, Leung and Yu (1994) argued that the negative

results regarding the 112S estimator which reported by many Monte Carlo studies

including those of Paarsch (1984) and Manning, Duan and Rogers (1987) are usually

exaggerated by a critical design problem that produces a serious multicollinearity

problem.

4.3 Summary and Conclusions

In recent years, a number of analytical methods and econometric techniques have

been developed to address the problems of estimation and/or test statistics of the

censored regression (tobit) model. However, most of these studies are concerned with

the asymptotic properties of the various estimators or test statistics of the model.

On the other hand, there exists only a few studies which are concerned with the

small sample properties of the various estimators of the model; this study aims to

contribute in this direction.

In this Chapter, we discussed the relevant small sample studies and their likely

implications in applied research. Those estimators of the model which have been

studied most frequently in the finite sample studies include the maximum likelihood

estimator (MLE), the Heckman's two-step (H2S) estimator and the semi-parametric
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least absolute deviations (LAD) estimator. The relative performance of these estima-

tors were compared under the normal and non-normal distributions of the error term

as well as different sample sizes and degrees of censoring. The main results and their

implications may be summarized as follows.

As anticipated, the MLE is superior to all other estimators of the model, pro-

vided that the errors are normally distributed. However, under non-normality

of the error terms, the MLE appears to provide mixed results. For instance, un-

der the Laplace distribution, the MLE performed better than both the H2S and

LAD estimators in two separate studies. This is quite surprising because the

MLE is not expected to be robust under non-normality of the error terms. How-

ever, the situation is different under the Cauchy distribution where the MLE is

not as good as it is under the normal or Laplace distributions. Further, there

is very little evidence regarding its performance under skewed distributions of

the error terms.

On the other hand, although the LAD estimator appears to do well under the

Cauchy distribution as compared to the MLE, it has other serious consequences.

It is inefficient not only when the model is correctly specified (i.e., under nor-

mality) but also under the Laplace distribution. More importantly, it is neither

reliable nor stable for small samples and higher degrees of censoring. It is

also computationally burdensome even for the simplest cases, making it very

unattractive for applied research.

The H2S estimator appears to be relatively inefficient compared to the MLE in



CHAPTER 4. RELEVANT MONTE CARLO/SIMULATION STUDIES 	 84

almost all cases. However, it is also important to note that most of the inef-

ficiency of the results have been inflated by serious design problems. A design

problem which produces serious correlation between the explanatory variables

and the estimated inverse of Mill's ratio.

In general, although there are many estimators of the model, the evidence on

small sample properties of many of the estimators is either very limited or

non-existent. Further, almost all of the studies discussed in this Chapter have

been obtained based on a limited number of Monte Carlo replications (samples)

which makes the accuracy of many of the outcomes questionable.

Finally, it is important to note that almost all the finite sample studies have been

concerned with the bias and efficiency of the point estimates of the parameters of the

model. In other words, none of these studies have actually attempted to investigate

the performance of the various estimators when they are used for hypothesis testing

and/or confidence interval estimation for the parameters of the model. Note that

many researchers are more interested in reliability as reflected by interval estimates

than in single point estimates. This study considers most of the points discussed

above and is aimed to narrow the gap between the asymptotic results and the finite

sample properties of estimators of the standard tobit model.



Chapter 5

The Design of the Monte Carlo

Experiment

5.1 Introduction

The Monte Carlo method is a scientific tool which is used to solve many complex

problems which may or may not be possible to solve analytically. Although the term

Monte Carlo is said to have been introduced by Metropolis and Ulam (1949), its

use has become increasingly important in recent years with advances in computer

technology and power. This is because the Monte Carlo approach is relatively capital

intensive, requiring a great deal of computer power and time. The Monte Carlo

methodology is not specific to econometrics or statistics and is widely used in other

disciplines of science. For example, it is used to evaluate complex multidimensional

integrals and/or to approximate certain integral equations in physics. Useful materials

which are related to the Monte Carlo methodology include those of Hammersley and

85
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Handscomb (1964), Rubinstein (1981), Kalos and Whitlok (1986) and Lewis and Orav

(1989).

In econometrics, Monte Carlo methods are used frequently to examine, among

other things, the finite sample properties of various estimators (or an estimator)

under some prespecified error distributions, the size of a test statistic under the

null hypothesis and the power of a test statistic under some specified alternative

hypothesis. Hendry (1984) provides useful discussion on the use of Monte Carlo

experimentation in econometrics [see also Smith (1973) and Sowey (1973)]. It is

important, however, to note that this Chapter is not concerned with Monte Carlo

methodology in general but with the design of the experiment used in this study.

It is clearly known that the design of the experiment is an integral part of a Monte

Carlo study and that it may influence the outcomes of the experiment. That is, the

outcomes of a Monte Carlo experiment depend on the specifications of the model

(models) being studied and the various specific details of the experimental design

which are usually determined by the experimenter. This implies that, like many

other scientific tools, the Monte Carlo experiment also has its limitations. The two

most frequently cited criticisms of Monte Carlo studies are the problems of specificity

and precision [see Hendry (1984) for more discussion]. However, the impact of these

problems, although not entirely avoidable, can be reduced by examining closely the

various components of the experimental design as well as by learning from previous

studies, some of which are discussed in the preceding Chapter. Thus, the objective

of this Chapter is to provide the details of the design of the experiment of the study,

a design which tries to keep the various problems to a minimum.

Specifically, Section 5.2 begins with the specific form of the econometric model
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to be investigated in the Monte Carlo experiment. It then details the various distri-

butional assumptions, the levels of censoring and the sample sizes considered in the

experiment. The data generation and Monte Carlo estimation process of the experi-

ment is discussed in Section 5.3. This section includes, the specification of the data

generation mechanism which is a special case of the econometric model, the gener-

ation of the exogenous variables of the model, the determination of the parameters

(true values) and the generation of the random variates in the experiment. Further

important items such as the number of replications, output statistics to be . computed

and other related matters are included in this section. Section 5.4 concludes.

5.2 The Specification of the Model

The specific model to be investigated in this study is of the form:

yz = 130 -1-	 02x2i	 ui ,	 i = 1, ..., N.	 (5.1)

Yi = y: if y: > 0

= 0 if y: < 0	 (5.2)

where X=(1, x 1 , x 2 ) is an (Nx3) matrix of observations containing a column vector of

l's corresponding to the constant term and observations on the explanatory variables

x 1 and x2,

y* , the latent variable, is an (Nxl) vector which is assumed to be observed only if it

is positive,

y is an (Nxl) vector of observations on the dependent variable consisting of N1

positive (non-limit) observations corresponding to the positive values of y* and No =

N — N1 zero (limit) observations,
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0=(0o, Pi, i32)' is a (3x1) vector of unknown parameters to be estimated, and

u is an (Nxl) vector of identically and independently distributed random errors with

mean 0 and variance cr 2 . Note that if ui 's are normally distributed model (5.1)-(5.2)

becomes the standard tobit model defined by (2.1)-(2.2).

As discussed in Chapter 4, most of the Monte Carlo studies of the estimators of the

model have been based on a relatively simpler model which contains one explanatory

variable. Thus the model in (5.1)-(5.2) can be considered slightly more general when

compared to these studies. The model is also convenient if one needs to study, say,

the effects of correlation or misspecification.

Given this model, the objectives of the Monte Carlo experiment are to investigate

the effects of the following on the estimators which we discussed in Chapter 2.

1. The effects of changes in distributional assumptions for the disturbance

term. That is, to investigate, more clearly, the effects of violating the

assumptions of the error distribution of the model.

2. The effects of the degree of censoring.

3. The effects of sample size.

4. The effects of multicollinearity between the explanatory variables. More

specifically, the aim is to investigate the effects of correlation between the

X's and the estimated inverse of Mill's ratio on the performance of the

H2S and the 3SE estimators. A more elaborate discussion will be provided

later in the respective Chapters of the study.

The following Sections of this Chapter provide the specific details considered in the

Monte Carlo experiment in order to achieve these objectives.
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5.2.1 The Effects of Distributional Assumptions

In almost all cases the assumption of normally distributed error terms is used to de-

rive the asymptotic properties of the various estimators of the tobit model. However,

in reality, this assumption may not hold. Therefore, it is the purpose of this study

to investigate the performance of the estimators under several distributions for the

disturbances of the model. In other words, the disturbances of the model are first gen-

erated from a presumed (known) error distribution and then the model is estimated

by assuming (pretending) that the errors are normal.

In order to do this we consider three major distributional assumptions in our

experiment. The details are given as follows:

1. Our first objective is to evaluate the finite sample performance of the different

estimators when the assumption of normality of disturbances holds. This is

important for two reasons: (i) for the comparison of the various estimators when

the assumption is actually true and (ii) it can be used as a basis for comparison

between estimators when the assumption of normality does not hold. To attain

this, the standard normal distribution is considered, i.e., u i	N(0, 1).

2. The second major objective is to investigate symmetric departures from nor-

mality. That is, a situation where the error terms are symmetric but have a fat

(wide) tailed distribution. To pursue this objective the students'-t distribution

with three degrees of freedom is considered and its effects investigated.

3. The third main purpose is to examine the finite sample performance of the esti-

mators when the disturbances have a skewed distribution. One way of achieving



CHAPTER 5. THE DESIGN OF THE MONTE CARLO EXPERIMENT 	 90

this objective is by considering a skewed distribution such as the Chi-square dis-

tribution. In this particular study we considered a chi-square distribution with

four degrees of freedom.

Note that the distributional assumptions given in items (2) and (3), that is, the

students'-t distribution and the chi-square distribution, are designed to represent two

major departures from the usual assumption, these departures being (i) symmetric

but fat tailed and (ii) skewed distributions. The usual assumption is also represented

by the standard normal distribution given by item (1) above.

In general, these distributions represent, in terms of shape, the possible violations

of the assumptions of the error term in applied research as well as a situation where

the assumption actually holds. The non-normal distributions considered in this study

are also different from those of Paarsch (1984) and Moon (1989) who used the Laplace

and the Cauchy distributions in their experiment. However, unlike this study, their

experiments involve only symmetric distributions for the error term. It is interesting

to see if Cauchy results from others also hold for the t-distribution with three degrees

of freedom, where first and second moments are finite. It is also important to note

that, although many empirical observations (economic, social, etc.) may follow any

of these or similar distributional structures (assumptions), it is also true that any

study of this nature is limited by the problem of specificity [see Hendry (1984)].
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5.2.2 The Effects of the Degree of Censoring

The degree of censoring indicates the percentage (ratio) of limit (zero) observations

to the total number of observations on the explanatory variable, y i . For example,

a 25% degree of censoring means that out of, say, 100 observations only 25 of them

correspond to zero values on yi and the remaining 75 observations are positive.

The effects of the degree of censoring may vary from one estimator to another and

across various distributions and sample sizes. But in general, where the severity of

the degree of censoring influences performance, it is useful to examine changes asso-

ciated with an increase in the number of limit observations. The effects of the degree

of censoring in the performance of the estimators of the tobit model are therefore

examined at three levels, namely, 25 percent, 50 percent and 75 percent degrees of

censoring. These levels of degree of censoring are chosen to represent a wide range of

economic or other data to which the model may be applied.

Another point which is worth mentioning here is that, as discussed in Chapter

3, the correlation between the explanatory variables and the inverse of Mill's ratio

increases with higher levels of the degree of censoring and hence affects the two-step

estimators of the model. In other words, a change in the level of censoring also implies

a change in the correlation between the explanatory variables and the estimated Mill's

ratio. Therefore, taking this into consideration, it becomes very important to study

these effects using a wide range of censoring levels.
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5.2.3 The Effects of Sample Size

One of the fundamental objectives of finite sample studies of this nature is to examine

the results for the estimators based on sample sizes which are likely to be represen-

tative of real life situations. The choice of these sample sizes therefore may depend,

among other things, on the type of the model and its use in applied research, technical

difficulties involved in the experiment, the comparability of the expected outcomes

to other related studies, availability of resources and so on.

Given this, three levels of sample sizes are considered in order to examine the finite

sample properties of the estimators of the model. These levels include the sample sizes

of 100, 200 and 400 which correspond to small, medium and large sizes, respectively.

In particular, it is important to note that the choice of these sizes is made by taking

into consideration factors such as the degree of censoring. For example, given the

small sample size of 100, the actual number of positive (non-limit). observations on

the explanatory variable yi reduces to 25, 50 and 75 observations, respectively, for

75 percent, 50 percent and 25 percent degrees of censoring. Similar interpretations

can be made for the medium and large sample sizes. In general, this experiment

involves sample sizes ranging from a minimum of 25 to a maximum of 375 non-limit

observations.

5.3 Data Generation and Estimation Process

Given the specification of the model and the various assumptions discussed in the

preceding sections, this Section presents the details involved in the data generation

and Monte Carlo estimation process of the experiment. This process may include the
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determination of the explanatory variables, the true values for the parameters, the

generation of the random variates (i.e., the standard normal, the students'-t and the

Chi-square distributed random variates) and other things which may be relevant for

the data generation process of the experiment. This is followed by a discussion on

the Monte Carlo estimation procedure which may include the determination of the

number of runs (replications) used in the experiment, parameters to be estimated,

outputs (or statistics) to be obtained for the comparison of the various estimators

and related discussions.

5.3.1 The Data Generation Process

The data generation process of this experiment is based on the model defined in (5.1)

which is given by

Y: = o + P1 X 11 P2X21 Wio
	

i = 1, ..., N.	 (5.3)

where the y:'s, the X's, the ,8's and the ui 's are as defined in (5.1)-(5.2).

This is a well known linear regression model with two explanatory variables, three

unknown parameters, O's, and a random disturbance term. The crucial point which

makes model (5.3) different from the classical linear regression model, as defined in

(5.1)-(5.2), is that the dependent variable y: is assumed to be observed only when it

is positive.

Given (5.3), the various components of the model are determined as follows:

(i) One of the important components in the data generation process of a Monte

Carlo experiment is the generation of the explanatory variables in the model.

