AN EVALUATION OF FIELD SOIL STRUCTURAL ASSESSMENT TECHNIQUES FOR GREY CRACKING CLAYS UNDER IRRIGATED COTTON PRODUCTION

by

Sue Elisa Greenhalgh

A thesis submitted for the degree of Master of Rural Science

University of New England
Armidale, NSW
Australia

23 February, 1994
ACKNOWLEDGMENTS

There are a number of people and organisations who I would like to acknowledge for their assistance given to me during this project.

Special thanks must go to Dave McKenzie, a supervisor on the project, for his advice on almost every aspect of the project, his soil sampling skills during the first season of data collection and assistance with writing of the thesis.

I would like to thank Don MacLeod, my other supervisor for his valuable advice and comments throughout the data analysis and writing of the thesis.

Gavin Melville, the biometrician at the Trangie Agricultural Research Centre, who helped with the analysis of the data and showed so much patience with someone who initially was almost statistically illiterate. Kim Fraser, the economist at the Trangie Agricultural Research Centre who helped with the economic analysis of soil compaction costs.

There are also several people who without their assistance this project would never have been completed. Firstly, a number of Trangie Agricultural Research Centre staff: Warren Smith, Jayne Jenkins, Tracey Willis, Gerard Haire and especially Vivienne Lethbridge who not only helped with the field sampling but entered a large proportion of the data into the computer. There were also casual staff and work experience students, Jeannette Brinton, David Adamson, Raylene Brown, Patrick Pahlow, Karen Elton and Joe Redfern who participated in some of the field sampling and data processing parts of the project. Secondly, there are those staff at the Myall Vale Agricultural Research Station who helped with the sampling and day to day maintenance of the field sites at Narrabri. In particular, there was Ian Daniells, David Larsen, Des McGan and Virginia Brooks. I would like to thank Ailsa Thompson, Mike Maguire, Jill Kalder and Robert Soretz at the Biological and Chemical Research Institute, Rydalmere for their assistance with the clod shrinkage and root morphological data processing. Thanks must also go to Nell Deane, University of New England, who did the mineralogy/particle size analysis and Miles Ryan and Mike Walker, Agricultural Research Centre, who did the cation, organic matter, nitrogen and phosphorous analysis. Thirdly, the farm staff at Trangie Agricultural Research Centre who helped with setting up the experimental sites and digging of the backhoe pits. The foreman, Phil Riley deserves special thanks for he was
always able to perform any task, or provide equipment and staff with the minimum of notice. Fourthly, the managerial and administrative staff at Trangie who managed to keep the administrative aspects of the project running smoothly.

There are several people who willingly imparted their knowledge and helped me to understand some the intricacies of soil science and agronomy. Greg Constable, who discussed the complexities of different plant densities on data analysis; Peter Cull, who showed me the many features of the neutron probe and discussed the feasibility of using root morphological data to predict lint yields; Harvey Gaynor and Adam Kay, who acted as sounding boards for the practicality of the techniques and gave advice on some the agronomic aspects of cotton production; and lastly Tom Batey, who spent 6 wet weeks showing me the finer points of the visual soil profile assessment and though his guidance gained much confidence in my ability to visually assess soil structural condition.

This project would not have been possible without funding which was provided by the Cotton Research and Development Corporation. The commercial cotton properties on which the experiments were carried out also deserve special thanks as on a number of occasions my requests did not fit in with the management of the fields. These were Auscott Ltd., Warren and Narrabri; Twynam Cotton Pty. Ltd., Elengerah and Buttabone stations; Carlisle; National Mutual Pty. Ltd., Togo Station; and NSW Agriculture, Myall Vale Research Station.

I would like to thank my family for there encouragement throughout my Masters, and for allowing their house to be totally disrupted by computers and piles of paper during the writing up stages of the Masters. To my mother, Anne Greenhalgh, aunt, Kay Adamson, and friend, Paul Maisey many thanks for reading the final version of the manuscript and correcting my numerous grammatical errors. I must also thank my uncle, Charles Adamson for lending me his office, his printer, his fax, his telephone, his photocopier.......so I could put the finishing touches on the final draft.

