
Appendix A

Brillouin zone summations

Many types of equations can be solved, and infinite lattice summations can be eval-

uated efficiently using spatial Fourier transform and reciprocal space techniques (as

in §2.3.3, §4.3.2 and Appendix D). In the following, some of these techniques (and

in particular the methods of evaluating summations over reciprocal lattice sites) are

outlined.

A lattice vector r is defined in terms of the set of primitive vectors a i as

r	 Aiai,	 (A.1)

where the Ai are integers, d is the dimension of the lattice and lad = a, the lattice

parameter. The spatial Fourier transform of a function f (r) is defined to be

F(q) =	 f (r) exp(iq • r),	 (A.2)

where the sum is over all lattice vectors. The reciprocal lattice vector is

q = 	 qi b3 ,	 (A.3)
=1

where the primitive vectors of the reciprocal lattice, bi , are defined by a i • ba =

and the qi have dimensions of reciprocal length. The inverse Fourier transform is

then
1

f(r) =	 E F(q) exp(—iq • r), (A.4)

where N is the number of lattice sites and the sum is over all reciprocal lattice vectors.
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An example of importance is where f (r) exp( —iq' • r), and the Fourier transform

of f (r) vanishes by symmetry for all values of q except q = q', in which case F(q) =

N; that is,

The Kronecker delta function is

F(q) = N (5", .

Tql =I= 11 69;,9;
.i=i

where 6q3,q; = 1 if qj = and is zero otherwise. It is straightforward to confirm

that the inverse Fourier transform (equation (A.4)) of N8q,q, is the original function

f (r) = exp(—iq' • r).

It is possible to define a finite region of reciprocal space, called the first Brillouin

zone, which simplifies the summation over all possible reciprocal lattice vectors in

the inverse Fourier transform. From the definition of the Fourier transform (equa-

tion (A.2)), F(q) is periodic so that for any reciprocal space vector q there is an

equivalent vector, q', that can be written

(A.7)

where the nj are integers, so that F(q) = F(q') for any nj . In particular, any vector

q has an equivalent vector, q', in the first Brillouin zone, which is the region in

reciprocal space of vectors whose components satisfy the inequality alq'aj < 7r. This

region of reciprocal space is sufficient to completely specify F(q) for any vector q

since the period of the exponential of a purely imaginary number is 27.

The inverse Fourier transform of F(q) (equation (A.4)) includes a summation over

all reciprocal lattice sites, q, and can, by the periodicity of the argument, be written

as a summation over the equivalent vectors in the first Brillouin zone. The summation

over a finite volume involves a quasi-infinite number of terms and can therefore be well

approximated by an integral of the continuum over the first Brillouin zone, multiplied

by the density of reciprocal lattice vectors, v/(27r) d where v is the volume (area) of

the primitive cell of the real lattice. The following notations are then equivalent:

dq	 (A.8)
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where v = VIN and V is the total volume (area) of the lattice. In three-dimensional

lattices v	 (a2 x a3 ) and

v	 27	

7r/a
a'

(27)3 L z dq = (97)3	 — dq1 dq2 dq3
—7r/a

since b1 • (b 2 x b3 ) = a3 /v, and a similar relation holds for two-dimensional lattices,

where v = x a2 1. Expression (A.9) is valid only for lattices where the condition

lai I = a for 1 < i < d holds. The above finite, one-dimensional integrals can be evalu-

ated numerically using the Gauss-Legendre technique (Abramowitz and Stegun 1972)

to high accuracy in most cases.

The Kronecker delta function notation, N	 , used with the summation notation

in the above example becomes the delta function

) d d
(27) d (q — q') (—

a	
H (qi — q'j)
j=1

(A.10)

in the integral approximation since

F(q')	
1

) = 	 E N q F (q) = 	 f (27 ) 61 6 (q — q') F (q) dq.
IV	 27r)d BZq	 (	

(A.11)

Some types of integrals over the Brillouin zone of the the cubic lattices, particularly

lattice generating functions, are especially time consuming to calculate accurately

using the Gauss-Legendre technique. In these cases it is advantageous to use the

special points integration technique of Chadi and Cohen (1973) which makes use of

the 48 symmetry operators Ri of the cubic point group (see, for example, Burns and

Glazer 1990) to define the function

48

Fi (q) =	 F(Riq)	 (A.12)
i=1

which has the complete symmetry of the lattice. The Brillouin zone integral can then

be written

I F(q) dq =	 Fi (q) dq	 (A.13)
BZ	 IR

where the integral of F1 (q) is over the irreducible Brillouin zone which is 1/48 of the

Brillouin zone volume and which generates the whole (first) Brillouin zone by the

application of the 48 symmetry opperators Ri . The irreducible Brillouin zones of the

(A.9)
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simple-cubic (s.c.), face-centred-cubic (f.c.c.) and body-centred-cubic (b.c.c.) lattices

are

7r
0 < q3 < q2 < qi < —a

7F
< q3 < q2 < qi < —a

37r
q1 + q2 + q3 —2a,

7r
and 0 < + q2 a •

(s.c.)

(f.c.c.)	 (A.14)

(b.c.c.)

7r
0 < q3 <q2 < q1 a ,

and

In the special points technique the integral is evaluated using the approximation

fIR

n
Fi (q)dq =

i=1
(A.15)

where the ai are weights and the q: are n distinct special points in the irreducible

Brillouin zone, generated from two reciprocal space vectors, k 1 and k 2 , using the

equation

q, = k 1 + Rik2.	 (A.16)

These q i are then transformed, using the Ri opperators, into the irreducible Brillouin

zone to the vectors qi and the a i are the numbers of qi equivalent to each distinct

normalised to unity. The so generated can then be used as seed vectors, k1,

to generate an additional group of special points and this process can be repeated to

improve the accuracy of the integral approximation. The base special-points sets are

= ;-c-t (b1 + b2 + b3 ), k 2 = -:Tt (b 1 + b2 + b3 ),	 (A.17)

with successive values of k 2 for generating additional groups of points given by

7r
k 2 = 	 (bi	 b 2	 b3),

for the Brillouin zone of the s.c. lattice, and

m = 2,3,...	 (A.18)

k 1 = (b 1 + b 2 + b3), k 2 = 7-1-(b 1 + b2 + b3),
2a

(A.19)

with successive values of k 2 for generating additional groups of points given by

2rn

7r

a
k 2 = 	 (bi b 2 + b3 ),	 m = 2,3,...

for the Brillouin zones of the f.c.c. and b.c.c. lattices.

(A.20)



Appendix B

Transformation of Tp(q,j, z) and

Tp(q)

The functions Tp (q, j, z) and Tp (q) are the spatial Fourier transforms of Y2p (S1)/r3 in

two- and three-dimensional systems respectively, where r = (r, ft). The transforma-

tions of these functions are each treated separately in the following two sections.