There are generally two main ways of obtaining these variables, each of which



CHAPTER 5. THE DESIGN OF THE MONTE CARLO EXPERIMENT	 94

have their own advantages and disadvantages. One is to use a real data set which

contains all the variables and sample the variables repeatedly. The advantage

of this kind of procedure is that it enables one to see the applicability of the

different estimators in real life situations. However, one of the drawbacks of such

an experiment is that it is sometimes very difficult to identify whether some of

the differences that may be observed between the estimators are a result of

the specific data set, which is not controlled by the researcher, or due to other

reasons. Of course, another major problem is to get an actual economic or other

data set which is large enough to conduct a Monte Carlo experiment.

The second alternative is to use hypothetical (or computer generated) data.

Although the data may not be generally representative of real life situations, this

procedure allows the researcher to identify the reasons that may have caused any

differences between the estimators. This is because the researcher has relatively

full knowledge about the experiment. It is also possible to use both actual and

computer generated data in the experiment. But, again, the availability of real

data and time and resource constraints are the major problems.

In this study, we have chosen the second alternative, i.e., we used computer

generated variables because of their flexibility and mainly due to lack of a large

actual data set. The variables are generated as follows:

The observations on the explanatory variable x ii , i = 1, ..., N, are generated

from the interval [0,4] equidistantly where the distance depends on the sample

size.

Similarly, the observations on the second explanatory variable, x 2i , i = 1,	 N,
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are generated uniformly from the interval [-1,1] and independently from xii•

Once the values of the explanatory variables are determined from their respec-

tive intervals they remain the same throughout the experiment.

Note that there is one important point which should be taken into consideration

while generating the explanatory variables of the model. That is, that some of

the estimators of the tobit model are likely to be sensitive to multicollinearity

(e.g., H2S). Thus, the explanatory variables are generated so that this is not

always the case. As discussed in Chapter 4, this is useful in terms of avoiding the

bias against some of the estimators as a result of the design of the experiment.

On the other hand, a different data generation mechanism will be discussed at a

later stage that will be used to investigate the effects of multicollinearity between

the explanatory variables and the inverse of Mill's ratio on the performance of

the estimators [see Chapter 8].

(ii) The parameters	 and )32 are set to be equal to one, (i.e., /3 = )32 = 1) in all

cases.

(iii) The degree of censoring is determined by varying the value of i30 which takes

different values depending on the particular level of degree of censoring and type

of distribution. For example, given (i) and (ii), if the disturbances are normally

distributed with mean zero and variance equal to one, i.e., the standard normal

distribution, then a value of [30 = —0.75 yields approximately 25 percent degree

of censoring. Similarly, the approximate levels of degree of censoring of 50

percent and 75 percent can be obtained by setting [30 equal to -2.00 and -3.25,

respectively. Some preliminary experiments were conducted to determine the
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value of #0 for the three types of distributions and degrees of censoring.

In general, items (i) to (iii) are interrelated and determine the systematic com-

ponent of the data generation process in the experiment. The remaining component,

the generation of the random variable, u i in (5.3) is discussed below.

5.3.2 The Generation of Random Variates

As we have discussed in the preceding sections, this experiment involves three distribu-

tional assumptions for the random disturbances of the model, namely, the normal, the

students'-t and the chi-square distribution. Note that, hereafter, the names normal,

students'-t and chi-square distributions in this particular design refer, respectively, to

the standard normal distribution, students'-t distribution with 3 degrees of freedom

and the chi-square distribution with 4 degrees of freedom. The random variates, more

accurately referred to as pseudo-random variates, must therefore be generated from

their respective distributions.

Note that there are several methods of generating random variates and many

algorithms have been suggested based on the various methods [see for example, Ru-

binstein (1981), Lewis and Orav (1980), and Forsythe (1972)]. These, however, are

not all equal in terms of efficiency and quality and therefore are subject to the choice

of the researcher. However, in recent years the choice of the random generators has

become less important because of the availability of statistical/econometric packages

such as SHAZAM which incorporate random variable generators which are widely

used and well tested. Below, we provide a brief discussion on the random variate

generation for the three distributions listed above.
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1. The Normal Distribution

Independent standard normal variates are derived from independent standard

uniform variates. These random variates can be obtained using several proce-

dures. One way of generating the random variates is using the inverse transfor-

mation method. This method requires that the probability distribution function

of the random variable must be invertible. However, for many probability dis-

tributions such as the normal distribution this is either impossible or difficult.

Further, the inverse transformation method is not also necessarily the most

efficient [see Rubinstein (1981), Knuth (1981) and Lewis and Orav (1989)].

Alternatively, one of the widely applied methods is that of Box and Muller

(1958) which is used to obtain a pair of independent normal random variates

from a pair of independent uniform random variates as follows.

Let U, and U2 be independent random variates from 13(0,1), then the variates

Z1 = (-2 In U01/2 cos 27rU2	 (5.4)

Z2 = (-21n U1 ) 112 sin 27U2	 (5.5)

are independent standard normal variates. Thus one can obtain U, and U2 from

U(0,1) and compute Z1 and Z2 simultaneously by substituting Ul and U2 in the

system of equations (5.4)-(5.5). However, one major problem of the Box-Muller

procedure is it heavily relies on the independence of U1 and U2. Thus, if the

uniform random variables are not based on a good uniform random generator,

the properties of the normal random variates will suffer.

Another frequently and widely applied procedure for generating random variates

is based on the acceptance-rejection method. This method is originally due to
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von Neumann (1951) and was later generalized by Forsythe (1972). Further

extensions of the method for the normal distribution are provided by Ahrens and

Dieter (1973). The method consists of sampling a random variate from a certain

probability distribution and then subjecting it to a test for acceptance [see also

Rubinstein (1981)]. This method is quite efficient and frequently used in applied

research. For example, the random number generator in SHAZAM is based on

the acceptance-rejection method. Specifically, the algorithm used to generate

the normal random variates is based on an improved version proposed by Brent

(1974). As noted by Brent (1974, p.705), the algorithm is exact, relatively

efficient and is preferable to methods which depend on central limit theorems

or use approximations to the inverse of the distribution function. Further, the

chi-square tests for independence of pairs of successive random variates also

show that they are highly independent at a 5 percent significant level.

Once the normal random variates are generated, random variates from any other

distributions, including the chi-square and the students'-t, can be • generated

using fundamental statistical relationships as follows [see Rubinstein (1981),

Leemis (1986)].

2. The Chi-Square Distribution

Let Z1 , ..., Zk be standard normal random variates from N(0,1). Then

Y = 	(5.6)

has the chi-square distribution with k degrees of freedom and is denoted by 470•

It has mean k and variance 2k. That is, the sum of the squares of independent
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standard normal variates has a chi-square distribution with degrees of freedom

equal to the number of terms in the sum.

In particular, if Z1, Z2, Z3 and Z4 are independent standard normal variates

then Y = Zi + Z2 + has a Chi-square distribution with four degrees

of freedom with mean 4 and variance equal to 8. Thus, once we generate the

Z's from (1), Y can be easily generated using (5.6). Further, the location

and scale of the chi-square random variates is changed so that their mean and

variance become zero and one, respectively. This is done so that the effects

of the distributions on the estimators of the model can be attributed to their

shapes not to variations in the mean and variance of the distribution.

3. The Students'-t Distribution

Similarly, the random variates from a students'-t distribution are derived using

the following statistical relationship.

Let Z have a standard normal distribution, let Y have a chi-square distribution

with k degrees of freedom, and let Z and Y be independent, then

X= V(Ylk)
	 (5.7)

has a students'-t distribution with k degrees of freedom, denoted by t (k) , and

has mean zero and variance given by k/(k — 2). Thus we generate X by first

generating Z and Y using definitions (1) and (2), respectively. Again, the

students'-t distributed errors are rescaled so that their variance is equal to one.

4. Finally, since the explanatory variables are fixed, the coefficient of determi-

nation, R2 , is controlled by setting the variance of the disturbance term to a
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certain constant which in this case is set to be equal to one, i.e., o- 2 1. This

also implies that the signal to noise ratio is constant, the signal being the vari-

ation of the dependent variable due to variations of the systematic component

and the noise represents the variance of the error term of the model.

Note that it is also important to determine the magnitude of the variance of

the error term in relation to the variations in the explanatory variables. One

of the reasons for this is that if the variation in the explanatory variables is

large compared to the variance of the error term then the correlation between

the explanatory variables and the inverse of Mill's ratio becomes high. Sim-

ilar problems arise if the variance of the error term is large relative to small

variations in the explanatory variables [see Leung and Yu (1994)].

Given the data generation process discussed above, the correlations that exist

between the explanatory variables and the inverse of Mill's ratio are illustrated as fol-

lows. For example, the correlation matrices below summarize the simple correlations

between the variables, x1 , x 2 and A(.) for the three levels of censoring, given normally

distributed errors and a sample size of 200.

Degree of censoring=25% 

x 1

x 2

A(.)

Xi

1.00

—0.12

—0.74

X2

—0.12

1.00

0.29

AG)

—0.74

0.29

1.00

(5.8)
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Degree of censoring=50% 

X1

X2

A(.)

X1

1.00

—0.30

—0.81

X2

—0.30

1.00

0.33

A(.)

—0.81

0.33

1.00

(5.9)

Degree of censoring=75% 

X1

x 2

A(.)

X1

1.00

—0.10

—0.85

X2

—0.10

1.00

0.49

A(.)

—0.85

0.49

1.00

(5.10)

As shown above, there is very little correlation between the explanatory variables

x 1 and x 2 . Similarly, the correlation between x 2 and A(.) is quite small. However,

the correlation between x 1 and A(.) is relatively larger in magnitude and varies from

around -0.75 for the low level of censoring to -0.85 for the high level of .censoring.

This indicates that even if no correlation exists between x 1 and x2 the correlation

between the X's and the inverse of Mill's ratio can be substantial. The above corre-

lations between the variables remain around the same level for all samples and errors,

except for the small sample size (100) and high degree of censoring (75%) where the

correlation between x 1 and A(.) is around -0.95.

Note that the above matrices also reveal that the higher the degree of censoring

the bigger (stronger) is the correlation between the explanatory variables and the
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inverse of the Mill's ratio. However, in practice, this may not be always the case.

That is, there may be situations where the degree of censoring is high but with a

low or moderate correlation between the explanatory variables. Alternatively, the

correlations between the variables can be high while the degree of censoring is low.

These and other related questions will be examined further by considering a modified

experimental design later in this study (see Chapter 8).

5.3.3 The Estimation (Monte Carlo) Process

Two important considerations in the Monte Carlo experiment are the number of

replications (samples) used in the experiment and the output statistics to be computed

from the experiment based on these replications.

In general, the precision of the Monte Carlo results depends on the number of repli-

cations used in the experiment. Given the data generation process discussed above,

a preliminary experiment was conducted based on 1000, 2000,..., 5000 replications.

It was observed that there was no significant difference up to three decimal points

between the results for 3000 and 5000 replications. Thus, given the large amount of

experiments required in this study, the number of replications is determined to be

3000. Each experiment in this study involves combinations of the following:

(i) Sample size: 100, 200, 400

(ii) Degree of Censoring: 25%, 50%, 75%

(iii) Type of Distribution: Normal, Student's-t, Chi-Square

Another important aspect of the estimation process is concerned with final outputs

(usually averages from the 3000 replications) to be computed to compare the various
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estimators. That is, the types of statistics used to compare the relative performance

of the various estimators of the model. In general, the computation of any output

statistics from a Monte Carlo experiment depends on the purpose and type of the

study. Next, we present the output statistics that will be computed from .the Monte

Carlo experiment of this study.

5.3.4 Output Statistics

This study involves a wide ranging comparison between estimators and includes statis-

tics relating to both point estimates (such as bias and efficiency) and to hypotheses

testing and/or confidence intervals. Some of the output statistics computed are listed

below.

Let 13k be an estimator of Ok (k = 0, 1, 2.) and M = 3000 be the number of

replications (or samples) in the experiment. Then the following statistics (outputs)

are used to compare the finite sample properties of the various estimators in the

experiment. These outputs are frequently used in studies of this nature.

1. Estimated Mean (EM):

The first step of the procedure is to compute the estimated value of the mean

for /3k from the 3000 samples. It is defined as

M

EM(A) = E(A) = E 4km/m
	

(5.11)
m=1

where A, is the estimate of /3k from the 771th sample.

Thus, the estimated mean (EM) is the average of the estimates obtained from

the 3000 samples. Given this, the following statistics are used to compare the

various estimators.
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2. Bias (BIAS):

The bias is used to measure the difference between the true value of /3k and its

estimated mean and is defined as

B
IAS(4k ) = (41c)
	

(5.12)

where t(i3k ) is as defined in (5.11).

If A is an unbiased estimator of /3k, then the bias is zero, i.e., E(4k ) = Ok . How-

ever, in finite samples, this may not be always the case. Thus, the magnitude

of the bias is important in comparing one estimator with another.

3. Variance of ,81„ Var(/3k):

The variance of A, measures the spread of the distribution of /3k about its mean.

Its Monte Carlo-based estimate is defined by

17;70k) =	 - E(A)12

=
M  

[A	 fr
km, — (pic )1 2 M

m= 1

(5.13)

and its square-root, the standard error measures the precision of	 That

is,

SE(13k) =
^	 ^ "I [Ole m E )]2

m=1
(5.14)

The smaller the variance of the sampling distribution of 13 k , the greater is the

precision of the estimator. That is, the chance of a sample estimate lying within

some specified interval about the true value is greater.
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4. Mean Square Error (MSE):

An important statistic which is frequently used for comparison of various esti-

mators (or models) is the mean square error. The MSE measures the spread of

the estimates, 137,m 's, around the true values, 13k . The MSE is given by

MSE(,dk ) = E[A, — i3d2

= E{ .4k — E (Ijk)i + {E(A) — Ok]}2

= E[/3k — EAT + [E($k) — /3k]2

	

2ErSk — E(A)][E ( 4 Ic) — /3k]

	
(5.15)

since the cross product is zero, we have

	

MSE(A) = Var(41,)+[BIAS(40] 2	 (5.16)

where Monte Carlo estimates of the variance, Var(4k ), and the bias, BIAS(13k),

are computed from (5.13) and (5.12), respectively.

