Chapter 4

A Stochastic Frontier Production Function
Incorporating a Model for Technical Inefficiency
Effects

4.1 Introduction

Most theoretical stochastic frontier production functions do not explicitly formulate a
model for the technical inefficiency effects. Empirical papers, in which the issue of the
explanation of these inefficiency effects is raised, include Pitt and Lee (1981), Kalirajan
(1981, 1982, 1989), Kalirajan and Flinn (1983) and Kalirajan and Shand (1989). These
papers adopt a two-stage approach, in which the first stage involves the specification
and estimation of the stochastic frontier production function and the prediction of the
technical inefficiency effects of the firms involved. The second stage of the analysis
involves the specification of a regression model for the predicted technical inefficiency
effects of the firms in terms of various explanatory variables and an additive random
error. The parameters of this second-stage inefficiency model have been generally
estimated by using ordinary least-squares regression. Kalirajan (1981) specifies that
the random errors in the second-stage model for technical inefficiency effects have
half-normal distribution. In all these empirical studies, the methods of estimation of the
parameters of the second-stage inefficiency model are based on assumptions which are
clearly false, because the effects of estimation of the stochastic frontier production

function are not accounted for.!

Pitt and Lee (1981) investigate the sources of technical inefficiency by specifying that
firm intercepts in the stochastic frontier are a function of firm characteristics. The
authors regress the estimated firm intercepts on the specified firm characteristics or
incorporate the firm characteristics into the production frontier and jointly estimate the

parameters involved.

! For example, many studies assume the technical inefficiency effects (usually denoted by U) are
independently and identically distributed in the first-stage estimation. They then regress the predicted
Us upon firm-specific factors in a second stage. The specification of this second-stage model clearly
conflicts with the assumption that the U; are identically distributed.
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More recently, models for the technical inefficiency effects in stochastic frontier
production functions have been proposed in Kumbhakar, Ghosh and McGuckin
(1991), Reifschneider and Stevenson (1991) and Huang and Liu (1994). Kumbhakar,
Ghosh and McGuckin (1991) assume that the technical inefficiency effects are non-
negative truncations of a normal distribution with mean, which is a linear function of
exogenous factors whose coefficients are unknown, and an unknown variance. In
addition, Kumbhakar, Ghosh and McGuckin (1991) consider allocative inefficiencies
associated with the side conditions for profit maximisation not being exactly satisfied.
In the application of their model to US dairy farms, they find that the technical
inefficiency effects are significantly related to the level of education of the farmers and
the size of their farming operations. Technical and allocative inefficiency effects are
investigated in the context of a frontier production function of Zellner-Revankar

~ (1969) type, which proves to be significantly different from the Cobb-Douglas model.

Reifschneider and Stevenson (1991) propose a model for the technical inefficiency
effects of the stochastic frontier production function involving the sum of a non-
negative function of relevant explanatory variables and a non-negative random
variable, which is assumed to have half-normal, exponential or gamma distribution.
This model is applied in the analysis of daia on electricity generation in the US during
three different time periods. The hypothesis, that the inclusion of the model for the
technical inefficiency effects does not change the estimates of the frontier function

parameters, 18 rejected in their study.

Huang and Liu (1994) consider a stochastic frontier production function in which the
non-negative technical inefficiency effects are a linear function of variables involving
firm characteristics. The additive random error of the model for the technical
inefficiency effects is assumed to be the truncation of a normal distribution with mode
zero, whose point of truncation is dependent on the firm characteristics, such that the
technical inefficiency effects are non-negative. Hence the random errors are not
required to be non-negative, as in the Reifschneider and Stevenson (1991) model.
Huang and Liu (1994) apply their inefficiency frontier model in the analysis of cross-
sectional data from the electronics industry in Taiwan and assume that the explanatory

variables in the model for the technical inefficiency effects are a function of firm-
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specific variables and their interactions with the explanatory variables of the stochastic
frontier. This makes their model a non-neutral shift of the traditional average response
function, in that the marginal products of inputs and marginal rates of technical
substitution depend on the firm-specific variables in the model for the technical

inefficiency effects.

The model specified in the following section is a special case of the model of
Kumbhakar, Ghosh and McGuckin (1991), which is extended to account for panel
data. In doing so the model can account for both technical change in the stochastic
frontier and time-varying technical inefficiency effects, along with other exogenous
factors which influence the technical inefficiency effects. The model is applied in the
analysis of farm-level data from an Indian village in Section 4.3. Some concluding

comments are made in Section 4.4.

4.2 Model Specification

Consider the stochastic frontier production function for panel data, which is defined by

equation (4.1),
Y= exp(xnﬁ + Vi - Uy) 4.1)

where Y denotes the production for the i-th firm at the t-th period of observation

(i=1,2,...,T;i=1,2,..,N);

X;t 18 a (1xk) vector of values of known functions of inputs of production
associated with the i-th firm at the t-th period of observation;

B is a (kx1) vector of unknown parameters to be estimated;

the V,s are assumed to be iid N(0, ov?) random errors, independently
distributed of the Uys which are non-negative random variables, associated
with technical inefficiency of production;

the Uys are assumed to be independently distributed, such that Uy is obtained
by truncation (at zero) of the normal distribution with mean, z;,0, and
variance, 6’;

Zy is a (1xm) vector of firm-specific variables (and possibly input variables)

which may vary over time; and
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d is an (mx1) vector of unknown coefficients of the explanatory variables for

the technical inefficiency effects.

Although it is assumed that there are T time periods for which observations are
available for at least one of the N firms involved, it is not necessary that all the firms

are observed for all T periods.

Equation (4.1) specifies the stochastic frontier production function (e.g., of Cobb-
Douglas or transcendental-logarithmic form) in terms of the original production values.
However, the technical inefficiency effects, the Uys, are assumed to be a function of a
set of explanatory variables, the z,s, and an unknown vector of coefficients, 8. The
explanatory variables in the inefficiency model would be expected to include any
variables which explain the extent to which the production observations fall short of
the corresponding stochastic frontier production values, exp(xuf + Vi). The z-
vectors may have the first element equal to one and include some firm- and time-
specific variables. If the first z-variable has value one and the coefficients of all other
z-variables are zero, then this case is similar to the models specified in Stevenson
(1980) and Battese and Coelli (1988, 1992). If all elements of the d-vector are equal
to zero, then the technical inefficiency effects are not related to the z-variables and so
the half-normal distribution originally specified in Aigner, Lovell and Schmidt (1977) is
obtained. If interactions between firm-specific variables and input variables are
included, then a non-neutral stochastic frontier model, similar to that proposed in

Huang and Liu (1994), is obtained.

The technical inefficiency effect, Uy, in the stochastic frontier model (4.1) can be

equivalently specified as,
Ui = 20 + Wy, 4.2)

where the random variable, Wj, is defined by the truncation of the normal distribution
with zero mean and variance, ¢, such that the point of truncation is -z, ie.,
Wi > -z4,0. These assumptions are consistent with U;, being a non-negative truncation

of the N(z:8, o®)-distribution.

The assumption that the U,s are independently distributed for all t = 1,2,...,T, and i1 =

1,2,...,N, is obviously a simplifying, but restrictive, condition. Alternative models are
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required to account for possible correlated structures of the technical inefficiency

effects over time.

It should be noted that the inefficiency frontier model (4.1)-(4.2) is not a generalisation
of the Battese and Coelli (1992) model for time-varying technical inefficiency effects
(see Chapter 3), even if they are time invariant. The Battese and Coelli (1992) model
specifies that the technical inefficiency effects are the product of an exponential
function of time and non-negative firm-specific random variables, i.e.,
Ui = {exp[-n(t-T)]}U;, where 1 is an unknown parameter and U; is a non-negative
truncation of the N(u, o°)-distribution. This model does not define the technical
inefficiency effects in terms of additional explanatory variables. Further, the Battese
and Coelli (1992) model implies particular correlated structures for the technical

inefficiency effects over time for particular firms.

When the model in equation (4.1) is assumed, the technical efficiency of production for

the i-th firm at the t-th observation is defined by
TEi = exp(-Uy) = exp(-zad - Wy). (4.3)

If for two firms i and j, z;d + Wi > 730 + W, then it does not necessarily imply that the
inefficiency effects for another time period, s, will have the same relationship, namely,
70 + Wi > 7,0 + Wj.. Hence the same ordering of firms in terms of technical
efficiency of production at one period of time does not necessarily apply for other time

periods, as for the Battese and Coelli (1992) model.

The inefficiency frontier production function (4.1)-(4.2) differs from that of
Reifschneider and Stevenson (1991) in that the W-random variables are not identically
distributed, as in the latter paper. Reifschneider and Stevenson (1991) assume that the
W-random variables in the model for the technical inefficiency eftects are non-negative
random variables which have half-normal, exponential or gamma distribution. In our
model, the W-random variables could be negative if 7,0 > 0 because Wy, is not less than

-70, but they are independent truncations of the normal distribution with zero mean

and variance, 6°.

The technical inefficiency frontier model (4.1)-(4.2) is closely related to the models
proposed by Kumbhakar, Ghosh and McGuckin (1991) and Huang and Liu (1994), in
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that it is an extension of these models to account for panel data and hence may be used
to account for both technical change and time-varying technical inefficiencies. This
extension for time-series data has the same distributional assumptions as if the cross-
sectional dimension of the data was increased. However, for our panel-data model
there would be particular interest in the behaviour of the technical efficiencies of

production of the panel of firms over time.

The parameters of the model defined by (4.1) and (4.2) may be estimated by the
method of maximum likelihood. The derivation of the likelihood function and its
partial derivatives with respect to the parameters of the model are presented in
Appendix 2. These functions are expressed in terms of the variance parameters

0s°=0v*+6” and y=07/0s’, to facilitate obtaining the maximum-likelihood estimates.

4.3 Empirical Example

Data on paddy farmers from the Indian village of Aurepalle are considered for an
empirical application of the stochastic frontier and technical inefficiency model
discussed in the previous section. These data were collected by the International
Crops Research Institute for the Semi-Arid Tropics (ICRISAT). Battese and Coelli
(1992) use data on 15 farmers over the ten-year period from 1975-76 to 1984-85.
Because 21 observations were not available for some farmers in some of the years in
the ten-year period, only 129 observations are used in that paper. Refer to Chapter 3

for further discussion of these data.

