
Chapter 3

Tracer correlation factor and

atomic displacements due to the

interstitialcy mechanism.

3.1 Introduction

A quantity of interest in studying atomic diffusion in solids due to point defects is

the tracer correlation factor f and many calculations and simulations have been un-

dertaken, for a wide range of systems (see for example Allnatt and Lidiard 1993 for

a recent review). The tracer correlation factor characterises spatial correlations and

the diffusion coefficient, D, can be written as D = f D. where D. is the diffusion

coefficient for uncorrelated diffusion in the system (see for example LeClaire 1970;

Kelly and Shall 1987). If the theoretical values of the correlation factor for possible

diffusion mechanisms are known, differences between the values of f can be used ex-

perimentally to help identify the dominant diffusion mechanisms present in a system.

A common model for diffusion in some systems is the interstitialcy mechanism.

Diffusion by the interstitialcy mechanism occurs when an atom at an interstitial site

moves on to a normal lattice site, pushing the atom at the normal lattice site on to an

interstitial site. There may be several types of interstitialcy mechanisms possible in a

particular system. The types are characterised by the angle between the original jump

direction of the interstitial atom and the jump direction of the atom in moving from
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its normal lattice site. If the interstitial atom and the normal atom move along the

same straight line the diffusion is by the collinear interstitialcy mechanism. Otherwise

the diffusion is by a noncollinear interstitialcy mechanism.

In the limit of low defect concentrations the correlation factor is sometimes a

simple rational number: for example, f = 1/2 for the vacancy mechanism in the

diamond structure and f = 4/5 for the collinear interstitialcy mechanism in the face-

centred-cubic (f.c.c.) lattice. For the vacancy mechanism there is a simple explanation

for such rational numbers. If an atom undergoes a jump in a particular direction the

probability of the next jump of the atom occurring in the reverse direction is 2/Z,

where Z is the number of possible jump directions (Kelly and Sholl 1987). In cases

where all other jump directions are equivalent, the probability of a jump in one of

these directions is therefore (1— 2/Z)/(Z— 1). The average cosine c= (cos 0) between

successive jumps is therefore c = —(2/Z) + (1 — 2/Z)ci where c1 = cos 01 and 01 is

the angle between the original jump and one of the Z — 1 equivalent jumps. The

correlation factor is then

1 +	 c	 (Z + 2 f ,_	 . (1 + ci)/	 ci) •	 (3.1)
1 —c	 Z — 2

The rational numbers for f then follow immediately. For example, the diamond

structure has Z = 4 and c1 = 1/3 so that f = 1/2 and the two-dimensional honeycomb

lattice has Z = 3 and c1 = 1/2 so that f = 1/3. For cubic lattices the Z — 1 jumps

are not equivalent so that this result does not apply, but if the approximation is made

of assuming that the probability of each of the Z — 1 jumps occurring is the same for

all of them, the well known approximation f = 1 — 2/Z is obtained.

An aim of this chapter is to analyse the atom jump probabilities and correlation

factors for the interstitialcy mechanism in a similar way. It is shown that the cor-

relation factor in the case of the collinear interstitialcy mechanism has the simple

form

f = 1 	 (3.2)
Z' — 1 '

where Z' is the number of possible jump directions for the interstitial defect. The

results for the atom jump probabilities and the tracer correlation factor are also

generalised to noncollinear interstitialcy mechanisms. The results obtained for f

differ in their details for different systems, but are all of the same form which is a

generalisation of equation (3.2).
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The approach is to use the lattice generating functions (Green functions) to eval-

uate the appropriate atom jump probabilities. The method is similar to that recently

used by Allnatt and Allnatt (1991) in analysing the correlation factor for the intersti-

tialcy mechanism for the hexagonal lattice but calculates the atom jump probabilities

in each direction directly. An advantage of evaluating the atom jump probabilities is

that they also enable the atomic displacements due to a single atom-defect encounter

to be evaluated (Sholl 1992) in cases where the encounter concept is valid. The en-

counter concept is valid at low defect concentrations in three-dimensional systems and

the atomic diffusion can then be regarded as a random walk of independent encoun-

ters. In each encounter the atom will be displaced by a vector 1 with probability W(l).

Another aim of this chapter is to consider the evaluation of W(l) for the interstitialcy

mechanism which is used to evaluate the atomic displacement probabilities due to

some interstitialcy mechanisms of self-diffusion in the NaC1 structure as examples.

3.2 Atom jump probabilities
Expressions for the atom jump probabilities in terms of lattice generating functions

are derived below for the special case of the collinear interstitialcy mechanism and

then for the general interstitialcy mechanism of self-diffusion. The theory is exact for

diffusion in the low defect-concentration limit.

3.2.1 Collinear interstitialcy mechanism

The collinear interstitialcy mechanism for diffusion corresponds to an interstitial de-

fect first moving from an interstitial (I) site to a normal (N) lattice site and displacing

the atom at the normal lattice site in the same direction to another interstitial site.

The example of a square lattice is shown in Figure 3.1(a). The defect atom at the

new position then jumps to any of its nearest neighbour normal lattice positions with

equal probability and produces a further interstitial defect. The defect (not a partic-

ular atom) therefore moves on a particular lattice as shown in Figure 3.1(b) for the

example of Figure 3.1(a). The defect can cause a further displacement of the original

interstitial atom (now at a normal lattice site) if the defect moves through this atom

position in either of two directions. The probability of the defect displacing the atom
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in the reverse direction to its original I to N jump will be denoted Q i and the prob-

ability of the defect displacing the atom in the same direction as the original jump

will be denoted Q2. While the example shown in Figure 3.1 is a two-dimensional one,

the same principles also apply to three-dimensional cases. In general there will be Z'

nearest neighbour normal sites to a defect site, Z nearest neighbour defect sites to a

normal site, and Z and Z' will not necessarily be equal.

(a)
	

(b)
	

(c)

Figure 3.1: (a) The collinear interstitialcy mechanism in the square lattice. (b) The
defect formed due to the jump in (a) can move on the lattice of sites shown as
circles. (c) The parameters F: and F; are the probabilities of a random walker
passing through the square for the first time at the n th step in the + and — directions
respectively.

The atom jump probabilities Q i and Q2 are related to the probability p of eventual

return of the defect to the original atom by

Qid-Q2 = P. (3.3)

For two-dimensional systems p = 1 and p < 1 for three-dimensional systems. The pa-

rameters Qi and Q2 are the jump probabilities for a particular defect-atom encounter

and no other jump directions are possible due to this defect for a specific direction of

the first jump as in Figure 3.1(a). At low defect concentrations in three-dimensional

systems the effect of the second jump of an atom being due to a different defect must

also be taken into account. If the jump is due to a different defect the jump will

occur in each of the Z directions with probability 1/Z. The jump probabilities in



Chapter 3. Atomic diffusion by the interstitialcy mechanism 	 37

the reverse and forward directions which also take account of other defects will be

denoted qi and q2 and

qi ----: Qi +	 (3.4)
1 p

Z

for i = 1, 2. The probabilities qi for jumps in the other Z — 2 directions are each

(1 — p) /Z and the sum of qi over all Z directions is 1.

The jump probabilities can be obtained by considering the random walk of the

defect as in the example in Figure 3.1(b). The lattice on which the defect moves

has been redrawn in Figure 3.1(c) and the required random walk problem can be

stated in the following form. A random walker (the defect) starts at the origin and

it is required to calculate the probability that it moves through the mid-point of a

particular nearest neighbour step (the position of the atom) for the first time in either

direction. Defining Fn to be the probability of a jump through this point for the first

time at the nth jump and Fil-, F; to be the probabilities of the jump occurring in

the positive or negative directions respectively, the following equations relate these

quantities and the jump probabilities.

Fn = F7, -I- Fn- ,	 (3.5)

00

P = E Fn = Qi-FQ2,
	 (3.6)

n=1

	

oo	 oo

	

Q1 = E Fn+, Q2 = E F:.	 (3.7)

	

n=1	 n=1

The quantities F,:t and Fn can be expressed in terms of the probability function

Pn (I), which is the probability of the random walker being displaced by I in n steps,

by the following equations.

	

n-1	 n-1
Fn = - 1z7 [Pn_ 1 (0) — E FZI3n_m_ 1 (a) — E F;Pn_m_ i (c)l ,	 (3.8)

	

m=1	 m=1

Fn = 1-27
n-1	 n-1

[Pn-1(a) – E F71Pn-m-i (0) — E F; P,-,,_1(a)]	 (3.9)
m=1	 m=1

where a is a nearest neighbour lattice vector as in the example in Figure 3.1(c). These

equations relate Pi -7,F and F;" for the nth jump to the possibilities at the (n —1) th jump

and the probability 1/Z 1 of the nth jump occurring in a particular direction. The

functions Pn_ 1 (0) and Pn_ 1 (a) are the probabilities of the walker being in the required
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position after the (n — 1) th jump without considering the necessary restrictions that

the target jump direction has not been traversed in the (n —1) jumps. The remaining

terms in the equation are a result of taking these restrictions into account.

Equations (3.8) and (3.9) can be expressed in terms of the corresponding gener-

ating functions by multiplying the equations by zn and summing from 0 to oo taking

account of the special cases n = 0 and 1. The equations then become, after choosing

z = 1,

Z'Q1 = P — Q1 Pi— Q2-13,

Z 'Q2 = P1 — Q1 P — Q2-Pi

where the lattice generating functions P and P1 for z = 1 are

co
P = E pn(0),

n=0

00

(3.12)

Pi = E Pn(a).	 (3.13)
n=0

Values of P are known for common structures and some values are (see for example

Sholl 1981c; Ishioka and Koiwa 1978) 1.5163861 (simple-cubic), 1.3932039 (body-

centred-cubic b.c.c.), 1.3446611 (f.c.c.) and 1.7928815 (diamond structure). The

values of P1 and p are related to P by P1 = P — 1 and P = 1/(1 — p) (Sholl 1981c).

The solution of equations (3.10) and (3.11) for Q i and Q2 may then be written in the

forms
Z'P

Qi =
Z' 1 — p

'

•

(3.14)

(3.15)

(Z' — 1)(2P + Z' — 1)

P(Z 1 — 2) — Z' + 1

2(Z' — 1)

Z' — 2

2

1 — p
Q2 = (Z' — 1)(2P + Z' — 1) 2(Z' — 1) 2

3.2.2 General interstitialcy mechanism

The general case of the interstitialcy mechanism corresponds to an interstitial defect

atom moving from its interstitial (I) site on to a normal (N) lattice site, and displacing

the atom at the normal site into a neighbouring interstitial site which need not be

in the same direction, as in the special case of the collinear interstitialcy mechanism.

The interstitial defect so formed is equally likely to then move to any of its Z' nearest

neighbour normal lattice sites and produce a further interstitial defect. The defect
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(not a particular atom) so moves on a lattice of interstitial sites according to the

particular interstitialcy mechanism and will cause a further displacement of the atom

if it returns to one of the Z interstitial sites adjacent to the atom and then moves on

to the normal lattice site.

If the direction that an atom moves on its N to I jump is at an angle less than

180° to the direction of motion of the displacing interstitial atom, then the diffusion

is by a noncollinear interstitialcy mechanism. There may be different types of non-

collinear interstitialcy mechanisms possible in a particular system which correspond

to different jump angles. For example, there are two types of noncollinear intersti-

tialcy mechanisms of diffusion in the NaC1 structure, a forward and a backward type,

corresponding to angles of arccos(-1/3) and arccos(1/3) respectively (see Figure 3.2).

For an atom at a normal lattice site that is displaced by an interstitial defect atom

there are three possible jump directions for each of the two types of noncollinear

interstitialcy mechanism on the NaC1 structure.

Figure 3.2: The three jump types in the NaC1 structure associated with the jump-
type probabilities w1 , w2 and w3 . Shown are only one of each of the two noncollinear
jump types possible for the interstitial atom, with the corresponding positions of the
interstitial defect after the jump indicated by a +. There is one collinear jump type,
with associated jump-type probability w 1 . A solid circle represents a cation while an
open circle represents an anion.
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More generally, any of the interstitialcy jump types may be possible, each type

with a probability wi of occurring at each interstitialcy jump. The wi satisfy the

normalisation condition

E illi = 1
	

(3.16)
i

where the sum is over the different interstitialcy jump types. In this work w 1 is the

probability that an interstitialcy jump is collinear and the w i are ordered so that

increasing i values correspond to smaller jump angles. In the NaC1 structure, for

example, the relevant probabilities are w 1 , w2 and w3 and examples of the jump

types shown in Figure 3.2. If a given interstitial jump type occurs then all possible

jumps of that type of the normal atom are each equally likely.