Alternatively, the MSE can be estimated directly as

M

MS-E(/3k) = E (0k,,,, - /3k)2/M
m=1

(5.17)

and the root mean square error (RMSE) is defined by 

m-
RMSE(/3k) = E (41. - 002/m

	
(5.18)

m=1

Note that one can use either the MSE or RMSE for comparison purposes. The

RMSE is frequently employed because it uses the same unit of measurement as

the mean or standard error. The RMSE criteria is used in this study.
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As shown above, the MSE (RMSE) takes into account both the variability

and bias of the estimator which makes it often a preferable yardstick in the

comparison of estimators or models. The smaller the MSE (RMSE) the better

is the estimator.

5. Comparison of Variances and Hypothesis Testing:

One of the major objectives of this study is to compare the various estimators

in terms of their performance for hypothesis testing and/or construction of

confidence intervals for the coefficients of the model. Thus, the following related

outputs are computed in addition to those discussed above,

(i) Asymptotic variances of the estimators are computed by inserting the ac-

tual (known) values into the their respective asymptotic expressions for

the covariance matrices provided in Chapters 2 arid 3 of this study. For

example, the asymptotic variances of the maximum likelihood estimators

are computed by substituting the actual values in equation (2.21) of Chap-

ter 2, i.e, the inverse of the information matrix. The asymptotic variances

of other estimators are computed in a similar way using their respective

covariance matrices.

These asymptotic variances are then compared with their corresponding

true (Monte Carlo) variances obtained by using (5.13). The main pur-

pose of this comparison is to examine whether the asymptotic variances

are accurate (or good) estimates of the finite sample variances of the esti-

mators. This comparison has important implications in applied research.

That is, assuming asymptotic variance expressions are used to compute
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standard errors, asymptotic variances which are larger than their corre-

sponding variances generally imply confidence intervals which are wider

than they should be. On the other hand, asymptotic variances which are

smaller than their true variances imply confidence intervals which are nar-

rower (or overprecise) than the desired level; or the probability of rejecting

a true hypothesis becomes larger than would be expected. These implica-

tions are studied in detail using the following statistics.

(ii) To examine the implications of the asymptotic variances of the estimators

for hypothesis testing, we test the hypotheses:

110 : i3k = 1

:	 1,	 k = 1, 2.

To test the hypotheses we use the test statistic:

-4, 1t =  
,V Cijk

(5.19)

(5.20)

(5.21)

where, under the null hypothesis, the statistic t is asymptotically dis-

tributed as a standard normal random variable, /3k is the sample estimate

of /3k and V ar(A) is an estimate of the variance of A based on the asymp-

totic variance expression.

It is important to note that the estimated variance of ik V ar(A), is

obtained by substituting sample estimates into the diagonal elements of

the asymptotic expression of the covariance matrices of the estimators.

That is, while the asymptotic variances discussed in (i) are obtained using

the actual values, the variance of /3k in (5.21) is obtained by substituting
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the sample estimates into the diagonal elements of the asymptotic results

or expressions.

Unless otherwise specified, a nominal 5% level of significance is considered

in all cases so that the expected percentage of rejections whenever the null

hypothesis is true is equal to 5%.

Or equivalently, a 95% confidence interval can be constructed such that:

P [Sk — z x s.e.(ijk ) < Ok < (3k + z X s. e. ($k)] = 0.95	 (5.22)

where s.e.(4k ) = NIVar(Ok).

which is equivalent to

P(-1.96 < t < 1.96) = 0.95	 (5.23)

where t is defined by (5.21) and the standard z value at a 5% significant

level is approximately 1.96 for large N.

Thus, the percent of coefficients contained in the 95% confidence interval is

obtained for the estimators. The results are then examined to see whether

the different estimators provide the desired (expected) level or not.

Note that all or some of these output statistics can be used in the analysis of

results depending on the necessity and purpose of the comparison. Furthermore,

although most of the outputs and other details of the experiment are provided in this

Chapter, additional explanations will be provided in the subsequent Chapters when

the need arises.

Finally, given the data generation process in this Chapter, the computer program

for this Monte Carlo study is entirely written using the econometric computer program
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called SHAZAM, see White (1993), and processed on a mainframe computer. Any

problems relating to the program or estimation (Monte Carlo) process are discussed

along with the results of the experiment in the next Chapters.

5.4 Summary and Conclusions

In this Chapter we presented the details of the design of the experiment which is

an integral part of the Monte Carlo study. The quality of the results and their

applicability to more general situations depends on the design of the experiment.

One of the most important aspects discussed in the design of this experiment is the

data generation process of the experiment. The data generation process involves the

generation of the explanatory variables, the determination of the levels of censoring

and sample sizes, as well as the determination of the true values of the parameters of

the model. Further, the various distributions of the error term and. their generation

mechanism are provided and discussed in this Chapter.

The design of this Monte Carlo experiment is not generally different from the

previous studies discussed in Chapter 4. However, there are few noticeable differences

compared to those studies. These are:

- The specific form of the model can be considered relatively more general com-

pared to most of the previous studies discussed in Chapter 4.

- It involves a wide range of degrees of censoring and sample sizes.

- The distributional assumptions of the error term are selected to represent both

symmetric and skewed distributions.
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- The data generation process is designed so that some undesirable properties

that may result from the design of the experiment are kept minimal.

- It involves a large number of replications which is very important for the accu-

racy of the outcomes.

- Most importantly, this experiment involves, not only a large number of estima-

tors, but also much wider comparisons between the estimators. That is, most

of the estimators of the model are evaluated using several criteria.

Finally, it is important to note that like any other Monte Carlo study, this one

is also subject to problems such as specificity. We can only try to minimize these

problems.



Chapter 6

Discussion of Results

6.1 Introduction

In this Chapter we discuss the results obtained for the various estimators of the tobit

model. These estimators are discussed earlier in Chapters 2 and 3. A total number

of 11 estimators are included in this analysis. The results are obtained from a Monte

Carlo experiment of 3000 replications based upon the details of the experimental

design provided in Chapter 5.

For convenience, the estimators of the tobit model can be divided into two main

categories: those estimators using only non-limit, N1 , observations; and those which

use all N observations. This division is made purely for discussion purposes because

of the large number of estimators involved in the study. Further, it is also important

to note that all coeffients of the model including the constant term play an important

role in deriving useful results that are associated with tobit model. For example, the

effects of the dependent variable, yi , as a result of one unit change in x is, i = 1,2, ..., N,

111
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j = 1, 2 (see Section 2.10, Chapter 2). However, in almost all cases the comparison of

the estimators in this Chapter will be based only on the outcomes of the experiment

that are related to /3 1 and 02; mainly because of the large number of estimators and

hence the large amount of output statistics involved in the comparison. However,

once a few estimators are selected on a step by step basis for further analysis, the

comparison of results in later Chapters will include results on all coeffients including

the constant term of the model.

Given this situation, the anlysis in this Chapter is organized as follows. Section 6.2

presents the results obtained for those estimators using only N1 observations. Results

for the estimators using all N observations are discussed in Section 6.3. Section 6.4

presents a further analysis and comparison of selected estimators. Finally, a short

summary and conclusion is presented in Section 6.5.

6.2 Estimators using only N1 observations

Below, we discuss the Monte Carlo results obtained for the estimators using only the

positive observations on yi . These estimators include:

(i) The ordinary least squares estimator using only positive (non-limit) observa-

tions on yi (OLSP).

(ii) The Heckman's two-step estimator (H2S).

(iii) The weighted Heckman's two-step estimator (WH2S).

(iv) The three-step estimator (3SE).
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(v) The weighted three-step estimator (W3SE).

(vi) The nonlinear least squares estimator using only positive observations on yi

(NLSP).

Summary statistics of the Monte Carlo results for these estimators are provided

in Tables 6.1-6.7 and Tables A.1-A.5 of Appendix A. As a guide to interpreting the

tables, consider Table 6.1 which presents estimated results of estimators using N1

observations, given a sample size of 100, a 25% degree of censoring and for the three

distributions, namely, normal, students'-t and chi-square distributions. The first row

of Table 6.1 presents the list of distributions and the parameters (01 and /32 ) to be

estimated under each distribution. The corresponding true values of the parameters

are listed in row 3 of Table 6.1 where 01 =02 =1.000 in all cases. The numbers in

brackets indicate the column number in the table. The list of estimators are given

in column (1). In column (2) are the variables estimated for each estimator, i.e., the

estimated mean (EM), the standard error (SE), the bias (BIAS) and the root mean

square error (RMSE). Finally, the corresponding estimates are presented in columns

(3)-(8). For example, given a sample size of 100, a 25% degree of censoring and

normally distributed error terms, the EM of (3 1 using OLSP is equal to 0.760 (see

Column(3) of Table 6.1). And this is obtained as follows:

1 3000

"(81) =11 =	 =7-3000 E	
0.760	 (6.1)

z=1

Similarly, continuing downwards in the same column is its standard error (SE)

which is calculated as



True values	 1.000	 1.000	 1.000	 1.000

OLSP EM*	 0.760 0.788 0.825 0.832
SE	 0.093 0.167 0.098	 0.167
BIAS	 -0.240 -0.212 -0.175 -0.168
RMSE 0.257 0.270 0.201 0.236

H2S	 EM	 0.989 0.991 1.021	 1.016
SE	 0.190	 0.234	 0.171	 0.221
BIAS	 -0.011 -0.009 0.021	 0.016
RMSE 0.190 0.234 0.173 0.222

WH2S EM	 0.987 0.985 1.039 1.036
SE	 0.186 0.232 0.189	 0.242
BIAS	 -0.013 -0.015 0.039	 0.036
RMSE 0.186 0.234 0.193 0.244

3SE	 EM	 0.989 0.985 1.006 1.004
SE	 0.113	 0.186	 0.117	 0.180
BIAS	 -0.015 -0.011 0.006	 0.004
RMSE 0.114 0.186 0.117 0.180

1.000 1.000

0.753 0.768
0.110 0.197
-0.247 -0.232
0.271 0.304

1.013 0.995
0.172 0.232
0.013 -0.005
0.173 0.232

0.999 0.978
0.183 0.242
-0.001 -0.022
0.183 0.247

0.928 0.978
0.118 0.202
-0.072 -0.078
0.138 0.216
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Table 6.1: Results for Estimators using only N1 observations given N=100 and 25%
Degree of Censoring for the three Distributions.

Normal	 Students'-t	 Chi-Square 

131 	 132	 P1	 P2	 01	 02 

(1)	 (2)	 (3)	 (4)	 (5)	 (6)	 (7)	 (8) 

W3SE EM	 0.987 0.986 0.994 0.994 0.900	 0.886
SE	 0.112	 0.187	 0.131	 0.199	 0.129	 0.222
BIAS	 -0.013 -0.014 -0.006 -0.006 -0.100	 -0.114
RMSE 0.113 0.187 0.131 	 0.199 0.163	 0.249

NLSP EM	 1.014 1.011	 1.078	 1.059	 1.145	 1.108
SE	 0.215	 0.291	 0.162	 0.189	 0.267	 0.323
BIAS	 0.014 0.011	 0.078	 0.059	 0.145	 0.108

	

RMSE 0.215 0.291 0.180 0.198 0.304 	 0.344

* EM=Estimated Mean, SE=Standard Error, RMSE=Root Mean Square Error.
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3000
SE(/31 ) =	 - .40 2 /3000 = 0.093

	
(6.2)

z=1

and its bias is given by

B I AS(/31) =	 — i31	 (6.3)

= 0.760 — 1.000 = —0.240 	 (6.4)

Finally, its RMSE is calculated by

RM SE(,6,) =
3000

- /30 2 / 3000 = 0.257	 (6.5)
i=1

Other tables may be interpreted in a similar way. As discussed in Chapter 2 of

this study, it is a well known fact that the ordinary least squares estimator using only

positive values of yi (OLSP) provides estimates which are biased. However, what may

be of interest in this case is the degree and the direction of bias which may result due

to changes in sample size, degree of censoring and distributional assumptions of the

error term, and the relative performance compared with other estimators.

Table 6.1 shows that, given a sample size of 100 and a 25 percent degree of censor-

ing, and using the OLSP estimator, 01 and 02 are estimated, respectively, with biases

of 24.0% and 21.2% under normally distributed error terms, 17.5% and 16.8% un-

der the t-distribution and 24.7% and 23.2% under the chi-square distribution. These

biases are large compared, say, to the H2S estimates in which the coefficients are es-

timated with at most 2% bias under similar conditions. Further, as shown in Tables

6.2 and 6.3, the bias of the OLSP estimates remains high even for larger sample sizes.
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Table 6.2: Results for Estimators using only N1 observations given N=200 and 25%
Degree of Censoring for the three Distributions. 

Normal	 Students'-t	 Chi-Square

131	 132	 131	 02	 01	 132 

(3 )	 (4)	 (5)	 (6)	 (7)	 (8)(1)	 (2)

1.000 1.000 1.000 1.000 1.000 1.000

0.746 0.782 0.818 0.830 0.725 0.739
0.064 0.132 0.071 0.126 0.080 0.138
-0.254 -0.218 -0.182 -0.170 -0.275 -0.261
0.262 0.255 0.195 0.212 0.286 0.296

0.986 0.985 1.037 1.034 1.028 1.023
0.150 0.185 0.138 0.169 0.134 0.178
-0.014 -0.015 0.037 0.034 0.028 0.023
0.151 0.185 0.143 0.172 0.138 0.181

0.985 0.982 1.066 1.063 1.007 1.003
0.145 0.182 0.162 0.194 0.144 0.193
-0.015 -0.018 0.066 0.063 0.007 0.003
0.146 0.183 0.175 0.204 0.144 0.193

0.989 0.988 1.013 1.013 0.935 0.936
0.079 0.147 0.084 0.137 0.087 0.146
-0.011 -0.012 0.013 0.013 -0.065 -0.064
0.080 0.148 0.085 0.137 0.109 0.159

0.991 0.989 0.998 0.993 0.907 0.902
0.078 0.148 0.095 0.158 0.096 0.161
-0.009 -0.011 0.002 0.007 -0.093 -0.098
0.078 0.148 0.095 0.158 0.134 0.188

1.010 1.007 1.075 1.062 1.149 1.112
0.144 0.199 0.100 0.135 0.178 0.234
0.010 0.007 0.075 0.062 0.149 0.112
0.144 0.199 0.126 0.148 0.232 0.259

True values

OLSP EM*
SE
BIAS
RMSE

H2S EM
SE
BIAS
RMSE

WH2S EM
SE
BIAS
RMSE

3SE EM
SE
BIAS
RMSE

W3SE EM
SE
BIAS
RMSE

NLSP EM
SE
BIAS
RMSE

* EM=Estimated Mean, SE=Standard Error, RMSE=Root Mean Square Error.
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Table 6.3: Results for estimators using only N1 observations, given N=400 and 25%
degree of censoring for the three distributions.