We have endeavoured to obtain data on farmer characteristics that may explain the
level of the technical inefficiency of production. Information on the age and years of
schooling of 14 of the 15 farmers are available. Hence the data in the present study
comprise 14 farmers and a total of 125 observations. Information on other variables,
such as the frequency of contacts with agricultural extension officers, access to credit
and the use of high-yielding varieties, fertilisers, etc., were not readily available. While
not providing a thorough analysis for practical policy purposes, the use of age, years of
formal schooling and year of observation in the inefficiency model satisfactorily

illustrate the methodology involved.
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The stochastic frontier production function to be estimated is similar in structure to

that considered in Chapter 3. It is defined by

log(Yi) = Bo + Bilog(Landy,) + Bo(ILi/Land;) + Bslog(Labour;)
+ Balog(Bullocks;) + Bslog (Costsy) + Ps(Yeary) + Vi - Uy 4.4

where the technical inefficiency effects are assumed to be defined by,
Uie = 80 + 81(Ages) + 32(Schooling;) + 85(Yeari) + Wi (4.5)
where

Age is the age of the primary decision maker in the farming operation;

Schooling refers to the number of years of formal schooling of the primary
decision maker;

Year indicates the year of the observation involved;

the Wi, are as defined in the previous section;
and all other variables are as defined in Chapter 3.

The variables in the production frontier (4.4) are those which are in the preferred
model in Battese and Coelli (1992). However, the stochastic properties of that model
are identical to the ordinary-least squares model, given the assumptions of the
stochastic frontier model with time-varying technical inefficiency effects proposed in
Battese and Coelli (1992). In this chapter, however, the technical inefficiency effects
are assumed to be present in the stochastic frontier and be linearly related to age and
education of the paddy farmers and the year of observation involved, such that an

intercept parameter is included.

The inefficiency frontier model, defined by equations (4.4) and (4.5), account for both
technical change and time-varying technical inefficiency effects. The Year variable in
the stochastic frontier production function, defined by equation (4.4), accounts for
Hicksian neutral technical change. However, the Year variable in the model for the
technical inefficiency effects, defined by equation (4.5), specifies that the technical
inefficiency effects may change linearly with respect to time. Given that the technical
inefficiency effects are stochastic and have the specified distributional assumptions, the

parameters associated with technical change and the time-varying technical
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inefficiencies are identified, in addition to the intercept parameters in the stochastic

frontier and the model for the technical inefficiency effects.

Maximum-likelihood estimates of the parameters of the model, defined in equations
(4.4) and (4.5), are obtained using the computer program, FRONTIER (see Coelli,
1994). This computer program is discussed in detail in Chapter 7. The parameter
estimates are given in the second last column of Table 4.1, indicated by Model 1. The
last column of Table 4.1 gives the maximum-likelihood estimates for the parameters of
the preferred frontier model, to be discussed below, in which some parameters in the

general model are specified to be zero.

The signs of the B-estimates are all as expected, with the exception of the negative
estimate of the bullock-labour variable. Possible reasons for the parameter associated
with bullock labour being negative are discussed in Saini (1979), Battese, Coelli and
Colby (1989) and in Chapter 3 above. The positive coefficient of the proportion of
land which is irrigated confirms the expected positive relationship between the

proportion of irrigated land and total production.

The coefficients of the explanatory variables in the model for the technical inefficiency
effects, defined by equation (4.5), are of particular interest to this study. The estimate
for the coefficient associated with Age is positive, which indicates that the older paddy
farmers are more technically inefficient than the younger ones. The estimate for the
coefficient associated with Schooling is negative. This implies that the paddy farmers
with greater years of schooling tend to be less technically inefficient. However, the
relationship is very weak, because the coefficient is highly insignificant (by an
asymptotic t-test). The negative coefficient of the Year variable suggests that the
technical inefficiencies of production of the paddy farmers decline throughout the ten-

year period.

The estimate for the variance parameter, y = o°/0s’, indicates that the variance, o,
associated with the inefficiency effects is about 95 percent of the total of the two

variances.
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Table 4.1
Maximum-likelihood Estimates for Parameters of Stochastic Frontier Production

Functions and Inefficiency Models for Paddy Farmers in Aurepalle

Variable Parameter Model 1 Model 2
Stochastic Frontier
Constant Bo 2.86 3.01
(0.60)* (0.57)
log(Land) B, 0.37 0.37
(0.12) (0.13)
IL/Land B, 0.38 0.42
0.21) (0.23)
log(Labour) Bs 0.85 0.79
(0.13) (0.12)
log(Bullocks) By -0.33 -0.28
0.11) (0.10)
log(Costs) Bs 0.071 0.084
(0.031) (0.032)
Year Bs 0.014 0
(0.013)
Inefficiency Model
Constant S -1.5 0
(2.8)
Age & 0.035 0.0154
(0.034) (0.0046)
Schooling o, -0.006 0
(0.077)
Year O; -0.57 -0.34
(0.60) (0.20)
Variance Parameters
o5’ 0.74 0.40
(0.75) (0.20)
Y 0.952 0.922
(0.047) (0.048)
Log-likelihood Function -22.60 -23.06

* Estimated standard errors are given in parentheses to two
significant digits. The estimated coefficients are given to the
corresponding numbers of digits behind the decimal places.
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Generalised likelihood-ratio tests of null hypotheses that the technical inefficiency
effects are absent or that they have simpler distributions are presented in Table 4.2.
The second column of Table 4.2 gives the values of the logarithm of the likelihood

when the restrictions specified by the null hypothesis in the first column are applied.

The null hypothesis that the technical inefficiency effects are absent from the model
(i.e., Hp: Y= 80 = ... = §; = 0) is rejected. The second null hypothesis considered in
Table 4.2, Hy: ¥ = 0, specifies that the technical inefficiency effects are not stochastic.
If the parameter, v, is zero, then the variance of the technical inefficiency effects is zero
and so the model reduces to a traditional mean response function in which the
variables, age and schooling of the farmers, are included in the production function.
However, if the y-parameter is equal to zero, then the parameters, &y and s, are not
identified, given that the production function involves an intercept parameter and year
of observation. In this case the model reduces to a traditional average response
function in which the constant term is Bo-8o, the coefficient of year of observation is
Be-0; and the age and years of schooling of the farmers are explanatory variables along
with the other variables specified in equation (4.4) If there are no random technical
inefficiency effects in the model, then the parameters, & and 8, are not identified.
However, the null hypothesis that the technical inefficiency effects are not random is

rejected.

The null hypothesis that the technical inefficiency effects are not a linear function of the
year of observation and the age and schooling of the farm operator,
Ho: 8; = 8, = 8; = 0, is also rejected. This indicates that the joint effect of these three
explanatory variables on the levels of technical inefficiencies is significant, although the
individual effects of one or more of the variables may not be statistically significant.
However, the hypothesis that the technical inefficiency effects have no intercept

parameter, Hy : & = 0, is not rejected.

Because the estimate for the intercept parameter in the model for the technical
inefficiency effects is small relative to its estimated standard error, the model was re-
estimated without this parameter. As expected, the estimates for the parameters in this
model were little different from those obtained for the more general model, but the

estimated coefficients of year of observation in the frontier and schooling in the
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Table 4.2
Tests of Hypotheses for Parameters of the Stochastic Frontier and Inefficiency

Model for Paddy Farmers in Aurepalle

Null Hypotheses Log- Test Critical Decision
likelihood Statistic Value*
Function A
Hop:y=8=..=8=0 -37.59 29.99 5.14-10.37 RejectH,
Ho:y=0 -36.08 26.97 5.14-7.05 RejectH,
Hp: 0, =0,=0;=0 -27.94 10.69 7.81 Reject Hy
Hp: 8o =0 -22.89 0.59 3.84 AcceptHo
Ho: Bs =8 =08, =0 -23.06 0.92 7.81 AcceptHy

Restrict: Bs=80=0,=0
Ho: y=0 -36.25 26.39 2.71 Reject Hy

Ho: 51 = 83 =0 -39.02 31.93 5.99 Reject Hp

* Critical values are calculated in the manner discussed in Chapter 3.

inefficiency model (Bs and &,, respectively) were less than their estimated standard
errors. In fact, the generalised likelihood-ratio statistic for testing the null hypothesis,
Hy: Bs = 80 = & = 0, is not significant and so we consider that the preferred stochastic

frontier and inefficiency model has the three parameters, Bs, & and &,, equal to zero.

The maximum-likelihood estimates for the parameters of the preferred frontier model
are presented in the last column of Table 4.1. All the parameter estimates for this
model are considerably larger than their estimated standard errors. The generalised
likelihood-ratio statistic for testing the null hypotheses of the absence of stochastic
inefficiency effects, Ho: ¥ = 0, and of the absence of age and year effects in the model
for the technical inefficiency effects, Ho: 8; = 8; = 0, in the preferred frontier model are

highly significant (see Table 4.2).
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The parameter estimates for the preferred stochastic frontier production function
indicate that the elasticity of land is estimated to be 0.37. The estimated elasticity for
labour, 0.79, is quite large. The elasticity for bullock labour is significantly less than
zero. The estimated elasticity for other input costs is relatively small, 0.084, but is
significantly different from zero. These estimates imply that the returns-to-scale
parameter is estimated to be 0.965, with estimated standard error of 0.048. Thus the
technology of the paddy farmers is such that the hypothesis of constant returns to scale

would be accepted.

The technical inefficiency effects in the preferred model are significant, such that older
farmers tend to have larger values of the technical inefficiency effects. However, the

technical inefficiency effects for the paddy farmers tend to decrease over time.

The technical efficiencies of the paddy farmers in the different years involved are
obtained using the predictor, presented in equation (A2.10) of Appendix 2. The
parameters involved are estimated by their maximum-likelihood estimates. The
predicted technical efficiencies obtained for the 14 paddy farmers involved are

presented in Table 4.3.

The predicted technical efficiencies show considerable variability among the paddy
farmers. The technical efficiencies of individual paddy farmers also vary up and down
over time. Some farmers had the highest level of technical efficiency in one or more
years, but had the lowest technical efficiency in at least one year, as well. For example,
Farmer 1 had the highest technical efficiencies in the years 1975-76 and 1977-78, but
also had the lowest technical efficiencies among the paddy farmers in 1978-79 and
1984-85. These values indicate that there is considerable variation in the levels of
technical efficiencies over time for given paddy farmers, although there is a general
decline in the technical inefficiencies of the paddy farmers over time. Given that the
values of the explanatory variables in the model for the technical inefficiency effects
(i.e., age of farmer and year of observation) change little from year to year, the
variability in the technical efficiencies of the farmers in the panel is presumably largely

due to random variations in the inefficiency model.