An atom which is initially at a normal lattice site and is displaced to an interstitial

site will then have a following jump to a normal site. Further jumps of the atom will

depend upon the return of the interstitial defect. The I to N jumps of the atom will

be equally likely to be to any of the Z' nearest normal lattice sites and the jumps

are uncorrelated to any previous jumps of the atom. The N to I jumps of the atom,

however, depend upon the direction from which the interstitial defect arrives at the

normal site which, with the exception of the very first N to I jump, depends upon

the previous I to N jump of the atom. In other words each N to I jump of an atom

is correlated to its immediately preceding I to N jump.

It is convenient to define a composite lattice which consists of at least all of

the normal lattice sites and all of the interstitial sites. The choice of this lattice is

not unique. The diffusing atom therefore moves by nearest neighbour jumps on the

composite lattice according to a model which corresponds to alternate N to I and

I to N jumps. Not all of the sites on the composite lattice will be accessible to an

atom starting at the origin.

A set of ZT jump vectors Ci on the composite lattice can be defined as the union

of the set of Z N to I jump vectors and Z' I to N jump vectors which represent all

possible jumps of the atom on the composite lattice. The value of ZT will be the

larger of Z and Z' when one includes the other as a subset.

To describe the N to I jumps of an atom due to a particular atom-defect encounter,

Cei is defined as the probability of an atom jumping from an N to I site in the direction

ci if its previous Ito N jump was in the direction ci . This assumes that the defect
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completes all its interactions with the atom before a second defect encounters the atom

which is the case when there is just one interstitial defect present in the system; that

is, in the low defect-concentration limit. The probability Q, describes the correlation

between consecutive I to N and N to I jumps due to the differing probabilities of the

defect returning to the atom from different directions. The values of the Q, are

QI'li = Q2, Q, = Qi when i and j are such that cj = —ci , and the remaining C2 1,i are

zero for the collinear case. The probability p that the defect returns to displace the

original atom is
ZT

P = E Q' T '•, 3 (3.17)
1=1

for any value of j. In two-dimensional systems p = 1 and the defect is always certain

to return to the atom. The probability of return, p < 1 for three-dimensional systems

and the mean number of atom jumps during the atom-defect encounter is finite.

When more than one defect is present in the system the possibility of a second defect

encountering the atom must be taken into account. The second defect is equally

likely to approach the atom from any of the atom's Z nearest interstitial sites. The

corresponding value of Qt for low concentrations of defects is then

qi j = QTi + 1 —zp	
(3.18)

when the N to I jump is physically possible, which will not always be the case when

ZT > Z. Note that
ZT

E qij = 1	 (3.19)
i=1

for any j. Knowledge of Qiili is useful for the calculation of atom displacement proba-

bilities W(1) (discussed in §3.4) and for the calculation of the tracer correlation factor

f . The correlation factor for the interstitialcy mechanism is f = 1 -I- c (Le Claire and

Lidiard 1956) where c is the average cosine for the angles between the directions of

consecutive I to N and N to I jumps. Simple expressions for f as linear combinations

of the Q, can be found for any system and the details depend upon the choice of

definition of the Ci vectors (see §3.3).

The atom jump probabilities Q . T.i can be determined by considering the uncorre-

lated random walk of the interstitial defect. If the atom of interest has just arrived

at a normal lattice site, defined to be the origin, and the interstitial defect is at site
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c i then it is required to calculate the probability Rki that the defect moves through

the origin for the first time from the direction —c k . Defining u jj as the probability an

atom is displaced from its normal lattice site by ci when displaced by an interstitial

atom whose displacement is ci , the atom jump probabilities can be written, in matrix

notation, as

Q = uRu	 (3.20)

where ,Q 1j , uij and Rid are the elements of the ZT x ZT square matrices Q, u and R
respectively. The uij can be written in terms of the interstitialcy jump-type probabil-

ities w2 and the numbers at of distinct jumps possible, of type i, for an atom displaced

by an interstitial atom from any particular direction. The ujj are then wha t , with

i chosen according to the definitions of c1 and ci . For example, ujj corresponds to

a collinear interstitialcy jump so that u jj = w1 /a 1 = w i since al = 1 for all lattice

systems.

It is useful to define F„k (ci ), the probability that the interstitialcy defect passes

through the origin for the first time on its nth jump and that it approaches the origin

in the direction ck if it commenced its random walk from c i . The probability Rid can

be written
00

Rkl = E F7,k (ci ).	 (3.21)
n=1

The first passage probability Fnk (ci ) can in turn be expressed in terms of the proba-

bility function Pn (/2 , /1 ), the probability of the random walker being displaced from

ii to --/ 2 in n steps, by the equation

,	 1 	 ,	 ZT n-1
F7:(Cj) = — rn-1 kC ic ) C/) — E E Pn—m-1 (Ck, Ci)UjiFmi ( CO •

Z'	 i,j=1 m=1
(3.22)

As in the equivalent equations for the special case of the collinear interstitialcy mech-

anism (equations (3.8) and (3.9)) the first term of the right hand side of this equation

describes the probability the defect arrives at the required position after n —1 jumps,

without the restriction that it cannot first pass through the origin, and the probabil-

ity 1/Z' of the nth jump taking the defect through the origin. The remaining terms

of the equation are the result of taking the restriction into account.

Multiplying equation (3.22) by zn and summing over n from 0 to oo, taking

account of the special cases n = 0 and 1, transforms the probability functions into
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the corresponding probability generating functions. By setting z = 1 and using

equation (3.21) for Rkl equation (3.22) becomes, in matrix notation,

R = 1,  — PuR]	 (3.23)
Z'

where P is the ZT x ZT matrix with elements

00

Pict = E Pn(ck, co.	 (3.24)
n=0

The probabilities Pki correspond to random walks on the lattice of interstitial sites and

the values of the probabilities are well known for random walks with nearest neighbour

jumps on the cubic lattices and diamond structure (see for example Sholl 1981c; and

Koiwa and Ishioka 1983). If the random walk involves other than just first nearest

neighbour jumps on these or more complicated structures, the Pia can be calculated

as shown in Appendix D. The number of distinct Pki will be less than Z1. due to

symmetry, the exact number being one greater than the number of interstitialcy jump

types in general possible for the particular structure. These probabilities are denoted

Pi , with Po = Pkk being the probability generating function for zero displacement

and Pj (j > 0) the corresponding values for displacement to a j th nearest neighbour

site on the interstitial lattice. The exact details of the defect's random walk depend

upon the interstitialcy jump-type probabilities w i , and the probabilities Pi therefore

also depend upon the w i values.

Equation (3.20) and the solution of equation (3.23), for R, give the final expression

for the atom jump probabilities,

Q . 1,u [I + --Pui -1Pu
Z'	 Zi

(3.25)

where I is the ZT X ZT identity matrix. This is a key result of this work since—for

a given structure and normalized jump-type probabilities wi , and with the use of a

standard numerical procedure to calculate the inverse matrix—it enables the rapid

numerical calculation of the CA'Ij once the values of the Pj are known.

Alternatively, expression (3.25) can be used to calculate the Q, algebraically

in terms of the parameters Z', wi, ai and Pi , for particular structures. The major

difficulty with this approach is to evaluate the inverse matrix in equation (3.25). This

is straightforward for small matrices (ZT < 3) but requires a symbolic mathematics
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computer package for larger matrices. Matrices corresponding to values of ZT < 12

are considered in this work and for ZT > 8 the computation time can be significantly

reduced by making use of the symmetry of the matrices and using block matrix

techniques. In most cases the results for Q iNi are expressions which are too long

to be of any practical use. On using these expressions and a symbolic mathematics

computer package, however, remarkably simple expressions can be found for the tracer

correlation factor f, as shown in the following section.

3.3 Tracer correlation factor

Presented below are analytic and numerical results for the tracer correlation factor f

for diffusion in some cubic and two-dimensional systems.

Once the Cri have been calculated (from equation (3.25)), the tracer correlation

factor, f, can be calculated using f = 1 c (LeClaire and Lidiard 1956) where c is

the average cosine for the angles between consecutive I to N and N to I jumps. In

terms of the atom jump probabilities, Q!1, and jump vectors, ci , the expression for

the average cosine between jumps is

,zT	 ci • ci	 Q 
Ici lici l

	

N  c i • ci	 (3.26)c= Lqu 	
Iiciiicii

which, in the present work, is independent of the value of j by symmetry. If the

correlation factor is calculated from equations (3.25) and (3.26)—in terms of the Z',

wi , ai and Pi , using a symbolic mathematics computer package—the result for the

systems considered below is found, in all cases, to be of the form

f = 1 	 	 (3.27)
a(aZ' — AB)

where A is a linear combination of the Pi , B is a linear combination of the wi , and a

is equal to one or more of the ai relevant to the particular system. A special case, in

all the following systems where the collinear mechanism is possible, is the collinear

interstitialcy mechanism (w1 = 1) for which A = 1 and B = a. In this case the

expression for the correlation factor simplifies to

AB2

f = 1 	 	 (3.28)
Z' 1 —
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and the value depends only on the coordination number Z'. Alternatively, in terms

of the Qi, Q2 notation of §3.2.1

1.1 +c=l+Q2 —Q1	 (3.29)

and using expressions (3.14) and (3.15) for Q i and Q2 the expression for the corre-

lation factor again simplifies to equation (3.28). Since this result does not involve

the lattice generating function P the results for f are simple fractions. Examples are

Z' = 6 for the f.c.c. lattice so that f = 4/5 and Z' = 4 for the example in Figure 3.1(a)

and for the NaC1 structure so that f = 2/3.

The expression (3.28) for f is valid in the low defect concentration limit for

collinear interstitialcy diffusion in one, two and three dimensions. For three dimen-

sions this limit corresponds to defect concentrations low enough that each atom-defect

encounter may be assumed to be completed before the atom is displaced by another

defect. For one or two dimensions the low defect concentration limit is a single defect

and in this case the probability p of return of the defect to a particular site is 1. In

one dimension Z' = 2 and therefore f = 0. This is the correct result because long

range diffusion is not then possible and f = 0 corresponds to a diffusion constant of

zero.

The expressions for A, B and a for the general interstitialcy mechanism in some

cubic and two-dimensional systems are as follows.

3.3.1 Systems with two interstitialcy jump types

The following systems each have two possible interstitialcy jump types. Two such

two-dimensional systems are the square lattice where the interstitial lattice sites are

either all in the centre of each square of normal lattice sites (for which Z = Z' = 4),

or all on the midpoint between each pair of adjacent normal lattice sites (for which

Z = 4 and Z' = 2). These systems will be denoted sq.(f) and sq.(e) respectively,

where f(ace) and e(dge) refer to the positions of the interstitial sites in the normal

lattice. Another example is the face-centred-cubic lattice with interstitial sites in the

centre of the octahedra formed by the normal lattice sites (for which Z = Z' = 6)

which has two interstitialcy jump types and will be referred to as f.c.c.(o). An example

of such a system is the interstitialcy diffusion of cations in the CaF 2 structure. Also
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considered is the simple-cubic lattice with interstitial sites on the midpoint between

each pair of adjacent normal lattice sites (the edges of the cubes). An example is

cationic interstitialcy diffusion in the CsC1 structure where the interstitial sites are

on the centre of each of the squares formed by the anion sites. This system has

coordination numbers Z = 6 and Z' = 2, and will be referred to as s.c.(e).

For all of these systems the expressions for A, B and a, obtained by the method

described in §3.2.2, are

A = Po — P2,

B = wi,	 (3.30)

a = al = 1.