Normal	 Students'-t	 Chi-Square
01	 132	 01	 02

( 1 )	 (2)	 (3)	 (4)	 (5)	 (6)

1.000 1.000 1.000 1.000

0.754 0.782 0.825 0.822
0.045 0.089 0.049 0.090
-0.246 -0.218 -0.175 -0.178
0.250 0.236 0.181 0.200

0.996 0.995 1.037 1.034
0.099 0.124 0.089 0.118
-0.004 -0.005 0.037 0.034
0.099 0.124 0.096 0.123

0.996 0.993 1.065 1.065
0.095 0.122 0.110 0.140
-0.004 -0.007 0.065 0.065
0.095 0.123 0.128 0.155

0.997 0.996 1.020 1.017
0.056 0.098 0.057 0.098
-0.003 -0.004 0.020 0.017
0.056 0.098 0.061 0.099

0.998 0.997 1.006 1.000
0.054 0.098 0.067 0.118
-0.002 -0.003 0.006 0.000
0.054 0.098 0.068 0.118

1.004 1.005 1.088 1.068
0.100 0.130 0.076 0.097
0.004 0.005 0.088 0.068
0.100 0.130 0.117 0.119

f3 /32

(7) (8)

1.000 1.000

0.731 0.746
0.056 0.100
-0.269 -0.254
0.275 0.273

1.032 1.017
0.093 0.123
0.032 0.017
0.098 0.124

1.015 0.999
0.100 0.132
0.015 -0.001
0.101 0.132

0.939 0.934
0.060 0.104
-0.061 -0.066
0.085 0.123

0.912 0.897
0.064 0.116
-0.088 -0.103
0.109 0.155

1.136 1.111
0.119 0.152
0.136 0.111
0.181 0.188

True values

OLSP EM*
SE
BIAS
RMSE

H2S EM
SE
BIAS
RMSE

WH2S EM
SE
BIAS
RMSE

3SE EM
SE
BIAS
RMSE

W3SE EM
SE
BIAS
RMSE

NLSP EM
SE
BIAS
RMSE

* EM=Estimated Mean, SE=Standard Error, RMSE=Root Mean Square Error.
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In Table 6.3 where N=400 and a 25% degree of censoring, the biases of the OLSP

estimates lie within the range of 17 to 27 percent compared to less than 2 percent

for H2S estimates. In general, our results indicate that the OLSP estimator has the

largest bias and this bias does not seem to decline with increases in sample size (see

also Tables A.1 and A.2, Appendix A).

Regarding the effects of distributional assumptions about the error term, the

OLSP estimates under the chi-square (skewed) distribution appear to be inferior

relative to the same estimates under the normal and students'-t (symmetric) dis-

tributions. In Table 6.1 the RMSE for 0 1 and /32 , respectively, are given by 0.257

and 0.270 for the normal distribution compared to 0.271 and 0.304 for the chi-square

distribution. The respective values under the t-distribution are given by 0.201 and

0.236. Results for sample sizes of 200 (Table 6.2) and 400 (Table 6.3) also show that

the OLSP estimates are relatively better under symmetric (i.e., normal and students'-

t) distributions. Using the RMSE criteria the OLSP estimates, however, generally

perform poorly relative to all the estimators except the NLSP estimator which is no

better than the OLSP in several cases (see Tables 6.4-6.5).

Further, as anticipated, the biasedness of the OLSP estimator depends largely on

the proportion of limit observations relative to the total number of observations in the

sample, i.e., the degree of censoring. The effects of the degree of censoring are given in

Table 6.4 for a sample of 100 and normally distributed error terms. When the degree

of censoring is doubled from 25 to 50 percent the bias of the OLSP estimates increases

by about 70 to 80 percent. The OLSP estimates deteriorate further with increases in

the number of limit observations to 75 percent and in general the bias of the estimates

increases almost linearly with the degree of censoring. Similar conclusions apply for
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Table 6.4: The Effects of the Degree of censoring for Estimators using only N1 obser-
vations, given N=100 and normally distributed error terms. 

25%	 50%	 75% 
01	 02	 01	 02	 01	 02 

(3 )	 (4)	 (5)	 (6)	 (7)	 (8)(1)	 (2)

1.000 1.000 1.000 1.000 1.000 1.000

0.760 0.788 0.574 0.642 0.362 0.390
0.093 0.167 0.116 0.228 0.199 0.307
-0.240 -0.212 -0.426 -0.358 -0.638 -0.610
0.257 0.270 0.441 0.425 0.668 0.683

0.989 0.991 0.977 0.976 0.952 0.947
0.190 0.234 0.406 0.430 1.604 1.561
-0.011 -0.009 -0.023 -0.024 -0.048 -0.053
0.190 0.234 0.406 0.431 1.604 1.562

0.987 0.985 0.978 0.976 0.946 0.938
0.186 0.233 0.382 0.410 1.542 1.494
-0.013 -0.015 -0.022 -0.024 -0.054 -0.062
0.186 0.234 0.382 0.410 1.543 1.494

0.985 0.989 0.981 0.986 0.999 0.994
0.113 0.186 0.154 0.269 0.285 0.402
-0.015 -0.011 -0.019 -0.014 -0.001 -0.006
0.114 0.186 0.155 0.269 0.285 0.402

0.987 0.986 0.985 0.990 1.018 1.015
0.112 0.187 0.143 0.261 0.260 0.382
-0.013 -0.014 -0.015 -0.010 0.018 0.015
0.113 0.187 0.144 0.261 0.261 0.382

1.014 1.011 1.120 1.104 0.897 1.105
0.215 0.291 0.447 0.573 1.862 2.353
0.014 0.011 0.120 0.104 -0.103 0.105
0.215 0.291 0.463 0.583 1.864 2.355

True values

OLSP EM*
SE
BIAS
RMSE

112S	 EM
SE
BIAS
RMSE

WH2S EM
SE
BIAS
RMSE

3SE EM
SE
BIAS
RMSE

W3SE EM
SE
BIAS
RMSE

NLSP EM
SE
BIAS
RMSE

* EM=Estimated Mean, SE=Standard Error, RMSE=Root Mean Square Error.
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Table 6.5: Results for Estimators using only N1 observations given N=100 and 50%
Degree of Censoring for the three Distributions. 

Normal	 Students'-t	 Chi-Square

01	 /32	 01	 02	 01	 02 

( 3 )	 (4)	 (5)	 (6)	 (7)	 (8)(1)	 (2)

1.000 1.000 1.000 1.000 1.000 1.000

0.574 0.642 0.629 0.656 0.392 0.480
0.116 0.228 0.176 0.237 0.162 0.265
-0.426 -0.358 -0.371 -0.344 -0.608 -0.516
0.441 0.425 0.410 0.418 0.629 0.579

0.977 0.976 1.119 1.104 1.044 1.054
0.406 0.430 0.386 0.422 0.487 0.501
-0.023 -0.024 0.119 0.104 0.044 0.054
0.406 0.431 0.404 0.435 0.489 0.504

0.978 0.976 1.167 1.151 0.942 0.964
0.382 0.410 0.471 0.517 0.521 0.525
-0.022 -0.024 0.167 0.151 -0.058 -0.036
0.382 0.410 0.499 0.539 0.524 0.526

0.981 0.986 0.959 0.958 0.827 0.867
0.154 0.269 0.188 0.256 0.193 0.297
-0.019 -0.014 -0.041 -0.042 -0.173 -0.133
0.155 0.269 0.193 0.259 0.259 0.326

0.985 0.990 0.907 0.905 0.829 0.870
0.143 0.261 0.258 0.330 0.196 0.327
-0.015 -0.010 -0.093 -0.095 -0.171 -0.130
0.144 0.261 0.274 0.344 0.260 0.352

1.120 1.104 1.295 1.314 1.358 1.393
0.447 0.573 0.458 0.644 0.600 0.944
0.120 0.104 0.295 0.314 0.358 0.393
0.463 0.583 0.545 0.716 0.699 1.022

True values

OLSP EM*
SE
BIAS
RMSE

H2S EM
SE
BIAS
RMSE

W1125 EM
SE
BIAS
RMSE

3SE EM
SE
BIAS
RMSE

W3SE EM
SE
BIAS
RMSE

NLSP EM
SE
BIAS
RMSE

* EM=Estimated Mean, SE= Standard Error, RMSE=Root Mean Square Error.
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medium and large samples (see Tables A.3, A.4 and A.5, Appendix A). These results,

however, may not be surprising since the OLSP estimator is a simple linear regression

based only on the non-limit observations in the sample. Our findings are also similar

to those of Paarsch (1984).

Note that our results show that the OLSP provides estimates which are biased to

wards zero in all cases, i.e., for all sample sizes, degrees of censoring and distributional

assumptions. In general, one cannot determine the direction of bias of the OLSP

estimator without making further assumptions. Goldberger (1981) has shown that,

if the explanatory variables are normally distributed, OLSP estimators are biased

towards zero.

The H2S estimator, compared to the OLSP, provides consistent estimates. As

shown in Table 6.1, given a small sample size and a low degree of censoring, the

biases of the estimates of /31 and /32 using the H2S estimator are, respectively, 1.1%

and 0.9% under the normal distribution, 2.1% and 1.6% under the t-distribution

and 1.3% and 0.5% for the chi-square distribution. These results are in contrast to

the biases of the OLSP estimator which are in the range of about 16 to 25 percent.

Bias appears to be relatively small for the H2S estimates for all sample sizes and

distributions provided that the number of limit observations remains low (i.e., 25%

degree of censoring). However, as the degree of censoring gets higher, bias becomes

a problem for the non-normal distributions. This is shown clearly in Tables 6.5 and

6.6. For example, Table 6.6 depicts that given a sample size of 100 and 75% degree

of censoring, the biases of the H2S estimates are about 20 and 60 percent under

chi-square and t-distributions, respectively, compared to about 5% under the normal

distribution. Further, if the sample size is increased to 400, the bias for the normal
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Table 6.6: Results for estimators using only N1 observations, given N=100 and 75%
degree of censoring for the three distributions. 

Normal	 Students'-t	 Chi-Square
i3 	02	 01	 02	 01	 02 

( 3 )	 (4)	 (5)	 (6)	 (7)	 (8)(1)	 (2)

1.000 1.000 1.000 1.000 1.000

0.390 0.160 0.279 0.170 0.240
0.307 0.433 0.502 0.235 0.398
-0.610 -0.840 -0.721 -0.830 -0.760
0.683 0.945 0.879 0.863 0.858

0.947 1.609 1.535 0.791 0.848
1.561 2.668 2.398 1.378 1.375
-0.053 0.609 0.535 -0.209 -0.152
1.562 2.737 2.456 1.394 1.383

0.938 1.660 1.589 0.709 0.750
1.494 3.217 2.891 1.458 1.457
-0.062 0.660 0.589 -0.291 -0.250
1.495 3.284 2.950 1.487 1.478

0.994 0.784 0.835 0.757 0.808
0.402 0.476 0.554 0.307 0.477
-0.006 -0.215 -0.165 -0.243 -0.192
0.402 0.522 0.578 0.391 0.514

1.015 0.790 0.823 0.821 0.858
0.382 0.514 0.689 0.301 0.499
0.015 -0.210 -0.177 -0.179 -0.142
0.382 0.555 0.711 0.350 0.519

1.105 1.219 1.528 1.249 1.676
2.353 2.055 2.550 1.322 2.065
0.105 0.219 0.528 0.249 0.676
2.355 2.066 2.608 1.345 4.723

True values	 1.000

OLSP EM*	 0.362
SE	 0.199
BIAS	 -0.638
RMSE 0.668

H2S	 EM	 0.952
SE	 1.604
BIAS	 -0.048
RMSE 1.604

WH2S EM	 0.946
SE	 1.542
BIAS	 -0.054
RMSE 1.543

3SE	 EM	 0.999
SE	 0.285
BIAS	 -0.001
RMSE 0.285

W3SE EM	 1.018
SE	 0.260
BIAS	 0.018
RMSE 0.261

NLSP EM	 0.897
SE	 1.862
BIAS	 -0.103
RMSE 1.864

* EM=Estimated Mean, SE=Standard Error, RMSE=Root Mean Square Error.
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distribution drops to about 1% whereas the biases for the non-normal distributions

remain almost the same (see Table A.5, Appendix A). Based on the RMSE criteria,

the H2S appears to be robust for normal and non-normal distributions given that the

degree of censoring remains low. However, when the degree of censoring increases,

the H2S estimator performs better under the normal distribution.

Further, the efficiency of the H2S estimates declines dramatically with higher levels

of the degree of censoring even when the sample size becomes large. This is evident

from the results summarized in Table 6.7. That is, given a large sample size of 400

and normally distributed error terms, the estimates of the SE's of /81 and /32 increased

by almost 50% when the proportion of limit observations in the sample increased from

25 to 50 percent, and are six to seven times higher when the degree of censoring is

75%. In general, the effects of the degree of censoring on the performance of the H2S

estimator are very severe relative to the effects of the distributional assumptions about

the error term. The H2S estimates deteriorate further under non-normal distributions

coupled with higher levels of censoring (see also Tables A.3-A.5, Appendix A).