60



Table 4.3

Technical Efficiencies of Paddy Farmers in Aurepalle

Farmer 75-76 76-77 77-78 78-79 79-80 80-81 81-82 82-83 83-84 84-85

1 887 615 928 606 856 730 133 944 .839 814
2 724 628 898 622 853 712 727 944 .835 873
3 S18 215 835 847 908 653 - - - -

4 540 287 751 902 a7 565 744 876 872 918
5 460 606 386 768 837 778 904 838 918 852
6 730 510 922 866 794 767 761 913 884 885
7 505 310 914 824 759 715 763 .899 797 -

8 758 465 749 - .873 690 906 936 899 908
9 623 229 792 793 820 742 763 901 904 928
10 664 137 875 812 913 123 928 940 .898 943
11 718 399 819 819 .868 7155 885 904 861 941
12 569 486 886 799 764 753 915 946 914 937
13 420 402 .888 .800 .825 293 570 - - -

14 - 410 884 .861 .896 - - - - -

mean 624 450 859 794 839 683 800 913 875 900

4.4 Conclusions

The results obtained in the empirical application of the proposed model for the
stochastic frontier production function and technical inefficiency effects exhibit some
interesting differences from those obtained in the application of the time-varying model
for technical inefficiency effects presented in Battese and Coelli (1992) and discussed
in Chapter 3. Given the specifications of the latter model, it is concluded that there are
no technical inefficiencies of production, even though the analysis in Battese and Coelli
(1992) involves essentially the same sample of paddy farmers as in this study.
However, the Battese and Coelli (1992) model assumes that the technical inefficiency
effects are the product of an exponential function of time and the (random) inefficiency
effects for firms in the last period of the panel. The present model specifies that the
technical inefficiency effects are a linear function of some firm-specific variables and
time, together with an additive stochastic error which is assumed to be independent

over time and among firms.
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One possible reason for the differences in the results obtained in Chapter 4 relative to
those in Chapter 3 (in particular the differences in the significance of the y-parameter in
the two analyses) could be that the model specification in Chapter 3 imposes a very
rigid structure upon the pattern of the technical inefficiency effects. In that model the
rankings of the firms in terms of technical inefficiency are assumed to not differ from
one time period to the next and the technical inefficiency effects are also assumed to
follow a particular expontial time pattern which is governed by a single parameter, n.
This rigidity may be masking the existence of inefficiencies which only become
apparent when the less rigid model specification in this chapter is considered. It
appears that when the inefficiency effects of a particular firm are allowed to differ
randomly between firms and time periods inefficiencies are observed which previously

were not visible in the more restrictive panel data model considered in Chapter 3.2

The two models form Chapters 3 and 4 are clearly separate and so it is difficult to
conclude which is the “best” model for the data involved. However, we do observe
that the logarithm of the likelihood function for the data is greater under the
assumptions of the above model than for the one proposed in Battese and Coelli

(1992).

The next two chapters consider two additional applications of the stochastic frontier
model specification proposed in this chapter. These applications involve the analysis of
data on farmers from three different villages in India and an analysis of data on

electricity generation by coal-fired power stations in Australia.

? An interesting issue arises from this discussion. When one is estimating a regular error-components
panel data model and finds that the variance of the firm effect is insignificantly different from zero
one would normally then revert to estimating an OLS regression. However, in the case of a stochastic
frontier panel data model, if the variance parameter (y) is found to be insignificantly different from
zero one should not immediately assume that OLS is appropriate. One should first estimate a
stochastic frontier model which does not assume the inefficiency effects are related across time and
then conduct a hypothesis test to see if the y-parameter is non-zero in that model.
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Chapter 5

Identification of Factors Which Influence the
Technical Inefficiency of Indian Farmers

5.1 Introduction

The measurement of the productive efficiency of a farm relative to other farms or to
the “best practice” in an industry has long been of interest to agricultural economists.
Much empirical work has centred on imperfect, partial measures of productivity, such
as yield per hectare or output per unit of labour. Farrell (1957) suggested a method of
measuring the technical efficiency of a firm in an industry by estimating the production
function of a “fully-efficient firm” (i.e., a frontier production function). The technical
efficiency of a farm may be defined as the ratio of its observed output to that output

which could be produced by a fully-efficient firm, given the same input quantities.

Many subsequent papers have applied and extended Farrell’s ideas. This literature may
be roughly divided into two groups according to the method chosen to estimate the
frontier production function, namely, mathematical programming versus econometric
estimation. Debate continues over which approach is the most appropriate method to
use. The answer often depends upon the application considered. The mathematical
programming approach to frontier estimation is usually termed Data Envelopment

Analysis (DEA).

The primary criticism of the DEA approach is that measurement errors can have a
large influence upon the shape and positioning of the estimated frontier. Aigner,
Lovell and Schmidt (1977) and Meeusen and van den Broeck (1977) independently
proposed the stochastic frontier production function to account for the presence of
measurement error in production in the specification and estimation of frontier
production functions. Stochastic frontiers have two error terms, one to account for
technical inefficiency of production and the other to account for other factors such as
measurement error in the output variable, luck, weather, etc. and the combined effects
of unobserved inputs on production. This favourable property of stochastic frontiers

comes with a price, namely, that the functional form of the production function and the
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distributional assumptions of the two error terms, must be explicitly specified. Bauer
(1990) and Greene (1993) present comprehensive reviews of the econometric

estimation of frontiers.

In the agricultural economics literature the stochastic frontier (econometric) approach
has generally been preferred (see Chapter 2). This is probably associated with a
number of factors. The assumption that all deviations from the frontier are associated
with inefficiency, as assumed in DEA, is difficult to accept, given the inherent
variability of agricultural production, due to weather, fires, pests, diseases, etc.
Furthermore, because many farms are small family-owned operations, the keeping of
accurate records is not always a priority. Thus much available data on production are

likely to be subject to measurement errors.

There have been many applications of frontier production functions to agricultural
industries over the years. Some of these papers are reviewed in Chapter 2. Battese
(1992) and Bravo-Ureta and Pinheiro (1993) also provide surveys of applications in
agricultural economics, the latter giving particular attention to applications in
developing countries. Bravo-Ureta and Pinheiro (1993) also draw attention to those
applications which attempt to investigate the relationship between technical efficiencies
and various socio-economic variables, such as age and level of education of the farmer,
farm size, access to credit and utilisation of extension services. The identification of
those factors which influence the level of technical efficiencies of farmers is,
undoubtedly, a valuable exercise. The information provided may be of significant use
to policy makers attempting to raise the average level of farmer efficiency. Most of the
applications which seek to explain the differences in technical efficiencies of farmers
use a two-stage approach. The first stage involves the estimation of a stochastic
frontier production function and the prediction of farm-level technical inefficiency
effects (or technical efficiencies). In the second stage, these predicted technical
inefficiency effects (or technical efficiencies) are related to farmer-specific factors using
ordinary least-squares regression. This approach appears to have been first used by
Kalirajan (1981) and has since been used by a large number of agricultural economists,

the most recent example of which may be found in Parikh and Shah (1994).



Recent papers by Kumbhakar, Ghosh and McGuckin (1991), Reifschneider and
Stevenson (1991), Huang and Lui (1994) and Battese and Coelli (1995) specify
stochastic frontiers and models for the technical inefficiency effects and simultaneously
estimate all the parameters involved. The Battese and Coelli (1995) stochastic frontier,
discussed in Chapter 4, is specified for panel data where the model for the technical
inefficiency effects involves farmer-specific variables and year of observation. Battese
and Coelli (1995) apply their model in the analysis of a small panel of ten years of data
on fourteen paddy farmers from the village of Aurepalle in India. In this chapter a
variant of the Battese and Coelli (1995) model is applied in the analysis of data for 34
farmers from this village and also in the analysis of data for farmers from two other

Indian villages.

The method of simultaneous estimation of all parameters is preferred to the two-stage
approach, referred to above, because the latter is not satisfactory on statistical
grounds. There are inconsistencies in the assumptions regarding the distribution of the
technical inefficiency effects in the two-stage approach. In the first stage, the technical
inefficiency effects are usually assumed to be independently and identically distributed
random variables. However, in the second stage, the predicted technical inefficiency
effects are regressed upon a number of explanatory variables involving farmer- or
farm-specific factors. The predicted technical inefficiency effects in this second
equation are not independent and even their corresponding true values would only be
identically distributed if the coefficients of the explanatory variables in the efficiency

relationship were zero.

The remainder of this chapter consists of four sections. In Section 5.2, the data on the
farmers from the three Indian villages are briefly described. In Section 5.3, the
proposed stochastic frontier and inefficiency model is discussed. In Section 5.4, the
empirical results are presented and several hypotheses are tested. In the final section

some conclusions are made.

5.2 Panel Data on Indian Agriculture

During the decade from 1975-76 to 1984-85, the International Crops Research
Institute for the Semi-Arid Tropics (ICRISAT) collected farm-level data on the
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agricultural operations of a sample of farmers in three different regions in India. These
Village Level Studies (VLS) were designed to obtain reliable data on the broad agro-
climatic sub-regions in the semi-arid tropics of India, in order to better understand
traditional agriculture in the region, with a view to encouraging improved methods of

agricultural production.

The three villages of Aurepalle, Kanzara and Shirapur were selected by ICRISAT for
the in-depth study of the farming operations involved because they were considered
broadly representative of the semi-arid tropics of India. These villages are located in
the districts of Mahbubnagar, Akola and Sholapur, respectively, and are approximately
70 km south, 550 km north and 336 km west of the Headquarters of ICRISAT at
Patancheru, near Hyderabad in the State of Andhra Pradesh. The three districts were
selected because they represented the major soil types, rainfall and cropping patterns in
the semi-arid tropics of India. Within each of the selected villages, farmers were
stratified into small, medium and large farming operations. Samples of ten farmers
were then selected from each of the three groupings in each of the three villages. The
numbers of farmers involved in the three villages are 34, 33 and 35 for Aurepalle,
Kanzara and Shirapur, respectively. These numbers exceed 30 because some farmers
withdrew from the survey program and were replaced by other farmers from the
appropriate size category. The total numbers of yearly observations involved in our

analyses are 273, 289 and 268, for Aurepalle, Kanzara and Shirapur, respectively.

A brief description of the agro-climatic conditions in the three districts involved is
presented below. Walker and Ryan (1990) present a detailed discussion of the regions
and the VLS data. Aurepalle is characterised by red soils of shallow-to-medium depth
which generally have low water-retention capacities. Kanzara and Shirapur have black
soils, which are deeper and have higher water-retention qualities than Aurepalle’s red
soils. The soils in Shirapur are regarded as better than the soils in Kanzara. Mean
annual rainfalls over the ten-year period were 611 mm in Aurepalle, 629 mm in
Shirapur and 850 mm in Kanzara, with year-to-year variation between 400 and 1200
mm. The majority of rain falls in the period from June to October. The predominant
crops in the three villages are castor, sorghum and paddy in Aurepalle; cotton, pigeon

pea and sorghum in Kanzara; and sorghum, chickpea, wheat and vegetables in
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Shirapur. More details on the various input variables, and the age and education levels

of the farmers, are in Table 5.1 , which is presented and discussed in Section 5.4.