The two types of interstitialcy jump mechanisms have associated probabilities w 1 and

w2 , one of which, w2 , causes an N to I jump of the atom at right angles to its previous

I to N jump and so does not contribute to the correlation factor. The case w 1 = 0

and w2 = 1 which corresponds to strictly noncollinear jumps gives a tracer correlation

factor f = 1. The other extreme, when w 1 = 1 and w2 = 0, corresponds to collinear

jumps and the probability generating functions satisfy P1 = 0 and P2 = Po — 1 since

in this case the second nearest neighbour sites on the lattice of interstitial sites are

now the nearest accessible sites to an interstitial defect.

Values of the Pi , Q T.i and f for some values of the jump-type probabilities, w i , in

the f.c.c.(o) and s.c.(e) structures are shown in Table 3.1. The values of the tracer

correlation factor, f, for each structure range between the values for diffusion by

the strictly collinear and the strictly noncollinear interstitialcy mechanisms. The

probability generating functions Po and P2 diverge for the case w 1 = 1, w2 = 0 in

the s.c.(e) system. The difference Po — P2, however, is finite and its value is used to

calculate the Q.

3.3.2 Systems with three interstitialcy jump types

Two systems with three interstitialcy jump types will be considered. The first is a

simple-cubic lattice where the interstitial sites are at the centre of each cube of normal

lattice sites, for which Z = Z' = 8. This system will be referred to as s.c.(b) and an

example is the interstitialcy diffusion of anions in the CaF 2 structure. The second
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Table 3.1: Values of the probability generating functions, Pi , the atom jump probabil-
ities, Qii'lj , the probability, p, the defect returns to the atom, and the tracer correlation
factor, f, for some values of the jump-type probabilities wi, in the f.c.c.(o) and s.c.(e)
systems. The angles shown with the ,C4 refer to the angles between consecutive
I to N and N to I jumps of the atom. Also shown are the values of the tracer cor-
relation factor obtained previously by the network resistance method (Compaan and
Haven 1958).

f.c.c.(o)

1,0 0,1 1	 1
2 7 2

2 1
373

1.5163881 1.3446611 1.2065504 1.2081951
0 P0 - 1 0.1961962 0.1560546

P0 - 1 0.2299359 0.2169047 0.2342654

0.0265301 0.0682501 0.0257997 0.0165991
0.2265301 0.0682501 0.0707413 0.0974963

0 0.0483379 0.0431216 0.3552626

0.2530602 0.3298516 0.2690272 0.2561995

4
5 1 0.9550584 0.9191028

0.8 1

s.c. (e)

1,0 0,1 1	 1
2 7 2

2 1
373

--p 00 1.4762128 1.4321661 1.5770988
0 P0 - 1 0.3249602 0.2959571

P0 - 1 0.3403122 0.5393720 0.7176697

0 0.1543307 0.0434145 0.0217582
1 0.1543307 0.1870796 0.2894218
0 0.0854431 0.0975246 0.0809408

1 0.6504338 0.6205926 0.6349431

0 1 0.8563349 0.7323364

0 1

W11 W2

P0
P1
P2

QN00 )
QN180°)
QN90°)

P

f
f (C&H)

W1 7 W2

Po
P1
P2

0
Q,(0°)

i ,(180°)
QN90°)

P

f
f (C&H)



1
1 = 1

a(aZ' — 1) •
(3.32)
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system is a face-centred-cubic lattice with an interstitial site at the centre of each

tetrahedron formed by adjacent normal lattice sites, for which Z = 8 and Z' = 4.

This system will be referred to as f.c.c.(t) and an example is the interstitialcy diffusion

of cations in the NaC1 structure.

The expressions for A, B and a for both systems, obtained by the method de-

scribed in §3.2.2, are

A = Po + Pi — P2 - P3,

B = awi + w2 — w3,
	 (3.31)

a = a2 = a3 = 3.

The Pi are for random walks on a simple-cubic lattice and have the same values for

both systems except when w 1 is nonzero, since the third nearest neighbour jumps

in the f.c.c.(t) system are subject to geometric restrictions not present in the s.c.(b)

system. Table 3.2 shows values of the Pi , (4 and f for these systems and for some

values of the normalised jump-type probabilities, w i . The forward noncollinear jump

mechanism (w2 = 1, w1 = w3 = 0) gives A = B = 1 since Pi. = P3 = 0 and

P2 = Po — 1 for the random walk with just second nearest neighbour jumps allowed,

and the expression for the tracer correlation factor simplifies to

3.3.3 System with four interstitialcy jump types

A simple-cubic lattice of normal atoms and interstitial sites on the centre of each

square formed by first and second nearest neighbour normal lattice sites has four types

of interstitialcy jumps. An example of such a system is the interstitialcy diffusion of

cations in the CsC1 structure where the interstitial sites are on the midpoint between

each pair of adjacent anion sites. This system has coordination numbers Z = 12 and

Z' = 4, and will be referred to as s.c.(f).

The expressions for A, B and a for the s.c.(f) system, obtained by the method

described in §3.2.2, are

A = Po + 2Pi — 2P3 — P4,



W1) W27 W3

Po
P1
P2
P3

(2 1, 1A- 0°)
Q • •,(180°)NQ • • ,(70.5 )
QNij ,(109.5 )

P

f
f (C&H)

W1 ) W2 ) W3

Po
P1
P2
P3

(2,Al21.,(0°)
Q4,(180°)
Q 470.5°)
QVi,(109.5°)

P

f
f (C&H)
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Table 3.2: Values of the probability generating functions, Pj , the atom jump probabil-
ities, Qiii , the probability, p, the defect returns to the atom, and the tracer correlation
factor, f, for some values of the jump-type probabilities wi, in the f.c.c.(t) and s.c.(b)
systems. The angles shown with the Q . I.i refer to the angles between consecutive
I to N and N to I jumps of the atom. Also shown are the values of the tracer cor-
relation factor obtained previously by the network resistance method (Compaan and
Haven 1958).

f.c.c.(t)

1,0,0 0,1,0 0,0,1 1	 1	 1
3,3,3 11 o2)21

210
3,3,

1.7928802 1.3446611 1.5163863 1.1919798 1.1794606 1.2218536
0 0 Po - 1 0.2046404 0.1094808 0.0966143
0 Po - 1 0.3311489 0.1644149 0.1375198 0.1114850

P0 - 1 0 0.2614704 0.2068841 0.2214014 0.2770379

0.0296478 0 0.0355398 0.0343943 0.0086974 0.0068888
0.3629812 0.1159541 0.1152852 0.0642197 0.1004157 0.1431404

0 0 0.0393915 0.0484203 0.0552229 0.0505024
0 0.0856511 0.0834193 0.0471037 0.0246501 0.0150698

0.3926290 0.3729075 0.5192575 0.3851857 0.3487319 0.3467457

2
3

32
33 0.9642823 0.9688580 0.8777089 0.8283158

2
3

32
33 0.9643

s.c.(b)

1,0,0 0,1,0 0,0,1 1	 1	 1
3/3 , 3 1 1 0 2,2' i,i3O

1.3932033 1.3446611 1.5163863 1.1764894 1.1424630 1.1496816
0 0 Po - 1 0.2039071 0.1090663 0.0960538
0 Po - 1 0.3311489 0.1638124 0.1359402 0.1096152

Po - 1 0 0.2614704 0.1617486 0.1489857 0.1697149

0.0198412 0 0.0298275 0.0224221 0.0085847 0.0072199
0.1626984 0.0681662 0.0679226 0.0371410 0.0523883 0.0714125

0 0 0.0325413 0.0293452 0.0308237 0.0276058
0 0.0536734 0.0517666 0.0287401 0.0162226 0.0111434

0.1825396 0.2291864 0.3506737 0.2338190 0.2021119 0.1948797

6
7

68
69 0.9811302 0.9846760 0.9415953 0.9193450
68
69



Chapter 3. Atomic diffusion by the interstitialcy mechanism 	 50

B = awl 2w2 — 2w4,	 (3.33)

a = a2 = a4 = 4.

Table 3.3 shows values of the 13-31 CP. and f for some values of the normalised jump-t3

type probabilities wt.

The two cases w1 = 1 and w3 = 1 (with the remaining wi = 0 in each case) are

equivalent to diffusion by the collinear and noncollinear interstitialcy mechanisms,

respectively, on the square lattice system sq.(f). Since the lattice is two-dimensional,

the interstitial defect is certain to return to the atom (p = 1) and the summation

in the probability generating functions, Pj , diverges. The terms Po — Pi , however,

remain finite (Montet 1973) and the values are shown in Table 3.3. The atom jump

probabilities Q'Zi can be calculated by writing their analytic expressions, from equa-

tion (3.25), in terms of the Po — Pj and then allowing Po oo. The results are shown

in Table 3.3.

3.3.4 Systems with one interstitialcy jump type

Structures that permit just one possible interstitialcy jump type, a noncollinear one,

are considered below. Two structures of this type are the two-dimensional hexagonal

lattices with the interstitial sites either all at the centre of each hexagon of normal

lattice sites (for which Z = 3 and Z' = 6) or all on the midpoint between each pair of

adjacent normal lattice sites (for which Z = 3 and Z' = 2). Another is the lattice of

Na+ ions in the layered Na '3-alumina structure whose Na+ ions occupy every second

site on a hexagonal lattice (forming a triangular lattice of normal sites) with the

remaining sites of the hexagonal lattice the interstitial sites (for which Z = Z' = 3),

(see for example Wolf 1979b).

For these systems A = B = 1 and the expression for the tracer correlation factor

simplifies again to equation (3.32) with a = 2 and the value of the correlation factor

depends only on the coordination number Z'. This expression gives the same value

of f = 9/10 obtained by Wolf (1979b) and Allnatt and Allnatt (1991) for diffusion by

the interstitialcy mechanism in Na 0-alumina with no site blocking. The atom jump

probabilities QI1 for a reverse (180°) jump and a forward noncollinear (60°) jump, in

each of the above hexagonal systems, are 2Z1[3(aZ' —1)] and (2aZ' —1)1[3a(aZ' —1)]



tv1 7 tv2 7 tv3 7 714

Po
P1
P2

P3

P4

QZ,(0°)

Q,11,(180°)
QZ,(90°)
QZ,(60°)
QN1200 )

P

f
f (C&H)

101, W2, W3 1 W4

Po
P1

P2

P3

P4

QN0°)
(4(180°)
QN , (90°)

4
Q,(60°)

120°)

P

f
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Table 3.3: Values of the probability generating functions, Pi , the atom jump probabil-
ities, the probability, p, the defect returns to the atom, and the tracer correlation
factor, f, for some values of the jump-type probabilities w i , in the s.c.(f) system. The
angles shown wth the Q N refer to the angles between consecutive I to N and N to I
jumps of the atom. Also shown are the values of the tracer correlation factor obtained
previously by the network resistance method (Compaan and Haven 1958).

s.c.(f)

1,0,0,0 0,1,0,0 0,0,1,0 0,0,0,1

-- 00 1.1326166 -- 00 1.4762128
0 0.0704497 0 0.4762128
0 0.0762584 P0 -1 0.2971305
0 0.1326166 0 0.2539488

PO - 1 0.0542953 P0 - ! 0.2118984

Z1-2 0.0068936 Ir 0.0203843=2(Z1 -1) -- 3 27A-4
z'	 2 0.0734135 7r 0.0929297=2(T-1) - 5 2/r+4

0 0.040153 0.0566570i-2+2
0 0.0233506 0 0.0384767
0 0.0239391 0 0.0462062

1 0.3497726 1 0.5653600

2
3 0.9323030 1 0.9119956
2 0.9323 1 0.9120

1	 1	 1	 1 1 1 i 0
4/4)4)4 373)3

1.1453715 1.1598194 1.1412500 1.2049967
0.1370493 0.0824390 0.0695943 0.0635812
0.1778442 0.2058144 0.0548023 0.0458023
0.1080655 0.0895734 0.0862322 0.0728923
0.1585272 0.1840702 0.1962678 0.2710490

0.0277522 0.0252321 0.0050852 0.0056801
0.0441892 0.0629682 0.0905478 0.1376485
0.0359707 0.0441001 0.0145502 0.0091707
0.0314568 0.0177119 0.0097464 0.0069092
0.0319712 0.0329945 0.0443373 0.0391020

0.3975945 0.3792260 0.3410679 0.3457151

0.9825343 0.9316987 0.8453556 0.8036460
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respectively. These values also, remarkably, depend only on the geometry of the

system but not on the probability functions of the diffusion.