B.1 The two-dimensional case

The function Tp (q, j, z) is defined by (see §2.3.3)

Y2p(9.,) exp(iq • r„)Tp (q, j , z) = 3
a

where r„ are the vectors j je, and where the summation is over the lattice

vectors in an infinite plane. In terms of basis vectors a l , a 2 , where lad = a, and

two-dimensional reciprocal lattice vectors b 1 , b 2 , defined by ai • b.; = abij , the vectors

r, and q are

ra =	 j +1 zk +	 + i2a2) (Alai	 2a2),	 (B.2)

q	 q2b2•	 (B.3)

The summation over 1 in equation (B.1) then corresponds to A i and A2 summed

over integers from —oo to oo. This two - dimensional sum can be transformed into a

(B.1)
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sum over two-dimensional reciprocal lattice co-ordinates p i and /2 2 , using the Poisson

summation formula in a similar way to the case q 0 considered by Sholl (1966).

The result is, for p > 0,
CO

	

Tp( q , z) = Ap	 >	 FpCui, /2,	 exp{-27r(z/a)fi1,„,2}
	

(B.4)
11 1 412 = -00

where
47 2 (-1) P  [ 	 5 	

1/2

Ap =
aI a 1 x a2I[ 47 ( 2 — p)! (2 + p)!

	

Fp( u i,	 j2) = exp{i[pwA1,122 — 27(j i it 1 	 hit2)]},

=	 aPi)bi	 ([1 2	 ap2)b2(

ra2s(iti	 api)	 (t12 + ape)]
w	 = arctanAl,A2	 7

a2y(p1 + api)

a2s =	 a2 /a2 , a2y =	 — aL and q = 27rp. The values of Tp (q, j, z) for p < 0 can

be obtained from

T_p(q, j , z) = (-1)1T;(—q, j , z).	 (B.5)

The expression (B.4) is not valid for z = 0. In this case the transformation can

be made to a rapidly converging form by using an auxiliary function (Nijboer and

DeWette 1957). The results are

To( q, 0)	 27ra3 E'
Ai,A2

exp(iq • (TA 2 )
7crAj

2 3/2 c— — 7r v
3	 3,o

72a2
	  E F

O(
i l P2, jl, j2)fiii,p2F

1 x a21 /21,42 (
f2

i/ 41,2 (B.6)

Ti (q, j ,0) = 0,	 (B.7)

T2( q , j , 0 )	 v67a3 
1 ,A2

72a2

x a21 pi,A2

exp[i(20Aj + q •

Aj

C A3 )] F 5,7
A3)  

(-
1 f
2 ,	 P214/2)1 (B.8)

where the prime on the summation over A i , A2 denotes the exclusion of the Ai = A2 =

0 term when j = 0, and the prime on the summation over p i , /1 2 denotes the exclusion

of the p i = kt2 = 0 term if q = 0, and where cr Aj is the projection of the vector ra on

to the xy-plane; that is, a. ),.; = r0 — z = 1 + j. F(x,7r-o- 2 ) is the incomplete gamma

function.



Y2P(9a) exp(iq • rot)Tp(q)	
ra711

(B.9)
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B.2 The three-dimensional case

The function Tp (q) is defined by (see §4.3.2)

where the Y2p (52) are spherical harmonics, and where the r„ are the vectors m j,

where m are lattice vectors, and j is the nonzero relative displacement between the

two sublattices in the crystal structure. The summation is over all the lattice vectors

in the three-dimensional lattice. In terms of basis vectors a 1 , a2 and a3 , where

I ai I = a and which need not be orthogonal, and reciprocal lattice vectors b 1 , b2 and

b3 , defined by a i • ba = aSia, the vectors r, and q are

r, = m + j (Al a i + A2a2 )3 a3 ) +	 + j2a2 + j3a3),
	 (B.10)

q	 (11b1	 q2b2	 q3b3.	 (B.11)

The summation over m in equation (B.9) then corresponds to A i , A2 and A3 summed

over integers from —oo to oo. This summation can be transformed into a rapidly

converging two-dimensional sum over reciprocal space co-ordinates and /2 2 , using

the planewise summation technique developed by Nijboer and DeWette (1957) and

discussed by Barton and Sholl (1980) for the case of orthogonal basis vectors. The

result is, for p > 0 and j3	0,

Tp (q) = Ap E	 Pi, /22) + h*(1 — j3 ,	 /12)]
Al ,/1,2=-00

(B.12)

where

p =A 

it 2,	 =	 — 27r(j 1 it i + j2kt2)]},

= I(it i +	 + (it2 + a p2 )14 I ,

[ a2s(it i + api) — (y2 + ap2)]
= arctan

—a2y(iti + apt)

h (i	 /12)
exp{-27j [a3zfit i ,p2 +	 + api ) + t2(it2 + ap2 ) — ap3]]}

1 — exp{ —27r [a3z.fo i ,u 2 +	 + api ) + t2(it2 + ap2 ) — aP3)11

aI a1

47r 2 (—i) P	5 	
]1/2

x	 47(2 +p)! (2 —p)!



3
and

1	 ,
= —9 (900 — 9i 1)Co =	 — goo),
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a3ya2s
ti = (au 	

a2y
a3y

t2
a2y

ak. = ak - ai/a2 and aky = .11 — a 2kx , for k = 2 and 3, and 27rp = 	 q2112 where

the bi are the two-dimensional reciprocal lattice vectors defined by ai •	 = a51, for

i and j = 1, 2. The values of Tp (q) for p < 0 can be obtained from

T_ p (q) = T;(—q).	 (B.13)

In the special case when j1 = j2 = 0 or 1/2, as in the NaC1 structure, Tp (q) = Tp(—q)

in which case equation (B.13) becomes

T_ p (q) = T;(q).	 (B.14)

It is convenient to choose the basis vectors used to calculate the Tp (q) for the

NaC1 structure to be the primitive lattice vectors of the f.c.c. lattice. The result-

ing spectral density functions, rip' p ,(wr), will be for a magnetic field in the direction

(arccos(1/), 37r/4) with respect to the crystallographic axes. The spectral density

functions, gppi(wr), corresponding to a magnetic field along the crystallographic axis

are obtained from the spectral density functions for a magnetic field in the direction

(13, a) using the rotation matrix R(a, /3, 0) as discussed by Sholl (1986) and where

a = 37r/4 and /3 = arccos(1/V). Crystal symmetry greatly simplifies the problem

and the rotation can be achieved using the result, for p = 0 and 1,

gpp = gpp Cp (sin 2 2,3 + sin4 13 sin e 2a),	 (B.15)

where



Appendix C

Solution of the integral equation

The integral equation

f (x)	 g(x) + A 
f b 

 K (x, y) f (y) dy, ,	 (C. 1 )
a

where g(x) 0 is a known function of x, A is a constant parameter, and K(x, y)

is the kernel of the equation, is an inhomogeneous Fredholm equation of the second

kind. If the kernel is of the form

n
K( y) =	 xi(x)oi(Y)
	

(C.2)

it is said to be degenerate and an analytic solution for f (x) can be found by solving

a system of linear equations.