5.3 The Stochastic Frontier and Inefficiency Model

The stochastic frontier production function which is specified for the farming

operations in each village is

log(Yi) = Po + Pilog(Landy) + B.(ILi/Land;) + Bslog(Labour;)
+ B4(HL;/Labour;) + Bslog(Bullocks;) + Bslog(Costs;)
+ Bs(Yeary) + Vi - Uy (5.1)

where the technical inefficiency effects, Uy, are such that they are independently
distributed and arise by truncation (at zero) of the normal distribution with variance,
0'2, and mean, W, where L is defined by

Wit = 8o + 81(Agei) + dx(Schooling;,) + 35(Sizes) + ds(Year;,) (5.2)
where HL is the quantity of hired labour; Size of the farming operation is proxied by

the Land variable; and all other variables are as defined in Chapters 3 and 4.

The expected signs on the d-parameters are not clear in all cases. The age of the
farmers could be expected to have a positive or a negative effect upon the size of the
inefficiency effects. The older farmers are likely to have had more farming experience
and hence have less inefficiency. However, they are also likely to be more
conservative and thus be less willing to adopt new practices, thereby perhaps having

greater inefficiencies in agricultural production.

Schooling is expected to have a negative effect upon technical inefficiency effects.
That is, we expect that a greater level of formal education will be associated with

smaller values for the technical inefficiency effects.

The sign of the coefficient of the Size variable is expected to be negative. This
expectation is partially based upon the likelihood that the farmers with smaller
operations may have alternative income sources which are more important and hence
put less effort into their farming operations compared to the larger farmers. It is also

possible that the modified Cobb-Douglas form used in this analysis does not
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appropriately accommodate a range of scale economies and hence that some scale

inefficiency may be included in the estimated technical inefficiencies of production.

The coefficient of year of observation in the model for the technical inefficiency effects
is expected to be negative. This would imply that the levels of the technical
inefficiency effects of farmers in the three villages tend to decrease over time. That is,
farmers tend to become more technically efficient over time. This time-trend variable
is expected to pick up the influence of factors which are not included in the inefficiency
model which vary systematically through time. For example, it may reflect the

influence of government agricultural extension programs over the sample period.

The stochastic frontier production function, defined by equation (5.1), is identical to
those estimated in Chapters 3 and 4, except that the ratio of hired labour to total
labour used, HL/Labour, is included to account for possible differences in the
productivity’s of hired and family labour in the farming operations in the three villages.
This variable was not considered in the analyses of the Aurepalle paddy farmers in
Chapters 3 and 4 because of earlier analyses which had indicated that hired and family
labour were equally productive in the farming operations of the Aurepalle paddy
farmers. The study in this chapter, however, considers both paddy and non-paddy
farmers in Aurepalle, as well as farmers from two other villages, hence it is appropriate
to include this variable in our models to allow hired and family labour to have differing

productivity’s.

The stochastic frontier production function, defined in equation (5.1), is a linearised
approximation of a Cobb-Douglas production function in which the land and labour
variables are linear combinations of irrigated and unirrigated land and hired and family
labour, respectively. For more on this particular specification, see Battese, Coelli and
Colby (1989), Battese and Coelli (1992) and the discussion in Chapter 3. A test of the
hypothesis that hired and family labour are equally productive is obtained by testing the
null hypothesis that the coefficient, B4, of the labour-ratio variable, HL/Labour, is zero.
This hypothesis is of particular interest in Indian agriculture, cf. Bardhan (1973). A

similar test can be defined for the two different components of the land input.

As stated in Chapter 4, there is interest in testing the null hypothesis that the technical

inefficiency effects are not stochastic, i.e., Ho: ¥ = 0, given the level of the inputs
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involved. Further, the null hypothesis that the technical inefficiency effects are not
related to age or education of farmers, the size of their farming operations and the year
of observation, is specified by Ho: 8, = ...= 8; = 0. Tests of these hypotheses are of
interest in assessing the characteristics of the technical inefficiency effects for farmers

in the three Indian villages involved.

5.4 Results and Discussion

A summary of the sample data on the different variables in the stochastic frontier and
inefficiency model, defined by equations (5.1) and (5.2), is presented in Table 5.1. The
sizes of the holdings are small relative to those seen in modern western agriculture.
The average farm sizes vary from 4.29 ha in Aurepalle to 6.02 ha and 6.68 ha in
Kanzara and Shirapur, respectively. The smaller holdings in Aurepalle could be
attributed to the greater use of irrigation in Aurepalle (an average of 0.95 ha per farm
in Aurepalle versus approximately 0.5 ha per farm in the other two villages). Labour
use is higher in Aurepalle and Kanzara where paddy planting and cotton picking are
labour-intensive activities. The use of bullock labour and costs of other inputs in
Aurepalle and Kanzara are higher than in Shirapur. Much of this is due to the high
input use required with the above two crops. The average age of farmers vary from
43.7 years in Kanzara to 53.9 years in Aurepalle, while average education levels are

quite low, varying from about two years in Aurepalle to about four years in Kanzara.

5.4.1 Maximume-likelihood Estimates
The maximum-likelihood estimates for the parameters in the stochastic frontier and

inefficiency model are presented in Table 5.2 for the three villages involved. The
estimated d-coefficients associated with the explanatory variables in the model for the
technical inefficiency effects are worthy of particular discussion. We observe that age
has a negative effect upon the technical inefficiency effects in Aurepalle and Kanzara.
That is, the older farmers tend to have smaller technical inefficiencies (i.e., are more
technically efficient) than younger farmers in Aurepalle and Kanzara, but the reverse is
true in Shirapur. This mixture of signs is not unexpected, given the various effects that
farmer age may have upon efficiency, as discussed in the Section 5.3. The result for

Aurepalle differs from that reported in Chapter 4 in the analysis of Aurepalle paddy
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Table 5.1
Summary Statistics for Variables in the Stochastic Frontier and Inefficiency

Models for Farmers in Three Indian Villages

Variable Sample Standard Minimum Maximum
Mean Deviation Value Value

Value of Output (Rupees)

Aurepalle 3679.6 4559.2 10.15 18094

Kanzara 5231.3 7226.5 121.58 39168

Shirapur 3270.7 3482.7 22.00 26423
Land (hectares)

Aurepalle 4.29 3.87 0.20 20.97

Kanzara 6.02 7.40 0.40 36.34

Shirapur 6.68 5.49 0.61 24.19
Irrigated Land (hectares)

Aurepalle 0.95 1.41 0 7.09

Kanzara 0.51 1.22 0 9.79

Shirapur 0.64 1.07 0 4.96
Labour (hours)

Aurepalle 2206.2 2744.1 26 12916

Kanzara 2578.5 3145.7 58 15814

Shirapur 1674.8 1576.9 40 11146
Hired Labour (hours)

Aurepalle 1468.3 2349.6 0 11662

Kanzara 1841.2 2852.3 6 14130

Shirapur 719.1 768.4 24 4823
Bullock Labour (hours)

Aurepalle 528.2 604.6 8 4316

Kanzara 570.6 765.1 12 3913

Shirapur 342.3 282.2 14 1240
Cost of Other Inputs (Rupees)

Aurepalle 651.02 981.06 0 6205.0

Kanzara 628.96 978.49 0 5344.3

Shirapur 464.49 1038.00 0 6746.0
Age of Farmer (years)

Aurepalle 53.9 12.6 26 90

Kanzara 43.7 9.6 23 67

Shirapur 48.2 10.2 24 72
Schooling of Farmer (years)

Aurepalle 2.01 2.87 0 10

Kanzara 4.03 4.10 0 12

Shirapur 2.94 3.35 0 16

* Sample sizes are 273, 289 and 268 for Aurepalle, Kanzara and Shirapur, respectively.
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farmers. However, the size of the farm is not considered as a factor in the inefficiency
model in the Chapter 4 analysis and, furthermore, that study only involved those
farmers who grew some amount of paddy while the present analysis involves all sample

farmers in Aurepalle, including those who have no paddy fields.

The coefficient of Schooling is observed to be negative in Aurepalle and Shirapur, but
positive in Kanzara. That is, in the villages of Aurepalle and Shirapur, farmers with
greater years of formal education tend to be more technically efficient in agricultural
production. The positive value obtained for Kanzara is unexpected, but could be due
to the generally small numbers of years of formal schooling observed throughout the
sample (see Table 5.1). We hypothesise that the result may have been different if a

wider spread of education levels were observed.

The sign of the estimated coefficient of the Size variable in each village is negative, as
expected. This indicates that farmers with larger farms tend to have smaller technical
inefficiency effects than farmers with smaller operations. As discussed in Section 5.3,
this result may be due to a number of factors, one of which could be some scale
inefficiency being measured as technical inefficiency. We intend to investigate this
issue by replacing the modified Cobb-Douglas functional form with a modified translog

functional form in future work.

The coefficient of year of observation in the model for the technical inefficiency effects
is also estimated to be negative in all three villages. This implies that the levels of the
technical inefficiency effects of farmers in the three villages tend to decrease over time.
That is, farmers tend to become more technically efficient over time. This time-trend
variable may be picking up the influence of factors which are not included in the
inefficiency model. For example, it may reflect the positive influence of government

agricultural extension programs over the sample period.

Overall, the signs of the estimated d-coefficients conform quite closely with our
expectations. Only the coefficient of schooling in Kanzara has a sign which is contrary
to our expectations. Note, however, that the ratio of this estimate to its estimated

standard error (t-ratio) is only slightly larger than one in value, indicating that this
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Table 5.2

Maximum-likelihood Estimates for Parameters of the Stochastic Frontier and

Inefficiency Models for Three Indian Villages*

Variable Parameter Aurepalle Kanzara Shirapur
Stochastic Frontier
Constant Bo -5.62 -4.90 -4.69
(0.33) (0.37) (0.32)
Land B; 0.264 0.066 0.012
(0.070) (0.066) (0.061)
IL/Land B: 0.093 0.083 -0.076
(0.058) (0.038) (0.030)
Labour Bs 1.212 0.785 0.905
(0.076) (0.079) (0.060)
HL/Labour By -0.00047 -0.000019 0.00020
(0.00012) (0.000091) (0.00040)
Bullocks Bs -0.430 -0.006 -0.086
(0.056) (0.060) (0.060)
Costs Bs 0.009 0.098 0.002
(0.014) (0.01D) (0.010)
Year Bs 0.0279 -0.0182 0.016
(0.0088) (0.0081) (0.012)
Inefficiency Model
Constant S -1.8 0.80 1.37
(1.5) (0.35) (0.50)
Age 1 -0.0150 -0.015 0.0133
(0.0092) (0.010) (0.0099)
Schooling S, -0.064 0.039 -0.217
(0.046) (0.033) (0.088)
Size O3 -0.29 -0.083 -0.208
(0.14) (0.056) (0.082)
Year o4 -0.36 -0.077 -0.39
(0.15) (0.046) (0.12)
Variance Parameters
o5’ 2.19 0.39 0.96
(0.92) (0.20) (0.35)
Y 0.9826 0915 0.944
(0.0069) (0.040) (0.023)
Log-likelihood Function -99.51 -80.29 -128.81

* Estimated standard errors are given below the parameter estimates, correct to at least two significant
digits. The parameter estimates are given correct to the corresponding number of digits behind the

decimal places.
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estimate may not be statistically significant. Also note that this t-ratio is the smallest

among all the 3-estimates in any of the three villages.

