
Chapter 1

Introduction

Nuclear spin relaxation rates can be used to characterise atomic self-diffusion in solids.

Relaxation rates can be measured as functions of temperature and applied magnetic

field strength and direction in order to determine, for example: the diffusion mech-

anism, the values of activation energies, and the concentrations of impurity atoms

in the solid. Detailed theory of both the nuclear interactions and the atomic dif-

fusion is required, however, to interpret the experimental results accurately. The

relaxation rate theory used in the present work is that given by Abragam (1961) and

Slichter (1990) in which the relaxation rates are derived from first order perturbation

theory, exact in the high-field limit, and can be written as linear combinations of

spectral density functions. The spectral density functions are the Fourier transforms

of ensemble-averaged autocorrelation functions of the magnetic dipole interactions

between pairs of nuclei. These functions are written in terms of displacement proba-

bilities which describe the diffusion of the nuclei, and which are the basis of calculating

nuclear spin relaxation rates for different diffusion models.

In three-dimensional systems much work has been done calculating relaxation

rates due to solid-state diffusion, especially for that by the vacancy mechanism. The

initial approximation to the spectral density functions of Bloembergen et al. (1948)

was extended by Torrey (1953) to the case of isotropic diffusion using random walk

theory. Eisenstadt and Redfield (1963) introduced the concept of an atom-vacancy

encounter to calculate relaxation rates due to the vacancy diffusion mechanism in

solids, and this model can be used to calculate relaxation rates accurate in the low

defect-concentration limit. Relaxation rates due to solid state diffusion have since

1



Chapter 1. Introduction	 2

been calculated for many systems and by a variety of techniques, including: Monte

Carlo simulations of the atomic diffusion to determine the displacement probabilities

(Wolf 1974; Wolf et al. 1977; Faux et al. 1986); lattice summations in the case of

diffusion by the simple random walk in three dimensions (Wolf 1975), and by the

mean field theory (Sankey and Fedders 1979; Barton and Sholl 1980); and approxi-

mations to the lattice summations for diffusion by the vacancy mechanism using the

encounter model (MacGillivray and Sholl 1986). The high- and low-frequency limit-

ing forms of nuclear spin relaxation rates were calculated for diffusion in one-, two-

and three-dimensional systems by Sholl (1981a). The aim of this thesis is to calcu-

late the spectral density functions, and hence the nuclear spin relaxation rates, for

lattice diffusion in some two-dimensional systems and for the interstitialcy diffusion

mechanism in three-dimensional systems.

1.1 Two-dimensional systems

There are many systems in which atomic diffusion is restricted to two dimensions;

such as layered compounds, intercalates, and diffusion on surfaces. Many of these

systems are of significant technological importance, especially some of the layered

ionic solids (for example, Na+ 0-alumina) which have high ionic conductivities at

only moderately elevated temperatures, well below their melting points. Nuclear

spin relaxation rate experiments can be used to study the atomic diffusion in these

systems, but realistic diffusion models and the appropriate NMR spectral density

function theory are required to interpret the results accurately.

Previously, the spectral density functions due to two-dimensional diffusion had

been calculated for continuum diffusion models, such as the work of Avogadro and

Villa (1977), Neue (1988), and the more sophisticated continuum diffusion models of

Korb et al. (1983, 1984, 1987a, b, 1990). In Chapter 2, the spectral density functions

are calculated for lattice diffusion on the two-dimensional square lattice. The cases

of like- and unlike-spin interactions are considered, with interactions between nuclei

on a single or on separate planes possible. The present work is an extension of the

continuum diffusion models to lattice diffusion by the simple random walk and the

mean field theories of diffusion, and this is the first application of these theories

to calculating the spectral density functions due to two-dimensional diffusion. The
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results are compared with the results of the continuum diffusion models of Neue

(for interactions between nuclei on separate planes) and Avogadro and Villa (for

interactions between nuclei diffusing in a single plane), and also with the results of the

often-used BPP approximation (Bloembergen et al. 1948). The BPP model assumes

that the autocorrelation function of interactions between pairs of nuclei behaves as

a decaying exponential function with time and is equivalent to assuming a complete

decorrelation of the interactions when either one of the nuclei first jumps to a new

lattice site. This approximation is commonly used to interpret experimental data

because of the simple Lorenzian form of the resulting spectral density functions.

In the present work it is demonstrated that the BPP model is a particularly poor

approximation of the results for two-dimensional diffusion, being less accurate than

in the case of three-dimensional lattice diffusion. Also given is a technique for applying

the mean field square lattice results as an approximation to other two-dimensional

lattices, such as the hexagonal and honeycomb structures, so that the approximation

is exact in the high-frequency limit.

The longitudinal relaxation rates R1 and R1p in the laboratory and rotating frames

of reference, respectively, are calculated in Chapter 2 for the like-spin magnetic dipole

interaction between nuclei diffusing on a square lattice. The results for the mean field

and BPP models of diffusion are compared, and the anisotropy of the relaxation rates

with orientation of the applied magnetic field is examined.

1.2 Diffusion and relaxation due to the intersti-
tialcy mechanism

Atomic self-diffusion within crystalline solids is largely due to the presence of point

defects in the solid. Two common mechanisms of atomic diffusion by point defects

in solids are the vacancy and interstitialcy mechanisms. Atomic displacement prob-

abilities due to the vacancy diffusion mechanism, and the resulting nuclear spin re-

laxation rates in the cubic lattices have been well studied: Monte Carlo simulations

of the vacancy motion were used by Wolf (1974) and Wolf et al. (1977) to calcu-

late relaxation rates due to diffusion on the b.c.c. and f.c.c. lattices; Sholl (1974,
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1982) and MacGillivray and Sholl (1986) have calculated the relaxation rates us-

ing approximations to the atomic displacement probabilities based on random walk

theory; and, more recently, accurate analytic expressions for the atomic displacement

probabilities—which are exact in the low vacancy-concentration limit—have been cal-

culated by Sholl (1992). Relaxation rates due to diffusion by the forward noncollinear

interstitialcy mechanism in a fluorite lattice have been calculated using Monte Carlo

simulations of the interstitial defect motion (Wolf et al. 1977; Figueroa et al. 1979).

In general, though, the interstitialcy diffusion mechanism has not received as much

attention as has the vacancy diffusion mechanism.

In Chapter 3, accurate expressions for the atomic displacement probability are de-

rived for diffusion by the interstitialcy mechanism. These expressions, which are used

to calculate spectral density functions, are written in terms of the atom jump proba-

bilities due to the diffusion of a single interstitial defect. A simple matrix expression,

in terms of lattice generating functions, is derived which provides a straightforward

means of evaluating the atom jump probabilities. The technique used is similar to

that of Sholl (1992) for the vacancy diffusion mechanism, but is significantly extended

to incorporate the two-stage jumps of the interstitialcy diffusion mechanism.