3.4 Atomic displacement probabilities

An atom which is initially at a normal lattice site and is displaced to an interstitial

lattice site will then have a following jump to a normal site. This atom may then be

displaced further due to the defect it creates in its second jump and the probability

of the atom being displaced by / after n jumps will be denoted Wn (/). The number

of jumps, n, of the atom includes both N to I and I to N jumps and the atom will

therefore be at an interstitial site after an odd number of jumps and at a normal site

after an even number of jumps.

It is convenient to define 1 to be a lattice vector on the Bravais lattice which

includes at least all of the normal and all of the interstitial lattice sites. Such a

lattice will be termed a composite lattice and its choice is not unique. The diffusing

atom therefore moves in steps on the composite lattice according to a model which

corresponds to alternate N to I and I to N jumps and not all of the sites on this lattice

will necessarily be accessible to an atom starting at the origin.

For one- and two-dimensional systems the defect has a probability p = 1 of return-

ing to the atom. In three-dimensional systems p < 1 and in this case it is therefore

possible to define W(l) which is the probability of the atom being displaced by / as

a result of a particular atom-defect encounter. Such an encounter will always involve

an even number of atom jumps because an N to I jump of an atom will always be

followed by an I to N jump. The atom will therefore be on a normal lattice site at

the conclusion of the encounter. The probability that an encounter has exactly 2m

jumps is equal to the probability that a defect returns to the atom (m — 1) times and

then never returns again, which is pm-1 (1 — p), so that
00

W(1) = (1 — p) E pm-1 W2m,(1)•	 (3.34)
m=1

The probabilities Wn (1) can be evaluated by a generalisation of the analysis used by

Sholl (1992) for the vacancy mechanism which used a recurrence relation between

the nth and (n — 1)th jumps. For the interstitial mechanism it is also necessary to

distinguish between N to I and I to N jumps.
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A set of ZT jump vectors c i on the composite lattice can be defined such that they

include all possible I to N jumps and all possible N to I jumps. The value of ZT will

be the larger of Z and Z' when one set of jumps includes the other as a sub-set. The

expression for W(l) can then be written

	

00	 ZT

	

W(1) = (1 — p) >	 pm-1 > W2m (l, ci )	 (3.35)

	

m=1	 i=1

where W2,,(1, CO is the probability W2,,(1) with the restriction that the 2ni th jump be

in the direction ci . The probability that an N to I jump of an atom is in the direction

ci if the immediately preceding I to N jump was in the direction cj is denoted Q.
This probability describes the correlation between consecutive Ito N and N to I jumps

due to the differing probabilities of the defect returning to the atom from different

directions. The values of the IQI I.i are QT1i = Q2, (A = Q i when i and j are such that

cj = —ci , and the remaining QZ are zero for the collinear case.

The I to N jumps of the atom are completely uncorrelated to any previous jump

and the atom is equally likely to jump to any of its Z' nearest normal lattice sites,

each with probability 1/Z'. When Z' is less than Z there will be (Z/Z') different

sets of Z' possible jump directions available to an atom at an interstitial site. It is

convenient to define CA to indicate the probability of a jump in the direction ci for

an atom at an interstitial site. (2 .1j will be equal to 1/Z' if an I to N jump in the

direction c i is possible, or 0 if it is not possible, given that the previous N to I jump

was in the direction cj . This is equivalent to QL =11Z' for all values of i for which

the lattice vector (ci + cj ) is a nearest normal lattice site to the interstitial site ci,
and zero otherwise. For the case Z' > Z the possible jump directions will be the

same from any interstitial site, so that gli = 1/Z 1 for all i and j values. In all cases

ZT

E QL = 1.
i=1

Using the above definitions the following recurrence relations hold.

ZT

w2.,(/, ci) = E QL1472 ._1(/ — ci, ci),
j=1

, 1 A	 Tyr
W2m+1 ( 1 7 CO = —	 y.1 1.i VV2771 1 — ci, Ci)

P j=1

(3.36)

(3.37)

(3.38)
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with m > 1 in both equations; the initial condition is

Wi(i , Ci) = -2-1 Si,ei.

Equations (3.37) and (3.38) can be combined to give the recurrence relation

1 ZT
W2m(l, ci) = — E QLQi1

01
41-2m,-2(1 - C i — Ck, ej)

P j,k=1

(3.39)

(3.40)

which may be solved using the matrix and Fourier transform procedure of Sholl (1992).
The Fourier transform of W(l) is

W(0) = (1	 P)	 Q il k [I — PA(4))V exP[if ' (ci + C 01

	

Z	 )
i,j,k=1

and the final solutions are

(1 — p) v 
Z

 QI. [I — pA(0)] -i-il exp f— i0 . [I — (cj + CO] } 0, (3.42)W(1) =
	 Z (2703 I i,.1 3k

1 v	 f ZT

W2mkg ) = Z (27) d j .	 (4k [Am-1 (40] ij expf—i0 . [1 — (ci + ck)]} cid), (3.43)
2,3,k=1

and

1 v	 ZT

W2m+1( 1) = 
pZ (270d	

E C	
jh

QN [Am-1 (0)] expf—i0 . [1 -- ( Ch + Ci + ck)]} dcto
\I h,i,j,k=1

(3.44)
where m > 1, I is the ZT x ZT identity matrix, A(0) is the square matrix with
elements

P k=1

and the integral is over the first Brillouin zone of the reciprocal lattice of the composite
Bravais lattice. The dimension of the lattice is d and v is the volume of the unit cell.
The integrals in the above expressions may be evaluated numerically for a given lattice
structure and vector 1.

An example of the above theory is the collinear interstitialcy diffusion of the
cations in the NaC1 structure. In this case the interstitial cation sites are at the
centres of tetrahedra of both the cations and anions (a f.c.c.(t) system). The number
of N (cation) sites which are nearest neighbours of an I site is therefore Z' = 4 and the

(3.41)

1 ZT

[A(0)] t.i = — Y QLQZ exp[ick - (Ci + CO], (3.45)
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number of I sites which are nearest neighbours of an N site is Z = 8. The composite

lattice may be chosen as the b.c.c. lattice comprising all of the anion, cation and

interstitial sites. The set of vectors ci are the eight nearest neighbour vectors of a

b.c.c. lattice site. If the ci are labelled so that ci+1 = -Ci for i = 1, 3, 5, 7 and

c1 = 4(1 , 1 ,1) , c3 = cj(I, —1, —1), c5 = 4(-1, —1, 1), c7 = Tai (-1,1, —1) (3.46)

relative to orthogonal axes, where a is the NaC1 lattice parameter, then

Q1.	 1 81 (_).+)+1
4 

Q1+1,7 = Qi (j = 1,3,5, 7)= Q2)

(3.47)

(3.48)

with the remaining Qrj zero. The interstitial defect moves on one of four diamond

structures for which the probability parameters P and p are P = 1.7928815 and

p 0.3926292. From equations (3.14) and (3.15) the probabilities Q 1 and Q2 of

backward and forward jumps are Q i = 0.3629813 and Q2 = 0.0296479. The results

for the displacement probabilities W(1) of an atom as a result of a single atom-defect

encounter may then be obtained from equation (3.42) and some values are given in

Table 3.4. The results show that the atom is most likely to be at the origin or at a

nearest neighbour site as a result of the encounter. The probability of it being at the

origin is 0.241 and at a nearest neighbour site is 0.732 so that the probability of it

being at other sites is only 0.027.

The correlation factor f can be expressed in terms of the probabilities W(l)

(Wolf 1983) and the result for the interstitialcy mechanism can be derived as fol-

lows. The correlation factor f is

f =	 (112)n
nb2 (3.49)

where (R2 )„ is the mean square displacement of an atom after n jumps, b is the length

of each jump and nb2 is the mean square displacement if the jumps are uncorrelated.

For the interstitialcy mechanism n includes all I to N and N to I jumps and b is the

I to N separation. Since different atom-defect encounters are uncorrelated, it follows

that

(R2 )„ = n e (R2 ), = ne	 W(1)12
	

(3.50)
1
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Table 3.4: Values of the displacement probability W (1) greater than 10' for repre-
sentative nearest neighbours and cumulative sums over shells of neighbours of W(l)
and the correlation factor f for self-diffusion in the NaC1 structure. The coordinates
of 1 are relative to orthogonal axes and are in units of a/2.

(3.51)

1 

0,0,0 0.2412699 0.2412699
0,1,1 0.0610196 0.9735048
1,1,2 0.0007104 0.9905538
0,2,2 0.0007268 0.9992757
0,1,3 0.0000085 0.9994787
1,2,3 0.0000084 0.9998803
0,0,4 0.0000004 0.9998826
0,3,3 0.0000083 0.9999819
1,1,4 0.0000002 0.9999866
2,3,3 0.0000001 0.9999890
2,2,4 0.0000002 0.9999936
1,3,4 0.0000001 0.9999983
0,4,4 0.0000001 0.9999995

1	 W (1)	 E W(1)	 f = P-1 E W (1) (1102
1

0
0.5929841
0.6344045
0.6626572
0.6634795
0.6657556
0.6657710
0.6664943
0.6665283
0.6665336
0.6665451
0.6665574
0.6666599

E W(1) =1	 f = 2/3
1

where (R2 )	 the mean square displacement of an atom as a result of a single,enc is

encounter and ne is the average number of encounters in n atom jumps. The values

of ne and n are related by n = Pne since the mean number of atom jumps per

encounter is equal to the lattice generating function P (Sholl 1992). The expression

for f may then be written in the form

1	
/1\ 2

f= .7) 1/17(1) W •

For the example of the NaC1 structure the jump distance b = 0a/4 and the

cumulative sum in equation (3.51) is given in Table 3.4. The convergence of this

summation is relatively slow because of the / 2 term but the rate of convergence in

Table 3.4 is faster than the case of the vacancy mechanism in the simple cubic lattice

(Sholl 1992).
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Some examples of the atomic displacement probability, W(l), for the noncollinear

interstitialcy mechanism are given below, where the values of the atom jump prob-

abilities, Cep used in calculating the W(l) are calculated from equation (3.25) and

are given in Tables 3.2 and 3.3. Table 3.5 shows the results of these calculations for

self-diffusion by the interstitialcy mechanism in the NaC1 structure for various values

of the jump-type probabilities wi . As can be seen in the table, the rate of reduction in

W(/) as the distance from the origin is increased is greater for diffusion corresponding

to smaller values of the tracer correlation factor. The results of similar calculations

for the CsC1 structure, s.c.(f), given in Table 3.6 show that a similar correlation exists

between the rate of reduction in W(l) and the value of the tracer correlation factor.

This result is to be expected physically since a smaller value of f corresponds to a

higher probability of an atom having a reverse jump following a given jump. This

will then inhibit the atom from diffusing far from its starting point.

3.5 Conclusion

A matrix expression for the atom jump probabilities Qiili for the interstitialcy diffusion

mechanism has been obtained (equation (3.25)) in terms of the interstitialcy jump-

type probabilities wi and the probability generating functions Pi for the random walk

of the interstitial defect. This expression enables the calculation of the for any

interstitialcy mechanism once the corresponding Pi are known. The techniques for

calculating the probability generating functions Pi , for a given set of wi values, are

outlined in Appendix D.

The tracer correlation factor f can be calculated from the Qilli and the direction

cosines. With the aid of a symbolic mathematics computer package the analytic

expressions for the correlation factor—in terms of the parameters Z', ai , wi and Pi

—were found for some cubic and two-dimensional systems. The general form of the

correlation factor was

f = 1 	 	 (3.52)
a(aZi — AB)

where A, B and a are linear combinations of the Pj , wi and ai respectively, and the

expressions for A, B and a for specific systems are given by equations (3.30) to (3.33).