It is important to note that the weighted Heckman's two-step estimator (WH2S)

provides more efficient estimates of 0 1 and 02 only when the errors are normally

distributed. As can be seen from Tables 6.1-6.4, the WH2S estimates are relatively

more efficient than their H2S counterparts under normally distributed error terms.

Otherwise, the WH2S estimator gives results which are relatively inferior to the H2S

estimates. Similar results can be observed for all sample sizes and degrees of censoring.

In general, the WH2S estimator is sensitive to changes in distributional assumptions

about the error structure.
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Table 6.7: The effects of the degree of censoring for estimators using only N1 obser-
vations, given N=400 and normally distributed error terms.

25%	 50%	 75% 

	

Pi	 132	 A.	 132	 i31	 /32 
(1)	 (2)	 (3)	 (4)	 (5)	 (6)	 (7)	 (8) 

True values	 1.000	 1.000	 1.000	 1.000	 1.000	 1.000

OLSP EM*	 0.754 0.782 0.561 0.622 0.361	 0.398
SE	 0.045	 0.089	 0.058	 0.107	 0.091	 0.127
BIAS	 -0.246 -0.218 -0.439 -0.378 -0.638	 -0.602

	

RMSE 0.250 0.236 0.443 0.393 0.646	 0.616

H2S	 EM	 0.996 0.995 0.993 0.992 0.993 	 0.989
SE	 0.099	 0.124 0.207	 0.213	 0.669	 0.635
BIAS	 -0.004 -0.005 -0.007 -0.008 -0.007	 -0.011

	

RMSE 0.099 0.124 0.207 0.212 0.669	 0.635

WH2S EM	 0.996 0.993 0.990 0.989 0.997 	 0.993
SE	 0.095	 0.122	 0.191	 0.200	 0.599	 0.574
BIAS	 -0.004 -0.007 -0.010 -0.011 -0.003	 -0.007

	

RMSE 0.095 0.123 0.192 0.201 0.599	 0.574

3SE	 EM	 0.997 0.996 0.995 0.995 1.001	 0.997
SE	 0.056	 0.098	 0.078	 0.131	 0.139	 0.179
BIAS	 -0.003 -0.004 -0.005 -0.005 0.001 	 -0.003
RMSE 0.056 0.098 0.079 0.131 	 0.139	 0.179

W3SE EM	 0.998 0.997 0.997 0.997 1.004	 1.001
SE	 0.054	 0.098	 0.073	 0.128	 0.126	 0.170
BIAS	 -0.002 -0.003 -0.003 -0.003 0.004	 0.001

	

RMSE 0.054 0.098 0.073 0.128 0.126	 0.170

NLSP EM	 1.004 1.005
SE	 0.100	 0.130
BIAS	 0.004 0.005
RMSE 0.100 0.130

-	 _

* EM=Estimated Mean, SE=Standard Error, RMSE=Root Mean Square Error.
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On the other hand, the 3SE estimator provides results which are superior to the

H2S estimator or its weighted version, the WH2S, in all cases. Given a small sample

size (i.e., 100), the RMSE for the 3SE estimator is always lower for the three degrees

of censoring as shown in Tables 6.1, 6.5 and 6.6. Similarly, the results for the medium

and large sample sizes depict that the 3SE estimator gives more efficient estimates

under all degrees of censoring. However, what is more important about these results

is that the 3SE estimator is not only more efficient but also less sensitive to changes in

the degree of censoring in a given sample. For example, Table 6.4 depicts that when

the degree of censoring increases from 25 to 75 percent the RMSE for the 3SE of 131

and 02 increased by just over two times, i.e., from 0.114 and 0.186 to 0.285 and 0.402,

respectively. This result is incomparable to the H2S estimates where the increase

in RMSE of the coefficients is six to eight times for the same changes in degrees of

censoring. This is also true for the medium and large samples which suggests that

the 3SE estimator is much less sensitive to changes in the degree of censoring for a

given sample (see Table 6.7 and Tables A.3-A.5 of Appendix A).

As to the effects of distributional assumptions about the error term, the 3SE esti-

mator seems to perform better under normality conditions and gets worse under the

chi-square distribution. This is particularly significant for higher degrees of censor-

ing. However, it is important to note that under all conditions the 3SE estimator

actually improves on the H2S estimates in terms of reliability (efficiency). Further-

more, the 3SE estimator is much less sensitive to increases in the proportion of limit

observations in a sample compared to the H2S estimator. Note that, as discussed in

Chapter 5, higher level of censoring means an increase in the correlation between the

explanatory variables and the inverse of Mill's ratio, and hence adversely affecting
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the 112S estimates. A more detailed analysis along this line will be provided later in

this study.

In general, the 3SE estimates have the lowest RMSE, except when the errors are

normally distributed. In such cases it's weighted version, the W3SE, yields more

efficient estimates. Similar to the WH2S estimator, the W3SE estimator is sensitive

to changes in distributional assumptions about the error structure. One likely expla-

nation for the sensitiveness of the weighted estimators to non-normality of the error

terms is that the expressions for the weights depend on the assumption of normality

of the error terms. Specifically, as shown in Chapter 2, the weights involve results

such as the probability and cumulative density functions of the standard normal dis-

tribution. Hence, any departure from normality of the error terms may result in

inefficiency and/or inconsistency of estimates.

Note that, as discussed in Chapter 2, the 3SE estimator guarantees that the esti-

mated value of a, which is given in the right hand side of equation (2.42), is positive,

which is not the case for the 112S estimator. For example, consider Table 6.8 below

which depicts that, given a sample size of 100, a 25% degree of censoring and normally

distributed error terms, the estimated values of a, using the H2S estimator, ranges

from -1.266 to 4.237 compared to 0.177 to 1.635 for the 3SE estimator. Similar results

are observed for all sample sizes, distributions and degrees of censoring. That is, our

results depict that, unlike the H2S estimator, the 3SE estimator always guarantees

positive estimates of a. Further, the standard errors of the 3SE estimates are much

smaller than those of the H2S estimates implying gains in relative efficiency.
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Table 6.8: Comparisons of H2S and 3SE estimates, given a Sample Size of 100, 25%
degree of Censoring and the three distributions.

Normal	 Students'-t	 Chi-Square
/31 	02	 a	 f3 	 02	 Cr	 I3 	 /32	 Cr

True Values 1.000

	

1-12S EM	 0.989
SE 0.190
MIN* 0.336
MAX* 1.849

	

3SE EM	 0.985

	

SE	 0.113
MIN	 0.635
MAX 1.443

1.000 1.000 1.000 1.000 1.000 1.000

0.991 0.974 1.021 1.016 0.898 1.013
0.234 0.672 0.171 0.221 0.659 0.172
0.265 -1.226 0.485 -0.184 -1.138 0.464
1.869 4.237 1.856 3.006 5.311 1.762

0.989 0.947 1.006 1.004 0.820 0.928
0.186 0.179 0.117 0.180 0.207 0.118
0.323 0.177 0.309 0.247 0.249 0.482
1.609 1.635 1.624 2.494 1.525 1.415

1.000 1.000

0.995 1.082
0.232 0.537
0.197 -0.437
2.192 3.485

0.922 0.722
0.202 0.134
0.230 0.162
1.623	 1.195

-* MIN and MAX stands for the minimum and maximum estimates,

respectively, in 3000 replications (samples).

Considering the NLSP estimator, the nonlinear equation which is discussed in

Chapter 2 consists of non trivial functions involving probability and cumulative den-

sity functions. The complex nature of the function has affected the speed and con-

vergence of the nonlinear estimates in our experiment. In SHAZAM the nonlinear

regressions are estimated by maximum likelihood, assuming that the errors are addi-

tive and normally distributed. The estimation procedure uses the algorithm known as

a Quasi-Newton method. However, although not difficult, the nonlinear estimation in

SHAZAM is rather slow and depends on the complexities of the nonlinear function.

In this case the NLSP estimator takes significantly more computer time to converge

than do other estimators. For example, it takes approximately 4 minutes CPU time

to obtain results from 100 samples (replications) using NLSP compared to about 20

seconds CPU time for H2S or 3SE estimators.
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Note that convergence is not always guaranteed in nonlinear least squares, even

after a large number of iterations. In this experiment we considered a maximum of

100 iterations, and to help speed up the convergence, the true parameter values were

used as starting values for the NLSP estimates. However, some did not converge

after 100 iterations. For example, given a sample size of 200 observations and a

75% degree of censoring, of the 3000 replications (samples), 4, 2, and 5 percent of

the samples did not converge, respectively, for normal, students'-t and chi-square

distributions. Convergence is more difficult for small samples and higher degrees

of censoring. Results for samples which did not converge are excluded from the

experiment .

Given this, our results in general show that the NLSP estimator provides the

least efficient estimates. As shown in Table 6.1, given normally distributed error

terms and a 25% degree of censoring, the SE's of the estimates of 01 and 132 are 0.215

and 0.291, respectively, for a sample size of 100. These results are over 10 percent

larger than the corresponding H2S estimates, and a further 50 to 90 percent larger

than the 3SE estimates. By increasing the sample size to 200 the NLSP estimates

come relatively close to the H2S estimates, but are still much less efficient than the

3SE estimates (see Table 6.2). This is also true for the large sample size (see Table

6.3) even if the degree of censoring remains low. Wales and Woodland (1980) made

similar observations based on a single simulation result.

Further, as the proportion of limit observations in the sample increases, the quality

of the NLSP estimates deteriorates quickly. Table 6.4 depicts that, given a small

sample size and normally distributed error terms, the RMSE of the NLSP estimates

almost doubled when the degree of censoring increased from 25% to 50 % and further
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increased to over eight times for a 75% degree of censoring.

As to the effects of distributional assumptions of the error term, the NLSP esti-

mator performs relatively better under normal conditions, especially for degrees of

censoring of 50% and above, where the NLSP provides relatively better results under

normality conditions and gets worse under the chi-square (skewed) distribution (see

Tables 6.5 and 6.6). In other words, the NLSP estimator is not robust to changes in

the error structure of the model.

Finally, the following points can be concluded from the preceding discussions [see

also Table 6.9 for some concluding remarks]:

The 3SE estimator provides estimates which are relatively efficient and less

sensitive to changes in the degree of censoring. Bias is not a problem for lower

levels of censoring. However, bias becomes a problem for higher degrees of

censoring and non-normal error terms. It also seems to perform slightly better

under normality conditions. The 3SE estimator appears to be the best, given

the estimators which use only the positive observations on yi.

The H2S estimator is generally less efficient compared to the 3SE estimator and

can be very sensitive to changes in the degree of censoring. The H2S estimator

seems to be robust to changes in distributional assumptions, provided that the

degree of censoring is low. However, bias becomes a serious problem for higher

degrees of censoring and non-normal distributions.

It is important to emphasize that the weighted versions of the Heckman's two-

step (WH2S) and the three-step (W3SE) estimators may improve the efficiency

of their counterparts; i.e., the H2S and 3SE estimators, respectively, if and
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Table 6.9: Summary Notes on the Relative Performance of the Various Estimators.

Degree of	 Normal	 Students'-t	 Chi-square
Estimator Censoring 100 200 400 100 200 400 100 200 400

3SE	 25%	 / V .\/\/ \/ 3 3 .3 \/
50%	 -,/ ..3 V 3 V V 4 4 4
75%	 -\/ \/ 	 \/ \/ .\/	 V 4	 4	 4

W3SE	 25%	 .\/	 .\/	 "V	 t	 t	 t	 t	 t	 t
50%	 V 3 \/ 4 4 4 4 4 4
75%	 \/ \/ ,/ 4 4 4 4 4 4

H2S	 25%	 i V \/ \/ \/ \/ \/ \/ V
50%	 t	 t	 3 4 4 4	 t	 t	 t
75%	 t	 t	 t 4 4 4 4 4 4

WH2S	 25%	 ,\/	 -V	 '\/	 t	 t	 t	 t	 t	 t
50%	 t	 t	 \/ 4	 4	 4	 t	 t	 t
75 % 	 t	 t	 t 4 4 4 4 4 4

NLSP	 25%	 t	 \/ \/	 t	 \/ \/	 t	 t	 t
50%	 4	 t	 t	 4	 t	 t	 4	 t	 t
75%	 4 4 4 4 4 4 4 4 4

OLSP	 Bias proportional to Degree of Censoring

Note:	 .\/ = performs well.

t = inefficiency appears to be a problem.
4 = bias and inefficiency appear to be a problem.
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only if the errors are normally distributed. Otherwise, the WH2S and W3SE

estimators provide estimates which are inferior to the 112S and 3SE estimates,

respectively. Thus one should take proper caution before applying the weighted

versions of the estimators to obtain more efficient estimates, as the assumption

of normality may not actually hold. In other words, preliminary steps such

as pre-testing for normality of the error structure may be necessary. On the

other hand, it should be noted that, even under normality conditions of the

error term, the improvement of the weighted estimates over the unweighted

estimates seems to be marginal.

The NLSP estimator is not one of the best estimators for the following reasons.

It provides inefficient estimates relative to 112S and 3SE estimates. Further, the

NLSP is not robust to changes in distributional assumptions about the error

term. Bias seems to be a problem and gets worse for skewed distributions and

higher levels of censoring. It is computationally more difficult and may not

always converge. Specifically, convergence is difficult for small sample sizes and

higher degrees of censoring.

Not surprisingly, the OLSP estimator provides poor estimates in all cases.

6.3 Estimators using all N observations

In this Section we discuss the results for estimators which use all limit and non-limit

observations on yi . These estimators are:

(i) The simple ordinary least squares estimator (OLS) using all observations.
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(ii) The maximum likelihood estimator (MLE).

(iii) The Heckman's two-step estimator based on the unconditional expectation of

the tobit model (H2SU).

(iv) The weighted Heckman's two-step estimator based on the unconditional expec-

tation of the model (WH2SU). That is, the weighted version of (iii).

(v) The nonlinear least squares estimator applied to the unconditional expectation

of the model (NLSU).