In addition to the atomic displacement probabilities, the atom jump probabilities

can be used to calculate the tracer correlation factor, f, which characterises spatial

correlations of the atomic diffusion. The diffusion coefficient, D, can be written as

D = f Dui, where D, is the diffusion coefficient for uncorrelated diffusion in the

system (see for example LeClaire 1970; Kelly and Sholl 1987). Many calculations and

simulations of the tracer correlation factor have been undertaken, for a wide range of

systems (see for example Allnatt and Lidiard 1993 for a recent review). Experimental

measurements of the tracer correlation factor can be compared with theoretical values

to help identify the dominant diffusion mechanism present in a system.

For the vacancy mechanism of diffusion in some structures, analytic expressions

for the atom jump probabilities are known in terms of the lattice generating functions

(Szabo et al. 1991; Sholl 1992), and can be used to evaluate the tracer correlation

factor. In the cubic lattices, the square lattice, and the diamond and honeycomb

structures the tracer correlation factor for the vacancy diffusion mechanism is found
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Table 1.1: Values of the tracer correlation factor, f, (given by equation (1.1)) and
the expressions and values of A for diffusion by the vacancy mechanism in various
structures, arranged in order of increasing coordination number, Z. The value of A
for the square and hexagonal lattices are due to Montet (1973) and those for the
honeycomb and diamond structures are due to Szabo et al. (1991).

A

Honeycomb 3

Square 4
Diamond 4

Hexagonal 6
Simple-cubic 6
Body-centred-cubic 8
Face-centred-cubic 12

Po — P4	 1.2590517 0.6531088

PO + P2	 P3 – P5 = 1.2635794 0.7271941

Po	 2P1 — 2P3 —P4 = 1.4721608 0.7814514

to be of the form

f = 1	
2A	

(1.1)
Z + A

where Z is the coordination number of the structure and A is a linear combination of

lattice generating functions, Pi . The Pi are the mean number of times the vacancy,

commencing its random walk from the origin, visits one of the j th nearest neighbour

sites. The method of calculating the Pi for Bravais and non-Bravais lattices is given

in an appendix in the present work, and Table 1.1 shows the expressions and values

of A and the values of f calculated by equation (1.1) for diffusion by the vacancy

mechanism in various lattices.

In Chapter 3, the tracer correlation factor for diffusion by the interstitialcy mech-

anism is demonstrated to have a general form which has similarities to equation (1.1).

The result is

f = 1	 	 	 (1.2)
a(aZ' — AB)

where A and B are linear combinations of lattice generating functions and defect jump

probabilities, respectively, and the a and Z' are geometric factors which depend on the

lattice type. A special case is that of the collinear interstitialcy diffusion mechanism

for which A = 1 and B = a, and the expression (1.2) for the tracer correlation factor

AB2
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simplifies to

1 = 1(1.3)
Z' — 1

This remarkably simple expression for f depends only on the number of possible

jumps, Z', of an interstitial defect and is valid for all the interstitial systems considered

in the present work.

In Chapter 4, the accurate expressions for the atomic displacement probabilities

due to the vacancy and interstitialcy diffusion mechanisms in the NaC1 structure are

applied, for the first time, to nuclear spin relaxation rate theory. The encounter

model of Eisenstadt and Redfield (1963), in which the diffusion proceeds by an un-

correlated sequence of atom-defect encounters, is used to describe the diffusion of the

cations. The results, therefore, are exact only in the low defect-concentration limit

where the mean time between encounters is much greater than the mean duration

of an encounter. Simple analytic approximations to the spectral density functions

for unlike-spin magnetic dipole interactions in the NaC1 structure are found which

provide a straightforward means of calculating nuclear spin relaxation rates.

The relaxation rates of F nuclei in solid LiF (which has the NaC1 structure) due

to magnetic dipole interaction with the Li nuclei diffusing by the vacancy and inter-

stitialcy mechanisms are then calculated. One of the aims in doing so is to determine

whether or not nuclear spin relaxation rate measurements can be used to determine

the dominant diffusion mechanism present in LiF. Relaxation rates for diffusion in

polycrystalline samples and single crystals at various orientations are found and com-

pared with the corresponding results of the BPP approximation. The low-frequency

results are also studied by considering the relaxation rate differences R2 - R1 p and

R1 , — R1 , which highlight some of the shortcomings of the BPP approximation.

Conclusions to each section of the present work are given at the end of the appro-

priate chapters, commencing on pages 30, 57 and 81.

Some aspects of the work presented here have been published in the papers listed

at the end of the thesis.
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Chapter 2

NMR magnetic dipolar spectral

density functions for

two-dimensional lattice diffusion

2.1 Introduction

The theory of nuclear spin relaxation due to fluctuating magnetic dipolar interactions

involves, in the weak collision limit, spectral density functions which depend on the

nature of the fluctuations. If the time dependence of the dipolar interactions is due

to translational diffusion of the spins it is well known that the functional form of

the spectral density functions depends on the dimensionality of the system (see for

example Sholl 1981a), especially in the rapid diffusion limit corresponding to high

temperatures or low resonant frequencies. In the case of interacting spins undergoing

two-dimensional diffusion in a plane the spectral density functions depend on the

frequency w according to log(1/w) in the low frequency limit under very general

conditions.

The evaluation of the spectral density functions for two-dimensional systems has

been considered for continuum diffusion models by Avogadro and Villa (1977) and

Korb et al. (1983, 1984, 1987a) for the case where the dipolar interactions are all in

a plane. The extension of this theory to the diffusing spins in a plane interacting

with spins in a separate parallel plane has been treated by Korb et al. (1987b) and
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Neue (1988). The continuum diffusion models are appropriate for systems in which the

mobile spins behave like two-dimensional liquids but may not be good approximations

for spins undergoing diffusion on a lattice. The high-frequency form of the spectral

density functions for spins diffusing on a square and hexagonal lattices has been

derived by MacGillivray and Sholl (1985a, b) but there are no results available for

discrete lattice diffusion over the entire frequency range.

The aim of the present chapter is to calculate the spectral density functions and

nuclear spin relaxation rates over the complete frequency range for some lattice dif-

fusion models and to compare the results to those for continuum diffusion models

and the BPP model (Bloembergen et al. 1948). The general theory is developed for

arbitrary two-dimensional structures and is applied specifically to the case of a square

lattice. The cases of spins interacting with each other in the same plane and of spins

in one plane interacting with spins in a separate parallel plane are both considered.