The integral equation for Pc (q, q', w) from the mean field model of diffusion in

two-dimensions (§2.3.4, equation (2.28)),

'Mg, , w ) = 2do(9' w){(27026(q— ) —1]
A  r

+ 27 )(	 2 j K ( q/ , q Pc( q	 w ) dq 1, (C.3)

is an integral equation of the above type, where the kernel

9

	

K(9', q i ) = 7—.-c do(q' , w){1	 g') —	 — OW)}

is degenerate and where

d° (9 ' w)	 2 [ l — 0(q)] — i(w7c)•

(C.4)

(C.5)
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The structure factor, 0(q), is defined as

=	 wk eXklq • rk)	 (C.6)

where wk is the probability that the jump of a spin from the origin will be to rk , and

7, is the mean time between jumps. The integral is over the first Brillouin zone and

A is the area of the unit cell (Appendix A).

For the case of diffusion on a square lattice when only nearest neighbour jumps

are allowed the structure factor is

0(q/) = 9 [cos(q i. a) + cos(q2' a)} ,	 (C.7)

21
0(q — q') = — E [cos(gi a) cos(q'a) sin(qi a) sin(q'a)] ,	 (C.8)2 

and then the kernel of the integral equation becomes

1	
2

K (q' , q i ) = —2 d0 (q' , co) E{[1 — cos(q:a)] [1 — cos(q iia)]	 sin(q;a)sin(qiia)}. (C.9)
i=1

The solution of the integral equation in this case is found by defining the functions

and

A
Ci (q) = (702	 — cos(qii a)]P(q,q i , co) dq i2 (C.10)

A
Si (q) = (7) 	 sin(qiia)P(q, q 1 ,	 dq	 (C.11)2 

from the q 1 -components of the kernel and from which the integral equation (C.3), for

the square lattice, can then be written

Pc (q, q', w) = 2d0 (q',w)[(27) 2 6(q — q') — 1]
2

+-
1

do(q' ,w) E{[1 — cos(q:a)]Ci (q) sin(q:a)Si (q)}•	 (C.12)
Tc	 i=1

Substitution of this equation into expression (C.10) for Ci (q) gives the system of

linear equations

where

(1—a	 )(C1(9))	 (G1)
—	 1 — c	 C12 (q) )	 G2)

a = 
1  A  I 

do(q' , w) [1 — 2 cos(q i a)	 icos 2 (qa)] dq' ,
rc (27)2

i=1
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= 1  A  I
do(q' ,	 [1 — 2 cos(q ii a) + cos(q'i a) cos(q2i a)] dq' ,	 (C.15)

rc (27)2

G = 2do(q, w) [I — cos(qi a)]	 27-c 7	 (C.16)

1  A 
7 = do(q' , w) [1 — cos(q'a)] dq' ,	 (C.17)

7c (27)2

and where the terms involving the Si (q) have vanished, by symmetry, on integrating

over q 1 in equation (C.10). The solution to the above system of linear equations is

2G, — G1 — G2	 G1 + G2 Ci (q) =	 (C.18)
2(1 — + 0) 

+ 
2(1 — — 0) •

Substitution of equation (C.12) into the expression (C.11) for Si (q) gives an equa-

tion in Ci (q) and Si (q). In this equation for Si (q) the terms involving the C i (q) van-

ish, by symmetry, on integrating over q 1 and the solution can then be found directly

to be

where

2do(q, co) sin(qia) 
Si (q) =

1 —
(C.19)

1  A  I
i

	

do(q ', w) sin2 (qa) dq ' .	 (C.20)
7c (27)2

Expressions (C.18) and (C.19) for the C i (q) and Si (q) can then be substituted back

into equation (C.12) for Pc (q, q', w) to give the solution

1	 sin(qia) sin(q:a) 
Pc(9, q', co) = 2do(q i ,w)[(27) 2 8(q — q') — 11 + —do(q , w)do(q i w) E

	

j	 Tc 1

1	 :a) — +co	 )
7c	

os(qia
—do(q' , co) [2 — cos(q i a) — cosW2a)]	

1
{2d0(q,

a

	

)	

cos(q

do(q , co)[2 — cos(q i a) — cos(q2 a)] — 27•c-y
(C.21)

1 — a —

Many of the terms in the above solution vanish by symmetry when the inverse spatial

Fourier transform is taken in the evaluation of the spectral density functions (equa-

tion (2.22)). Only terms that contribute to the spectral density functions are included

in the solution for P (q, q', co) = R{Pc (q, q', w)} and the final solution is

,	 27(27)2[1 — 0(q)]  5(q
P (q q	 )	 [1 — 0(0 2 + (c.,..)71 2	 q')	 {d()(q u))4(q' w) -17 F1(Virwl)q')}

and

where

(C.22)
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where

do(q,w) =
[1 — 0(q)] — i(c.or),

Fi (q) = 2 — cos(qi ct) — cos(q2a), 	 F2 (q) = cos(q0 ) — cos(q2a),

Bi (w) = 27- (2A702 do(9,w){2 — 4 cos(qia) cos 2 (m) cos(m)cos(q 2 a)} dq,

B2 (w) = 27 — (2A702 do(q, w){cos 2 (qi a) — cos(q i ct) cos(q2a)} dq,

where T = 7,/2 and the integrals in the above expressions for the Bi (w) are over the

first Brillouin zone of the two-dimensional reciprocal lattice.

T



Appendix D

Probability generating functions

The theory for calculating the displacement probability generating functions for a ran-

dom walk on the cubic lattices, and some structures which are a Bravais lattice with

b (> 1) basis vectors, is summarised below. The final expressions for the probabilities

involve an integral over the first Brillouin zone which can be evaluated numerically.

The matrix elements Po (discussed in §3.2.2 after equation (3.24) on page 43) are

the probability generating function

00

P(ck , c1; z)
	

Pn( ek, COZn 	(D.1)
n=0

with z = 1, for ck and c 1 , nearest neighbour vectors on the composite lattice and

where Pn (/ 2 , / 1 ) is the probability a random walker is displaced from / 1 to —12 in n

steps. The random walk is on the interstitial lattice which, in general, is a Bravais

lattice with b basis vectors. The case b = 1 corresponds to a random walk on a

Bravais lattice.

For an infinite lattice the probability Pn (/ 2 ,/ 1 ) is equal to the probability Pn(1)
that the random walker is displaced by l = —(/ 1 + 12) in n steps and the problem

of calculating the probability generating function P(c k , c i ; z) reduces to one of calcu-

lating P(/; z), the probability generating function of Pn (/). The first systems to be

considered are the simple-cubic (s.c.), body-centred-cubic (b.c.c.) and face-centred-

cubic (f.c.c.) lattices. On a cubic lattice; first, second and third nearest neighbour

steps are allowed, and occur with normalised probabilities s i , s 2 and .53 respectively.