It is not obvious that a simple general expression for the tracer correlation factor

AB'



Chapter 3. Atomic diffusion by the interstitialcy mechanism 	 58

Table 3.5: Values of the displacement probability W(/) greater than 10- 7 for repre-
sentative nearest neighbours for self-diffusion by the interstitialcy mechanism in the
NaC1 structure, f.c.c.(t). The W(l) are for a few choices of the jump-type probabil-
ities, wi , and the corresponding values of the trace correlation factor, f , are shown.
The coordinates of / are relative to orthogonal axes and are in units of a/2.

w1,w2,w3 0,1,0

f _ 32
- 33 

1 1 1   1,0,0 3,3,3   

I f = 0.9688580 f = 0.8777089 f = 2

0,0,0 0.1933076 0.2000786 0.2061602 0.2412699
0,1,1 0.0549503 0.0561546 0.0574003 0.0610196
0,0,2 0.0056541 0.0053578 0.0054376
1,1,2 0.0030570 0.0026521 0.0022041 0.0007104
0,2,2 0.0016589 0.0013157 0.0008384 0.0007268
0,1,3 0.0003515 0.0002748 0.0002147 0.0000085
2,2,2 0.0002433 0.0001777 0.0001062
1,2,3 0.0001384 0.0000959 0.0000528 0.0000084
0,0,4 0.0000368 0.0000253 0.0000179 0.0000004
0,3,3 0.0000551 0.0000342 0.0000144 0.0000083
1,1,4 0.0000259 0.0000169 0.0000102 0.0000002
0,2,4 0.0000183 0.0000114 0.0000059
2,3,3 0.0000140 0.0000083 0.0000034 0.0000001
2,2,4 0.0000084 0.0000048 0.0000019 0.0000002
1,3,4 0.0000060 0.0000033 0.0000012 0.0000001
0,1,5 0.0000028 0.0000016 0.0000009
1,2,5 0.0000016 0.0000008 0.0000003
0,4,4 0.0000020 0.0000010 0.0000003 0.0000001
0,3,5 0.0000009 0.0000004 0.0000001
3,3,4 0.0000010 0.0000005 0.0000001
2,4,4 0.0000007 0.0000003 0.0000001
0,0,6 0.0000003 0.0000001 0.0000001
2,3,5 0.0000005 0.0000002 0.0000001
1,1,6 0.0000002 0.0000001
0,2,6 0.0000002 0.0000001
1,4,5 0.0000003 0.0000001
2,2,6 0.0000001
1,3,6 0.0000001
4,4,4 0.0000001
0,5,5 0.0000001
3,4,5 0.0000001
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Table 3.6: Values of the displacement probability W(/) as in Table 3.5 but for self-
diffusion by the interstitialcy mechanism in the CsC1 structure, s.c.(f). The coordi-
nates of / are relative to orthogonal axes and are in units of a, the lattice parameter.

W1)W2)W3)W4

1

1	 1	 1	 1
4,4,4,4 0,1,0,0 1 1 1 03,3,3, 1 1 02,2,	 ,0

f = 0.9825343 f = 0.9323030 f = 0.9316987 f = 0.8453556

0,0,0 0.1866267 0.2013738 0.1952846 0.2088675
0,0,1 0.0691846 0.0729378 0.0716308 0.0751945
0,1,1 0.0220691 0.0219932 0.0221246 0.0227636
1,1,1 0.0043950 0.0034026 0.0037058 0.0038270
0,0,2 0.0036108 0.0030431 0.0033873 0.0015243
0,1,2 0.0017363 0.0012942 0.0014734 0.0006964
1,1,2 0.0007409 0.0004997 0.0005138 0.0002964
0,2,2 0.0003478 0.0001661 0.0002785 0.0000859
0,0,3 0.0002154 0.0001385 0.0001741 0.0000352
1,2,2 0.0001424 0.0000733 0.0000883 0.0000364
0,1,3 0.0001287 0.0000731 0.0000933 0.0000201
1,1,3 0.0000738 0.0000381 0.0000451 0.0000114
2,2,2 0.0000368 0.0000165 0.0000188 0.0000063
0,2,3 0.0000382 0.0000149 0.0000258 0.0000044
1,2,3 0.0000211 0.0000082 0.0000114 0.0000025
0,0,4 0.0000141 0.0000067 0.0000095 0.0000009
0,1,4 0.0000096 0.0000041 0.0000059 0.0000006
2,2,3 0.0000063 0.0000022 0.0000029 0.0000006
1,1,4 0.0000064 0.0000025 0.0000034 0.0000004
0,3,3 0.0000068 0.0000019 0.0000042 0.0000004
1,3,3 0.0000039 0.0000012 0.0000019 0.0000003
0,2,4 0.0000036 0.0000011 0.0000020 0.0000002
1,2,4 0.0000024 0.0000007 0.0000011 0.0000001
2,3,3 0.0000014 0.0000004 0.0000005 0.0000001
2,2,4 0.0000009 0.0000002 0.0000004
0,0,5 0.0000010 0.0000003 0.0000005
0,3,4 0.0000009 0.0000002 0.0000005
0,1,5 0.0000007 0.0000002 0.0000004
1,3,4 0.0000006 0.0000001 0.0000002
1,1,5 0.0000005 0.0000002 0.0000002
3,3,3 0.0000003 0.0000001 0.0000001
0,2,5 0.0000003 0.0000001 0.0000002
2,3,4 0.0000002 0.0000001
1,2,5 0.0000002 0.0000001 0.0000001
0,4,4 0.0000002 0.0000001
2,2,5 0.0000001
1,4,4 0.0000001
0,3,5 0.0000001
3,3,4 0.0000001
1,3,5 0.0000001
0,0,6 0.0000001
0,1,6 0.0000001
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should exist as the diffusion mechanism is quite a complicated process. Many of the

methods used previously to calculate the tracer correlation factor lead to numerical

calculations which must be performed each time for a different mechanism: for exam-

ple, the extensively used network-resistance method of Compaan and Haven (1958).

The method used here shows that simple general expressions exist for all combinations

of interstitialcy mechanisms. A crucial part of this method was the use of a symbolic

mathematics computer package which performed the involved algebra in terms of the

parameters Z', ai , wi and Pi . Of these, the wi and Pi have non-integer values which

mask the general form of f when calculated numerically.

Despite the complexities of the possible diffusion paths of an interstitial defect in

producing diffusion of an atom by the collinear interstitialcy mechanism, the tracer

correlation factor depends only on the number Z' of normal lattice sites which are

nearest neighbours of the defect site and is given by f = 1 — 1/(Z' — 1). This result

is valid in one, two and three dimensions in the limit of low defect concentrations.

The correlation factor therefore depends simply on the geometry of the interstitial

and normal lattice sites and does not depend explicitly on any details of the diffusion

motion.

The results derived for the atom jump probabilities enable the probability of

an atom being displaced by 1 in n jumps to be obtained from the integral expres-

sions (3.43) and (3.44). For three-dimensional systems the mean number of exchanges

between an atom and a particular defect is finite and the final atomic displacement

probability W(l) as a result of such an atom-defect encounter can also be obtained

from the integral expression (3.42).



Chapter 4

Relaxation rates due to the

vacancy and interstitialcy

mechanisms

4.1 Introduction

Nuclear spin relaxation rates due to translational diffusion in solids depend on the de-

tails of the diffusion, especially the mechanism of diffusion. The relaxation rates due

to diffusion by the vacancy mechanism in the cubic lattices have been well studied us-

ing Monte Carlo simulations of the vacancy motion (Wolf 1974; Wolf et al. 1977), and

approximations to the atomic displacement probabilities based on random walk the-

ory (Sholl 1974, 1982; MacGillivray and Sholl 1986). Additionally, accurate analytic

expressions for the atomic displacement probabilities due to the vacancy diffusion

mechanism—which are exact in the low vacancy-concentration limit—have been de-

rived by Sholl (1992). Relaxation rates due to the interstitialcy mechanism have not

received as much attention, although relaxation rates for diffusion by the forward

noncollinear interstitialcy mechanism in a fluorite lattice have been calculated using

Monte Carlo simulations of the interstitial defect motion (Wolf et al. 1977; Figueroa

et al. 1979). These last works investigated the effectiveness of using nuclear spin

relaxation rate measurements to distinguish between the different diffusion mecha-

nisms in fluorite lattices, BaF 2 in particular. It was found that nuclear spin relaxation

61
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measurements alone were insufficient to determine the diffusion mechanism.

The aim of the present chapter is to apply the exact calculations of atomic dis-

placement probabilities for diffusion by the vacancy and interstitialcy mechanisms to

the calculation of relaxation rates in a lattice with a NaC1 structure. The diffusion

occurs by the encounter model (Eisenstadt and Redfield 1963) where the diffusion is

a random walk of atom-defect encounters, the details of each encounter depending on

the particular diffusion mechanism being considered. The theory is exact in the low

defect-concentration limit.

The particular system to be studied is the relaxation of F nuclei in the ionic

solid LiF due to the diffusion of the Li nuclei. The F nuclei are assumed to remain

fixed at their f.c.c. lattice sites while the Li nuclei are free to diffuse by either the

interstitialcy mechanism or the vacancy mechanism. The Li nuclei diffuse on a f.c.c.

lattice by the vacancy mechanism and on a f.c.c.(t) system (see previous chapter)

by the interstitialcy mechanism, where each interstitial site is at the centre of the

tetrahedron formed by adjacent f.c.c. lattice sites. The mobility of the F nuclei is

significantly less than that of the much lighter Li nuclei (Philibert 1991) so when

considering the Li—F interactions a reasonable approximation is that the F nuclei are

immobile and that only the Li nuclei diffuse. The F nuclei have spin 1/2 and so have

zero electric quadrupole moment while both the F and Li nuclei have magnetic dipole

moments. The dominant Li—F interaction is therefore magnetic dipolar, and there is

no electric quadrupole interaction. The F—F interactions are also magnetic dipolar

and will contribute to the relaxation of the fluorine nuclei. It is likely that relaxation

due to this interaction will be negligible because of the low mobility of the fluorine

nuclei, and in spite of the approximately 25% larger coefficient in the expressions (2.8)

for the like-spin (F—F) interaction relaxation rates than in the expressions (4.5) below

for the unlike-spin (Li—F) interaction relaxation rates in the present system.

Also developed in this chapter are simple analytic expressions for the spectral

density functions of unlike-spin, magnetic dipole interactions when one spin-species

is fixed and the other is diffusing by either the interstitialcy or vacancy mechanism in

any crystal with the NaC1 structure. These expressions facilitate the rapid calculation

of relaxation rates due to unlike-spin, magnetic dipole interactions in any solid with

the NaC1 structure.
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4.2 Relaxation rate theory

The nuclear spin relaxation rates can be written as linear combinations of spectral

density functions J (P) (w). The expressions for the longitudinal relaxation rates in

the laboratory frame and in the rotating frame of reference, R1 and R1p respectively,

and the transverse relaxation rate R2 of nuclei with spin number I, due to magnetic

dipole interactions with nuclei with spin number S are (Abragam 1961; Hoodless et

al. 1971)

33
—Ws) + --J (1) (w/) + J (2) (w/ + ws)i	 } ,

3	 3 , N	 3 , 1

-
4.0 s ) + i j (1) Go 1 ) + pi ) (ws) + ijk2 /pi + co s)}

(4.1)
w s ) 4. _. j(1)(wi ) + p(1)(ws ) + p(2) ( o, + cos )} .zi 

Here the constant parameter A s = -d7Sh2 S(S + 1) ( 
2

V-r) , 7/ and 'ys are the gyromag-

netic ratios of the I and S spins respectively, wI and ws are the corresponding Larmor

frequencies in the static applied magnetic field, Bo, and w1 is the Larmor frequency

of spin I in the applied oscillating magnetic field, B1.

The J(P) (w) are the spectral density functions (Abragam 1961; Sholl 1981b)

J(P)(w) = cd2 E Y2Vnia) Y2p(%) P(ra, ro,w)P	 r3	 ri33«,0	 a

where 4 = 167r/5, 4 = 8r/15, 4 = 327r/15, Y2p (SY) are spherical harmonics nor-

malised to unity, rc, . (ra , Clia ) are vectors separating the interacting spins and c is

the probability of finding a spin at ra relative to one at the origin. The function

P(r,„ rp, w) is the Fourier transform

P(r„,ro, co) = 2 f P(ra , r 0 , t) cos wt dt
o

of P(ra , ro, t) which is the probability of a pair of spins being separated by ro a time

t after they were separated by ra . The directions Stia of the spherical harmonics are

relative to the direction of the applied magnetic field.