The form of the dependence of the spectral density functions and relaxation rates

on the direction of the applied magnetic field relative to the crystal axes is more in-

volved for the square lattice than for the continuum model and results for this angular

dependence are presented.

2.2 Spectral density functions

The spectral density functions relevant to nuclear spin relaxation due to magnetic

dipolar interactions, for both like and unlike spin interactions, are (Abragam 1961;

Sholl 1981a)

J (P) (w) = cd2 E Y2P (no, ) Y2X/P) P(r,„,, rp, w)	 (2.1)P	 r3	 r3
«,p 	c'	 0

where 4 = 167115, 4 = 8r/15, 4 = 32r/15, Y2p (SY) are spherical harmonics nor-

malised to unity, Ito = (r,„ fra ) are vectors separating the interacting spins, and c

is the probability of finding a spin at roe relative to one at the origin. The function

P(ra , rp, w) is the Fourier transform

co
P(ra , rp, co) = 2 I P (r c„ rp, t) cos wt dt

o
(2.2)

of P(ra , rp, t) which is the probability of a pair of spins being separated by rp a time

t after they were separated by r c,. The directions 1 1,, of the spherical harmonics are
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relative to the direction of the applied magnetic field.
The dependence of J(1') (w) on the orientation of the crystal with respect to the

magnetic field direction can be expressed in terms of trigonometric functions of the
polar angles (8, 0) of the field direction relative to crystal axes and functions Jppi(w)
defined for p and p' = —2 to 2, by (Sholl 1986)

tipp l GO ) = c E Y2*P(nc' ) Y

	

i-
2P1( '/3) P(ro , r ip, w)	 (2.3)

qi
c" ,13	 -

where the directions of the spherical harmonics are now relative to axes fixed in the
crystal. The z direction will be chosen to be the normal to the plane of the diffusing
spins.

The maximum number of independent nonzero parameters needed to specify
J(P) (w) for each frequency is 15 and crystal symmetry reduces this number (Sholl 1986).
If the z axis is a 6-fold rotation axis or if there is circular symmetry about the z axis,
as is the case for a continuum diffusion model, only the three (real) diagonal elements
of Jpp,(w) are nonzero and J(P) (w) depends only on 0 according to

di;2 J(P) (w) = Jpp + Bp sin' 0 + Cp sin4 0,	 (2.4)

where

1
B0 = 3(J11 — J00), B1 = —(340 — 5J11 + 2J22 ), B2 = J11 — J22,2

, n r	 ,
Co = --z

3
i0J00 - 4J11 + J22), C1 = --2 r,0 7 C2 

1
= ut).

If the z axis is a 3- or 4-fold rotation axis J(P) (w) also depends on 0 and there are
additional terms to equation (2.4) given by

3Dp sin' 0 cos 0 R(e*J* 12 )	 3-fold axis	 (2.5)

3

	

—D sin4 0 34644J:22) 4-fold axis	 (2.6)
4 P

where Do = 1, D1 = -1 and D2 = -.

The number of independent (real) parameters is therefore 3 for a 6-fold rotation
axis or circular symmetry, and 5 for a 3- or 4-fold rotation axis. If the dipolar

interactions are restricted to the plane of diffusion, J11 and J_12 are zero because
the spherical harmonics in equation (2.3) become zero. There are then only two
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parameters (J00 , J22) for a 3- or 6-fold rotation axes and 4 parameters (J00, J22,

complex J_22) for a 4-fold rotation axis. These results for the continuum diffusion

in a plane are consistent with the angular expressions of Avogadro and Villa (1977)

and the results for a 4-fold axis are consistent with the case 0 = 0 considered by

MacGillivray and Sholl (1985a). (In equation (3.7) in the latter paper ANC') should

be 4sin' O.)

The spherical average over all magnetic field directions (J(P) (w)) of the spectral

density functions in all cases isdp

(J(P) (w)) = 

C

(Joo 2J11 + 2(122)	 (2.7)

A circular average about the z axis gives the expression in equation (2.4) in all cases

since the additional terms (2.5) and (2.6) average to zero.

Since the relaxation rates are linear combinations of the spectral density functions

(Abragam 1961), the relaxation rates have the same functional form as J(P) (w) for

their orientation dependence on the magnetic field direction and this is also the case

for the appropriate averages over magnetic field directions.

In the weak-collision limit the experimentally measurable relaxation rates can be

written as linear combinations of the spectral density functions J (P) (w). For example,

for like-spin dipolar interactions the longitudinal relaxation rates R1 and R10 in the

laboratory and rotating frames, respectively, are (see for example, Kelly and Sholl

1992)

R1 = 4C [J(1) (coo) J(2)(2w0)]
	

(2.8)

R10	 C [0) (2co1 ) 10J(1) (wo) J(2)(2w0)]
	

(2.9)

where C = ?-y4h2 I(I + 1) (1410 2 , -y is the gyromagnetic ratio of the nuclear spin with

spin quantum number I, and w0 and w1 are the Larmor frequencies of the spins in

the applied static and oscillating magnetic fields respectively. The spectral density

functions J(P) (w) are expressed in terms of Jpp►(w) by equations (2.4) to (2.6) and the
Jppi(w) are defined relative to the crystal axes by equation (2.3).

It is convenient to discuss and present the results in terms of the dimensionless

function hpp,(wr) which is related to Jppi(w) by

CT

JP1) 1 (W °PP' nppi(cAYr)a
(2.10)
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where r is a characteristic correlation time of the diffusion which is discussed in §2.3,

Sppl is the lattice summation

S , = a6 E  pY2* (nCX)Y2P02°) 
PP	 )	 (2.11)

6 a	 ra

and a is the lattice parameter, or the mean jump distance. The values of spp, depend

only on the geometry of the spin system and values are given in §2.4.

2.3 Diffusion models

The systems to be considered are spins diffusing on two-dimensional lattices by ran-

dom jumps to vacant nearest-neighbour lattice sites. The dipolar interaction may

be between like spins undergoing relative diffusion on the same lattice or between

unlike spins where the dipolar interaction is between a diffusing spin in a plane and a

lattice of fixed spins in the same or another parallel plane or planes. For unlike spin

interactions the probability function P(ra , ro, t) will be of the form

P(ra , ro, t) = P(ra — ro,t)	 (2.12)

if the fixed spins do not influence the diffusion of the moving spins. This is not the

case for the relative diffusion of like spins on the same lattice since each of a pair of

diffusing spins will then interfere with the diffusion of the other; even in the limit of

low spin-concentration corresponding to just two spins on the lattice.