I would also like to pay my respects and give my eternal gratitude to my grandmother, Jean Hatherly, who has encouraged me to continue my education and to do as much as possible while I was still young. Jeanie was supposed to act as the final editor, but unfortunately passed away the week before I submitted this thesis.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xii</td>
</tr>
</tbody>
</table>

PART I: Introduction and Literature Review

CHAPTER ONE Introduction

1.1 OBJECTIVES 1

CHAPTER TWO Literature Review

2.1 INTRODUCTION 3

2.2 DESCRIPTION OF COTTON GROWING AREAS 3

2.2.1 Location 3

2.2.2 Soils and Topography 5

2.2.3 Climate and Cotton Growing Season 7

2.3 SOIL STRUCTURE 8

2.4 SOIL STRUCTURAL PROBLEMS 9

2.4.1 Types and Causes of Soil Structural and Chemical Problems 9

2.4.2 Soil Properties and Their Effects on Cotton Growth 12

2.4.3 Critical Soil Structural Limits to Plant Growth 18

2.5 SOIL MANAGEMENT UNDER COTTON 21

2.5.1 Solutions to Soil Structural Problems 21

2.5.2 Ways to Avoid Soil Structural Problems 26

2.6 DEFICIENCIES IN THE LITERATURE 28

2.6.1 The Economics of Compaction Management 28

2.6.2 Development of Soil Management Strategies and Soil Structural Assessment Procedures 29
PART II: 1989/90 and 1990/91 Cotton Season

CHAPTER THREE Experimental Methods – 1989/90 cotton season

3.1 INTRODUCTION 30
3.2 FIELD MEASUREMENTS 32
 3.2.1 Soil Profile Descriptions 32
 3.2.2 Physical Properties 33
 3.2.3 Plant Measurements 38
3.3 LABORATORY MEASUREMENTS 40
 3.3.1 Chemical Measurements 40
 3.3.2 Physical Measurements 41

CHAPTER FOUR General Description of Experiments – 1989/90 Cotton Season

4.1 EXPERIMENTAL DESIGN 44
4.2 SOIL DESCRIPTION 45
 4.2.1 Auscott Warren 46
 4.2.2 Elengerah 46
 4.2.3 Carlisle 47
 4.2.4 Buttabone 47
 4.2.5 Auscott Narrabri 48
 4.2.6 Myall Vale Research Station 48
4.3 CULTURAL PRACTICES 50
4.4 CLIMATIC DATA 56

CHAPTER FIVE General Description of Experiments – 1990/91 cotton season

5.1 EXPERIMENTAL DESIGN 58
5.2 SOIL DESCRIPTION 59
 5.2.1 Auscott Warren 59
 5.2.2 Elengerah 60
 5.2.3 Buttabone 61
 5.2.4 Auscott Narrabri 61
 5.2.5 Togo Station 62
5.3 CULTURAL PRACTICES 63
PART 111: 1992/93 Cotton Season

CHAPTER EIGHT General Description of Experiments and Experimental Methods

8.1 INTRODUCTION 101
8.2 EXPERIMENTAL DESIGN 101
8.3 SOIL DESCRIPTION 103
8.4 CULTURAL PRACTICES 104
8.5 CLIMATIC DATA 105
8.6 EXPERIMENTAL METHODS 106
 8.6.1 Field Measurements 106
 8.6.1.1 Soil profile descriptions 106
 8.6.1.2 Physical properties 106
 8.6.1.3 Plant measurements 107
 8.6.2 Laboratory Measurements 108
 8.6.2.1 Chemical measurement 108
 8.6.2.2 Physical measurements 108
 8.6.3 Statistical Analysis 108

CHAPTER NINE Results of 1992/93 Cotton Season

9.1 VALIDATION OF SSI PREDICTOR MODELS 109
 9.1.1 Robustness of Models to Derive the Soil Structural Index 109
 9.1.2 Development of Models Incorporating a Wider Range of Soil Structural Conditions 109
 9.1.3 Predicted Soil Structural Indices 111
9.2 PRE-SEASON MEASUREMENTS 112
9.3 CROP AND ROOT MEASUREMENTS 115
 9.3.1 Root Morphological Characteristics 115
 9.3.2 Robustness of Models to Predict Yield 117
 9.3.3 Seedling Root Morphology 118
PART IV: General Discussion