If each lattice site has Zi j th nearest neighbour sites then the recurrence relation for

98



Appendix D. Probability generating functions 	 99

Pn,(1) is
3	 z,

13,(1) = E	 Pri-1(1 — 4i))
	

(D.2)
j=1

The 71, i) are the sets of lattice vectors to j' h nearest neighbour sites and the initial

condition is Po (I) = 61,0 . The corresponding probability generating function is (Barber

and Ninham 1970)

P(1	
exp(—iq 1) dq,

; z)	 (27) 3 J 1 — z A(q)

where the integral is over the first Brillouin zone, v is the volume of the unit cell, and

A(q) = siAl(q)	 s 2 )\ 2( q )	 s3\3(q).	 (D.4)

The reciprocal lattice vectors q = q i bi q2 b2 q3 b3 , where the bi are defined by

a i • b = a81,i , and the a i are the vectors a 1 = a2 = aj and a3 = ale, where a is the

lattice parameter. The structure factors, A i (q), for the interstitial lattice are defined

as
1

A3 ( q ) =	 exp (iq • ii,!3) ) ,	 (D.5)
Z3 i=1

which for s.c., b.c.c. and f.c.c. lattices are given by

[cos(qi a)	 cos(q2 a)	 cos(q3 a)] ,

cos(m) cos(q2 a) cos(q3a),

{

A 2( q ) =

A3( q ) =

13L- [cos(m) cos(q2 a)	 cos(qi a) cos(q3a)	 cos(q2 a) cos(q3a)], (f.c.c.)

[cos(qi a) cos(q2 a) cos(m) cos(q3a)

cos(q2 a) cos(q3a)], (s.c.)	 (D.6)

[cos(2q1 a)	 cos(2q2 a)	 cos(2q3 a)],	 (b.c.c. and f.c.c.)

cos(qi a) cos(q2 a) cos(q3 a),	 (s.c.)

[cos(2q1 a) cos(2q2 a)	 cos(2qi a) cos(2q3a)

cos(2q2 a) cos(2q3a)], (b.c.c.)

[cos(qi a) cos(q 2 a) cos(2q3a) cos(m) cos(2q 2 a) cos(q3a)

cos(2qi a) cos(q2 a) cos(q3a)], (f.c.c.).

(D.3)

Z,

Ai(q ) =

Equation (D.3), for the special case 1 = 0 and s i = 1, with the remaining s i equal

to zero, and z = 1, are the Watson integrals which can be evaluated analytically
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(Barber and Ninham 1970). Results for other / can be obtained numerically and these

functions have been studied extensively (see for example Montroll and Weiss 1965;

Joyce 1971; Sholl 1981c; and Koiwa and Ishioka 1983).

If the interstitial lattice has more than one basis vector (b > 1), there is more than

one type of lattice site, each site of a particular type having the same configuration of

surrounding sites. To obtain P(1; z) it is useful to introduce P(' ) (1), the probability

13,2 (1) with the added restriction that / be a lattice site of type a (1 < a < b) so that

P 1( 1 ) = E 13,-()`)(1)-	 (D.7)
0=1

Recurrence relations can then be found for the F'7 " ) (1) which take into account the

different possible jumps from each of the different types of lattice sites. As examples,

the cases of random walks on the interstitial lattice of the NaC1 structure (for which

b = 2), the s.c.(f) system and the s.c.(e) system (for which b = 3) are considered

below.

There are two types of lattice sites on the interstitial lattice of the NaC1 structure

(a f.c.c.(t) system). The first and second nearest neighbour jumps are the same for

both lattice types and are the same as those on a simple-cubic lattice. The third

nearest neighbour jumps are similar to jumps on a diamond structure and there is a

different set of jump vectors for each of the two types of lattice sites. The recurrence

relations for the .137 a) (1) in this system can be written

s 	 s2 z2
1P(a) ( 1 ) = E Pe 71i( 1	))+

_ i=1	 Z2 2 = 1

() \	 33p7(:01 (1 — n; 2 
)+ z Pe)1 (1— n.(i 3) ) (D.8)

for a, = 1,2 and a � /3, and where means to sum over all i which correspond

to jumps from a type-0 to a type-a lattice site. The initial condition is P(1 a) (1) =

61,0 6« , 1 if the random walker commences its walk at a type-1 site. The solution to the

recurrence relations can be found as before, and the probability generating functions

can be written

f
P(l; z) = (270 3 I	 -

 zB(q)],-,10 Pcr) (q) exp(iq 1) dq (D.9)

where I is the 2 x 2 identity matrix. The initial condition gives lt) (q) = 8, ,i , and



exp (iq • n,!-1))
z3 i=1

for j = 1 and 2, and
a0

Ai (q) =

1
\ (; ) (q) = exp (iq • ri,3))
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B(q) is the square matrix

s2A2(q)
B(q) = (i)s i	+ s3 A3 (q)

The Ai (q) are the structure factors defined by

()s i A i + s3A32)(q)

s2A2(q)
(D.10)

for j = 3. If the nearest neighbour jump vectors are as defined in Table D.1, the

structure factors are given by

1
A 1 (q) = — fros(gi ct) cos(q2 a) cos(q3a)],
3 

A2	
1

(q) = —[cos(q i ct) cos(q2 a)	 cos(q0) cos(q3 a)	 cos(q2 a) cos(q3 a),, (D.13)
3

,I1) (q) = cos(q i a) cos(q 2 a) cos(q3a) — i sin(qi a) sin(q2 a) sin(q3a),

4) (q) = P31)(q)]*

The term inside the curly brackets in equation (D.9) can be evaluated either numer-

ically for each value of q, or algebraically. If it is evaluated algebraically then, for the

above initial condition, the term can be written

1	 z [s i ( q ) — s2A2(q) + s341)(q)]

[1 — zs 2 A 2 (q)] 2 — z 2 [Si Ai (q)	 s 3 A (31) (q)] [s i A l ( q) 	 5 3 A 32) (q)] •

The special cases si = 1, s2 = 1 and .5 3 = 1 correspond to random walks on a

s.c. lattice , a f.c.c. lattice and the diamond structure respectively. The probability

generating function for diffusion on the diamond structure has been studied by Ishioka

and Koiwa (1978).

Equation (D.9) is valid for any infinite, Bravais lattice with b basis vectors. The

expression for the term inside the curly brackets, in terms of structure factors, will

depend on the lattice, as will the expressions for the structure factors.

The interstitial lattices of the s.c.(f) and s.c.(e) structures are each f.c.c. lattices

(D.14)
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Table D.1: First, second and third nearest neighbour vectors for the NaC1 interstitial
lattice. The vectors are a l = a2 = aj and a 3 = ak where a is the distance
between adjacent interstitial lattice sites. The numbers of nearest neighbour sites to
any lattice site are Zi = 6, Z2 = 12 and Z3 = 4.