2.3.1 BPP model

The BPP model for the spectral density functions is based on an approximation for

P(ra , rp, t) which corresponds to the pair of spins maintaining their relative separation

for a mean time T. and assuming that the correlation in their dipolar interaction

is completely destroyed when a jump of one of the spins occurs. It is therefore

equivalent to choosing P(ra , ro, t) to be 6 exp(—t /r). The parameter T is Tc for

the unlike-spin case where only one spin is mobile with a mean time of r c between

jumps and is rc/ 2 when either spin can jump, as in the like-spin case. The resulting

dimensionless spectral density functions h pp,(wr) for the BPP model are zero if Sppf =
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0 and otherwise are
2

hpp,(WT) = 	 	 (2.13)
1 + (COT)2

which are independent of p, p', the crystal structure and any microscopic details of

the diffusion process other than T. These spectral density functions are simple to

use and so this BPP model is widely used in analysing nuclear spin relaxation data,

despite the approximations inherent in it.

2.3.2 Continuum model

In the limit of large distances and long times the lattice diffusion will be describable

by the continuum diffusion expression in two-dimensions which is

1	 a — rp)	 2}
P(ro„rp,t) = 	 	 (2.14)

4r Dt exP 
—(r

4Dt

where the diffusion constant D is related to the lattice diffusion by D = a2/(4,Tc ) , a2

is the mean square jump length and re is the mean time between jumps of a spin.

This is the model considered by Neue (1988) for interactions between unlike spins

where one of the two spin-types is fixed while the other diffuses on a second plane a

distance z from the first. The resulting spectral density functions can be written in

the form

jPP'(w) = °PP' 2 — IA) 6z2a2C(wrz)
, 	 4 )  5nr 

f x 5 (x4 --1- –
9u2) -1 

exp(-2x) dx
4

C(u) =

(2.15)

(2.16)

where n is the surface density of lattice sites and where 7, is a parameter with the

dimensions of time defined by
8z2T

Tz = 

	

	 (2.17)
3a2 

The parameter r in these expressions is T., if only one spin is diffusing and becomes 742

if both spins are diffusing. In the limit of large COTz (COT Z 2 –+ oo), C(corz)= 5/[6(wrz)2]

so that
4 ) 25na2r 1 1

	

jPPI(W) = 6PP1 (2 — Ipl) 256 z6 (wr)2	
(2.18)

in this limit. For small values of (.4.)Tz (b.JT Z2 < 1) the Jpp (w) are linear in WT and

jppi(w) ,, j, spp► 	 4 )
—	

5nr 	 1	 ir	 1
(2.19)

IA)	 z	 C	6a 2 L4 2 — --d-WT	
(2

J '



2

dxCp(U) —
— JO

T
oo 

x5 (x4 + u2)— r° Jipi(Y) dy]
y2

1
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The expression (2.15) diverges as z --+ 0 since the model then allows the unphysical

condition that the two interacting spins can occupy the same site. An approximation

for z = 0 which overcomes this difficulty is to limit the starting and finishing sepa-

rations of the spins to regions outside circles of radius d. A similar analysis to Neue

then gives (Avogadro and Villa 1977)

Jppi(co) = 8 , A 
4Tn  

C (W TDPP P d2 a2 P
(2.20)

(2.21)

where Ao = 5/4, A± 1 = 0, A±2 = 15/8, TD = 4Tc/2 /a2 and the Jipi (y) are Bessel

functions. The parameter r is again 7-, for one spin diffusing and Td2 for both spins

diffusing. More sophisticated continuum diffusion models have been considered by

Korb et al. (1983, 1984, 1987a, b, 1990).

2.3.3 Random walk model

A general approach to evaluating the spectral density functions for discrete lattice

diffusion is to use a reciprocal-space formalism (Fedders and Sankey 1978; Barton

and Sholl 1980) in which

Jpp i (o) = (2A72)4 I f Tp*(q, j , z)Tp,(q 1 , j , z)P(q, q' , co) dq dq'	 (2.22)

where the integrals are over the first Brillouin zone of the two-dimensional reciprocal

lattice (see Appendix A), A is the area of the two-dimensional unit cell, P(q, q' , co) is

the temporal and spatial Fourier transform of P(r„, r ie, t) and

Y2p0/.)Tp (q, j , z) = E 	 3	 exp(iq • rc,)	 (2.23)
/	 ra

where rc, = 1+ j + zk. The vectors 1 are two-dimensional lattice vectors (in the sy-

plane) and j + zk is the relative displacement of a planar lattice of fixed spins from

the planar lattice of diffusing spins, where z is the separation between the planes and

j is a planar vector characterising the relative displacement of the lattices parallel to

the planes. For like-spin dipolar interactions in a plane, j and z are both zero and

the term 1 = 0 must be omitted from the summation in the expression (2.23). An
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efficient method of evaluating lattice summations of the form of Tp(q,j, z) is to use
the Poisson summation formula (Barton and Sholl 1980) and the resulting expressions
for the two-dimensional summations are given in Appendix B.1. A particular lattice
diffusion model will determine P (q , q', w) and Jpp,(w) can then be evaluated using
equation (2.22) and the expressions in Appendix B.1. The symmetry of the calculated
Jppi(w) will be as discussed in §2.2.

A simple model of the diffusion of a spin is that it follows a random walk with
a mean time of re between jumps. Random walk theory (Barber and Ninham 1970)
and equation (2.12) then give the expression

27-(270 2 [1 — 0(q)]  8(
P (q , q' ' W) = [1 — 95 (q )1 2 + (WT)2

q q), (2.24)

where T = Tc for one spin diffusing and T = rc/2 for both spins diffusing, yi(q) is the
lattice structure factor, defined by

0(q) = E Wk exp(iq • rk )	 (2.25)
k

and wk is the probability that the jump of a spin from the origin will be to r k . For
nearest neighbour jumps on a square lattice with lattice parameter a

q(q) = — [cos(qia) + cos(q2 a)1 .	 (2.26)21 

In the limit of small WT , which corresponds to long range diffusion, and as z -- oo
in such a way that WTZ2 —4 0, the spectral density functions of the random walk and
the continuum models are equal. In these limits equation (2.19) for the continuum
model of diffusion is also valid for the random walk model.