A more convenient form for these expressions is to express them in terms of di-

mensionless spectral density functions, g (P) (wre ), defined in terms of the J (") (w) by
6

g(P) Go T e ) = a j(P) I (4,1k ),	 (4.4)
CTe

1	 (0)Ri = As { —J (wi
12

1	 (R1„ = As {-0	
1

J(o) 	 + NJ
0)

(u)/6

1	 1	 (
R2 = A, {—J (° ) (0) + —

24
J

0) PI—
6

(4.2)

(4.3)
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where a is the lattice parameter and 're is the mean time between atom-defect en-

counters. Using this definition, and the relation wrys = the relaxation rates of

equations (4.1) can be written

Rl 	 (A)re=
Asc	 { 1 0) Li,	 _g(i)(wire) _3g(2)(r

1 + hilWirea wi	 12	
}WI

	

Te
	 4

Asc 	( )1r	 3 1,
	= 

a6coi 
WITe

6
g
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([Bi/Bo]corre)	
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In this form the relaxation rates are functions of Wire for each of the two cases of

constant col and varying re , and of constant Te and varying wi while keeping the ratio

B1 /Bo constant. The first case corresponds to experiments where the temperature

is varied while the applied magnetic field Bo is held constant. In the second case

the applied magnetic field is varied while the temperature is held constant. Useful

comparisons between the relaxation rates for different diffusion mechanisms in the

same system can be made by plotting the relaxation rates, in units of either Ascl(a6w1)

or Ascre a6 , as functions of WiTe. The choice of units depends on whether wi (B0 ) or

; (temperature) is constant.

The mean time between encounters, re , can be written in terms of the mean time

between jumps of the point defect, Td (Sholl 1981b). If the concentration of nuclei, c,

satisfies the conditions c ti 1 and c> e, where E is the concentration of defects, then

the expression for the mean time between encounters is

Te =
P

 C Td,

where P is the mean number of atom-defect interactions per encounter. In the cases

when only Schottky or Frenkel defects are present, the concentration of defects e =

1 — c and so the conditions 1 c E hold for low concentrations of defects in these

cases. The value of P can be calculated from simple random walk theory in the case of

R1p

(4.6)
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vacancy defects or from the atom jump probabilities in the case of interstitial defects

and is the mean number of times the defect, undergoing a random walk, visits the

origin. For example, P = 1.3446611 for a vacancy defect diffusing on a f.c.c. lattice.

The mean time between jumps of a defect, Td, often follows an Arrhenius behaviour

Ea)Td = 70 exp (—
kT

	 (4.7)

where Ea is an activation energy, k is the Boltzmann constant, T is the temperature,

and 7-0 is a constant with the same units as Td . In the absence of impurity atoms in

the solid, the concentration of defects, Z, also follows an Arrhenius form

-c- = co exp kTc)
	

(4.8)

where Ec is an activation energy and co is a constant Combining the above three

equations, multiplying by the Larmor frequency, w, and taking logarithms gives

log(wre ) = log (wP_ r() ) + ( Ea +k	 (4.9)
co

A plot of the relaxation rates against log(wre ) is therefore equivalent to a plot against

1/T and a comparison of theory with experiment can give the sum of the activation

energies, Ea 4- Ec , and the ratio 7-0 /co. This is different to the case of relaxation

rates due to the electric quadrupole interaction (Cohen and Reif 1957; Sholl 1993)

where the relaxation is directly caused by the diffusion of the point defect and so the

probability c is equal to the concentration of defects, E, and is no longer independent

of the temperature. In addition, the encounter model is no longer valid and 'r e is

replaced by the defect's mean jump-time, Td. The relaxation rates (equations (4.5)),

for the quadrupole interaction in cubic structures, plotted as functions of log(w ird ) are

then not equivalent to plots against 1 /T because of the dependence of the relaxation

rates on c =
The dependence of g(P) (cor) on the orientation of the crystal with respect to the

magnetic field direction can be expressed in terms of trigonometric functions of the

polar angle (0, 0) of the field direction relative to crystal axes and functions gppi(wr)

defined, for p and p" = —2 to 2, by (Sholl 1986)

a6	 v.1	 -Tr /r,

	

3	 rcv, rp, w),gppi(WT) = —V  2P
(1

ka  /219/0/0) 
P(

T	 r3«,fl	 r
(4.10)
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where the directions of the spherical harmonics are now relative to axes fixed in the

crystal. In the present case the axes are chosen to be the xyz-axes in the directions

of lines joining adjacent Li and F atoms in the LiF crystal.

The maximum number of independent nonzero parameters needed to specify

g(P) (wr) for each WT is 15 and crystal symmetry reduces this number (Sholl 1986).

In the present case of cubic symmetry the number of independent parameters is two
and the angular dependence of the g ( ') (wr) in terms of 0 and 0 is

where

d-2 (P) (wr) = dP) Cep) (sing 20 + sin4 0 sing 20),
P g

(4.11)

Cr = goo
	

CV = gn C12) = 2(goo +

= i(gn — goo) CP ) =	 d2) 

Since the relaxation rates are linear combinations of the g 0 ' ) (wr) the relaxation rates

have the same functional form as the g (P) (wr) for their orientational dependence on

the magnetic field direction.

The spherical average of the spectral density functions over all magnetic field

directions, (gpp, (wT)), is

2
(gppi(wr)) =	 [2g00(wr) 3g11(ar)1

5
(4.12)

in all cases. The relaxation rates of polycrystalline solids are often approximated by

the spherical average over all magnetic field directions of the appropriate relaxation

rates of a single crystal (Barton and Sholl 1976). The spherical averages of the

relaxation rates can be written as linear combinations of spherical averages of the

spectral density functions similar to those for single crystals (equations (4.5)).

4.3 Diffusion models

The encounter model of diffusion has been widely used to calculate the nuclear mag-
netic spectral density functions. In this model, diffusion of an atom occurs by a series
of atom-defect encounters, each encounter causing a displacement 1 of the atom with

probability W(/). In three dimensions an atom-defect encounter consists of a finite

number of atom-defect interactions, where the defect causes a displacement of the
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atom before it diffuses from the atom, never to return, and the next encounter com-

mences with the first interaction of the atom with another defect. The time between

encounters, re , is assumed to be much greater than the duration of an encounter and

this theory is therefore exact only in the low defect-concentration limit where the

probability that a second atom-defect encounter commences before the completion

of the first atom-defect encounter is negligible. The diffusion of the atom proceeds

by a simple random walk of such encounters and this model is used to evaluate the

probability function P(r„„ rp, t), used in calculating the spectral density functions.

In the present case, where one nuclear spin species is fixed while the other is free to

diffuse, the probability, P(r,„ rp, t), that the two unlike nuclear spins are separated

by rp at time t if they were initially separated by ra is equal to the probability,

P(ra — rp, t), that the diffusing nucleus is displaced by ra — rp in time t. The

probability P(ra , rp, t) will depend on the mean time between encounters, re , and on

the mechanism of diffusion, through the atomic displacement probability, W(1).

In the following, the evaluation of the spectral density functions is discussed for

the encounter model for diffusion by the interstitialcy and vacancy mechanisms, and

also for the commonly-used BPP approximation.

4.3.1 BPP model

The BPP model for the spectral density functions is based on an approximation for

P(ra , rp, t) which corresponds to the pair of spins maintaining their relative separation

for a mean time r and assuming that the correlation in their dipolar interaction is

completely destroyed when a jump of one of the spins occurs. It is therefore equivalent

to choosing P(r,„ rp, t) to be 80 exp(—t/r). In keeping with the encounter model

for diffusion the parameter T is re , the mean time between encounters. The resulting

dimensionless spectral density functions, gpp#(wr), for the BPP model are

2
gP1) 1 (WT ) = 1 + (u),02 SP1311

where S pp/ is the dimensionless lattice summation

S p, = a6 E Y2*P(n-)Y2pi(n.) 
PP/

a	 r6	 •
a

(4.13)

(4.14)
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The values of Soo and Sit for the Li—F interaction in LiF are 9.77204 and 0.483012

respectively. This BPP model is widely used in analysing nuclear spin relaxation

data, despite the approximations inherent in it, due to the simplicity of using the

resulting spectral density functions.

4.3.2 Interstitialcy and vacancy mechanisms

The lattice sums in equation (4.10) for the dimensionless spectral density function

gppi(cor) converge very slowly for probability functions P(ra , r p ,t) corresponding to

the encounter model for the interstitialcy and vacancy mechanisms. Spatial Fourier

transform techniques speed up the rate of convergence and the spectral density func-

tions can be written
a6 v2

gpp, PT) = 	 I I T* (q)Tp,(q')P (q , q', w) dq dq',	 (4.15)
T (270 6	 P

where the integrals are over the first Brillouin zone (see Appendix A), v is the volume

of the unit cell of the real lattice, and P (q , q', w) is the spatial and temporal Fourier

transform of the probability function P (r o„ ro, t). The function Tp(q) is defined by

0,)(Y2P9

	

Tp (q) = E  
r3
	 exp(iq • ra ),	 (4.16)

m	 0,

where the separation between two interacting spins, rc, = m + j; m is a f.c.c. lattice

vector and j is the relative displacement between the two f.c.c. sublattices in the

NaC1 structure. In its present form the lattice sum in the above expressions for

Tp(q) converges too slowly to evaluate by a direct summation. Instead the technique

used is a planewise summation method which makes use of the Poisson summation

formula (Barton and Sholl 1980) and the resulting expressions for Tp (q) are given in

Appendix B.2.

The general form for P (q , q', w), when diffusion is by a random walk with a mean

time T between steps, is

27-(2703[1 — W (q )1  s ( n — q f ) ,P (q , Il i , W ) [1 wow + (.0,02 - km

where W (q) is the spatial Fourier transform,

W (q) = E W (1) exp(iq • 1),
1
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of W(1), the probability that a step of the random walk has displacement I. In the en-

counter model the diffusion proceeds by an uncorrelated random walk of atom-defect

encounters, each resulting in an atomic displacement 1 with probability W (1) , and

T = Te is the mean time between encounters. For the case of the BPP approximation,

W(l) = Oco and expression (4.17) becomes

27,(27) 3  q
P (q ' q', w)	 1 -I-- (core)2 

6!

Substituting this expression into equation (4.15) for the spectral density function,

gppi(wr), gives expression (4.13) of the BPP model.

The expression for W(q) for diffusion by the interstitialcy mechanism was derived

in the preceding chapter (equation (3.41)) and is

W (q) = (1 —13)	 qik[I — pA(q)]Zil exp[iq • (cs + ck )]	 (4.20)
Z ij,k=1

where ZT = Z = 8 is the number of nearest interstitial sites to a normal lattice site,

the cs are the vectors from a normal lattice site to its neighbouring interstitial sites,

p is the probability that the defect returns to the atom, and I is the ZT x ZT identity

matrix. The square matrix A(q) has elements

1 zT
Aii (q) = — E QLQZ exp [iq • (Ci + ck )] ,	 (4.21)

P k=1

where the QL = 1/Z' if a jump in the direction Ci from an interstitial (I) to a normal

(N) site is possible, or 0 if it is not possible, given that the preceding N to I jump

was in the direction ck ; and QZ is the probability that an N to I jump of an atom is

in the direction ck if the immediately preceding I to N jump was in the direction c3.

In the present case of LiF (a f.c.c.(t) system) the number of nearest normal sites to

an interstitial site, Z' = 4, and QL = 4(51,(_),+k+1 if the Ci are defined as on page 55.

The technique for calculating QZ for various interstitialcy mechanisms is discussed

in §3.2.2 of the previous chapter.

The corresponding expression for W(q) for the vacancy mechanism of diffusion is

(Sholl 1992)

q')
	

(4.19)

(1 — p) Za
W(q) =  7 E [I - pA(qC exp (iq • as),

Lia	 ti,j=1
(4.22)
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where Za = 12 is the coordination number of a f.c.c. lattice, ai is the vector to the

jth nearest neighbour lattice site, I is the Za x Za identity matrix and A(q) is the

square matrix with elements

A23(q) 
Q= 23— exp (iq • ai)
P

(4.23)

where Qii is the probability that the next step of the atom will be in the direction ai

if the previous step was in the direction ai . The evaluation of the Qii was discussed

by Sholl.