(1)	 (2)	 (3)ni	ni	 ni

both types	 both types	 type-1 to type-2	 type-2 to type-1

+ai	+(ai + a2 )	 a1 + a 2 + a3	—al — a2 — a3
±a2	+(ai — a2 )	 a1 — a 2 — a3	a2 + a3 — al
±a3 	 +(ai + a3 )	 a2 — a l — a3	 al + a3 — a2

+(ai — a3 )	 a3 — a l — a2	a1 + a2 — a3
+(a2 + a3)
+(a2 — a3)

that have three basis vectors, and so each have three different lattice types. In

the present work it is necessary to consider only first and second nearest neighbour

jumps in the s.c.(e) interstitial lattice, while up to fourth nearest neighbour jumps

are allowed in the s.c.(f) interstitial lattice. The recurrence relation for PTC.a) ( 1 )

 
in

both systems, using the same notation as above, is

p(a)(1)	 si
Z1

Pnn(1 —41))
p('Y) (

1 k

rya P (' )1 (1 — n!3))]

(D.15)
Z4 i

where a, / 3,-y = 1, 2 or 3, and a 13 -y and where, in the present work, for the

s.c.(e) interstitial lattice s 3 = 34 = 0 always, to exclude the possibility of third and

fourth nearest neighbour jumps. This equation can be solved in a manner similar to

the case for a random walk in the NaC1 interstitial lattice, above, and the expression

for the probability generating function P(1; z) is again given by equation (D.9). In

this case, however, B(q) is a 3 x 3 matrix with diagonal elements

B c, , ,(q) = s 2 A2aa) (q)	 34A(4")(q),	 (D.16)

+ 34	 "p(cy)i (/	 ni(4)),
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and with the remaining elements

	

B, ,p(q) = s ir Ar ) (q) s3/03'3)(q)	 (ce	 0)	 (D.17)

where the structure factors, defined by

ai3
j( '13) (q) = —	 71.exp q •	 3) )	 (D.18)
Z; 

for the present two systems, satisfy the relation

A ('3) (q) = A(j'3')(q). (D.19)

For the choice of nearest neighbour lattice vectors and lattice site types defined in

Table D.2 the structure factors for the s.c.(f) system are

A.12) (q) =

	

cos(qi a) cos(q2 a),	 A (1 13) (q) = cos(qi a) cos(q3a),

A (123) ( q 	 cos(q2a) cos(q3a),

Amq. =)	 [cos(2q2 a)	 cos(2q3 a)],	 A (222) (q) = 2[cos(2q 1 a)	 cos(2q3a)],

43) (q) = [cos(2q i a) cos(2q2 a)],	 (D.20)
A l2) (q . _)	 cos(qi a) cos(q 2 a) cos(2q3 a),	 )1/4 (313) (q) = cos(qi a) cos(2q2 a) cos(q3a),2

43) (q) = 12 cos(2q i a) cos(q2 a) cos(q3a),
A((41.1.),q)	 22)

	

= cos(2q2 a) cos(2q3 a),	 A4 (q) = cos(2q0) cos(2q3a),

/433) (q) = cos(2q 1 a) cos(2q2a),

and for the s.c.(e) system are

42) ,q\( ) = 2cos(q i a) cos(q 2 a), A (1 13) (q) = 2 cos(q i a) cos(q3a),

AV3) (q) = 2 cos(q2 a) cos(q3a),

41)(q) ) = cos(2q0), (22)

	

A 2 (q) = cos(2q2 a),	 A(233)(q) = cos(2q3a).

Once again, the term inside the curly brackets in equation (D.9) can be evaluated

either numerically or algebraically. To evaluate the term algebraically a symbolic

mathematics computer package is required and, for the initial condition P,:;' ) (1) =
the term inside the curly brackets can he written

1 — z(b c — d — e) z 2 (bc — cd — be + e f df — f2)

1 — z(b c — a) z2 (bc ac ab — d2 — c2 — f 2 ) — z3 (abc + 2de f — cd2 — bee — a f2)

(D.22)

(D.21)
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where a = B11(9), b = B22(9), _ — B 33 (q), d = B12(9), e = B 13 (q) and f = B23(q)•

The integral in the expressions for P(l; z) (equations (D.3) and (D.9)) can be

evaluated efficiently using the special-points numerical integration technique of Chadi

and Cohen (1973) (see Appendix A) and an extrapolation method (MacGillivray

and Sholl 1983). The results of some of these calculations of P(l; 1) are shown in

Tables D.3 to D.8 and Tables 3.1 to 3.3 for some of the j th nearest neighbour vectors,

1, denoted P.

Table D.2: First, second, third and fourth nearest neighbour vectors for the s.c.(f)
interstitial lattice, and first and second nearest neighbour lattice vectors for the s.c.(e)
interstitial lattice. The vectors are a l = a2 = aj and a3 = ak where a is the
distance between adjacent composite lattice sites. The numbers of nearest neighbour
sites to any lattice site are Z i = 8, Z2 = 4, Z3 = 16 and Z4 = 4 for the s.c.(f)
interstitial lattice, while for the s.c.(e) interstitial lattice Z1 = 8 and Z2 = 2. The
notation a 4-> /9 denotes possible jump vectors between type-a and type-13 lattice
sites.

s.c.(f) s.c.(e)

n (1) n (2) (3)n, (4)ni (1) (2)ni

1H 2 2 1 <--* 1 1	 <--+ 9 1	 1 1 <-4 2 1 <-4 1
+(a i 	 a2 ) +2a 2 +(a i 	 a2	2a3 ) +2(a 2	a3 ) ±(a i 	 a2 ) +2a1
+(ai — a 2 ) +2a3 +(a i 	 a2 — 2a 3 ) +2(a2 — a3 ) +(ai — a2)

+(ai — a 2	2a3)
+(al — a 2 — 2a3)

1 4--3 3 2 <-4 2 1	 3 2 H 2 2 1 H3 2 H 2 2
+(a l 	 a3 ) ±2a1 +(ai	2a2	a3 ) +2(a i	 a3 ) +(a i 	 a3 ) ±2a2
±(ai — a3 ) ±2a3 +(a i 	 2a2 — a 3 ) +2(a i — a3 ) +(ai — a3)

+(ai — 2a 2	a3)
+(ai — 2a 2 — a3)

2 4-> 3 3 4---* 3 9 4-4 3 3 H 3 2 4-4 3 3 4-4 3
+(a2	a3 ) +2a 1 ±(2a 1	 a 2	 a3 ) +2(a i 	 a2 ) +(a2	a3 ) +2a3
+(a2 — a3 ) +2a2 +(2a 1	a2 — a 3 ) +2(a i — a 2 ) +(a2 — a3)

±(2ai — a2 a3)
±(2a 1 — a 2 — a3)
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Table D.3: Values of the probability generating function P(/; 1) for the first eleven
nearest neighbour sites on the simple-cubic lattice. The / shown are representative
nearest neighbour sites and the coordinates, relative to orthogonal axes, are in units
of a (the lattice parameter). The s i are the normalised probabilities that a jump of
the random walker will be to an i th nearest neighbour site.