The y-parameter associated with the variances in the stochastic frontier is estimated to
be greater than 0.9 in all of the three villages. Although this parameter cannot be
interpreted as the proportion of the variance of the inefficiency effects relative to the
sum of the variances of the inefficiency effects and the random variation, it indicates
that the random component of the technical inefficiency effects do make a significant

contribution in the analysis of agricultural production in the Indian villages involved.

The estimated coefficients of the stochastic frontier, defined by equation (5.1),
reported in Table 5.2, have signs and sizes which generally conform with those
obtained in past analyses of these data. The estimated coefficients of Land and Labour
are positive for all of the three villages. The coefficient of /L/Land is expected to be
positive, reflecting the higher productivity of irrigated land. However, for Shirapur the
coefficient of the proportion of irrigated land is estimated to be negative and
significantly different from zero. Further investigation is required to discern the basis

for this result.

If the productivity of hired labour was lower than that for family labour, then the
coefficient of HL/Labour would be negative. Negative estimates are obtained for
Aurepalle and Kanzara, but for Shirapur the estimated coefficient is positive.
However, the ratio of the estimated coefficient to the estimated standard error suggests

that hired and family labour in Kanzara and Shirapur are equally productive.

The estimated coefficients of bullock labour are negative for all three villages, but only
the estimate for Aurepalle is significantly different from zero. This negative influence
is contrary to what one would expect, but conforms with earlier analyses, reported by
Saini (1979), and Battese and Coelli (1992, 1995) and discussed in earlier chapters. A
number of explanations have been suggested for this result, the most often quoted is,
that the bullocks are often used for weed control and repairs of irrigation banks in poor
seasons when the land is less water-logged. Thus the quantity of bullock labour may

be acting as an inverse proxy for rainfall.
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5.4.2 Tests of Hypotheses
Formal tests of hypotheses associated with the technical inefficiency effects are

presented in Table 5.3. These tests of hypotheses involve the use of the generalised
likelihood-ratio statistic, which has been discussed in Chapter 3. The generalised
likelihood-ratio test is often preferred to the asymptotic t-test since the estimated
standard errors can sometimes be unreliable when they are calculated as a by-product
of the iterative procedure for ML estimation. Furthermore, the t-test can only be used

when the null hypothesis involves a single restriction.

The first null hypothesis considered in Table 5.3, Ho: ¥y = & = ... = &4 = 0, specifies
that the inefficiency effects in the frontier model are not stochastic (i.e., 6°=0 and
hence y=0) and all the coefficients of the explanatory variables in the inefficiency model
are zero. This hypothesis implies that the technical inefficiency effects are, in fact, zero
or absent from the model, which, in turn, implies that the stochastic frontier model,
defined by equation (5.1), is equivalent to the traditional average response function.
This null hypothesis is clearly rejected by the data for all of the three villages involved.
Thus the traditional average response function is not an adequate representation for the
agricultural production in the three villages, given the specification of the stochastic

frontier and inefficiency model, defined by equations (5.1) and (5.2).

The second null hypothesis in Table 5.3, Ho: v = 0, specifies that the technical
inefficiency effects in the frontier are non-stochastic. This null hypothesis is also

strongly rejected for all three villages.

The third null hypothesis in Table 5.3, Hy: 8y = ... = 84 = 0, specifies that all the d-
parameters in the model for technical inefficiency effects in the stochastic frontier
production function have value zero (and hence that the inefficiency effects have half-

normal distribution). This hypothesis is also strongly rejected for all three villages.
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Table 5.3
Tests of Hypotheses for Coefficients of the Explanatory Variables for the

Technical Inefficiency Effects in Stochastic Frontier Production Functions for

Three Indian Villages
Null Hypothesis Log-likelihood Test Critical Decision
Value Statistic, A Value

Hp:y=8=.. =0,=0

Aurepalle -138.02 77.02 5.14-11.91 Reject Hy

Kanzara -106.03 51.48 5.14-11.91 Reject Hy

Shirapur -183.68 109.74 5.14-11.91 Reject Hyp
Hoi Y= 0

Aurepalle -137.86 76.70 5.14-7.05 Reject Hyp

Kanzara -100.18 39.78 5.14-7.05 Reject Hy

Shirapur -177.54 97.46 5.14-7.05 Reject Hy
Hy: 80=...=84=0

Aurepalle -113.12 27.22 11.07 Reject Hy

Kanzara -93.27 25.96 11.07 Reject Hy

Shirapur -161.58 65.54 11.07 Reject Hp
Ho! 81=... =84=0

Aurepalle -101.92 4.82 9.49 Accept Hy

Kanzara -91.13 21.68 9.49 Reject Hyp

Shirapur -151.98 46.34 9.49 Reject Hy

The final null hypothesis considered in Table 5.3, Ho: 8, = ... = 8, = 0, specifies that all

the coefficients of the explanatory variables in the inefficiency model are equal to zero
(and hence that the technical inefficiency effects have truncated-normal distribution).
This null hypothesis is rejected for the villages of Shirapur and Kanzara, but it is
accepted for Aurepalle. Thus for Aurepalle, it could be concluded that the technical
inefficiency effects are not significantly influenced by the age and education of the
farmers, the size of the farming operation, and that they are not time-varying. Hence it
appears that, given the specifications of the stochastic frontier and inefficiency model,
defined by equations (5.1) and (5.2), the technical inefficiency effects for Aurepalle
farmers can be regarded as independent and identically distributed random variables

which arise from the truncation of a normal distribution with non-zero mean.

Thus, to summarise the tests of hypotheses in Table 5.3, it appears that there are
significant technical inefficiencies in the agricultural production in the three villages

considered in this study. In the villages of Shirapur and Kanzara, the explanatory
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variables (age, education, farm size and time) are observed to have a significant
influence upon the technical inefficiency effects. In Aurepalle, however, these variables
do not appear to have a significant influence. It could thus be concluded that there is
considerable unexplained variation in the technical inefficiency effects in Aurepalle,
suggesting the investigation of alternative explanatory variables, such as access to

credit and extension advice, is particularly warranted in the case of Aurepalle.

Several tests of hypotheses regarding the P-parameters are also of interest.
Generalised likelihood-ratio tests of the null hypothesis that the coefficient of the hired-
labour ratio is zero are presented in Table 5.4 for the three villages. The null
hypothesis, Ho: B4 =0, is rejected for farming operations in Aurepalle, but accepted for
Kanzara and Shirapur. The conclusion that hired and family labour are not equally
productive in Aurepalle may be associated with the labour-intensive operations
required in paddy production, and the nature of the well-developed labour market in

that region.

In our stochastic frontier production function, the cost of other inputs, such as
fertiliser, manure and pesticides, is included as an explanatory variable. It has been
suggested that this variable should not be used in a frontier production function,
because it is a composite variable which contains the costs of various items which are
likely to influence production in different ways. We maintain that the inclusion of this
variable is preferable to its exclusion, on the grounds that it should reduce the degree
of misspecification. Also considered in Table 5.4 is a test of the null hypothesis,
Ho: Bs =0, which specifies that the coefficient of the cost of other inputs is zero. For
Aurepalle and Shirapur, this null hypothesis is accepted, while for Kanzara it is
strongly rejected. This result may be due in part to the importance of cotton
production in Kanzara. The cotton plant is susceptible to a number of insect pests and
so the regular use of pesticides in cotton production appears to be a highly significant

factor in the agricultural production in Kanzara.

The final hypothesis considered in Table 5.4 relates to the question of technical change.
This involves a test of the null hypothesis, Ho: B; =0, that the coefficient of year of
observation in the stochastic frontier is equal to zero. The test statistics indicate that

the null hypothesis of no technical change is rejected in Aurepalle and Kanzara, but is
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Table 5.4
Statistics for Tests of Hypotheses Involving Some Coefficients of the Stochastic

Frontier Production Functions for Three Indian Villages

Null Hypothesis Log-Likelihood  Test Statistic Critical Decision

Function A Value
HoI B4 =0
Aurepalle -104.90 10.78 3.84 Reject Ho
Kanzara -80.31 0.04 3.84 Accept Hy
Shirapur -128.97 0.32 3.84 Accept Hy
H02 Bs =0
Aurepalle -99.69 0.36 3.84 Accept Ho
Kanzara -111.28 61.98 3.84 Reject Hy
Shirapur -128.81 0.00 3.84 Accept Ho
Hp: B7 =0
Aurepalle -103.32 7.62 3.84 Reject Hy
Kanzara -83.04 5.50 3.84 Reject Hy
Shirapur -129.80 1.98 3.84 Accept Hy

accepted for Shirapur. We note that the coefficient of year of observation in the
stochastic frontier, B, is positive for Aurepalle, but negative for Kanzara. The latter
result is surprising and may merit further investigation. One possible reason why one
may observe technical regress is the situation where intensive cropping practices
reduce the nutrient content of the soil at a faster rate than fertiliser application
replenishes it. A closer inspection of the farming practices in Kanzara is required

before any conclusions can be made.

Finally, it is interesting to note that the conclusions of the generalised likelihood-ratio
tests listed in Table 5.4 are the same as those that would have been made if asymptotic
t-tests had been used. Thus, in this application, the standard errors of the ML
estimators appear to be well estimated using the Davidon-Fletcher-Powell algorithm

which is used in the program, FRONTIER.

5.4.3 Technical Efficiencies of Farmers
The technical efficiencies of farmers are predicted for each year in which they were

observed, using the method proposed in Battese and Coelli (1993) and presented in
Appendix 2. These predictions are derived from the estimated models presented in

Table 5.2. The predicted technical efficiencies of the farmers in Aurepalle, Kanzara
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and Shirapur are presented in Tables 5.5, 5.6 and 5.7, respectively. Also presented in
these tables are estimates for the mean technical efficiencies of each farmer (over the
ten-year period) and the mean technical efficiencies for farmers in each of the years
involved. The predicted technical efficiencies differ substantially within each village.
They range from quite small values of less than 0.1 to values in excess of 0.9. The
mean technical efficiencies of the farmers range from 0.353 for farmer 32 in Shirapur
to 0.921 for farmer 28 in Kanzara. The mean technical efficiencies of the farmers in
the three villages do not appear to differ substantially. They are 0.747 for Aurepalle,
0.738 for Kanzara and 0.711 for Shirapur.