CHAPTER TEN Evaluation of Techniques

10.1 SOIL STRUCTURAL INDEX (SSI) 131
 10.1.1 Soil Structural Assessment and Yield 131

10.2 OVERVIEW OF TECHNIQUES 132
 10.2.1 Robustness of Equations to Derive the Soil Structural Index 132
 10.2.2 Suitability of Techniques 132
 10.2.3 Problems Encountered with Each Method 136

10.3 ECONOMIC ANALYSIS OF SOIL COMPACTION 141
 10.3.1 Cost–benefit Analysis of Compacted and Non-compacted Soils 141
 10.3.2 Discussion of Economic Consequences of Soil Compaction 144

10.4 CONCLUDING COMMENTS 145
 10.4.1 Summary of Findings From the Study 146
 10.4.2 Suggestions for Future Research 147

GLOSSARY 148

REFERENCES 149

APPENDICES

Appendix 1 Soil profile descriptions for the 1989/90 and 1991/92 cotton seasons 169
Appendix 2 Soil chemical properties for the 1989/90 and 1990/91 cotton seasons 186
Appendix 3 Batey's modified Peerlkamp soil structural assessment scheme 198
Appendix 4 SSI regression models 201
Appendix 5 SOILpak Score 217
Appendix 6 Predicted SSI values for each site 220
LIST OF TABLES

Table 1. Critical bulk density, soil textural classes, soil water potential and root observation for five cotton studies 20

Table 2. Calibration equations for air-filled porosity \((e_a)\) measurements at different bulk densities \((\rho_b)\) for the 0–35 cm depth 35

Table 3. Critical soil limits for cotton 45

Table 4. Management details for Field 35, Auscott Warren, Warren 1989/90 cotton season 50

Table 5. Management details for Field 7, Elengerah, Warren 1989/90 cotton season 51

Table 6. Management details for Field 4, Carlisle, Warren 1989/90 cotton season 52

Table 7. Management details for Field 6, Buttabone, Warren 1989/90 cotton season 53

Table 8. Management details for Field 15, Auscott Narrabri, Narrabri 1989/90 cotton season 54

Table 9. Management details for Field C1 Myall Vale Research Station, Narrabri 1989/90 cotton season 55

Table 10. Management details for Field 36, Auscott Warren, Warren 1990/91 cotton season 63

Table 11. Management details for Field 32, Elengerah, Warren 1990/91 cotton season 64

Table 12. Management details for Field 4, Buttabone, Warren 1990/91 cotton season 65

Table 13. Management details for Field 10, Auscott Narrabri, Narrabri 1990/91 cotton season 66

Table 14. Management details for Field 78, Togo Station, Narrabri 1990/91 cotton season 67

Table 15. The range of mean values for \(P_A\), \(v_o\), \(P_B\) and \(\alpha\) from other studies using the clod shrinkage technique 76

Table 16. Weightings and eigenvalues for the first principal component for the 1989/90 and 1990/91 cotton seasons 77

Table 17. Equation to calculate a standard SSI from the clod shrinkage measurements 78

Table 18. Soil Structural Index ranking for the separate site and depth combinations 83

Table 19. \(R^2\) values of SSI regressed against the measurements of soil structure 88
Table 20. Optimum number of replicates for techniques used to assess soil structural condition with relative standard errors of 5% and 10%

Table 21. The correlation (R values) of root morphological characteristics with yield

Table 22. Management details for Field 33, Auscott Warren, Warren 1992/93 cotton season

Table 23. Comparison between soil structural measurements at different levels of compaction taken at 15 and 35 cm

Table 24. Correlation (R values) table of the techniques for pre-season measurements in the 1992/93 cotton season

Table 25. Comparison between root morphological characteristics at different levels of compaction and different planting dates

Table 26. R value for correlation analysis between actual yield and predicted yield in the 1992/93 season using root morphological data