81182183

1,0,0 0,1,0 0,0,1 1 I 02,2, 0,M 1	 1	 1
3,3,3

1.5163863 1.3446611 1.3932033 1.2679322 1.1424610 1.1764894
0.5163863 0 0 0.3007507 0.1090663 0.2039071
0.3311489 0.3446611 0 0.2351136 0.1359402 0.1638124
0.2614704 0 0.3932033 0.1776880 0.1489857 0.1617486
0.2573361 0.2299359 0.2909006 0.1589829 0.0964524 0.1149881
0.2155899 0 0 0.1423807 0.0821902 0.1043218
0.1917919 0.1954666 0 0.1299606 0.0734968 0.0974025
0.1683313 0.1708892 0.2295983 0.1132549 0.0718831 0.0860998
0.1569527 0 0 0.1058436 0.0657423 0.0807537
0.1652710 0 0 0.1060232 0.0603971 0.0776249
0.1531392 0.1496801 0 0.1006746 0.0591546 0.0743476

1

0,0,0
1,0,0
1,1,0
1,1,1
2,0,0
2,1,0
2,1,1
2,2,0
2,2,1
3,0,0
3,1,0
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Table D.4: Values of the probability generating function P(/; 1) for the first eleven
nearest neighbour sites on the face-centred-cubic lattice. The / shown are represen-
tative nearest neighbour sites and the coordinates, relative to orthogonal axes, are in
units of a/2, where a is the lattice parameter. The s i are the normalised probabilities
that a jump of the random walker will be to an i th nearest neighbour site.

81182183

1 1,0,0 0,1,0 0,0,1 110
2 7 2 , o,Ji,li 1	 1	 1

3,3,3

0,0 ,0 1.3446611 1.5163881 1.0920099 1.2065504 1.1198210 1.1273305
1,1 ,0 0.3446611 0 0.0549560 0.1961962 0.0708944 0.1333177
2,0 ,0 0.2299359 0.5163881 0.0594701 0.2169047 0.1532518 0.1475308
2,1 ,1 0.1954666 0 0.0920099 0.1212752 0.0863901 0.1011431
2,2 ,0 0.1708892 0.3311506 0.0454183 0.1171477 0.0679846 0.0824935
3,1 ,0 0.1496801 0 0.0467365 0.1028574 0.0526685 0.0737941
2,2 ,2 0.1383631 0.2614721 0.0390827 0.0897728 0.0500035 0.0671462
3,2 ,1 0.1279530 0 0.0413390 0.0834487 0.0512619 0.0637574
4,0 ,0 0.1183354 0.2573379 0.0431288 0.0870572 0.0540742 0.0617325
3,3 ,0 0.1129709 0 0.0412775 0.0748562 0.0441468 0.0560164
3,3 ,2 0.1020796 0 0.0358834 0.0666873 0.0410739 0.0508415
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Table D.5: Values of the probability generating function P(1, 1) for the first eleven
nearest neighbour sites on the body-centred-cubic lattice. The 1 shown are represen-
tative nearest neighbour sites and the coordinates, relative to orthogonal axes, are in
units of a/2, where a is the lattice parameter. The s i are the normalised probabilities
that a jump of the random walker will be to an i th nearest neighbour site.

81182133

1,0,0 0,1,0 0,0,1 1 1 02,2, 0,,-l 1	 1	 1
3,3,3

,0 1.3932033 1.5163881 1.3446602 1.2989602 1.2679322 1.1790551
,1 0.3932033 0 0 0.2985769 0 0.1885036
,0 0.2909006 0.5163881 0 0.2993434 0.3007507 0.1979901
,0 0.2295983 0.3311506 0.3446602 0.1902050 0.2351136 0.1506717
,1 0.1885979 0 0 0.1651490 0 0.1105067
,2 0.1909261 0.2614721 0 0.1547214 0.1776880 0.1100009
,0 0.1547998 0.2573379 0.2299351 0.1411634 0.1589829 0.0964631
,1 0.1479944 0 0 0.1242961 0 0.0869852
,0 0.1413034 0.2155917 0 0.1222866 0.1423807 0.0863015
,2 0.1303529 0.1917937 0.1954657 0.1109176 0.1299606 0.0786514
,3 0.1244287 0 0 0.1041394 0 0.0729745

1
0,0
1,1
2,0
2,2
3,1
2,2
4,0
3,3
4,2
4,2
3,3



Table D.6: Values of the probability generating function P(1, 1) for the first eight
nearest neighbour sites on the interstitial lattice of the NaC1 structure. The 1 shown
are representative nearest neighbour sites and the coordinates, relative to orthogonal
axes, are in units of a (the lattice parameter). The origin is a type-1 lattice site. The
s i are the normalised probabilities that a jump of the random walker will be to an ith
nearest neighbour site.

51,82133

1,0,0 0,1,0 0,0,1 1 1 02'2' 0,2,2 0,3,3 111
3'3'3

0,0,0 1.5163863 1.3446611 1.7928802 1.2679322 1.1794606 1.2218536 1.1919798
1,0,0 0.5163863 0 0 0.3007507 0.1094808 0.0966142 0.2046404
1,1,0 0.3311489 0.3446611 0 0.2351136 0.1375198 0.1114850 0.1644149
1,1,1 0.2614704 0 0.7928802 0.1776880 0.2214014 0.2770379 0.2068841
1,1,-1 0.2614704 0 0 0.1776880 0.0774097 0.0640926 0.1170406
2,0,0 0.2573361 0.2299359 0 0.1589829 0.0780499 0.0630777 0.1074709
2,1,0 0.2155899 0 0 0.1423807 0.0822400 0.0738009 0.1041151
2,2,0 0.1683313 0.1708892 0.4595469 0.1132549 0.0815451 0.0949646 0.0899282
2,1,-1 0.1917919 0.1954666 0 0.1299606 0.0729860 0.0646976 0.0972454
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Table D.7: Values of the probability generating function P(1; 1) for the first five
nearest neighbour sites on the interstitial lattice of the CsCI structure. The / shown
are representative nearest neighbour sites and the coordinates, relative to orthogonal
axes, are in units of a (the lattice parameter). The origin is a type-3 lattice site. The
si are the normalised probabilities that a jump of the random walker will be to an ith
nearest neighbour site.