Given these estimators, summary statistics of the Monte Carlo results are provided

in Tables 6.10-6.14 and Table A.6 of Appendix A. The interpretation of the results

is similar to those in the previous tables, except that these estimators utilize all the

observations on y,.

As discussed in Chapter 2, the traditional OLS estimator provides biased estimates

and hence is not feasible. The interest in this case is to check its relative performance

compared to that of the other estimators. Results for a sample of 100 and a

25% degree of censoring are tabulated in Table 6.10. These results suggest that

bias is a serious problem for OLS estimates and averages around 20 percent for all

distributions compared to the MLE estimates which range from a minimum of 0.2

percent under normally distributed errors to a maximum of 4.3 percent for the chi-

square distribution. The bias of the OLS estimates remains high and does not seem

to decline even when the sample size is large (see Tables 6.11 to 6.12). Further, the

severity of bias of the OLS estimates increases proportionately with the number of

limit observations in the sample, irrespective of the total sample size or distributional

assumptions of the error structure of the model. For example, as can be seen from



EM* 0.800
SE 0.069
BIAS -0.200
RMSE 0.211

EM 1.002
SE 0.099
BIAS 0.002
RMSE 0.099

EM 0.811
SE 0.172
BIAS -0.189
RMSE 0.256

EM 0.644
SE 0.223
BIAS -0.356
RMSE 0.420

EM 1.065
SE 0.288
BIAS 0.065
RMSE 0.237

0.808 0.795 0.808
0.069 0.153 0.073
-0.192 -0.205 -0.192
0.204 0.255 0.205

1.023 1.025 1.043
0.099 0.174 0.109
0.023 0.025 0.043
0.102 0.176 0.117

0.797 0.849 0.779
0.117 0.232 0.116
-0.203 -0.151 -0.221
0.234 0.276 0.250

0.663 0.719 0.573
0.214 0.377 0.186
-0.337 -0.281 -0.427
0.425 0.470 0.466

1.058 1.047 1.090
0.232 0.277 0.238
0.058 0.047 0.090
0.238 0.280 0.255

OLS 0.797
0.170
-0.203
0.263

1.002
0.177
0.002
0.177

0.876
0.244
-0.124
0.273

0.790
0.281
-0.210
0.251

1.047
0.280
0.047
0.284

MLE

H2SU

WH2SU

NLSU

0.791
0.141
-0.209
0.252

1.028
0.196
0.028
0.198

0.877
0.196
-0.213
0.232

0.767
0.217
-0.233
0.318

1.055
0.288
0.055
0.293
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Table 6.10: Results for Estimators using all observations given N=100 and 25% Degree
of Censoring for the three Distributions.

Normal	 Students'-t	 Chi-Square
A	 02	 A	 02	 A	 02 

(1)	 (2)	 (3)	 (4)	 (5)	 (6)	 (7)	 (8)

True values	 1.000	 1.000	 1.000	 1.000	 1.000	 1.000

* EM=Estimated Mean, SE=Standard Error, RMSE=Root Mean Square Error.
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Table 6.11: Results for Estimators using all observations, given N=400 and Degree
of Censoring of 25% for the three Distributions.

Normal	 Students'-t	 Chi-Square
01	 /32	 01	 /32	 /31	 02 

( 1 )	 (2)	 (3)	 (4)	 (5)	 (6)	 (7)	 (8)

1.000 1.000 1.000 1.000 1.000 1.000

0.800 0.767 0.833 0.815 0.786 0.765
0.034 0.071 0.033 0.073 0.036 0.078
-0.200 -0.233 -0.167 -0.185 -0.214 -0.235
0.203 0.244 0.170 0.198 0.217 0.247

1.000 1.001 1.023 1.019 1.044 1.025
0.048 0.093 0.051 0.091 0.056 0.103
0.000 0.001 0.023 0.019 0.044 0.025
0.048 0.093 0.056 0.093 0.071 0.106

0.808 0.857 0.823 0.857 0.744 0.855
0.057 0.104 0.067 0.103 0.045 0.108
-0.192 -0.143 -0.177 -0.143 -0.256 -0.145
0.210 0.177 0.189 0.176 0.259 0.181

0.624 0.735 0.591 0.662 0.518 0.731
0.070 0.124 0.191 0.227 0.117 0.129
-0.376 -0.265 -0.409 -0.338 -0.482 -0.269
0.383 0.293 0.452 0.408 0.496 0.299

1.033 1.025 1.016 1.007 1.057 1.047
0.146 0.153 0.120 0.135 0.123 0.150
0.033 0.025 0.016 0.007 0.057 0.047
0.149 0.155 0.121 0.135 0.136 0.157

True values

OLS	 EM*
SE
BIAS
RMSE

MLE EM
SE
BIAS
RMSE

H2SU EM
SE
BIAS
RMSE

WH2SU EM
SE
BIAS
RMSE

NLSU EM
SE
BIAS
RMSE

* EM=Estimated Mean, SE=Standard Error, RMSE=Root Mean Square Error.
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Table 6.12: The Effects of Sample Size on the Estimators using all observations, given
25% Degree of Censoring and Normally Distributed error terms.

100	 200	 400
01	 I2	 01	 02	 01	 02

(1)	 (2)	 (3)	 (4)	 (5)	 (6)	 (7)	 (8) 

True values	 1.000 1.000

OLS	 EM*	 0.800 0.797
SE	 0.068 0.170
BIAS	 -0.200 -0.203
RMSE 0.211 0.263

MLE	 EM	 1.002 1.002
SE	 0.099 0.177
BIAS	 0.002 0.002
RMSE 0.099 0.177

H2SU	 EM	 0.811 0.876
SE	 0.172 0.244
BIAS	 -0.189 -0.124
RMSE 0.256 0.273

WH2SU EM	 0.644 0.790
SE	 0.233 0.281
BIAS	 -0.356 -0.210
RMSE 0.420 0.251

NLSU	 EM	 1.065 1.047
SE	 0.228 0.280
BIAS	 0.065 0.047
RMSE 0.237 0.284

1.000 1.000 1.000 1.000

0.803 0.789 0.800 0.767
0.050 0.102 0.034 0.071
-0.197 -0.211 -0.200 -0.233
0.204 0.235 0.203 0.244

1.002 1.002 1.000 1.001
0.070 0.129 0.048 0.093
0.002 0.002 0.000 0.001
0.070 0.129 0.048 0.093

0.817 0.870 0.808 0.857
0.096 0.151 0.057 0.104
-0.183 -0.130 -0.192 -0.143
0.206 0.199 0.201 0.177

0.639 0.762 0.624 0.735
0.117 0.174 0.070 0.124
-0.361 -0.238 -0.376 -0.265
0.379 0.294 0.383 0.293

1.045 1.029 1.033 1.025
0.193 0.207 0.146 0.153
0.045 0.029 0.033 0.025
0.198 0.209 0.149 0.155

* EM=Estimated Mean, SE=Standard Error, RMSE=Root Mean Square Error.
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as can be seen from Table 6.12, given a sample size of 200 and normally distributed

error terms, the estimated biases of 0 1 and 02 are given by, respectively, -0.197 and

-0.211 for 25% degree of censoring, and -0.505 and -0.550 for 50% degree of censoring.

The biases of the OLS estimates of /31 and 82 increased further to -0.797 and -0.757,

respectively, for 75% degree of censoring. Similar results are observed for low and

large sample sizes.

It is not, however, surprising for the OLS estimator to perform badly, as mentioned

above. What is surprising, from our results, is the poor performance of the estimators

suggested by Wales and Woodland (1980), the H2SU and the WH2SU estimators.

Table 6.10 depicts that the biases of these estimates ranges from 12 to 22 percent for

H2SU estimates and deteriorates further to 21 to 47 percent for WH2SU estimates.

More surprisingly, the bias of the estimates does not seem to decline with the increase

in sample size or changes in distribution of the error structure of the model (see Tables

6.11 and 6.12). Also, as shown in Table 6.13, the estimates get worse for higher levels

of censoring. To sum up, despite their large sample properties (i.e., consistency

and asymptotic normality), the H2SU and the WH2SU estimators provide very poor

results in all cases.

The nonlinear least squares estimator using all observations (NLSU) seems to

perform well compared to the others, with the exception of the MLE estimator. As

shown in Table 6.10, given a sample size of 100 and a 25% degree of censoring, the

biases of the NLSU estimates range between 4 to 9 percent compared to about 20% or

more for H2SU or WH2SU estimators over the three distributions. The biases of the

NLSU estimates decline further with increases in sample size (see Tables 6.11-6.12).

However, bias becomes a problem for higher degrees of censoring (see Tables 6.13 and
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Table 6.13: The Effects of Degree of Censoring for Estimators using all observations,
given N=200 and Normally distributed error terms.

25%
131 	02

(1)	 (2)	 (3)	 (4)

50%

01	 132
(5)	 (6)

75% 
01	 02
(7)	 (8)

True values 1.000 1.000 1.000 1.000 1.000 1.000

OLS EM* 0.803 0.789 0.495 0.450 0.203 0.243
SE 0.050 0.102 0.041 0.075 0.030 0.053
BIAS -0.197 -0.211 -0.505 -0.550 -0.797 -0.757
RMSE 0.204 0.235 0.507 0.555 0.797 0.758

MLE EM 1.002 1.002 1.003 1.002 1.008 0.990
SE 0.070 0.129 0.094 0.159 0.155 0.219
BIAS 0.002 0.002 0.003 0.002 0.008 -0.010
RMSE 0.070 0.129 0.094 0.159 0.156 0.219

H2SU EM 0.817 0.870 0.473 0.505 0.311 0.377
SE 0.096 0.151 0.037 0.166 0.079 0.264
BIAS -0.183 -0.130 -0.527 -0.595 -0.689 -0.623
RMSE 0.206 0.199 0.528 0.522 0.693 0.677

WH2SU EM 0.693 0.762 0.329 0.376 0.105 0.370
SE 0.117 0.174 0.044 0.168 0.088 0.283
BIAS -0.361 -0.238 -0.671 -0.624 -0.895 -0.627
RMSE 0.379 0.294 0.623 0.646 0.899 0.688

NLSU EM 1.045 1.029 1.240 1.249 1.136 1.124
SE 0.193 0.207 0.266 0.325 0.381 0.445
BIAS 0.045 0.029 0.240 0.249 0.136 0.124
RMSE 0.198 0.209 0.358 0.410 0.404 0.462

* EM=Estimated Mean, SE=Standard Error, RMSE=Root Mean Square Error.
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6.14). Furthermore, the NLSU estimates are very inefficient compared to the MLE

estimates. For example, Table 6.10 depicts that the standard errors of the NLSU

estimates of 131 and /32 , given normally distributed error terms, are about 290 and

158 percent higher than their respective MLE estimates. The results are similar for

medium and large sample sizes as well as for the non-normal distributions. Note that

the nonlinear estimation is very slow compared to MLE estimation. For example,

given a sample size of 400, normally distributed errors and a 25% degree of censoring,

it takes about 5 minutes CPU time for NLSU, compared to 58 seconds for MLE

estimates, to obtain results from 100 replications.

In general, our results indicate that the MLE estimator provides relatively better

estimates under all circumstances, given the estimators which use all observations.

Note that under normality conditions, it is widely claimed that the MLE provides

consistent and more efficient estimates. In Table 6.10, the bias for the MLE of 131

and 02 is about 0.2 percent under normally distributed error terms. This is compared

to about 2.5 and 4 percent bias under students'-t and chi-square distributions, re-

spectively. The bias of the MLE estimates under the normal distribution disappears

when sample size increases, but remains almost at the same level for the non-normal

distributions (see Tables 6.11-6.12). Further, as shown in Table A.6 of Appendix A,

the bias of the MLE estimator can be substantial under the non-normal distributions

if the sample size is small and the degree of censoring high. These results may suggest

that, although the bias is relatively small, the MLE is not robust to the distributional

assumption of the error terms.

With regard to the efficiency of the MLE estimates, the MLE estimates appear to

be most efficient under normal and students'-t distributions compared to the skewed
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Table 6.14: The Effects of Degree of Censoring for Estimators using all observations,
given N=200 and Chi-Square Distributed error terms.

25%	 50%	 75% 

131	 02	 01	 02	 131	 132 

(1)
	

(2)	 (3)	 (4)	 (5)	 (6)	 (7)	 (8)

1.000 1.000 1.000 1.000 1.000 1.000

0.801 0.764 0.473 0.467 0.201 0.260
0.051 0.110 0.045 0.090 0.035 0.072
-0.199 -0.236 -0.257 -0.533 -0.799 -0.740
0.205 0.261 0.529 0.541 0.800 0.743

1.049 1.033 1.048 1.033 1.032 1.092
0.080 0.146 0.119 0.193 0.200 0.283
0.049 0.033 0.048 0.033 0.032 0.092
0.094 0.149 0.128 0.196 0.202 0.298

0.775 0.828 0.442 0.560 0.325 0.337
0.077 0.150 0.041 0.192 0.099 0.318
-0.225 -0.172 -0.558 -0.440 -0.675 -0.663
0.237 0.228 0.559 0.480 0.682 0.735

0.581 0.670 0.300 0.508
0.158 0.181 0.066 0.202
-0.419 -0.330 -0.700 -0.492
0.447 0.376 0.703 0.532

1.070 1.044 1.193 1.236
0.175 0.215 0.345 0.445
0.070 0.044 0.193 0.236
0.189 0.219 0.396 0.504

True values

OLS	 EM*
SE
BIAS
RMSE

MLE EM
SE
BIAS
RMSE

H2SU EM
SE
BIAS
RMSE

WH2SU EM
SE
BIAS
RMSE

NLSU EM
SE
BIAS
RMSE

* EM=Estimated Mean, SE=Standard Error, RMSE=Root Mean Square Error.
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(chi-square) distribution. Table 6.10 depicts that, given small sample size and low

degrees of censoring, the standard errors of the MLE estimates when the errors have

chi-square distribution are about 10 percent higher than the standard errors of the

estimates for normal and students'-t distributions. Similar observations can be made

for medium and large sample sizes. However, as shown in Table 6.14, the quality of

the MLE estimates declines with increases in the level of censoring and non-normal

distributed error terms (see also Table A.6, Appendix A). On the other hand, it is

important to note that the MLE seems to be robust to symmetric but wide tailed

distributions, as can be seen from the results for students'-t distributed error terms.