If a fraction, c, of the lattice sites are occupied by diffusing spins the mean time rc
between jumps of a spin is 7-0 /(1—c), where 7-0 is the mean time between jumps of a spin
if it is the only spin on the lattice. For unlike spin dipolar interactions between fixed
spins and diffusing spins the random walk model is exact in the limit c ---+ 0 and will
be a reasonable approximation at other concentrations, except in the limit c ---+ 1 since
the diffusion is then controlled by the random walks of vacancies. In three dimensions
the encounter model (Wolf 1979a; MacGillivray and Sholl 1986; Sholl 1992) is then
valid but this will not be applicable to two-dimensional systems. This is because an
encounter cannot then be defined and Brummelhuis and Hilhorst (1988, 1989) have
recently analysed the random walk theory for the limit of c —4 1 in two-dimensional
systems.
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2.3.4 Mean field model

The random walk model for like-spin dipolar interactions between two spins diffusing

on the same lattice allows the unphysical possibility of the pair of spins both occupying

the same site and therefore requires exclusion of the term 1= 0 in expression (2.23).

It is therefore not rigorously correct even in the limit c 0. An improved theory,

which will be referred to as the mean-field model, is to take into account the site-

blocking effects of the two spins rigorously but to take the effects of the other spins

into account only through the mean time re between jumps as for the random walk

model. This mean field model will again not be valid in the limit c 1 but is exact

in the limit c 0. The results of a comparison between the random walk and mean

field models for the spectral density functions in cubic crystals (Barton and Sholl

1980) suggested that the difference between the results for these models increases

as the lattice coordination number decreases. It would therefore be expected that

the difference between the J(P) (w) for the two models would be significant for planar

systems, which can have low coordination numbers.

The evaluation of P(q, q', w) for the mean field model in two dimensions is similar

to that in three dimensions (Barton and Sholl 1980). The rate equation for P(r,„ ro, t)

can be found by considering the possible nearest neighbour jumps and jump rates of

the spins, and is

-d.--iP(ro„ro,t) = — — E P(r r	 ) 1 — 8rp,o — E Srp,ni6ni,-n;
r Z	 a	 ni' t

1 z2 

1 z
—P(ra ,ro,t) 1 - 40,0 - 

Z
- E bro,n, 7[

 j=1
(2.27)

with the initial condition P(r,„rp, 0) 6r0„ro (1 — Sro,o), and where the ni are the

Z nearest neighbour vectors of the lattice. The terms without delta functions in the

rate equation are those corresponding to the analogous rate equation for a simple

random walk, while the terms with delta functions are a result of accounting for the

site-blocking effects of the mean field model. Fourier transforming the rate equation

for P(r,„	 t) gives the integral equation:

Pc (q,q',w).2d0 (qi ,w) [(27) 2 6(q — q') — 11	 (2A702 K(qi,q1)Pc(q,qi,w)dqi,

(2.28)

z
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for Pc (q, q', co) where do(q' , w) is as defined below, the integral is over the first Brillouin

zone, A is the area of the unit cell, and where the kernel of the integral equation is

	

K (q' , 91) = —
2 

do(q' , w){1 + 0(q1 — q') — OW 1 ) — 0(9')} .	 (2.29)
Tc

The temporal Fourier transform of P(q, q', t) is defined to be

	

Pc(q , 9', w) = 2 0
P(q,q' , t) exp(iwt) dt	 (2.30)

and the function P(q, q', w) required in the evaluation of the spectral density functions

is the real part of Pc (q , q', w). It is assumed in the above definition that P(q, q' ,t)

is an even function of t which is the convention used by Barton and Sholl (1980)

following Abragam (1961).

The kernel of the above integral equation is degenerate and the solution can, there-

fore, be found by solving a system of algebraic equations. This involves a considerable

amount of algebra, which is outlined in Appendix C for the square lattice, and in this

case the solution is

q)F1(q1

	

27-(27) 2 [1 — 007)]  607 q') + R {do(q, w)do(41	
Fi((

w

	

, w) L	 i) 
9 

P (q ' qi 'u)1 — [1 — 0(q)] + (wT)2	
B

(2.31)

where

do(q , co) =
[1 — 0(q)] — i(wr)

F1 (q) = 2 — cos(qi a) — cos(q2a),	 F2 (q) = cos(qi a) — cos(q2a),

A
B1 (co) = 27- (702 I do(q, co) {2 — 4 cos(m) + cos 2 (m) + cos(qia) cos(q2 a)} dq,2 

B2 (w) = 27- ( A702 j do(q, w){cos2 (q0) — cos(m) cos(q2a)} dq,2 

where T = rd2 and the integrals in the above expressions for the Bi (w) are over

the first Brillouin zone of the two-dimensional reciprocal lattice. The solution also

involves F1 (q) additional to those shown above but which do not contribute to the

spectral density functions as the integrals over the Brillouin zone vanish by symme-

try. The spectral density functions for the mean field model are then obtained from

equations (2.22) and (2.23).

T
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2.4 Results

Some numerical results are presented below for the spectral density functions and

relaxation rates for diffusion on a square lattice. The spectral density functions

Jpp,(w) are related to their dimensionless forms hppi(cor) by equation (2.10) and the

values of the lattice summations Spp, for square lattices are given in Table 2.1. For

simplicity, the only cases to be considered are unlike-spin dipolar interactions between

diffusing spins in one plane and fixed spins in a parallel plane, where the planes are

separated by z > 0, and like-spin dipolar interactions between spins diffusing in

the same plane. Other similar like- and unlike-spin examples—including systems for

which j, the relative displacement of the planes parallel to the planes, is nonzero—are

easily calculated and show similar qualitative features but are not considered here.

Table 2.1: Values of the lattice summations Sppi , defined by equation (2.11), for a
square lattice and for z = 0, a and 10a where a is the lattice parameter.

z = 0 z = a z= 10a

S00 0.4634 0.4132 2.344 x 10-5

511 0 0.1015 1.562 x 10'

S22 0.6951 0.03851 3.905 x 10-6

S-22 0.5286 0.01070 —3.722 x 10-16

2.4.1 Separate planes

The nonzero independent spectral density functions for square lattices with z > 0 and

j = 0 are hpp (wr) for p = 0, 1, 2 and the real part of h_22 (wr). These functions are

shown in Figure 2.1 for z = 10a for the BPP and random walk models. The random

walk results for hpp (wr) are the same for p = 0, 1, 2 to within 0.04% for this value

of z. All of the functions are proportional to (WT) -2 for large COT as a result of this

limit depending only on the details of the probabilities of no jump or one jump of a

spin occurring in a time t. The range of WT over which this limit is valid, however,

is very different for the BPP and random walk models and increases with increasing

z for the random walk model. This result is a consequence of the assumption in the
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900

600

hpp

WT

Figure 2.1: The functions h pp, (COT) for the random walk and BPP models for dipolar
interactions between diffusing spins and fixed spins on square lattices separated by
z = 10a. The BPP results are independent of p and p'. The broken line for small WT

shows the limiting linear form of hi,p (wr) for the random walk model.