1 ,32183134

1	 1,0,0,0	 0,0,1,0	 00M	 o,o' 2'2	 '3'3	 '3'3'3
1 1 1 1
4 , 4 , 4 ,4

0,0,0 1.4762128 1.1326166 1.1412500 1.2049967 1.1598194 1.1453715
1,0,1 0.4762128 0.0704497 0.0695943 0.0635812 0.0824390 0.1370493
2,0,0 0.2971305 0.0762584 0.0548023 0.0458023 0.2058144 0.1778442
2,1,1 0.2539488 0.1326166 0.0862322 0.0728923 0.0895734 0.1080655
2,2,0 0.2118984 0.0542953 0.1962678 0.2710490 0.1840702 0.1585272

Table D.8: Values of the probability generating function P(1; 1) for the first three
nearest neighbour sites on the interstitial lattice of the s.c.(e) structure. The 1 shown
are representative nearest neighbour sites and the coordinates, relative to orthogonal
axes, are in units of a (the lattice parameter). The origin is a type-1 lattice site. The
si are the normalised probabilities that a jump of the random walker will be to an ith
nearest neighbour site.

81782

1	 1,0 1 1	 1 2
2'2	 313

	0,0,0 1.4762128 1.4321661	 1.5770988

	

1,0,1 0.4762128 0.3249602	 0.2959571

	

0,0,2 0.3403122 0.5393720 	 0.7176697



References

Abragam A., 1961. The Principles of Nuclear Magnetism. (Oxford: Clarendon

Press.)

Abramowitz M. and Stegun I.A., 1972. Handbook of Mathematical Functions: with

Formulas, Graphs, and Mathematical Tables. (New York: Dover.)

Allnatt A.R. and Allnatt E.L., 1991. Correlation effects in atom transport by the

interstitialcy mechanism. Phil. Mag. A, 64, 777-786.

Allnatt A.R. and Lidiard A.B., 1993. Atomic transport in solids. (Cambridge: Uni-

versity Press.)

Avogadro A. and Villa M., 1977. Nuclear magnetic resonance in a two-dimensional

system. J. Chem. Phys., 66, 2359-2367.

Bader B., Heitjans P., StOckmann H.-J., Ackermann H., Buttler W., Freilander P.,

Kiese G., van der Marel C., and Schirmer A., 1992. Li + diffusion in the fast ionic

conductor Li 3N investigated by 0-radiation detected NMR. J. Phys.: Condens. Mat-

ter, 4, 4779-4800.

Barber M.N. and Ninham B.W., 1970. Random and Restricted Walks: theory and

applications. (London: Gordon & Breach.)

Barton W.A. and Sholl C.A., 1976. Nuclear spin relaxation by translational diffusion

in solids: III. Diffusion in FCC, BCC and SC single crystals. J. Phys. C: Solid State

Phys., 9, 4315-4328.

Barton W.A. and Sholl C.A., 1980. Nuclear spin relaxation by translational diffusion

in solids: V. Reciprocal-space formalism and mean-field theory. J. Phys. C: Solid

State Phys., 13, 2579-2594.

110



References	 111

Bloembergen N., Purcell E.M. and Pound R.V., 1948. Relaxation effects in nuclear

magnetic resonance absorption. Phys. Rev., 73, 679-712.

Brinkmann D., Mali M., Roos J., Messer R. and Birli H., 1982. Diffusion processes

in the superionic conductor Li 3 N: An NMR study. Phys. Rev. B, 26, 4810-4825.

Brummelhuis M.J.A.M. and Hilhorst H.J., 1988. Single-vacancy induced motion of a

tracer particle in a two-dimensional lattice gas. J. Stat. Phys., 53, 249-278.

Brummelhuis M.J.A.M. and Hilhorst H.J., 1989. Tracer particle motion in a two-

dimensional lattice gas with low vacancy density. Physica A, 156, 575-598.

Burns G. and Glazer A.M., 1990. Space Groups for Solid State Scientists. Second

Edition. (Boston: Academic Press.)

Chadi D.J. and Cohen M.L., 1973. Special points in the Brillouin zone. Phys. Rev.

B, 8, 5747-5753.

Cohen M.H. and Reif F., 1957. Quadrupole effects in nuclear magnetic resonance

studies of solids. Solid State Physics, 5, 321-438.

Compaan K. and Haven Y., 1958. Correlation factors for diffusion in solids. Part 2.—

Indirect interstitial mechanism. Trans. Faraday Soc., 54, 1498-1508.

Eisenstadt M. and Redfield A.G., 1963. Nuclear spin relaxation by translational dif-

fusion in solids. Phys. Rev., 132, 635-643.

Faux D.A., Ross D.K. and Sholl C.A., 1986. Nuclear spin relaxation by translational

diffusion in solids: X. Monte Carlo calculation for the simple hopping model. J. Phys.

C: Solid State Phys., 19, 4115-4133.

Fedders P.A. and Sankey 0.F., 1978. Correlation functions for simple hopping in a

simple cubic lattice. Phys. Rev. B, 18, 5938-5947.

Figueroa D.R., Strange J.H. and Wolf D., 1979. Temperature dependence of motion-

induced nuclear spin relaxation in single crystals. Phys. Rev. B, 19, 148-158.

Frielander P., Heitjans P., Ackermann H., Bader B., Kiese G., Schirmer A., StOckmann

H.-J. and Van der Marel C., 1987. Diffusion processes in LiC 6 studied by f3-NMR.

Z. Phys. Chem. N.F., 151, 93-101.



References	 112

Heitjans P., 1993. Hexagonal LiTiS 2 . Private communication.

Hoodless I.M., Strange J.H. and Wylde L.E., 1971. Selfdiffusion studies in sodium

iodide single crystals by nmr relaxation. J. Phys. C: Solid State Phys., 4, 2742-2748.

Ishioka S. and Koiwa M., 1978. Random walks on diamond and hexagonal close

packed lattices. Phil. Mag. A, 37, .517-533.

Joyce G.S., 1971. Exact results for a body-centered cubic lattice Green's function

with applications in lattice statistics. I. J. Alath. Phys., 12, 1390-1414.

Kelly S.W. and Sholl C.A., 1987. Theory and Monte Carlo calculation of the tracer

correlation factor. J. Phys. C: Solid State Phys., 20, 5293-5304.

Kelly S.W. and Sholl C.A., 1992. A relationship between nuclear spin relaxation in

the laboratory and rotating frames for dipolar and quadrupolar relaxation. J. Phys.:

Condens. Matter, 4, 3317-3330.

Koiwa M. and Ishioka S., 1983. Integral methods in the calculation of correlation

factors for impurity diffusion. Phil. Mag. A, 47, 927-938.

Korb J.-P., Torney D.C. and McConnell H.M., 1983. Dipolar correlation function

and motional narrowing in finite two-dimensional spin systems. J. Chem. Phys., 78,

5782-5789.

Korb J.-P., Winterhalter M. and McConnell H.M., 1984. Theory of spin relaxation by

translational diffusion in two-dimensional systems. J. Chem. Phys., 80, 1059-1068.

Korb J.-P., Ahadi M., Zientara G.P. and Freed J.H., 1987a. Dynamic effects of pair

correlation functions on spin relaxation by translational diffusion in two-dimensional

fluids. J. Chem. Phys., 86, 1125-1130.

Korb J.-P., Ahadi M. and McConnell H.M., 1987b. Paramagnetically enhanced nu-

clear relaxation in lamellar phases. J. Phys. Chem., 91, 1255-1259.