That is, although there exists some bias under t-distributed error terms, the MLE

estimates for normal and students'-t distribution are almost the same in most cases

in terms of the RMSE; except for a sample size of 100 and 75% degree of censoring

where the results for the t-distribution appears to be even inferior to those of the

chi-square distributed error terms (see Table A.6, Appendix A). That is, using the

RMSE criteria, the results for MLE estimates under students'-t distributed error

terms are as good as those from normally distributed error terms. As to the effects of

censoring, Tables 6.13-6.14 indicate that doubling the degree of censoring from 25%

to 50% percent may cause a 25 to 30 percent increase in standard errors of estimates

under normally distributed error terms (Table 6.13) and about 30 to 40 percent for

chi-square distributed error terms (Table 6.14). A further increase in the degrees of

censoring results in more inefficient estimates.

Finally, given the estimators that use all observations, one can make the following

conclusions [see also Table 6.15 for some important notes]:
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Table 6.15: Summary Notes on the Relative Performance of the Various Estimators.

Degree of	 Normal	 Students'-t	 Chi-square
Estimator Censoring 100 200 400 100 200 400 100 200 400

MLE	 25% VVVVViVVV
50%	 VVVVVVf f V
75%	 VVV4VV 4 t V

NLSU	 25%	 t	 t	 t	 t	 t	 t	 t	 t	 t
50%	 IA 4 4 4 4 4 4 4 4
75%	 4 4 4 4 4 4 4 4 4

H2SU	 25%	 4 4 4 4 4 4 4 4 4
50%	 4 4 4 4 4 4 4 4 4
75%	 4 4 4 4 4 4 4 4 4

WH2SU	 25%	 4 4 4 4 4 4 4 4 4
50%	 4 4 4 4 4 4 4 4 4
75%	 4 4 4 4 4 4 4 4 4

OLS	 Bias proportional to Degree of Censoring

Note:	 V = performs well.

t = inefficiency appears to be a problem.
4 = bias and inefficiency appear to be a problem.
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Overall, the MLE performs better in all circumstances; i.e., for all sample sizes,

distributions and degrees of censoring. In particular, the MLE performs much

better under normal and students'-t distributions than it does under the chi-

square distribution; except when the sample size is small (i.e., 100) and the

degree of censoring high (i.e., 75%). A situation where the results under the

t-distribution are no better than those under the chi-square distribution.

The H2SU and WH2SU estimators are no better than the simple OLS estimator

and provide very poor results in all cases. Bias is a serious problem and gets

worse with higher degrees of censoring.

The NLSU estimator is very inefficient compared to the MLE estimator in all

cases. More over, bias becomes a problem as the degree of censoring increases.

6.4 Further Analysis of Selected Estimators

This Section presents a further comparison of estimators which are selected from Sec-

tions 6.2 and 6.3 above. Estimators which are either biased and/or relatively highly

inefficient (or in general terms too poor to be candidates) are excluded from further

discussion on the basis of the preceding discussions. Specifically, the ordinary least

squares (OLSP) and the nonlinear least squares (NLSP) estimators are excluded from

the estimators using only positive observations on y i (i.e., from Section 6.2). Further,

from the estimators using all observations (i.e., from Section 6.3), the simple ordinary

least squares (OLS), the Heckman's two-step estimator based on the unconditional
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expectation of the model (H2SU) and its weighted version, the WH2SU estimator,

are excluded due to their relative poor performances.

In total, six out of eleven estimators are discussed below. Given these estimators,

a summary of relative root mean square errors (RMSE) of the estimators are provided

in Tables 6.16 and 6.17 for 25% and 50% degrees of censoring, respectively, and for

all sample sizes and distributions. These relative RMSE are obtained by dividing

the RMSE of each estimator by the corresponding RMSE of the MLE estimator, for a

given sample size, distribution and degree of censoring. For example, given a sample

size of 100, normally distributed error terms and a 25% degree of censoring, the RMSE

of /31 for the H2S estimator is equal to 0.190 (see Table 6.1), and the corresponding

RMSE for the MLE estimator is equal to 0.099 (see Table 6.10). Thus, the relative

RMSE for /31 using the H2S estimator is given by the ratio 0.190/0.099=1.919, which

is shown at the top of Column 4 of Table 6.16. Others are calculated in a similar way.

As can be seen from Table 6.16, the NLSU estimator has the largest relative

RMSE value for all sample sizes and distributions implying that the NLSU estimator

is relatively poor (inefficient). For example, given a sample size of 100 and nor-

mally distributed error terms, the RMSE of the NLSU estimates of /31 and 02 are,

respectively, 2.394 and 1.605 times greater than their respective MLE estimates. The

relative RMSEs of the NLSU estimates of /31 and 02 further increase to 3.104 and

1.667, respectively, when the sample size becomes large (i.e., 400). This is because

the relative efficiency of the MLE estimates increases at a higher speed with increases

in sample size compared to that of the NLSU estimates. Further, the NLSU esti-

mates deteriorate for higher levels of censoring as shown in Table 6.17. Note that

the relative RMSE values of the NLSU estimates seem to decline for the non-normal
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1.919 1.696 1.479
1.322 1.261 1.172
1.879 1.892 1.564
1.322 1.386 1.247
1.151 1.147 1.179
1.051 1.023 1.091
1.141 1.284 1.393
1.056 1.131 1.257
1.000 1.000 1.000
1.000 1.000 1.000
2.394 2.333 2.179
1.605 1.591 1.480
2.157 1.907 1.468
1.434 1.344 1.215
2.086 2.333 1.532
1.419 1.594 1.295
1.143 1.133 1.159
1.147 1.070 1.067
1.114 1.267 1.425
1.147 1.234 1.262
1.000 1.000 1.000
1.000 1.000 1.000
2.829 2.320 2.011
1.620 1.476 1.469
2.062 1.714 1.380
1.333 1.322 1.169
1.979 2.286 1.422
1.322 1.667 1.245
1.167 1.089 1.197
1.054 1.064 1.160
1.125 1.214 1.535
1.053 1.269 1.462
1.000 1.000 1.000
1.000 1.000 1.000
3.104 2.161 1.915
1.667 1.452 1.481
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Table 6.16: Relative Root Mean Square Errors (RMSE) for all Sample Sizes and
Distributions, given 25% Degree of Censoring.

Sample Size Estimator Para- Relative RMSE when the errors are
-meter Normal Students'-t Chi-Square
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Table 6.17: Relative Root Mean Square Errors (RMSE) for all Sample Sizes and
Distributions, given 50% Degree of Censoring.

Sample Size Estimator Para-  Relative RMSE when the errors are
-meter Normal Students'-t Chi-Square

3.123 2.270 2.658
2.005 1.843 1.697
2.938 2.083 2.848
1.907 2.284 1.771
1.192 1.084 1.408
1.251 1.097 1.098
1.108 1.539 1.413
1.214 1.458 1.185
1.000 1.000 1.000
1.000 1.000 1.000
3.331 3.225 2.837
2.483 1.432 1.829
3.170 2.352 2.562
1.962 1.731 1.694
2.925 3.374 2.687
1.849 2.401 1.770
1.212 1.014 1.484
1.101 1.065 1.184
1.138 1.589 1.547
1.063 1.681 1.347
1.000 1.000 1.000
1.000 1.000 1.000
3.808 3.388 3.094
2.579 2.808 2.571
3.393 1.877 2.436
1.945 1.703 1.655
3.147 3.109 2.574
1.844 2.662 1.698
1.295 0.740 1.713
1.202 0.903 1.201
1.197 1.383 1.755
1.174 1.703 1.403
1.000 1.000 1.000
1.000 1.000 1.000
3.492 2.055 2.064
2.174 2.214 1.676
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distributions; however, they still remain high compared to other estimators.

The NLSU estimator is followed by the H2S estimator and its weighted version,

the WH2S estimator. As shown in Tables 6.16 and 6.17, both estimators exhibit very

high ratios of relative RMSE's compared to, say, the 3SE or MLE estimators. Further,

Table 6.17 depicts that, based on the relative RMSEs, the relative performance of the

H2S and WH2S estimators deteriorates for higher levels of censoring. In general, the

H2S and WH2S estimators are no closer to the MLE estimator or to the 3SE estimator.

Note that, as discussed earlier in this Chapter, the WH2S estimator provides slightly

more efficient estimates than the unweighted H2S estimator only when the errors are

normal. This is also true for the W3SE and 3SE estimators.

On the other hand, it is important to note that the relative RMSE values indicate

that the 3SE estimator provides results which are comparable to the MLE estimates.

Given a low degree of censoring, the relative RMSE for 3SE estimates remains very

close to the MLE estimates for normal and students'-t distributions. The relative

performance of the 3SE estimator becomes better under students'-t distributed errors

for all samples. More interestingly, or perhaps surprisingly, the evidence in Table 6.17

indicates that, as the degree of censoring increases, the relative performance of the

3SE estimator under the students'-t distribution, compared to the MLE estimator,

improves significantly. For example, given 50% degree of censoring, a sample size

of 400 and students'-t distributed error terms, the relative RMSE values for the

3SE estimates of p, and 132 , are, respectively, about 26 and 10 percent less than the

corresponding relative RMSEs of MLE estimates. Results for 75% degree of censoring

and large sample size also showed that the 3SE estimator performs better than the

MLE estimator, if the errors have students'-t distribution. This is, however, not the
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case for the H2S estimator, which deteriorates for higher degrees of censoring, and its

relative RMSEs remain significantly larger than both the MLE and 3SE estimators

in all cases.

6.4.1 Comparison of Variances and Hypothesis Testing

In the discussions so far, we have considered the relative performance of the vari-

ous estimators, mainly focusing on the unbiasedness and efficiency of estimates with

respect to changes in sample size, distribution of the error term and degree of cen-

soring. However, equally important in applied research is to see the performance of

the estimators viz-a-viz statistical inference. That is, to investigate the performance

of the estimators in terms of their relative reliability for hypothesis testing and/or

construction of confidence intervals for the coefficients of the model. One of the im-

portant components in relation to this is the estimation of variances of the estimates

for each estimator. Note that, in practice, the calculation of t-statistics for hypothesis

testing and the construction of confidence intervals for the coefficients of the model

involve the estimation of variances (and hence the standard errors) of the estimates

for a given sample. These variances are obtained by substituting the sample estimates

into the respective expressions of the asymptotic variance-covariance matrices of each

estimator. For example, the variances of the coefficients using the MLE estimator

are obtained as the sample estimates of the diagonal elements of the inverse of the

information matrix (see equation (2.21) of Chapter 2). Similarly, the variances of the

coefficients using other estimators are obtained based on their respective asymptotic

variance-covariance expressions. It is, however, important to recall that the expres-

sions for the asymptotic variance-covariance matrices of the estimators are derived
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on the assumption of normality of the error terms. Thus, given that the asymptotic

variances are derived based on the assumption of normality of the error terms, it is

important to ask how good the asymptotic variances approximate their respective

Monte Carlo (true) variances under the different situations.

One of the main purposes of this Section is therefore to compare the asymptotic

variances of the estimators with their respective Monte Carlo variances. That is, to

see whether the asymptotic variances provide good (close) approximations of their re-

spective true variances under a variety of error distributions, sample sizes and degrees

of censoring. In general, asymptotic variances which are relatively larger than their

corresponding true variances may imply confidence intervals of coefficients which are

wider than the desired level, or alternatively, the probability of rejecting a true hy-

pothesis becomes higher than it should be. On the other hand, asymptotic variances

which are lower than their corresponding true variances imply confidence intervals

which are relatively narrow compared to the desired level.

Tables 6.18 and 6.19 present the asymptotic as well as true variances of the var-

ious estimators for 25% and 50% degrees of censoring, respectively. Note that the

asymptotic variances of the estimators are obtained by substituting actual values into

the respective analytical (asymptotic) formulas of the variance-covariance matrices of

the estimators, which are provided in Chapters 2 and 3 of this study. These are then

compared with the Monte Carlo (true) variances of the estimators which are obtained

based on the 3000 replications (samples) using equation (5.13) of Chapter 5 of this

study.

As shown in Tables 6.18 and 6.19, just by considering the asymptotic variances of

the estimators one can observe the vast difference in relative efficiency of the various
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Table 6.18: Comparison of Variances of Estimators for all Sample Sizes and Distri-
butions, given 25% Degree of Censoring.

Sample Estimator Para- Asymptotic  Monte Carlo (true) variance under
Size	 -meter	 Variance	 Normal Students'-t Chi-Square
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0.4929 0.1644 0.1489 0.2375
0.5141 0.1850 0.1782 0.2513
0.4744 0.1456 0.2214 0.2717
0.4971 0.1678 0.2671 0.2753
0.0495 0.0237 0.0355 0.0372
0.0720 0.0723 0.0655 0.0885
0.0476 0.0233 0.0677 0.0384
0.0699 0.0682 0.1090 0.1072
0.0167 0.0157 0.0327 0.0282
0.0455 0.0449 0.0545 0.0644
0.2735 0.1409 0.2792 0.2349
0.2560 0.2195 0.2766 0.2597
0.2092 0.0889 0.0838 0.1026
0.1893 0.0972 0.0851 0.1053
0.2001 0.0756 0.1707 0.1187
0.1819 0.0863 0.1604 0.1201
0.0213 0.0130 0.0191 0.0169
0.0327 0.0307 0.0364 0.0431
0.0204 0.0114 0.0409 0.0190
0.0320 0.0285 0.0815 0.0534
0.0083 0.0091 0.0176 0.0147
0.0234 0.0266 0.0316 0.0414
0.1928 0.0695 0.1075 0.1192
0.1935 0.1108 0.1398 0.1982
0.1164 0.0429 0.0512 0.0467
0.1119 0.0449 0.0438 0.0463
0.1113 0.0367 0.1519 0.0584
0.1073 0.0401 0.1101 0.0559
0.0109 0.0062 0.0104 0.0082
0.0170 0.0170 0.0166 0.0202
0.0105 0.0053 0.0307 0.0089
0.0167 0.0164 0.0521 0.0256
0.0040 0.0040 0.0135 0.0070
0.0119 0.0112 0.0163 0.0167
0.0817 0.0413 0.0638 0.0296
0.0798 0.0525 0.0772 0.0427
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Table 6.19: Comparison of Variances of Estimators for all Sample Sizes and Distri-
butions, given 50% Degree of Censoring.