BPP model that the correlation in dipolar interactions is completely destroyed when

a jump of a spin occurs. This becomes a poor approximation for large z because the

jump of a spin then only involves a small change in the dipolar interaction between

the spins while the random walk model includes the effect of this change correctly.

The maxima in the relaxation rates occur at much smaller values of WT for the random

walk model than for the BPP model as z increases as a result of this difference between

the models. The BPP model is also clearly a poor approximation, both in magnitude

and in functional form, in the small WT region and in the important range of WT

corresponding to the vicinity of the maxima in the relaxation rates.

The results for the continuum diffusion model are not shown in Figure 2.1 but

agree with the random walk results to within 0.7% for hpp (c.or) over the range of WT

shown. The function h_22 (wr) is related to the angular dependence of the spectral

density functions on the azimuthal angle 0, as discussed in §2.2, and it is zero for the

continuum model but not for the random walk model.

The corresponding spectral density functions are shown for the case z = a in
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hpp 
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WT
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Figure 2.2: The functions hpp,(wr) for the random walk ( 	 ) and continuum
(– – –) models for dipolar interactions between diffusing spins and fixed spins on
square lattices separated by z = a. The function h_22 (wr) is zero for the continuum
model.

Figure 2.2 for the random walk and continuum models. The BPP results are not

shown but are the same as in Figure 2.1 since they are independent of z. The magni-

tude of the BPP results are now comparable to the other models but the functional

form is still quite different at small WT . The results for the random walk model show

significant differences from those of the continuum model, unlike the case for z = 10a.

The general conclusions are therefore that the BPP model is unsatisfactory for

these systems and that the continuum model is a good approximation for hpp(wr) for

large z. This latter result is expected since the details of the lattice structure will

become less important as z increases. Lattice diffusion models such as the random

walk model are however necessary for small z and for calculating h_22 (wr) since this

is zero for a continuum model.

2.4.2 Single plane

For like-spin interactions between spins diffusing in the same plane (z = 0) the func-

tion hii (u.r) = 0 and the functions hoo(wT), h22 (wr) and h_22 (wr) are shown in
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WT

Figure 2.3: The function hoo(wr) for the BPP, random walk, mean field and contin-
uum models for interactions between spins diffusing on a square lattice (z = 0). The
approach of the mean field and continuum models to the ln(l/wr) limit for small COT

is shown in the inset.

Figures 2.3 and 2.4 for the BPP, random walk, mean field and continuum models.

The BPP model is again an unsatisfactory approximation, especially in the small COT

limit where it becomes constant. As shown in Figure 2.3, the other models show

ln(1/wr) behaviour for hoo(wr) in this limit; although their magnitudes can be signif-

icantly different from each other. The remaining independent hppi(wT) do not diverge

at cur = 0 but intersect the COT = 0 axis with finite slope as shown in Figure 2.4.

In the case of h22 (cor), which is linear in WT in the low-frequency limit, this slope is

nonzero for all but the BPP model. The slope of h_22 (wT) at COT = 0 is zero.

These results show that the precise details of the diffusion model are quite im-

portant for z = 0 with the more rigorous mean field results showing appreciable

differences to those for the random walk model and especially to those for the con-

tinuum model. The percentage difference between the spectral density functions for

the random walk and mean field models becomes constant at both small and large

WT. It is interesting to note that the numerical calculations are easier to compute to

a given accuracy over a wide range of LOT for the more realistic mean field model than
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6

4

Figure 2.4: The functions h22 (wT) and h_22 (wr) for the same system as in Figure 2.3.

is the case for the continuum model.

Analytic approximations for the numerical results can be extremely useful

(Sholl 1988) and the following functions have been found to fit the mean field re-

sults to good accuracy. The functions h22 (cor) and 11_ 22 (wr) over the entire range of

COT and hoo(wr) for WT > 1.0 may be approximated by

H 

	

hpp i (COT) =	 (2.32)
2a + b(cor) + c(cor) u + d(wi-)ii + (c.oT)

where the values of the parameters and the accuracy of the approximations are given

in Table 2.2.

A different functional form is required for hoo(wr) for WT < 1.0 and the results

can be described by

cor) =(oo	
11.150 ln(29.81wr)

	

h	 , —
[1	 17.98(wr)°-87]	

(2.33)

for WT < 0.015 accurate to within 0.6%. For 0.015 < WT < 2.5

5
hOO(wT) = -

1 E Anon ,	 (2.34)
un- m----0

where x = 1og10 (2cor) and is also accurate to within 0.6% and where the coefficients

An are
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Table 2.2: Parameters for the analytic approximations to the mean field spectral
density functions.

h00(.4.17) h22(WT) 11_22 (wT)

H 0.7577 1.3858 1.3377
a 0.25 0.3791 0.3869
b 0 0.3905 0
c 0.4028 -0.1879 0.4210
d -0.0632 0.0268 -0.2783
u 0.80 1.50 1.11
v 1.40 1.80 1.30

maximum error 0.8% 1.1% 1.0%

Ao = 0.5995	 A1 = -0.2699	 A2 = -0.4929

A3 = 0.0979	 A4 = 0.2289	 A5 = 0.0611.

The low-frequency limit of -11.150 ln(29.81cor) for the mean field model may be com-

pared with -5.395 ln(62.55wr) for the continuum model. The appreciable difference

between these forms is shown in the inset of Figure 2.3. The low-frequency limits for

the remaining independent spectral density functions for the mean field theory are

3.66 - (57rwr)/(2S22 ) for h22 (wr) and 3.46 for h_22(wr).

As in the case of z > 0, the BPP model is again unsatisfactory in the present

case of z = 0. The continuum diffusion model shows the correct functional form

in the small-wr limit but the magnitude is significantly in error, and again gives

h_22 (wr) = 0. The lattice models are therefore necessary to give accurate results

and also to give nonzero values of h_ 22 (wr) and the mean field model is the most

physically realistic of the models considered.

Application to diffusion on the hexagonal and honeycomb structures

Little, if any, experimental work has been done on systems with diffusion on a square

lattice. There are, however, experimental results for diffusion on the two-dimensional

hexagonal lattice (Heitjans 1993) and the honeycomb structure (Brinkman et al. 1982;

Bader et al. 1992; Freilander et al. 1987; Schirmer et al. 1992; McDowell et al. 1994).