To give a better indication of the distribution of the individual technical efficiencies,
frequency distributions of the technical efficiencies are plotted for Aurepalle, Kanzara
and Shirapur in Figures 5.1, 5.2 and 5.3, respectively. The plots are quite similar, with
a thin tail in the left of the distribution, gradually rising to a maximum in the 0.8 to 0.9
interval, and then dropping sharply in the 0.9 to 1.0 interval. The fact that the mode of
the distribution is not in this final interval offers support for the use of more general
distributions (than the often considered half-normal distribution) for the technical

inefficiency effects, such as the general truncated-normal distribution used in this study.

The annual mean technical efficiencies, which are presented in the bottom row of each
of Tables 5.5, 5.6 and 5.7, are plotted in Figure 5.4. A general upward trend in the
levels of mean technical efficiency is observed over the sample period in all three
villages. The mean technical efficiencies in Shirapur tend to follow a rather smooth
upward trend, in comparison with the more volatile results for Aurepalle and Kanzara.
There is also a suggestion of a reduction in the variability of the mean technical
efficiencies in the three villages towards the end of the ten-year period, relative to the
greater divergence in the values in the earlier part of the sample period. This could
reflect an improvement in the ability of the farmers to adjust their production methods

to the year-to-year changes in the agro-climatic environments in the regions involved.
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Table 5.5

Predicted Technical Efficiencies for Farmers in Aurepalle

Farm 75-76  76-77 77-78 78-79 79-80 80-81

81-82 82-83 83-84 84-85 Mean

756
745
.894
841
767
919
454
939
715
648
411
705
358
752
665
673
620
903
.890
875
934
654
.833
748
864
.807
834
694
504

738

772
.804
837
154
825
749
599

778

372
220

452
393
365
813
452
478
167
231
423
610
254
765
.891
505
555
463
428
554

928
908

.802
472
836
702
811
834
.809
931
826

903
662
157
888
878
800
933
901
930
.802
785
.853
913
855
.895
905
.894
836

587
606
543
.800

887
795
179
.834
799
750
.846

.890
650
906
179
879
.803
897
869
838

776
800
848
857
791
822
.833
795

818
825
664
618
.880
.828
813
680
375
835
834
908
487
an
704
790
.825
.880
707
847
754
764
827
781
888
926
871
741
793
844
776

554
558

586
700
674
.850
582

486

860
758
647
595
799
506
588
847
456
465
822
583
788
653
704
826
838
I8
16
312

660

590
573
323
790
642
651
388
615
664
607
475
304
604

697
676
769
890
.845
649
805
696
827
885
702
747
932
854
881
636

680

909

879
.890
918
922
873
.846
938
896
929
842
932

869
852
843
878
837

887
716
.890
920
.863
829
935
859
925

380

764
721

.805
700
702
826
785
709
905
681
045
563

859

819
905
.864

.848
825
749
841
823
877
874
797
869

766

867
351

756
550
707
865
847
875
914
758
538
850

737
551
601
765
737
754
749
689
766
838
689
603
721
790
676
692
480
185
638
739
832
787
685
853
720
763
.802
730
834
889
.807
796
634
750
747
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Table 5.6

Predicted Technical Efficiencies for Farmers in Kanzara

Farm 75-76 76-77 77-78 78-79 79-80 80-81

81-82 82-83 83-84 84-85 Mean

832
871
916
904
856
740
906
919
695
.847
372
873
739
702
844
867
585
768
435
863
942
854
625
.805
947
754
.836
903
792
.856
795

794
750
596
460

523
844
708
365

880
809
792

793
863
908
864
654
720
848
923
553
631
934
908
71
827
815
908
757

526

598
819
653
841

843
757
735
629

470
791
415

910
605
727
431
611
479
838
855
387
606
895
.808
681
653
659
872
.682

558

552
740
309
378
602
414

602
654
687

132
565
337

.819
427
830
593
686
393
891
860
452
545
867
122
402
837
626
.868
598

683
596
847
729
591
614
652
425
669
900
.843
773

782
699
804

.837
249
886
706
845
709
850
823

783
930
780
794
756
454
.898
730

378
353
596
506
440
372
458
498
679
640
466
754

617
625
461
765
639
692
551
329
4064
408
635
792

449
901
562
458
.660
.855
747
573

493
737

.881
649
738
825
530
915
909
585
704

.860
606
597
920
534
746
783
712
740
794
867

733
933
842
818
902
908
902
764

774
670

819
875
741
817
690
.883
73
.837
.860

593
866

810
924
762
793
579
759
156
811
901

657
944
883
73
.870
925
925
.802

690
824
.896
900
.883
.889

675

947
.886
853
897
914
878
826
910
660
876
.896
.849
721
835
932

812
942
883
824
881
.870
939
855

790
.883
885
674
852

904

77
879

688
.820
908
785
.851
866
767
796
847
853
851
838

798
918
874
.850
876
862
936
.838

569
609
722
768
709
657
730
569
759
792
747
723
850
603
782
660
748
.845
652
767
674
686
664
830
364
504
.682
921
802
721
.817
a1
885
738
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Table 5.7

Predicted Technical Efficiencies for Farmers in Shirapur

Farm 75-76 76-77 77-718 78-79 79-80 80-81 81-82 82-83 83-84 84-85 Mean
1 - 613 679 715 869 800 890 910 874 715
2 - 375 670 328 181 - - - - - 389
3 - 749 882 727 916 867 903 712 633 392 754
4 - - - - - 707 761 802 611 821 740
5 568 192 340 404 608 827 721 696 599 - 551
6 352 833 811 850 885 917 770 742 463 549 717
7 276 739 606 781 575 - - - - - 595
8 00 298 338 764 762 637 888 900 818 877 638
9 022 - - - 427 099 443 556 661 468 382
10 361 709 523 778 629 626 - 806 482 450 596
11 390 727 496 767 872 836  .897 919 896 554 735
12 .865 859 552 - - - - - - - 759
13 479 737 801 789 819 839 798 567 862 880 157
14 345 806 454 721 721 88 722 855 760 - 697
15 180 601 885 636 936 922 903 926 765 855 761
16 297 445 S 346 690 700 869 900 - - 595
17 316 528 743 503 685 884 - - - - 610
18 400 688 668 586 588 847 871 892 765 877 18
19 178 588 745 695 843 696 864 887 .893 712 710

20 471 882 773 .845 943 910 919 - - - 820
21 224 - - 464 - 360 778 826 864 876 628
22 647 756 854 787 829 859 558  .891 641 912 774
23 152 - - - 416 - - - - - 284
24 341 718 818 780 855 848 872 876 852 859 782
25 700 623 828 781 928 .86l 905 88 804 806 812
26 416 700 565 731 808 717 804 838 796 867 724
27 776 865 926 889 - 599 897 905 905 460 302
28 735 808 855 660 769 710 901 I .893 .890 813
29 376 813 791 849 808 833 799 891 .845 .834 784
30 892 904 812 873 888 - - - - - 874
31 932 852 827 - - - - - - - 870
32 353 - - - - - - - - - 353
33 - 195 501 523 689 768 - - - - 535
34 - 713 651 530 851 - - 830 900 867 763
35 - 892 853 863 910 883 888  .933 889 893 889
Mean 434 674 690 687 743 760 814 833 771 753 711
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Figure 5.3

Frequency Distribution of Predicted Technical Efficiencies of Farmers in
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Figure 5.4

Mean Technical Efficiencies of the Three Indian Villages
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5.5 Conclusions

Stochastic frontier production functions and inefficiency models are estimated for each
of three villages from diverse agro-climatic regions of the semi-arid tropics of India.
The production frontiers involve the inputs of land, labour, bullock labour and cost of
other inputs. The ratios of irrigated land to total land and hired labour to total labour
are included in the functions to permit the productivity’s of irrigated versus unirrigated
land and hired versus family labour to differ. A time trend is used to proxy the
influence of technical change. All estimates have the expected signs, with the
exception of the coefficients of the ratio variables in the case of Shirapur and the
coefficient of year of observation in the case of Kanzara. The results for Shirapur may
be a consequence of there being no important labour-intensive irrigated crop grown in

that village.

The model for the technical inefficiency effects in the production frontier includes the
age and years of formal schooling of the farmer, size of the farm and the year of
observation as explanatory variables. A number of tests of hypotheses are conducted
to assess the relative influence of these factors and other random effects. The results
indicate a significant random component in the technical inefficiency effects in all three
villages and that the above four factors have a significant influence upon the size of the
technical inefficiencies of farmers in Kanzara and Shirapur, but not in Aurepalle. Farm
size and year of observation are estimated to be inversely related to the level of
technical inefficiency in all villages. In two of the three villages, the effects of age and
education of the farmers are found to be negatively related to the level of the technical

inefficiency effects.

The technical efficiencies of each farmer, in each year that the farmer was surveyed, are
predicted and tabulated. Technical efficiencies are observed to range from below 0.1
to above 0.9. The mean technical efficiencies for the three villages are estimated to be
0.747, 0.738 and 0.711 for Aurepalle, Kanzara and Shirapur, respectively. The mean
level of technical efficiency follows an upward trend over the ten-year period in all
three villages. The lowest annual mean technical efficiency was 0.434 in Shirapur

during 1975-76 and the highest was 0.880 in Aurepalle during 1982-83.
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The analyses reported in this chapter indicate that there are significant differences in
the behaviour of value of output and technical inefficiencies of production in the
different regions from which data were obtained in ICRISAT’s Village Level Studies.
Although this empirical study does not include discussion of various variables which
might be important in modelling output and inefficiency effects, e.g., rainfall data, use
of agricultural extension services and access to credit, it indicates the potential for
more refined analysis, if such data were readily available. It is evident, that in order to
be able to draw conclusions of significance for policy purposes, future studies need to
be devised to obtain extensive data sets on relevant variables for production frontiers
and models for technical inefficiency effects which are consistent with such policy

orientations.
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Chapter 6

Measurement and Sources of Technical
Inefficiency in Australian Coal-Fired Electricity
Generation

6.1 Introduction

The generation, transmission and distribution of electricity in Australia has traditionally
been a Government enterprise. The distribution of electricity within each of the six
States is conducted by State and/or Local Government Authorities, while the
generation and transmission of electricity within each State is the sole domain of the
State Governments." This study is concerned with the measurement of the technical
efficiency of coal-fired electricity generation in Australia. Over 75 per cent of
electricity generated in Australia each year is produced by coal-fired power stations.
Australia is fortunate to have large reserves of black and brown coal, which are
inexpensive to extract, by world standards. The remainder of Australia’s electricity is
produced by hydro and gas-fired plants, with some smaller oil-fired plants used in

remote districts.