Table 27. R values of correlation analysis of root obliquity and soil strength

Table 28. Seedling root obliquity and soil strength comparisons between different levels of compaction for the same planting dates

Table 29. Comparison between the root obliquity of seedlings from the 2 planting dates at different day degrees

Table 30. Comparison between soil strength readings from the 2 planting dates at different day degrees

Table 31. Comparison of bulk density, air-filled porosity and moisture content between treatments at 2 day intervals after an irrigation

Table 32. Soil strength comparisons between treatments at 2 day intervals after an irrigation

Table 33. Comparison of total water extraction (mm) between treatments for the duration of an irrigation

Table 34. Techniques assessed listed according to the time required to collect the data

Table 35. Techniques assessed listed according to the cost of equipment required

Table 36. Technique assessed listed in order of decreasing accuracy

Table 37. Cost of growing the 1992/93 cotton crop on Auscott Warren Field 33

Table 38. The Gross margins comparison between the compaction levels

Table 39. Sensitivity table for cotton yield at various prices
LIST OF FIGURES

Figure 1. Major cotton growing areas in New South Wales and Queensland 4

Figure 2. The location of machinery wheels within a field for 6, 8 and 12 row tillage equipment 31

Figure 3. Macquarie Valley maximum and minimum temperatures for 1st October, 1989 to March 31st, 1990 56

Figure 4. Mean maximum and minimum temperatures for the Macquarie Valley 56

Figure 5. Namoi Valley maximum and minimum temperatures for 1st October, 1989 to March 31st, 1990 57

Figure 6. Mean maximum and minimum temperatures for the Namoi Valley 57

Figure 7. Macquarie Valley maximum and minimum temperatures for 1st October, 1990 to March 31st, 1991 68

Figure 8. Namoi Valley maximum and minimum temperatures for 1st October, 1990 to March 31st, 1991 68

Figure 9. Shrinkage curve showing the structural, normal and residual zones of shrinkage and the derived parameters. 72

Figure 10. Tree regression splits illustrating the interpretation of the SSI 79

Figure 11. The relationship between SSI and yield at 15 cm 86

Figure 12. The relationship between SSI and yield at 35 cm 86

Figure 13. Experimental design for the 1992/93 cotton season 103

Figure 15. Rainfall data for the 1992/93 cotton season 105
Uncertainty in assessing the soil structural condition in the field was seen as a weakness of soil management for cotton production on irrigated grey clay soils. Characterisation of soil structural problems and amelioration techniques are well defined, but the diagnosis of such problems has largely been dependent on the visual assessment of soil profiles. Cotton growers and consultants often found these assessments to be subjective and lacked confidence in basing soil management decisions upon them. A project was set up in the Macquarie and Namoi Valleys, NSW to evaluate the ability of existing methods of describing soil structure and plant measurements for reliability and accuracy in assessing soil structural condition in the field. The techniques evaluated included visual soil profile descriptions: Peerlkamp Scheme as modified by Tom Batey and SOILpak score; soil strength: Rimik cone penetrometer, Chatillion penetrometer and shear vane; core bulk density and air–filled porosity; oxygen flux density; total water extraction patterns and daily water use over one irrigation cycle; root distribution patterns; root morphological patterns and lint yield.

The baseline technique against which techniques were evaluated was clod shrinkage analysis. The parameters derived from the shrinkage curve were weighted according to their ability to discriminate between sites and then combined, by principal component analysis, to form a soil structural index (SSI). The techniques evaluated were compared to the SSI using regression analysis. There was no single technique that showed exceptional promise in estimating the soil structural condition in the field. Models derived from multivariate analysis using a number of techniques explained between 47% and 68% of the variation in the predicted SSI but had some usage limitations. It became evident during the project that yield was poorly correlated to SSI, as the addition of extra nitrogen and more frequent irrigations can mask the effects of compaction. A comparison was made of the ability of selected soil structural techniques to detect differences in soil structural condition. The most sensitive measurements were bulk density, air–filled porosity, shear vane measurements and Rimik cone penetrometer measurements. This study identified a range of problems and difficulties associated with soil structural assessment in the field, and emphasised the need to further develop and refine field soil structural assessment techniques.