These expressions for W(q) can be used with equations (4.15) and (4.17) to cal-

culate the spectral density functions for the vacancy and interstitialcy mechanisms

of diffusion. The Brillouin zone integral in equation (4.15) is evaluated numerically

using the Gauss-Legendre quadrature technique.

4.4 Results

Presented below are numerical results of the calculation of the magnetic dipole spec-

tral density functions and relaxation rates of F nuclei in solid LiF due to the diffusion

of Li nuclei. The spectral density function results are equally applicable to unlike-

spin, magnetic dipole interactions for analogous cationic diffusion in NaC1 structures.

The results are for diffusion by the collinear, forward- and backward-noncollinear in-

terstitialcy mechanisms and the vacancy mechanism. Other interstitialcy mechanisms

are possible and the above were chosen as representative examples of diffusion by the

interstitialcy mechanism.

4.4.1 Spectral density functions

The spectral density functions for diffusion by the vacancy and interstitialcy mech-

anisms in the NaC1 structure can be evaluated from equation (4.15) as discussed

in §4.3.2. The integrals over the first Brillouin zone in this equation are evaluated

numerically to the desired accuracy, for any value of WT , using the Gauss-Legendre

quadrature technique. For low values of WT ( < 0.01), where the computing time re-

quired to calculate the gppi(un-) becomes prohibitively long and the rounding errors
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become significant, the low-frequency analytic form is used to calculate the spectral

density functions accurately as follows.

The behaviour of expression (4.15) for g ppi(cor) when WT is small is dominated by

the behaviour of the integrand for small values of q (Sholl 1981a) since

lirn W (q) = 1	 (4.24)
-+0

and, from equation (4.17), P (q , q' ,w)17- becomes very large as q -+ 0 and when WT

is small.

The behaviour of W (q) for small q can be found from expressions (4.20) and (4.22)

for the interstitialcy and vacancy mechanisms of diffusion. The small-q behaviour

can be found by using a symbolic mathematics computer package, and the Taylor

expansions for the inverse matrix and the cosine function. When terms in q of order

greater than 2 are neglected, the small-q behaviour of W (q) is found to be

W (q) -4 1 - Fq2	(4.25)

where F = f I[Z(1 - p)] for diffusion by the interstitialcy mechanism, and F =

2f 1[Z,,(1-p)] for diffusion by the vacancy mechanism, where f is the tracer correlation

factor, Z = 8 is the number of nearest neighbour interstitial sites to any normal

lattice site, Za = 12 is the coordination number of the f.c.c. sublattice, and p is the

probability of the defect returning to an atom.

Low values of WT correspond to long-range diffusion of the atom where the spatial

microscopic details of the diffusion are not important and so in this limit the lattice

summations in equation (4.15) for gppi(wr) can be replaced with integrals over real

space, corresponding to a continuum of an equivalent density of lattice sites. Following

the method of Sholl (1981a) the low-frequency limiting form of the spectral density

functions can then be written

gpp,(urr) = givi(0) - -
2
F-312.NATT 0(C\rifT),PP 9 (4.26)

where o(NATT) refers to terms which vanish faster than Vcor as WT -+ 0. As with

diffusion in all the cubic lattices the spectral density functions behave as b - mVEQT

in the low-frequency limit, where b and m are constants, and the expressions for

F for the interstitialcy and vacancy mechanisms in the NaC1 structure are given
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Table 4.1: Values of the coefficients in the low-frequency approximation (equa-
tion (4.26)) of the spectral density functions gpp,(urr), p = p' = 0 and 1 for various
mechanisms of diffusion in the NaCl structure. The interaction is magnetic dipolar
between the unlike spins of the two f.c.c. sublattices. 

goo(0) gii (0)	 9F-3/2

21.75 2.805 3.032093

26.40 3.527 4.372607

24.34 2.772 2.614965

23.24 2.359 1.770048

Vacancy
Collinear interstitialcy,
wi -= 1
Forward noncollinear
interstitialcy, w2 = 1
Backward noncollinear
interstitialcy, w3 = 1

above. The values of the gppi(wT) at WT = 0 cannot be found directly, but can be

obtained by fitting the above low-frequency forms to the numerical results over the

region of small WT values when gppi(ur) shows the ,NArr behaviour. The results for

some interstitialcy mechanisms and the vacancy mechanism of diffusion are shown in

Table 4.1. The low-frequency approximations can be used to determine the gpp,(wr)

for WT < 0.01 to within 1% accuracy.

In the high-frequency limit (WT >> 1) it is necessary to consider only zero or

one possible encounter (Barton and Sholl 1980) in which case the spectral density

functions can be written

where

gP111(C‘)T)
H 

(WT) 2 (4.27)

2v
H = 	 1 T*(q)Tp,(q) [1 — W(q)] dq.	 (4.28)

(2703	 P

Values for H can be found from expression (4.28) using the Gauss-Legendre quadra-

ture technique to numerically evaluate the integral over the first Brillouin zone. Values

of H for p, p' = 0 and 1 and for the vacancy and interstitialcy mechanisms are shown

in Table 4.2.

Analytic approximations to the numerical results can be useful (Sholl 1988). The

function
H

(4.29)gPPi (wT ) = a + b(u7r) 1 12 + C(WT)u + d(wr) v + (wr)2'
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which incorporates both the high- and low-frequency limiting forms, has been found

to fit the results to good accuracy over the entire range of COT, and the values of the

parameters and the accuracy of the approximations are given in Table 4.2. These

analytic approximations to the spectral density functions provide a useful means

of calculating the relaxation rates which are as simple to use as, but without the

deficiences of, the BPP approximation.

Table 4.2: Values of the parameters in expression (4.29) for various mechanisms
of diffusion of cations in the NaC1 structure. The interaction is magnetic dipolar
between unlike spins on the different sublattices. The maximum percentage error of
each approximation is shown.

Vacancy	 Collinear interstitialcy

goo	 gii goo	 gii

H 19.7377 0.60411 16.4279 0.49042
a 0.90731 0.21539 0.62230 0.13903
b 0.12646 0.23285 0.10308 0.17234
c 0.29332 0.90717 0.12082 0.99356
d -0.25191 -0.80127 -0.08662 -0.92145
u 1.00 1.00 1.05 1.02
v 1.15 1.16 1.34 1.14

% error 0.45 2.27 0.59 2.26

Forward noncollinear
interstitialcy

goo	 gii

Backward noncollinear
interstitialcy

goo	 gii

H 17.1197 0.55748 17.5344 0.60425
a 0.70327 0.20110 0.75456 0.25618
b 0.07555 0.18969 0.05748 0.19224
c 0.08041 0.89911 0.05060 1.24505
d -0.05417 -0.83939 -0.02838 -1.19409
u 0.88 1.005 0.85 1.01
v 1.20 1.129 1.25 1.09

% error 0.35 2.03 0.31 1.83
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Figure 4.1: The spherical average of all possible magnetic field directions of the
relaxation rates R1 , R1 „ and R2 of F nuclei in solid LiF due to the diffusion of the Li
nuclei by the collinear interstitialcy, vacancy and BPP models.

4.4.2 Relaxation rates

The expressions given above for the spectral density functions can be used to calculate

the nuclear spin relaxation rates R1 , R1p and R2 which are linear combinations of the

spectral density functions, and the details are given in equations (4.5). The relaxation

rates are dimensionless when expressed in units of Ascl(wia6 ) and in all the following

the value of the ratio Bo/B1 is 103 . Shown in Figures 4.1 to 4.3 are the relaxation rates

of the fluorine nuclei, due to the diffusion of the lithium nuclei in LiF, as functions of

log(wi re ) which is equivalent to 1/T if the jump rates follow an Arrhenius behaviour

with temperature, T. The ratio of gyromagnetic ratios, 7s/71 , which appears in the

expressions (4.5) for the relaxation rates is, for the LiF system composed of Li ? and

F19 nuclei, 7u/7F = 0.41310. If the analytic approximation (4.29) to the spectral

density functions and the values of the parameters given in Table 4.2 are used it is

relatively straightforward to reproduce the following results for the relaxation rates.

The spherical average of the relaxation rates due to the collinear interstitialcy

mechanism, the vacancy mechanism and also for the BPP approximation are shown

in Figure 4.1. In the low-frequency limit the three relaxation rates are linear in
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Figure 4.2: The spherical average of all possible magnetic field directions of the
relaxation rates R1 , R1 „ and R2 of F nuclei in solid LiF due to the diffusion of the Li
nuclei by the collinear and forward noncollinear interstitialcy mechanisms.

Wire and R1 = R1p = R2 for each model. At low frequencies Pre < 0.03) the

difference between the relaxation rates of the collinear interstitialcy and vacancy

mechanisms, and between the relaxation rates of the vacancy mechanism and the

BPP approximation, is approximately 22%. At high frequencies Pre > 7 for (R1)

and wire > 3 x 103 for (R1p)) the (R1 ) and (R1p ) relaxation rates for the BPP model

are indistinguishable in the figure from the corresponding relaxation rates for the

vacancy model as there is only 2% difference between the results of the two models.

There is a difference of 20% between the collinear interstitialcy and vacancy results

for these relaxation rates. The BPP model is therefore a good approximation to

the longitudinal relaxation rates (R1 and R1p ) at high frequencies for diffusion by

the vacancy mechanism, but not the interstitialcy mechanism. The high-frequency

behaviour of the longitudinal relaxation rates is 11(wire ) for all the models of diffusion.

The differences between the collinear interstitialcy and vacancy, and the vacancy and

BPP relaxation rates (R2 ) are both approximately 22% for wire > 103.

Shown in Figure 4.2 are the spherical averages of the relaxation rates due to

the collinear (wi = 1) and forward noncollinear (w2 = 1) interstitialcy mechanisms.
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Figure 4.3: The relaxation rates R1 , R1p and R2 of F nuclei in a single crystal of LiF
due to the diffusion of the Li nuclei by the collinear interstitialcy mechanism. Relax-
ation rates corresponding to two different orientations (0, 0) of the applied magnetic
field, Bo, are shown.

The differences between the results for the different interstitialcy mechanisms are

not as great as those between the collinear interstitialcy and vacancy mechanisms,

but are significant nonetheless. At low frequencies (CO ITe < 0.03) the differences are

approximately 11% as they are also at high frequencies for the relaxation rate (R2)

(wire > 103). The corresponding high-frequency differences for (R1 ) and (R1p ) are

approximately 5%. The relaxation rates (R1 ), (R1p) and (R2 ) for the backward

noncollinear (w3 .---- 1) interstitialcy mechanism differ from those of the forward non-

collinear mechanism by no more than 7%, and at high frequencies for (R1 ) and (R1p)

the difference is less than 0.5%.

Figure 4.3 shows the relaxation rates R1 , R1p and R2 of a single crystal of LiF at

two orientations, (0, 0) = (0, 0) and (55°, 45°), of the applied magnetic field relative

to the crystallographic axes. These are orientations which show the range of possible

values of the relaxation rates. In the low-frequency limit the relaxation rates are

independent of the magnetic field orientation, while at high frequencies the results

vary significantly with magnetic field direction. The relaxation rates due to the
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vacancy mechanism of diffusion vary with angles 0 and 0 in a similar way to the

interstitialcy mechanism shown here. As discussed in §4.2 the relaxation rates are

linear combinations of spectral density functions and so have the same dependence

on the magnetic field direction, (0, 0), namely

A + B(sin4 0 + sine 20 sin4 0),	 (4.30)

where A and B are linear combinations of the gppi(wr) at 0 = 0, and numerical

values can be calculated for any value of WT. The maximum and minimum of the R1

maximum of the collinear interstitialcy mechanism for any angles 0 and 0, in units of

Ascl(wia6), are 29.48 at 0 = 0 and 28.55 at 0 = 55°, 0 = 45°. The analogous values

of the R1p maxima are 15898. at 0 = 0 and 705.97 at 0 = 55°, 0 = 45°. The R1 and

R1p maxima for the vacancy are approximately 0.5% larger than the corresponding

results of the collinear interstitialcy mechanism, for all angles 0 and 0.

