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Abstract

Nuclear spin relaxation rates due to magnetic dipole interactions and atomic
diffusion in solids are calculated for some two- and three-dimensional systems
and for some models of common diffusion mechanisms.

NMR magnetic dipolar spectral density functions are obtained for some
lattice diffusion models for two-dimensional lattice diffusion on a square lat-
tice and compared with the results for the BPP and continuum diffusion
models. Numerical results and analytic approximations are obtained for dipo-
lar interactions between spins diffusing in a plane, and interactions between
diffusing spins in a plane with fixed spins in a separate parallel plane. Re-
sults for the longitudinal spin relaxation rates in the laboratory and rotating
frames are obtained for square lattices and show strong dependence on the
direction of the applied magnetic field relative to the crystal axes.

A simple matrix expression is derived for the atom jump probabilities due
to an interstitial defect moving by an interstitialcy diffusion mechanism. This
expression is used to obtain the tracer correlation factor and to calculate the
atom jump probabilities numerically for various cubic and two-dimensional
systems. An integral expression, involving atom jump probabilities, is ob-
tained for the atomic displacement probabilities due to a single atom-defect
encounter.

Expressions for the atomic displacement probabilities are used to calculate
NMR magnetic dipole spectral density functions for atomic diffusion in LiF
by the vacancy and interstitialcy diffusion mechanisms using the encounter
model. Nuclear spin relaxation rates (R 1 , R1p and R2 ) of the F nuclei in LiF
due to the diffusion of Li nuclei by these mechanisms are calculated from
the spectral density functions and compared with the results of the BPP
approximation. Measurements of the nuclear spin relaxation rates are shown
to be ineffective at distinguishing between the diffusion mechanisms in this
case, although the correct theory for the diffusion mechanism is required
to interpret experimental results accurately. The differences R2 — R1p and
R1p — Ri are examined in the low-frequency limit and the encounter model
results are found to be proportional to (WITe) 3/2 while the BPP approximation
results are proportional to (wire)3.
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