Sample Estimator Para- Asymptotic  Monte Carlo (true) variance under
Size	 -meter	 Variance	 Normal Students'-t Chi-Square
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estimators. Specifically, the large values of the asymptotic variances of the H2S,

WH2S and the NLSU estimates reveal their relative inefficiency compared to those

of the MLE, 3SE and W3SE estimates in all cases, i.e., for all samples, distributions

and degrees of censoring. For example, Table 6.18 depicts that, given a sample size

of 100 and a 25% degree of censoring, the asymptotic variances of the MLE estimates

of /31 and 02 are, respectively, 19.7 and 46.2 percent of the corresponding NLSU

estimates. These values drop only slightly to 16.3 and 42.4 percent, respectively, if

the sample size becomes large (400). Similarly, the asymptotic variances of the H2S

and the WH2S estimates are substantially high compared to their respective MLE

or 3SE estimates. These results are consistent with those discussed in the preceding

sections. However, as stated earlier in this Section, the main interest here is not the

efficiency of the estimators, but to compare the asymptotic variances viz-a-viz their

corresponding true variances which has further implications for hypothesis testing

and construction of confidence intervals for the coefficients of the model. The main

points along this line are discussed as follows.

As can be seen from Tables 6.18-6.19, it is evident that the NLSU estimates are

not only inefficient but the asymptotic variances of the NLSU estimates are also not

good approximations of the corresponding true variances; and the difference between

the asymptotic and the Monte Carlo variances worsens as the degree of censoring

increases. Note that, as mentioned earlier in this Chapter, estimation using the

NLSU estimator is very slow and convergence is not always guaranteed.

Regarding the MLE estimates, the asymptotic variances more or less provide very

close (sometimes accurate) approximations of the true variances, given that the errors

have a normal distribution. This is particularly true for larger samples. Further, it is
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also interesting to note that the MLE estimator seems to perform fairly well under the

students'-t distribution, given that the degree of censoring is low. Whereas, for the

chi-square distributed error terms, the true variances of the MLE estimates appear

to be slightly greater than their respective asymptotic variances in all cases.

Tables 6.18-6.19 also reveal interesting results with regard to the variances of the

H2S and 3SE estimators. The true variances of the H2S estimates are significantly

lower than their respective asymptotic variances in all cases. For example, given a

25% degrees of censoring, a sample size of 400 and normally distributed error terms,

the asymptotic variances of the H2S estimates of (31 and 02 are, respectively, about 56

and 26 percent larger than their respective true variances (see Table 6.18). The results

for the non-normal distributions are also similar. Furthermore, the gap between the

asymptotic variances and the true variances of the H2S estimates widens for higher

levels of censoring (see Table 6.19). In general, this results indicate that confidence

intervals based on the H2S estimates are likely to be wider (less precise) than they

should be.

On the other hand, the situation is different for the 3SE estimator in which the

asymptotic variances yield relatively good approximations of the true variances in

most cases. It is also evident that the 3SE estimator appears to be robust under the

non-normal distributions provided that the degree of censoring is low. In general,

one can conclude the following important points based on the variances of the H2S

and 3SE estimators. One, the results indicate that the asymptotic variances of the

H2S estimates are not good approximations of their respective true variances. That

is, the asymptotic variances generally overstate their corresponding true variances of

the estimates in all cases. Two, the 3SE estimates, are not only more efficient than
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their corresponding H2S estimates, but also provide asymptotic variances which are

closer to their corresponding true variances in most cases. This indicates that the

3SE appears to have better finite sample properties than the 112S estimator in almost

all cases.

Note that the above comparisons provide important indications on the likely per-

formances of the estimators in terms of their reliability for hypothesis testing and/or

construction of confidence intervals for the coefficients of the model. But, a more

accurate depiction of the implications of the variances can be obtained by conducting

hypothesis tests (such as t-tests) and constructing confidence intervals for the coeffi-

cients. Thus, the remaining part of this Section provides a further investigation on the

implications of the variances for hypothesis testing and/or construction of confidence

intervals for the coefficients of the model. Specifically, we test the hypotheses:

Ho : 131, = 1	 (6.6)

H1 : 13k	 1, k = 1, 2.	 (6.7)

To test the hypotheses we use the test statistic:

A —1 
t == 

s.e.03k)

where under the null hypothesis the statistic t is asymptotically distributed as a

standard normal random variable, A is the sample estimate of /3k and s.e.(4k ) is the

standard error of of /3k, which is obtained as the square-root of the sample estimates

of the diagonal elements of the variance-covariance matrix for each estimator in a

(6.8)

given sample. A nominal 5% level of significance is considered so that the expected
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percentage of rejections whenever the null hypothesis is true is equal to 5%.

Or equivalently, a 95% confidence interval can be constructed such that:

PA, — z X s.e.(/k ) < Ok < $k + z X s.e.(Ik)} = 0.95

which is equivalent to

P(-1.96 < t < 1.96) = 0.95

where t is defined by (6.8) and the standard z value at 5% significant level is approx-

imately 1.96 for large N.

Given these circumstances, we obtained the percent of coefficients contained in

the 95% confidence intervals for a few selected estimators. Note that the weighted

versions of the H2S and 3SE estimators, i.e., the WH2S and W3SE are not included in

the following analysis for two main reasons. (i) The computation of the variances (and

hence the standard errors) of the estimates involve the inversion of an NxN matrix

at each iteration in the experiment, which is quite slow and unattractive. This is

also likely to be impractical for applied research especially if the sample size is large

(e.g., using survey data). (ii) The WH2S and W3SE estimators are quite sensitive

to violations of the assumptions about the error term, which is usually the case in

applied research. Similarly, the NLSU estimator is excluded for its relatively poor

performance. This leads us to concentrate on the comparison of the remaining three

candidates, namely, the H2S, 3SE and the MLE estimators. Note that, as discussed in

Chapters 2 and 3, the variances (standard errors) of the H2S and the 3SE estimators

can be obtained using one of two alternatives. The first one is by substituting the

elements of the respective covariance matrices by their consistent estimates. The

second procedure is based on White's (1980b) idea. However, hypothesis tests and/or
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confidence intervals based on the first procedure were far from the desired precision,

especially for the H2S estimator [see Tessema (1994)]. Thus, the standard errors for

the H2S and 3SE estimators which are used to obtain the results in Tables 6.20-6.21

are estimated following White's (1980b) procedure.

Table 6.20 presents the percent of coefficients contained in the 95% confidence

intervals for all sample sizes and distributions, given a 25% degree of censoring. These

results reveal the following important points.

Under normality of the error terms, the MLE provides confidence intervals which

are quite close (approximately the same) to the expected closure rate, which is 95%.

For example, Table 6.20 depicts that, given a 25% degree of censoring, a sample size of

200 and normally distributed error terms, about 94.17 and 95.43 percent of the 3000

confidence intervals (samples) contain the true parameters, [31 and /32, respectively.

The corresponding percentages for the 3SE estimator are, 92.73 and 81.73 for 131 and

132, respectively. The results for the H2S estimator are close to those of the 3SE. In

general, as would be expected, the MLE appears to provide more reliable confidence

intervals provided that the errors are normal. However, the situation appears to be

relatively different under the non-normal distributions. For example, the evidence

in Table 6.20 indicates that the H2S and the 3SE estimators can be as good as and

sometimes even better than the MLE under the non-normal distributions (see results

under the students'-t distribution).

Further, to examine the effects of censoring, Table 6.21 depicts the percent coef-

ficients contained in the 95% confidence intervals for all samples and distributions,

given a censoring level of 50%. As can be seen from the table, the results for both

the 112S and the 3SE estimators appear to be larger than the desired level in most
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Table 6.20: 95% Confidence Intervals of Estimators for all Sample Sizes and Distri-
butions, given 25% Degree of Censoring.

Sample Size Estimator Para- % of Coefficients Contained in 95% C.I.*
-meter Normal Students'-t	 Chi-Square

92.80 95.60 91.03
81.97 88.87 82.97
93.23 95.93 91.93
81.17 88.93 83.60
94.43 92.57 91.80
93.93 93.50 93.93

92.23 95.67 91.00
81.43 87.80 83.90
92.73 96.03 92.03
81.73 87.78 84.27
94.17 93.47 89.50
95.43 94.30 94.80

93.27 95.50 91.17
83.13 90.10 85.03
94.10 95.80 92.47
83.43 90.27 85.97
94.43 90.37 87.00
95.87 92.20 94.10

100	 H2S	 01
02

3SE	 01
/32

MLE	 01
/32

200	 H2S	 /131
02

3SE	 01
i32

MLE	 A
02

400	 H2S	 01
02

3SE	 01
02

MLE	 i31
132

-* C.I. stands for Confidence Interval.
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Table 6.21: 95% Confidence Intervals of Estimators for all Sample Sizes and Distri-
butions, given 50% Degree of Censoring.

Sample Size Estimator Para-  % of Coefficients Contained in 95% C.I.*
-meter Normal Students'-t 	 Chi-Square

90.60 93.60 87.90
88.63 92.83 84.20
99.66 99.00 98.30
98.43 97.43 96.67
95.13 91.60 92.73
94.10 93.80 92.50

99.43 97.17 97.67
98.10 96.83 95.93
99.63 99.10 98.83
98.27 97.57 96.50
94.80 87.70 91.47
94.03 93.50 93.93

99.73 97.93 97.77
98.23 98.07 96.17
99.87 98.90 98.86
98.33 98.50 96.57
94.93 82.77 88.97
94.47 92.73 94.50

100	 H2S	 /31
02

3SE	 /31
132

MLE	 /31
132

200	 H2S	 gi
132

3SE	 01
132

MLE	 /31
02

400	 112S	 01
02

3SE	 01
02

MLE	 #1
/32

-* C.I. stands for Confidence Interval.
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cases. This is in line with the earlier comparison of the variances especially for the

H2S estimates.

As before, the MLE performs quite well under the normal distribution but not as

good as under the non-normal distributions. However, it should be noted that when

using the MLE estimator one can obtain the variances (and hence the standard errors)

of the estimates using any one of four alternative, but asymptotically equivalent,

variance-covariance estimators, of which the inverse of the information matrix used

in the above analysis is among these alternatives. It is therefore interesting to see

whether the performance of the MLE estimator improves or not by making use of

other variance-covariance matrix estimators. A further analysis along this line will

be provided in the next Chapter.

6.5 Summary and Conclusions

In this Chapter we examined the small sample properties of some of the estimators of

the tobit model. These estimators include, two ordinary least squares estimators: one

using only the positive (non-limit) observations on the dependent variable, yi , (OLSP)

and the other using all limit and non-limit observations on y, (OLS), the Heckman's

two-step estimator (H2S) and its weighted version, the weighted Heckman's two-

step estimator (WH2S), Heckman's two-step estimator based on the unconditional

expectation of the model (H2SU) and its weighted version, the WH2SU, the maximum

likelihood estimator (MLE) and two nonlinear least squares estimators. Further,

a three-step estimation procedure which is referred to as the three-step estimator

(3SE) and its weighted version, the weighted three-step estimator (W3SE), are also
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suggested and investigated. The effects of sample size, degree (level) of censoring and

distributional assumptions of the error structure of the model are investigated. The

main conclusions, among others, are the following.

The least squares estimators are seriously affected by the degree of censoring

and provide biased estimates; the bias being an increasing function of the degree of

censoring. Similarly, the H2SU and the WH2SU estimators are no better than the

least squares estimators. In other words, the H2SU and the WH2SU estimators are

biased and inefficient and get worse with increases in the degree of censoring.

The nonlinear least squares estimators are generally less efficient and computa-

tionally very slow compared to the MLE or 3SE estimators. Most importantly, the

nonlinear least squares estimators are sensitive to the degree of censoring, and con-

vergence is not always guaranteed.

Under normality conditions, the MLE estimator gives the best results followed by

the 3SE estimator. The loss in efficiency of the 3SE estimator compared to the MLE

estimator is marginal. However, both the MLE and 3SE estimators appear to be

sensitive for the skewed (chi-square) distributed error terms in terms of efficiency. On

the other hand, given low levels of censoring, the MLE estimator performs well under

the students'-t distribution. If the degree of censoring is high, the MLE estimates

under students'-t distribution can be less efficient than the 3SE estimator. It is also

important to note that the t-tests and confidence intervals based upon the MLE

estimates are quite good under the normal compared to those of the non-normal

distributions.

Further, our results indicate that the H2S estimator, although less efficient com-

pared to the 3SE or MLE estimators in all cases, seems to perform well in terms
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bias, given low levels of censoring. However, it can be highly inefficient for degrees

of censoring as high as 50%. This result is in contrast to that of the 3SE estimator

which yields results which are very close to the MLE estimates.

Finally, recall that, as discussed in Chapter 2, previous studies related to tobit

estimators have indicated that the MLE can be biased if the assumption of normality

about the error term does not hold. However, our results do not generally support this

conclusion. Specifically, the evidence in this Chapter shows that bias is not a serious

problem for the MLE if we assume normality when the errors are generated from the

students'-t and chi-square distributions; except when the sample size is small (100),

coupled with high degree of censoring, in which case there appears to be some bias

under the non-normal distributions, particularly under the students'-t distribution

(e.g., see Table A.6, Appendix A).

Given that the MLE estimator is widely used in applied research, a further in-

vestigation of its consistency as well as the use of the alternative but asymptotically

equivalent variance-covariance matrices and their effects on the performance of the

MLE estimator will be provided in the next Chapter.
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