The positions of the maxima of the longitudinal relaxation rate curves R1 and R1p

are important parameters since they can directly give a value of Te at the temperature

for which the maximum relaxation rate occurs. The positions of the R1 and R1p

maxima, as functions of magnetic field orientation (0, 0) , for diffusion by the collinear

interstitialcy and vacancy mechanisms and the BPP approximation are shown in

Figures 4.4 and 4.5. The range of angles shown in these figures (0 < 0 < 90° and 0 <

0 < 45°) is sufficient to specify the results for any orientation, by crystal symmetry.

It can be seen from Figure 4.4 that the variation with angle of the position of the

R1 maximum is similar, although there are differences in magnitude, for the collinear

interstitialcy mechanism, the vacancy mechanism and the BPP approximation. The

corresponding results for the R1p maxima are shown in Figure 4.5 where the results for

the interstitialcy and vacancy mechanisms again show a similar variation with angle,

although with a difference in magnitude. The results for the BPP approximation,

however, do not vary from WITe = 1000 by more than 0.3% for any angles, 0 and 0,

and is significantly different in magnitude from the interstitialcy results.

To further investigate the low-frequency behaviour of the relaxation rates it is

useful to consider the differences R2 — R1 0 and R1p — R1 between the relaxation rates.

From equations (4.5) for the relaxation rates expressions for these differences are

A	 {	 , —
R2 — Rip = a6w

sC
i wire 

1 
gto) (0) .0 ) ([Bi/Bo]wrre)} ,	 (4.31)
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Figure 4.4: The position of the R1 maxima as functions of the magnetic field orien-
tation (9, 0) for the collinear interstitialcy mechanism, the vacancy mechanism and
the BPP approximation.  
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Figure 4.5: The position of the R1p maxima as functions of the magnetic field orien-
tation (0, 0) for the collinear interstitialcy mechanism, the vacancy mechanism and
the BPP approximation.
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R1p — R1
Asc	 { 1 	 1

wrre —g( ) ([Bi/Bojwire) — —24 g (°([1 — 7s I7IPITe)
a°coi	 6

(4.32)

3	 3	 3g(1)(wiTe ) 4. _g1)([7shilwire) — _g(2)([1 + 7shi]wrre ) 1 ,

4	 '	 '	 2	 8

where equation (4.11) can be used to calculate the spectral density functions, g(P)(c.or),

in terms of the gppi(wr). At low frequencies, where the low-frequency limiting form

for the gppI(WT) (equation (4.26)) is a good approximation to the vacancy and intersti-

tialcy models, the differences R2 — R1p and R1p — R1 are independent of the magnetic

field direction and can be written

Ass 2 _3/2 B1
R2 — Rip c=-1 	 co( rre)312,

wia6 9	 Bo
(4.33)

—1p R1 
Asc 2

9 

n_3/24r —[1 2 \./Bi _ \tys + _1 ,11 _ -11 + \i. + Ls'  (wirer/2
wia6

R	 1,1Z-dd --7 r	 -7

5 2	 3 Bo	 'yi	 6	 71	 -yi 

(4.34)

which are proportional to (wire ) 3/2 . In the low-frequency limit the relaxation rates are

proportional to wire and so the slope of a logarithmic plot of the difference between

relaxation rates against wire will be 3/2 times the slope of a corresponding plot of

the relaxation rates.

In the case of the BPP model, however, the low-frequency behaviour of the spectral

density functions is proportional to 1 — (wr) 2 , for which the differences between the

relaxation rates, R2 — R1p and R1p — R1 , of the BPP approximation are proportional

to (wire )3 in the low-frequency limit. A logarithmic plot of the difference between the

relaxation rates against wire of the BPP approximation will therefore have a slope

equal to twice the slope of the corresponding plots for the vacancy and interstitialcy

mechanisms.

The spherical average of the relaxation rate differences, (R 2 — R1p ) and (Rip — R1),

for the case of relaxation of F nuclei in LiF are shown in Figure 4.6 for the collinear

interstitialcy and vacancy mechanisms, with their low-frequency approximations, and

the BPP model. It can be seen that the slope of the BPP curves, at low frequencies,

is twice the slope of the vacancy and interstitialcy curves. The vacancy and collinear

interstitialcy results differ by approximately 30% in the low-frequency limit.
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Figure 4.6: The spherical averages of the relaxation rate differences, a) (R2 —R1p ) and
b) (R1p — R1 ), for the collinear interstitialcy mechanism, the vacancy mechanism and
the BPP approximation (in units of Ascl(wia6)). The long-dashed lines are the low-
frequency limiting forms of the interstitialcy and vacancy diffusion, and the arrows
indicate the Wire values of the R1p (a) and R1 (b) maxima.
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4.5 Conclusion

Accurate expressions for the atomic displacement probabilities of the interstitialcy

mechanism and the vacancy mechanism for diffusion in the NaC1 structure have been

applied to the theory of nuclear-spin, magnetic dipole relaxation rates due to transla-

tional diffusion, exact in the low defect-concentration limit. Analytic approximations

to the unlike-spin, magnetic dipole spectral density functions were found and pro-

vide an accurate and straightforward means of calculating the relaxation rates in

any system with the NaC1 structure. The analytic approximation is given by expres-

sion (4.29) and the values of the parameters for the vacancy mechanism and some

interstitialcy mechanisms are given in Table 4.2.

The relaxation rates of the F nuclei in LiF due to the diffusion of the Li nuclei

by the vacancy mechanism and some interstitialcy mechanisms were calculated. The

shapes of the equivalent relaxation rate curves for the different mechanisms of diffu-

sion are similar, but there are considerable differences in the horizontal scaling (see

Figure 4.1). The behaviour of the relaxation rates, however, as a function of mag-

netic field orientation is similar for different diffusion mechanisms (see Figures 4.4

and 4.5), and the corresponding values of the R1 and R1p maxima differ by less than

1%. The relaxation rates due to the magnetic dipole interactions, therefore, do not

provide an effective way of distinguishing between the vacancy mechanism and the

interstitialcy mechanisms of diffusion in LiF; nevertheless, the correct theory for the

diffusion mechanism is required to interpret experimental results accurately. This is

consistent with the conclusions of Figueroa et al. (1979) for the fluorite lattices.

The relaxation rates for the BPP approximation were calculated and found to

differ significantly from the corresponding relaxation rates due to the interstitialcy

mechanisms, at all frequencies, and the corresponding relaxation rates due to the

vacancy mechanism at all but high frequencies (low temperatures). In particular, the

variation of the position of the R1p maxima with magnetic field orientation is negligible

in the case of the BPP approximation, in contrast to the considerable variation of

position with orientation in the cases of the vacancy mechanism and interstitialcy

mechanisms. The BPP model is therefore a poor approximation to relaxation rates

due to diffusion by the vacancy mechanism and interstitialcy mechanisms.

The differences in the low-frequency behaviour between the BPP model and the
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vacancy and interstitialcy mechanisms can be clearly seen in logarithmic plots of the

relaxation rate differences, R2 — R1p and R1p — R1 , against Cii TI e • The behaviour for

the vacancy and interstitialcy mechanisms is as (WITe)312 , while the behaviour of the

BPP model is (wire )3 which is a consequence of the decorrelation after a single jump

of the nucleus in this model. It is possible that the (wp- e )3/2-behaviour of the vacancy

and interstitialcy mechanisms could be experimentally observed at sufficiently low

frequencies (high temperatures).



Chapter 5

Conclusion

The preceding chapters describe and discuss work on the study of atomic diffusion

in the solid state and its application to nuclear spin relaxation, which is a common

experimental technique for the study of diffusion. Atomic diffusion in solids is due,

largely, to point defects in the solid which may be of several types and may cause

diffusion by several mechanisms. Diffusion studies are therefore important, not only

for the information revealed about diffusion parameters, but also for obtaining details

about point defects—which in turn affect many of the bulk properties of a solid; such

as, electrical and thermal conductivity, mechanical strength, and magnetic proper-

ties. In the present work, three aspects of atomic diffusion have been considered: the

study of nuclear spin relaxation for the case where the atomic diffusion is restricted

to a plane or planes (two-dimensional diffusion), the analysis of diffusion correla-

tion factors and atomic displacement probabilities for the interstitialcy mechanism of

three-dimensional diffusion, and a comparison of the form of nuclear spin relaxation

rates for some different mechanisms of three-dimensional diffusion.

In Chapter 2, the random walk and mean field theories were applied to the case

of diffusion on a square, two-dimensional lattice. The spectral density functions

obtained for interactions between atoms confined to planar diffusion is applicable

to systems with a layered structure, especially the intercalated compounds, and to

systems where surface diffusion is significant. An example where atomic, planar

diffusion is significant is in the much studied, superionic conductor Na ,3-alumina in

which the Na+ ions diffuse in layers of hexagonal networks. In the present work the

case of diffusion on a square lattice in the low-concentration limit was considered. The

83
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general results of this system, as discussed in §2.5, can be extended to diffusion in

other similar systems—as done in §2.4.2 for diffusion on the hexagonal and honeycomb

structures. These generalisations, however, are only approximate and it would be

necessary to perform the detailed calculations for diffusion on these structures to

determine the exact details of the resulting spectral density functions.

Rigorous calculations of diffusion parameters for diffusion on the hexagonal and

honeycomb structures are possible using the methods developed in the present work

for the square lattice. The extensions necessary to apply the calculations to diffusion

on the hexagonal structure would be straightforward, whereas those for the honey-

comb structure are complicated since this structure is not a Bravais lattice. This

complication could be overcome with the use of a basis of six atom sites on a hexago-

nal lattice to describe the honeycomb structure, and a set of appropriate atom jump

probabilities to describe the jumps between lattice sites on the different hexagonal

lattices.

Chapters 3 and 4 present work on the interstitialcy mechanism of atomic diffu-

sion and on the calculation of the relaxation rates associated with diffusion by the

interstitialcy and vacancy mechanisms of self-diffusion of Li in LiF. A method of cal-

culating the atom jump probabilities for each possible jump direction for the general

case of diffusion by the interstitialcy mechanism in some two- and three-dimensional

structures was given in Chapter 3. The atom jump probabilities are fundamental to

the calculation of many diffusion-dependent properties including atomic displacement

probabilities and, from these, the observable results of nuclear magnetic relaxation

experiments (in addition to neutron scattering, radiotracer and conductivity experi-

ments). The techniques developed here could be applied to other periodic structures,

and could be extended to other two-part diffusion mechanisms such as the dumb-

ell interstitialcy mechanism; a common mechanism for diffusion in f.c.c. and b.c.c.

metals. Once the atom jump probabilities are known, it is straightforward to calcu-

late the tracer correlation factor for diffusion. This was done, in the present work,

for diffusion by the interstitialcy mechanism in various two- and three-dimensional

structures in the low defect-concentration limit. The tracer correlation factor makes

straightforward comparisons between different mechanisms of diffusion in a structure

possible, and was discussed in §3.3 and §3.5.
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A specific application of the atomic displacement probabilities, calculated in Chap-

ter 3, to nuclear spin relaxation theory has been presented in Chapter 4. The spectral

density functions and nuclear spin relaxation rates of Li nuclei were calculated for the

diffusion of Li in LiF, which has the rocksalt structure. The nuclear spin relaxation

rates for diffusion by the vacancy mechanism and various types of interstitialcy mecha-

nisms were compared and the results discussed in §4.5. The spectral density functions

obtained can also be applied to the calculation of relaxation rates for nuclei in other

compounds with the rocksalt structure; such as the silver halides. Cation Frenkel

pairs are the predominant defects present in the silver halides. The four possible

mechanisms in these systems are the vacancy, direct interstitial, collinear and non-

collinear interstitialcy. It is of interest, therefore, to determine which defect has the

most significant influence on atomic diffusion within the compound and the dominant

mechanism by which the diffusion proceeds. The present work will enable an accurate

analysis of results of diffusion experiments in such compounds. The necessity of an

accurate and detailed analysis of nuclear spin relaxation theory was demonstrated

in the present work, where the differences between the relaxation results of diffusion

of Li by the vacancy and interstitialcy mechanisms in LiF were shown to be small.

Diffusion in other compounds with the rocksalt structure is likely to be similarly de-

pendent on the diffusion mechanism, in which case a detailed analysis is required to

determine the resulting differences due to the diffusion mechanisms and under what

conditions these differences could be observed experimentally.
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