Korb J.-P., Bredel Th., Chachaty C. and Van Der Maarel J.R.C., 1990. Theory of

dipolar relaxation in lamellar system: Application to lyotropic liquid crystals. J.

Chem. Phys., 93, 1964-1972.



References	 113

LeClaire A.D., 1970. Correlation effects in diffusion in solids. Physical Chemistry:

An Advanced Treatise, vol. X, Solid State. Eds. H. Eyring, D. Henderson and W.

Jost. (New York: Academic Press.)

Le Claire A.D. and Lidiard A.B., 1956. Correlation effects in diffusion in crystals.

Phil. Mag., 1, 518-527.

MacGillivray I.R. and Sholl C.A., 1983. Static lattice Green functions for FCC and

BCC metals. J. Phys. F.: Met. Phys., 13, 23-31.

MacGillivray I.R. and Sholl C.A., 1985a. Nuclear spin relaxation by translational

diffusion in solids: VIII. High-frequency limit for the simple hopping model. J. Phys.

C: Solid State Phys., 18, 1691-1703.

MacGillivray I.R. and Sholl C.A., 198513. Nuclear spin relaxation by translational

diffusion in solids: high-frequency limit for the simple hopping model. J. Phys. C:

Solid State Phys., 18, L829-L831.

MacGillivray I.R. and Sholl C.A., 1986. Nuclear spin relaxation by translational dif-

fusion in solids: XI. Evaluation of the spectral density functions in the monovacancy

limit. J. Phys. C: Solid State Phys., 19, 4771-4779.

McDowell A.F., Mendelsohn C.F., Conradi M.S., Bowman R.C. and Maeland A.J.,

1994. Two-dimensional diffusion of hydrogen in ZrBe 2 11 1.4 . Submitted to Phys. Rev.

B.

Montet G.L., 1973. Integral methods in the calculation of correlation factors in dif-

fusion. Phys. Rev. B, 7, 650-662.

Montroll E.W. and Weiss G.H., 1965. Random walks on lattices. II. J. Math. Phys.,

6, 167-181.

Neue G., 1988. Spectral densities for dipolar interactions between two-dimensionally

mobile spins and spins localized off-plane. J. Magn. Res., 78, 555-562.

Nijboer B.R.A. and DeWette F.W., 1957. On the calculation of lattice sums. Physica,

23, 309-321.

Philibert J., 1991. Atom movements: Diffusion and mass transport in solids. Trans-

lated from the French by S.J. Rothman. (Courtaboeuf: Les Editions de Physique.)



References	 114

Sankey O.F. and Fedders P.A., 1979. Correlation functions for simple hopping in a

face-centered-cubic lattice. Phys. Rev. B, 20, 39-45.

Schirmer A., Heitjans P., Faber W. and Fischer J.E., 1992. Diffusive motion in LiC12

studied by /3-NMR. Mater. Science Forum, 91-93, 589-595.

Sholl C.A., 1966. Electric field gradients in ionic crystals with an application to AgI.

Proc. Phys. Soc., 87, 897-912.

Sholl C.A., 1974. Nuclear spin relaxation by translational diffusion in solids. J. Phys.

C: Solid State Phys., 7, 3378-3386.

Sholl C.A., 1981a. Nuclear spin relaxation by translational diffusion in liquids and

solids: high- and low-frequency limits. J. Phys. C: Solid State Phys., 14, 447-464.

Sholl C.A., 1981b. Nuclear spin relaxation by translational diffusion in solids: VI.

Monovacancy limit. J. Phys. C: Solid State Phys., 14, 1479-1490.

Sholl C.A., 1981c. Diffusion correlation factors and atomic displacements for the va-

cancy mechanism. J. Phys. C: Solid State Phys., 14, 2723-2729.

Sholl C.A., 1982. Relative displacements of a pair of atoms for the vacancy mecha-

nism from random walk theory. J. Phys. C: Solid State Phys., 15, 1177-1186.

Sholl C.A., 1986. Nuclear spin relaxation by translational diffusion in solids: IX.

Orientational dependence of single-crystal relaxation rates. J. Phys. C: Solid State

Phys., 19, 2547-2555.

Sholl C.A., 1987. Nuclear spin relaxation due to dipolar interactions in hexagonal

crystals. J. Less-Common Met., 129, 335-343.

Sholl C.A., 1988. Nuclear spin relaxation by translational diffusion in solids: XII. An

analytical approximation. J. Phys. C: Solid State Phys., 21, 319-324.

Sholl C.A., 1992. Atomic displacements due to the vacancy mechanism. Phil. Mag.

A, 65, 749-756.

Sholl C.A., 1993. Nuclear spin relaxation and diffusion. Defect and Diffusion Forum,

95-98, 91-106.

Slichter C.P., 1990. Principles of Magnetic Resonance. Third enlarged and updated

edition. (New York: Springer-Verlag.)



References	 115

Szabo I.A., Koiwa M. and Ishioka. S., 1991. Relationship between the correlation

factor in tracer diffusion and the coordination number. Phil. Mag. B, 64, 83-90.

Torrey H.C., 1953. Nuclear spin relaxation by translational diffusion. Phys. Rev., 92,

962-969.

Wolf D., 1974. Determination of self-diffusion mechanisms from high-field nuclear-

spin-relaxation experiments. Phys. Rev. B, 10, 2710-2723.

Wolf D., 1975. High-field nuclear spin relaxation by a random-walk diffusion mecha-

nism in single crystals. J. Magn. Reson., 17, 1-19.

Wolf D., Figueroa D.R. and Strange J.1-1., 1977. Orientational dependence of motion-

induced nuclear spin relaxation in single crystals. Phys. Rev. B, 15, 2545-2558.

Wolf D., 1979a. Spin-temperature and Nuclear-spin Relaxation in Matter: Basic

Principles and Applications. (Oxford: Clarendon Press.)

Wolf D., 1979b. On the mechanism of diffusion in sodium beta alumina. J. Phys.

Chem. Solids, 40, 757-773.

Wolf D., 1983. Correlation effects for interstitial-type self-diffusion mechanisms in

b.c.c. and f.c.c. crystals. Phil. Mag. A, 47, 147-167.



Publications

The following papers, on the work in this thesis, have been accepted for publication.

1. Stephenson, P.C.L. and Sholl, C.A., 1993. NMR magnetic dipolar spectral den-

sity functions for two-dimensional lattice diffusion. J. Phys.: Condens. Matter,

5, 2809-2824.

2. Stephenson, P.C.L. and Sholl, C.A., 1994. Tracer correlation factor and atomic

displacements due to the collinear interstitialcy mechanism. Phil. Mag. A, 69,

57-64.

3. Stephenson, P.C.L., 1994. Tracer correlation factor and atomic displacements

due to the noncollinear interstitialcy mechanism. Phil. Mag. A, 70, 775-792.

116


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31