It is possible to apply the mean field theory to diffusion on these lattices, although
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WT

Figure 2.5: The spectral density functions, g(wr) = (J(P) (w))47a6/(dp2 7-c ), for diffusion
on the s.c., b.c.c. and f.c.c. lattices by the mean field model (Sholl 1988). The b.c.c.
and f.c.c. curves are normalised to the s.c. curve in the high-frequency limit.

this has not been undertaken here. With little extra effort, however, the results for

diffusion on a square lattice can be used to give reasonable first approximations to the

cases of diffusion on the hexagonal lattice and honeycomb structure. It is straightfor-

ward to calculate the spectral density functions exactly in the high-frequency limit

from rapidly converging lattice summations (Barton and Sholl 1980); the spectral

density functions at lower frequencies then remain to be determined. The results for

the three-dimensional diffusion on different lattice types indicate how a successful

approximation to the spectral density functions at low frequencies might be found.

Figure 2.5 shows the spherical average of the spectral density functions of the mean

field theory for three-dimensional diffusion on simple-cubic (s.c.), body-centred-cubic

(b.c.c.) and face-centred-cubic (f.c.c.) lattices calculated by Sholl (1988). In this

plot the b.c.c. and f.c.c. results have been normalised to the s.c. results in the high-

frequency limit. It can be seen from the figure that the shape of the spectral density

function curves for the mean field theory of three-dimensional diffusion is relatively

insensitive to the lattice-type of the system for these lattices. The b.c.c. and f.c.c.

results at low frequencies differ from the corresponding s.c. result by approximately
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Table 2.3: Values of the dimensionless lattice summations, Sppl , and the coefficients,
H, of (wr)- 2 in the high-frequency limiting form of the dimensionless spectral density
functions for diffusion on the hexagonal and honeycomb structures by the mean field
theory. Also shown are scaling factors, k, for converting the results of diffusion on a
square lattice to those of diffusion on the hexagonal and honeycomb structures.

Hexagonal	 Honeycomb

Spp,
	 H	 k
	

Spp,
	 H	 k

h00 0.6342 0.6718 0.8867 0.3289 0.8249 1.0887
h22 0.9513 1.7530 1.2650 0.4933 1.0905 0.7869
h_22 —3.931 x 10- 7 1.9172 1.4332 —1.890 x 10- 8 1.3082 0.9779

21% and 30% respectively. The s.c. result, when scaled appropriately for the b.c.c. or

f.c.c. systems, is therefore exact in the high-frequency limit and a reasonable order-

of-magnitude approximation otherwise.

It is possible that a similar situation applies to the two-dimensional case; that

is, the spectral density function results for the square lattice, when scaled to match

the high-frequency limit of the hexagonal or honeycomb structure diffusion, could be

a reasonable approximation at all other frequencies. For diffusion on the hexagonal

and honeycomb structures the spectral density functions are proportional to (wr)-2,

as they are for the case of the square lattice, in the high-frequency limit. The values

of the constant of proportionality, H, for each of the spectral density functions can

be calculated from rapidly converging lattice summations (Barton and Sholl 1980),

and the results of these calculations for the three independent h ppi(wr) for the mean

field theory of diffusion on a single hexagonal lattice and on a single honeycomb

structure are shown in Table 2.3. The parameter H is the parameter in the analytic

approximation (equation (2.32)) of the spectral density functions for diffusion on the

square lattice. Also shown in Table 2.3 are the dimensionless lattice summations, Sppi ,

(equation (2.11)) and scaling factors, k, which when multiplied with the dimensionless

spectral density functions for diffusion on the square lattice give the corresponding

functions for diffusion on the hexagonal or honeycomb structures.

The spectral density functions for a square lattice, adjusted as described above
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for a honeycomb structure, have been used to calculate the R1 relaxation rate of

hydrogen in ZrBe2I11 .4 (McDowell et al. 1994) due to the like-spin magnetic dipole

interaction between the H nuclei, where it is believed that the H nuclei diffuse on two-

dimensional honeycomb structures. The resulting theoretical relaxation rate curves

are shown fitted to the experimental data in Figure 2.6. It can be seen from this figure

that the fit is particularly good at high temperatures. The theory self-consistently

explains the positions of the maxima in addition to the frequency and temperature

behaviour of the relaxation rates. The frequency dependence at high temperatures

cannot be explained using the BPP approximation which is frequency independent

in this region. Features of the relaxation rates due to the different diffusion models

are discussed in the following section.

2.0	 2.5	 3.0	 3.5	 4.0	 4.5
103/T (1<-1)

5.0	 5.5

Figure 2.6: Experimental measurements of the R1 relaxation rates in a powdered
sample of ZrBe 2 H1.4 , corrected for the conduction electron contribution. The curves
are the spherically averaged relaxation rates for the mean field theory of diffusion on
a square lattice, adjusted to approximate diffusion in the honeycomb structure. Data
from McDowell et al. (1994).
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Figure 2.7: The relaxation rates R1 and R1p as functions of wore for interactions be-
tween spins diffusing on a square lattice. The results are for the magnetic field direc-
tion normal to the plane. The long-dashed lines correspond to the low-frequency limits
in §2.4.2 and the high-frequency approximation of MacGillivray and Sholl (1985b).

2.4.3 Relaxation rates

The longitudinal relaxation rates R1 and R1p are linear combinations of spectral

density functions and are given by equations (2.8) and (2.9). The relaxation rates

are dimensionless functions of wor and col T when expressed in units of 87r-Cc/(15w0a6)

and plots of the relaxation rates in these units are shown in Figures 2.7 and 2.8 for

the BPP and mean field models and various magnetic field orientations for like-spin

interactions between spins diffusing on a square lattice (z = 0, j = 0, T = rd2) and

for col = wo/103 . If the mean time, r, between jumps depended on the temperature T

according to an Arrhenius relation the relaxation rates plotted as functions of log(wrc)

would correspond to experimental relaxation rates plotted as functions of 1 /T.

Figure 2.7 shows the results for the BPP and mean field theories for the magnetic

field direction oriented normal to the plane of spins. The form of the relaxation rates

at large LOT (corresponding to high frequencies or low temperatures) is proportional

to (WT) -1 but there is a difference in magnitude between the models of 1.4 for R1

and 2.6 for R11, in this limit. In the low-frequency (high-temperature) limit the BPP
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Figure 2.8: The mean field model results for some different magnetic field directions
to those on Figure 2.7.

results are proportional to WT for all magnetic field orientations, but this is true of
the mean field model only for R1 , and then only if the magnetic field is normal to the
plane of the spins, as in Figure 2.7. This is because, in this case, R1 depends only on

h±22 (wr) which do not show logarithmic behaviour for small WT . In all other cases
the relaxation rates are not proportional to WT for small WT because the relaxation
rates then depend on hoo(WT) which shows logarithmic behaviour in this limit.