Each State has traditionally been self-sufficient in its electricity needs, with interstate
trade in electricity being quite rare until recent years. Transmission lines presently link
the three States of New South Wales (NSW), Victoria and South Australia (SA)
together, and the interstate transfer of electricity has steadily increased over the past
few years. Proposals are presently being considered for the construction of
transmission lines to permit the inclusion of two more States, namely Queensland and
Tasmania, into this inter-connected grid.> At present, interstate sales of electricity, via

the inter-connected grid, are being used primarily to allow the States to stagger the

'The one significant exception to this is the Snowy Mountains Hydro-Electric Scheme, which supplies
some of the electricity consumed in the States of New South Wales and Victoria (and all of that
consumed in the Australian Capital Territory).

>This would leave Western Australia (WA) as the only State without interstate trading opportunities.
The inclusion of WA, however, is unlikely, given the vast distances between the population centres in
WA and the remainder of Australia.
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construction of new power plants, so as to reduce the amount of costly excess-

generating capacity in each State.

The Federal and State Governments plan to use this inter-connected grid, not only for
the above purpose, but also to introduce competition within the Australian electricity
industry. They plan to establish a competitive national market in electricity. Part of
this process will involve the separation and corporatisation of the generation,
transmission and distribution divisions in each State, and, in certain States, the planned
privatisation of some, and perhaps all, generating plants and distribution authorities.
This process is at present well under way in Victoria, where one generating plant and a

number of distribution authorities have been sold to the private sector.

The overall effect of the above changes will be to introduce competition to Australia’s
electricity generation industry for the first time in recent history. It is envisaged that
the generation divisions of each State will be competing against each other, and that
plants, or groups of plants, within a State will eventually be competing with each other
in some cases. Given the prospect of this exposure to market forces, information on
the relative efficiencies of each plant, both relative to other plants within a State, and
relative to plants in other States, are of particular interest to the managers of the

generation divisions within each State.

Econometric analyses of production and/or relative efficiency in the Australian
electricity industry are few and far between. Only a few studies consider power plants
within a particular State. Bateson and Swan (1989) estimate a cost function for power
plants in NSW to measure scale economies and also to investigate the influence of
capacity factor upon unit costs. Price et al. (1992) investigate the comparative
productivity of NSW power plants using multilateral index numbers. There have also
been a few comparisons of the relative productivity of the different State electricity
utilities using the same methodology (e.g., Lawrence, Swan and Zeitsch, 1990). We
were not able to identify, however, any plant-level analyses involving data from two or

more States. It is this void in the literature which the present analysis hopes to fill.

The initial plan for this study involved the collection of physical and cost data on
output and inputs for all major coal-fired power plants in Australia over a ten-year

period. These data were to be used to estimate a variety of stochastic frontier
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production and cost functions, in order to investigate the structure of the technology
and to estimate technical, allocative and overall economic efficiencies for each plant.
The study proposal was readily accepted and funded by the Australian Electricity
Supply Industry Research Board (AESIRB), which is the research arm of the
Electricity Supply Association of Australia (ESAA). The collection of data, however,
proved a difficult task. A number of State Authorities deemed some or all of the
requested data too sensitive to release. This was most likely because of uncertainty
regarding the final form of the competitive model planned for the Australian electricity
industry. Thus, after three years of attempting to obtain these data, the present study
is limited to an analysis of physical data only, from only three of the five States which
have major coal-fired power plants.” Thus the present analysis involves the estimation
of stochastic frontier production functions and the prediction of technical efficiencies
from these estimated functions. The lack of cost data precludes the estimation of cost

frontiers and the prediction of allocative or overall economic efficiencies.

This chapter is divided into five sections. Section 6.2 provides a brief review of
literature on past analyses of electricity generation, involving both non-frontier and
frontier methodologies. In Section 6.3 the data and model specification used in this
study are detailed. Empirical results are presented and discussed in Section 6.4, and

some brief concluding comments are made in the final section.

6.2 Literature

Many past analyses of efficiency in electricity generation involve the calculation of
simple ratio measures, such as fuel efficiency (the ratio of power generated to the
energy content of the fuel consumed) or labour productivity (power generated per
employee). These measures can be very informative but can also be quite misleading
because they consider only a single input in isolation. In this chapter we use the model
outlined in Chapter 4 to obtain a measure of the relative efficiency of power stations

which accounts for all the factors of production simultaneously.

*One State utility did provide all physical and cost data requested. Unfortunately the lack of cost data
from other States meant that these data were not able to be utilised. It should also be noted that
Tasmania does not have any large coal-fired plants.
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We now provide a brief review of past studies which use econometric methods to
model electric-power generation. This review begins with a discussion of analyses
which use non-frontier econometric models, and progresses to describe some more

recent studies which model power generation using frontier methods.

6.2.1 Non-frontier Analyses
This brief discussion deals almost entirely with analyses of electricity generation in the

US and Europe. This is a consequence of the lack of Australian analyses, due
primarily to the secular nature of the Australian electricity industry. A number of
econometric analyses of electricity generation have used non-frontier econometric
methods to investigate the structure of the production technology. Their primary
interest is generally to investigate input-substitution possibilities, scale economies and

technical change in electricity generation.

These studies may be divided into those which estimate the parameters of the
production technology directly (e.g., Komiya, 1962 and Courville, 1974) and those
which assume some form of behavioural assumption, such as cost minimisation or
profit maximisation, and estimate a cost function, profit function, derived demand
functions, or some combination thereof (e.g., Nerlove, 1963 and Christensen and
Greene, 1976). An excellent survey of econometric analyses of electricity generation is

provided by Cowing and Smith (1978) and hence we do not attempt that task here.

Cost minimisation appears to be the assumption most often made in econometric
analyses of electricity. This is evident in the review paper by Cowing and Smith
(1978), and is especially evident in the vast number of cost-function studies which have
been published since 1978, such as the US studies by Stewart (1979), Gollop and
Roberts (1983), and Atkinson and Halvorsen (1984), and the analyses of Bateson and
Swan (1989) and Nemoto, Nakanishi and Madono (1993), involving the Australian and
Japanese electricity industries, respectively. The popularity of this behavioural
assumption is not surprising, given that a plant will normally have little say in what
quantity of output it produces, and that electricity industries are generally highly
regulated, to the extent that many are wholly government owned, as is the case in
Australia. Given a behavioural assumption, such as cost minimisation , then the direct

estimation of a production function suffers from simultaneous-equations bias, due to
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the endogeneity of the input levels. It is disappointing, therefore, that a lack of cost
data prevents the estimation of the production technology from a cost perspective in
this study. We therefore estimate the parameters of the production technology directly

using a production function, and hope that the impact of any bias is not significant.*

6.2.2 Frontier Analyses
A number of studies apply frontier methodologies to a variety of electricity industries

around the world. These studies involve the estimation of both production and cost
functions, using both DEA and stochastic frontier approaches. Again, the vast
majority of these studies are US applications. The following survey provides an

indication of the breadth of analyses that have been conducted.

One of the earliest applications of frontier methods to electricity generation is an
analysis of 181 steam-electric plants by Seitz (1971), which involved the estimation of
a frontier production function, using linear programming, and the calculation of
technical, allocative and overall efficiency measures. A second-stage regression of the
technical efficiency measures upon a number of firm-specific factors (including number

of units and unit size) was conducted and found evidence of significant relationships.

Several papers, written in the late 1970s, use data from the electricity industry to
illustrate advances in stochastic frontier methodologies. These include analyses by
Schmidt and Lovell (1979, 1980) involving 111 US steam-electric plants to illustrate
extensions of the stochastic frontier model to allow for allocative inefficiency, and the
studies of Stevenson (1980) and Greene (1980b) which use US data to investigate
more general distributions for the inefficiency effects and more flexible functional

forms, respectively.

Kopp and Smith (1980) estimate stochastic frontier production functions for 43 US
coal-fired electric power plants. They consider three alternative functional forms, three
estimation methods, and divide their data into two capital-vintage groups, finding that
all three factors have an influence upon the measures of mean technical efficiency

obtained.

* It should be noted that even if cost data were available, an estimated cost function may suffer from
specification error, due to government regulations resulting in other than cost-minimising behaviour.
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A number of papers apply DEA methods to US electricity data during the 1980s. The
Fare, Grosskopf and Logan (1983, 1984) studies consider the efficiency of Ilinois
electric utilities and the relative efficiency of public- and privately-owned utilities,
respectively. The analyses by Fire, Grosskopf and Pasurka (1986, 1989) consider the

effects of environmental regulation upon relative efficiency.

The two themes of the influence of ownership and pollution controls upon efficiency
are also prevalent in the more recent literature. Bernstein, Feldman and Schinnar
(1990) use DEA methods to investigate the effects of pollution controls in US plants,
while Hausman and Neufeld (1991) use DEA to investigate the influence of ownership
in the US industry. Hammond (1992) uses a stochastic frontier cost function to look
at the same issue in the UK. The results of these last two studies, and those of Fire,
Grosskopf and Logan (1984) are of particular interest to policy makers in Australia at
present. Hausman and Neufeld (1991) and Fére, Grosskopf and Logan (1984) find
public plants more efficient than privately owned plants (with the difference in the
latter study not being significant), while Hammond (1992) finds the converse to be true

in the UK. Thus, the evidence is not conclusive in either direction at this stage.

6.3 Data and Model Specification

6.3.1 Data

The sample data used in this study comprise annual measures of output, inputs and a
variety of other variables, from each of 13 Australian coal-fired power plants. Of these
13 plants, six are from NSW, four are from Victoria and three are from Western
Australia (WA). The NSW data were obtained from annual reports’® while the data for
the other two States were obtained from a combination of annual reports and the direct
assistance of employees of the respective State electricity commissions of Western
Australia (SECWA) and Victoria (SECV).® Annual data were obtained for each
financial year from 1981-82 to 1990-91, with some exceptions. Some observations
were not available in certain years because a few plants did not begin operating until

after 1981-82, and, in some cases, because output and labour figures were missing

5 The NSW data were collected by Michael Plumb from Sydney University, and were kindly made

available for use in this study.
® Thanks are due to Joy Johnson and Nenad Ninkov of SECWA and Michael Freeman from SECV.
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from the data provided. Because of these omissions, the final set of data involved 114

observations.

A number of choices needed to be made when deciding upon the exact definition of
each measure to be used. When considering an output measure, a choice had to be
made between electricity generated and electricity sent out. Engineers generally prefer
the first measure, but from an economic point of view, the amount of power sent out is
the measure of useful output. Hence the amount of electricity sent out is used as the
measure of output in this study.” The capital measure used is the name-plate capacity
(in mw). This is not the preferred choice. A measure of the overall capital investment,
adjusted for depreciation and embodied technical change, would have been preferred,
but unfortunately these data were not always available.® The labour input used is
simply the number of employees. A labour measure which accounts for differences in
hours worked and degree of training would have been preferred, but such a measure

was not possible because of data limitations.