The relaxation rates for the mean field theory are shown in Figure 2.8 for three
different orientations of the magnetic field direction. There are significant differences
between the results for different field directions at all values of wor e . The minimum
and maximum values of the R1 maximum for any field direction are 2.17 (in units of

871-Cc/(15w0 0)) at 0 = 90°, 0 = 0° and 5.16 at 0 = 0° respectively. The corresponding
results for R10 are 123 at 0 = 50°, 0 = 45° and 2770 at 0 = 90°, 0 = 0°.

The values of wore and col Tc at which the R1 and R1p maxima occur are especially
important parameters since they can provide directly a value of r e at the temperature
for which the maximum relaxation rate occurs. The values of wore for which the R1
maxima occur are given as a function of magnetic field orientation for the BPP and
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Figure 2.9: The values of wore at which the maxima of R1 occur as functions of the
angles 0,0 of the magnetic field direction relative to the crystal axis.

Figure 2.10: The values of wi T c at which the maxima of R1p occur as functions of the
magnetic field direction.
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mean field theories in Figure 2.9 for the range of angles sufficient to specify the results

for any orientation. It can be seen that the variation with 0, 0 is similar for the two

models but that the magnitudes are different. The comparable results for the mean

field theory are given in Figure 2.10 for the Rip maximum. The corresponding BPP

results are not shown but vary by only 0.02% over the entire range of 0 and 0 and

the value is 1.0. Also shown in Figures 2.9 and 2.10 are the results for a circular

average about the direction normal to the plane. The anisotropy of the position of

the maxima is therefore quite different between the models for Rip compared with

R1 . These results again show the inadequacy of the BPP model for two-dimensional

systems.

Validity of field averaging the relaxation rates

The relaxation rates for polycrystalline samples can be obtained by taking the aver-

age, over all field directions, of the relaxation rates for a single crystal. As pointed

out by Wolf (1975), however, it is the magnetisation rather than the relaxation rate

that should be averaged. This leads to a non-exponential decay (or growth) of the

magnetisation in a polycrystal, and Barton and Sholl (1976) have examined the va-

lidity of the approximation involved in averaging the relaxation rates for the simple

random walk model in the (three-dimensional) cubic lattices. The approximation was

found to be accurate for wore < 2 for both the R 1 and R1„ relaxation rates. At high

frequencies the deviation from the exponential decay becomes marked, especially in

the case of the simple-cubic (s.c.) lattice for which the magnetisation has deviated

10% from the exponential approximation after times of 3.5(R 1 ) and 0.95(R1p ) for the

R1 and Rip relaxation respectively, and the approximation is worse for longer times.

The times taken for the non-exponential decay of the magnetisation to deviate 10%

from the exponential approximation as a function of wore are shown in Figure 2.11.

Also shown in Figure 2.11 are the results of similar calculations for the mean field

diffusion model in the two-dimensional square lattice. In this case the magnetisation

has deviated from the exponential approximation by 10% after a time of 2.2(R 1 ) for

the R1 relaxation at all frequencies except in the range 0.004 < wor e < 0.2 where the

approximation is more accurate. The corresponding deviation for the R1p relaxation
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Figure 2.11: The time (in units of (R), the spherically averaged relaxation rate) taken
for the non-exponential magnetisation decay to deviate 10% from the exponential
approximation. The results are for the R 1 and R1p relaxation rates for random walk
diffusion in a simple-cubic lattice, and the mean field model of diffusion in a square
lattice.

occurs after a time of 0.65(R 1p ) for coo-, > 1, and after times ranging from approx-

imately (R1p) to 1.6(R1p ) for wort < 1. The assumption of an exponential decay of

the magnetisation for a polycrystal is, therefore, a much poorer approximation in the

case of two-dimensional diffusion than for three-dimensional diffusion, and it is likely

that the non-exponential decay for a polycrystal with two-dimensional diffusion could

be observed experimentally.

2.5 Conclusion
The functional form of the dependence of the spectral density functions as a function

of the orientation of the magnetic field direction relative to the crystal axes has been

obtained for dipole interactions between spins undergoing discrete lattice diffusion

on separate parallel planes and for interactions between spins diffusing in a plane.

The details of the reciprocal-space formulation for evaluating the spectral density
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functions for two-dimensional lattice diffusion have been developed and applied to

the random walk and mean field models for diffusion on a square lattice.

The results from the random walk and mean field models have been compared

with the results from the BPP and continuum models. The BPP model is quite

unsuitable for two-dimensional diffusion since it gives the incorrect functional form

for the relaxation rates in the low-frequency (high-temperature) limit and can also

give significant differences in the magnitudes of the spectral density functions and

relaxation rates from the more detailed lattice diffusion models. The continuum

model is quite satisfactory, as would be expected physically, for interactions between

well separated planes but is less accurate for interactions between spins diffusing

in a single plane. The lattice diffusion models are also necessary to calculate the

dependence of the spectral density functions on the azimuthal angle between the

magnetic field direction and the normal to the plane.

In the case of interactions in a single plane, the mean field model is exact in the

limit of low spin concentrations and an accurate analytic approximation has been

obtained for the spectral density functions for diffusion on a square lattice. These

results should also be a good approximation for other spin concentrations which

are not too large. The mean field model is a reasonable approximation for three-

dimensional systems unless the spin concentration approaches unity (Faux et al. 1986).

The range of spin concentrations over which the mean field model is valid might

however be less for two-dimensional diffusion since the three-dimensional encounter

model for high spin concentrations is not valid for two-dimensional diffusion.

While the functional form of the spectral density functions and relaxation rates

in the high-frequency limit is similar for lattice diffusion models in one, two or three

dimensions, this is not the case for the low-frequency limit. For example, anisotropic

diffusion models in three-dimensional hexagonal crystals (Sholl 1987) showed signif-

icant differences between the results for one-, two- and three-dimensional diffusion.

The spectral density functions for interactions in a plane show the ln(1 /wr) behaviour

as cor —* 0 but this limit is only approached for values of WT corresponding to relax-

ation rates well below the maximum rate and might therefore be difficult to observe

experimentally.

The relaxation rates for two-dimensional diffusion show a much stronger depen-

dence on magnetic field direction than is the case for three-dimensional cubic systems.
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An interesting consequence of this dependence on magnetic field direction is that

the magnetisation recoveries show non-exponential behaviour at long times for poly-

crystalline samples (Barton and Sholl 1976). The stronger dependence on the field

direction in two-dimensional systems means that the non-exponential magnetisation

recoveries would be observed at shorter times.

The general analysis of two-dimensional systems developed above can be easily

extended to other lattices and other like- and unlike-spin planar systems.
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