The selection of a measure of the fuel input was the most difficult decision of all. The
most obvious choice was tonnes of coal burned, given that only coal-fired power plants
are considered. However, this measure suffers from a number of problems. The main
problem is that coal quality varies substantially from one State to another, and also,
from one coal mine to another within a State. The most visible difference in coal
quality is between the low quality brown coal used in Victorian plants and the higher
quality black coals used in other States. The average energy contents, in megajoules
per kilogram, vary from 7.4 for brown coal at Yallourn in Victoria to 26.4 for black
coal at Munmorah in NSW, which is different by a factor of over 350 per cent. The
fuel issue is further complicated by the additional use of fuel oil, briquettes and natural
gas in varying quantities in different plants, generally to assist with re-starting a unit
after a period of down-time. It was thus decided that the best way to avoid these
problems was to convert all fuels into terrajoule equivalents and to aggregate the

resulting figures. This approach, however, is not without problems. The main

"This measure of annual output in kwh does not account for the required distribution of production
through each day, nor throughout the year. The formulation of output measures to account for this
deficiency is beyond the scope of this study. For further discussion of this issue, see Cowing and
Smith (1978).

8See Swan (1990) for an example of the type of capital measure that can be constructed when the
necessary data are available.
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difficulty is that one terrajoule of brown coal is not the same input as one terrajoule of
black coal, because of the extra volume that must be handled and burned in the case of
the lower quality brown coal. For further discussion of these and other problems

associated with using aggregative measures of fuel energy, see Berndt (1978).

The 13 plants in the sample represent approximately SO per cent of Australia’s total
generating capacity. The sample means, standard deviations, minima and maxima of
the variables used in this study are presented in Table 6.1.° The average capacity of
plants in the sample is 1270.5 megawatts (mw) and the average unit size is 345.18 mw,
indicating an average of three to four generating units per plant. The largest plant has
a total of 2640 mw of generating capacity, comprising four 660 mw units, and the
smallest plant has 120 mw, involving four 30 mw units. The ages of the plants vary
significantly from newly commissioned plants to one that was 32 years old in 1990-91.
The average age of the plants was 12.34 years (over the ten years considered). Coal is
the most important component of fuel in each plant. Oil is used in small quantities for
unit re-starts in all plants, with the exception of two Victorian plants which use
briquettes instead. The gas figure in Table 6.1 is due, almost entirely, to the Kwinana

plant which had two of its units converted to allow either gas or coal to be burned.

6.3.2 Model Specification

A translog stochastic frontier production function is specified for the Australian
electricity generation industry. The output of a plant is assumed to be a function of the
three inputs of capital, labour and fuel; technical change is permitted to be non-neutral;
and the stochastic frontier is assumed to have the properties of the model specified in
Battese and Coelli (1993, 1995) and discussed in Chapter 4. That is, the stochastic

frontier production function is assumed to be described by:

10g(Qu) = Bo+ Bilog(Ks) + Balog(Li) + Bslog(Fi) + Ballog(Ki)]” + Bs[log(Li)]?
+ Bollog(Fi))” + Brlog(Kilog(Li) + Bslog(Kiolog(Fi) + Bolog(Lilog(Fy) +
Brolog(Ki)t + Birlog(Liot + Pralog(Fit + Bust + Prat® + Vi-Uy,
i=1,2,...,N; t=1,2,....T, (6.1)

® A full listing of the data is provided in Appendix 3.

93



Table 6.1
Summary Statistics for Observations on 13 Coal-fired Electricity Generating
Plants in Australia during 1981-82 to 1990-91

Variable Sample Standard Minimum Maximum
Mean Deviation Value Value
Output (gwh) 5502.6 3744.9 65.1 15406.0
Capacity (mw) 1270.5 720.6 120.0 2640.0
Labour (persons) 639.79 329.39 41.00 1787.00
Fuel (terrajoules) 62925.0 39519.0 1282.0 156370.0
Capacity factor (%) 46.31 16.47 6.19 85.16
Age of units (average in yrs) 12.34 8.48 0.00 32.00
Size of units (average in mw) 345.18 227.65 30.00 660.00
Coal (1,000t) 4342.8 4427.7 60.6 18030.0
Gas (terrajoules) 1636.6 6977.0 0.0 40610.0
0il (1,000t) 8.76 13.25 0.00 90.30
Briquettes (1,0000) 13.54 37.76 0.00 216.30

where Qy represents the electricity sent out (in kwh) by the i-th plant in the t-th year;
K represents the capacity of the plant (in mw);
L represents labour (number of employees);
F, represents fuel usage (in terrajoules);
tis a time trend;
the B; are unknown parameters to be estimated;

the Vs are iid N(0,0,%) random errors, which are assumed to be independently

distributed of the Uys;

the U,s are non-negative random variables associated with technical
inefficiency, which are assumed to be independently distributed, such

that the distribution of Uy, is obtained by truncation at zero of the
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normal distribution with mean, Ly, and variance, 6°, where L is defined
by
Wi = 8o+ 01 Cit + B2A; + 3:S;c + 8By (6.2)
and  Cy represents capacity factor;'
A, represents the average age of installed units;
Si represents the average size of installed units (in mw);

Bi is a dummy variable which takes the value 1 when brown coal is used and 0

when black coal is used; and
the &; are unknown parameters to be estimated."'

As discussed in Chapter 4, we replace 6,” and ¢° with 6. ’=0°+6,” and Y=6%/(G,’+0").
This transformation has advantages in the estimation process, where y can be searched
between zero and one to obtain a suitable starting value for an iterative maximisation
process. Values of the 22 unknown parameters in the above stochastic frontier and

inefficiency model are simultaneously estimated by the method of maximum likelihood.

It should be noted, that the four firm-specific factors included in the analysis are not
the only factors which could possibly influence the degree of technical inefficiency of
plants. A variety of management factors, such as the experience of managers and the
degree of bureaucratic and/or union constraints upon management could also be
expected to have an influence upon the technical efficiency of a plant. Data on such

variables have not yet been collected.

The above model specification permits certain firm-specific factors to shift the mean of
the technical inefficiency effects. It is possible that the firm-specific factors considered
in the study may not have a significant influence upon the degree of technical

inefficiency of electricity generating plants. This hypothesis, along with a number of

10 Capacity factor, in this study, is defined as the ratio of the actual power sent out to the amount of
power that theoretically could be sent out if all units produced to their name-plate ratings for 100% of
the time with no down-time and no wastage.

1 Note that a time trend was included in the inefficiency model in an earlier analysis. This was
included to account for the possibility of technical efficiency change through time resulting from
influences which had not been already accounted for in the model. This trend variable was found to
be insignificant and hence has been omitted from the models discussed in this Chapter.
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other hypotheses relating to the inefficiency effects, are tested in the following section.
Furthermore, we recall from Chapter 2, that the translog functional form, assumed in
the above specification, is a more general representation of the production structure
than is often assumed in empirical analyses of production, where simpler forms, such as
the Cobb-Douglas, have been more prevalent. The translog form permits more general
substitution, scale and technical change possibilities than simpler forms, such as the
Cobb-Douglas, but at the expense of needing to estimate substantially more
parameters. If the production technology is suitably represented by a simpler form,
then the estimation of unnecessary parameters will result in inefficient estimates.
Hence, a number of hypotheses, regarding restrictions upon this functional form are

considered in the following section.

6.4 Results and Discussion

6.4.1 Maximum-likelihood Estimates

The maximum-likelihood estimates of the parameters of the translog stochastic frontier
and inefficiency model, defined by equations (6.1) and (6.2), are obtained using the
computer program, FRONTIER Version 4.1, discussed in detail in Chapter 7. These
estimates are presented in the first column of Table 6.2. Asymptotic standard errors
are presented in parentheses below each estimate. The ratios of the estimated
coefficients to their corresponding standard errors (t-ratios) provide an indication of
the statistical significance of the coefficients. Only three of the estimates of the
coefficients associated with the production inputs and technical change have t-ratios
larger than 1.96 in absolute value, suggesting that very few of them are significantly
different from zero at the five per cent level. Furthermore, only eight of the -
coefficients have t-ratios larger than one in absolute value. This may suggest that the
model is a fairly poor fit. The consideration of these t-ratios, however, can be
misleading on two counts. First, the sizes of these tests will not be equal to five
percent when more than one test is conducted in sequence; and the second, and
probably the most important point, is that multicollinearity, resulting from the inclusion

of second order terms, may be contributing to the high standard errors observed. If
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Table 6.2
Maximum-likelihood Estimates of the Stochastic Frontier and Inefficiency Model

for Electricity Generation in Australia

Coefficient Parameter Translog Translog (neutral  Cobb-Douglas
technical change)

Stochastic Frontier

Intercept Bo -1.17 -1.70 -3.16
(0.98) 0.73) (0.15)
log(Capital) B, -0.71 -0.80 0.112
0.29) (0.25) (0.041)
log(Labour) B> -0.46 -0.41 0.017
(0.26) (0.22) (0.027)
log(Fuel) Bs 1.62 1.59 0.982
(0.23) 0.21) (0.037)
[log(Capital)]* Ba -0.102 -0.058
(0.058) (0.052)
[log(Labour))* Bs 0.010 0.065
(0.056) (0.051)
[log(Fuel)]’ Bs -0.018 0.028
(0.068) (0.059)
log(Capital)log(Labour) B 0.25 0.26
0.11) (0.10)
log(Capital)log(Fuel) Bs 0.06 0.01
0.13) 0.12)
log(Labour)log(Fuel) Be -0.13 -0.210
0.13) (0.099)
log(Capital)t Bio 0.0082
(0.0069)
log(Labour)t Bi1 -0.0092
(0.0078)
log(Fuel)t Biz 0.0032
(0.0067)
t Bis -0.027 0.004 0.0068
(0.035) 0.011) (0.0029)
t Bia -0.00007 0.00029
(0.00096) (0.00088)
Variance Parameters
o’ 0.00234 0.00300 0.0049
(0.00042) (0.00038) (0.0015)
Y 0.162 0.234 0.40
(0.064) (0.067) (0.22)
Inefficiency Model
Intercept o 0.14 -0.009 -0.33
0.13) 0.071) 0.15)
Capacity factor & -0.00593 -0.00567 -0.0036
(0.00022) (0.00077) (0.0015)
Age of units 5, 0.0100 0.0146 0.019
(0.0018) (0.0024) (0.0044)
Size of units 5; 0.000106 0.000174 0.00038
0.000085) (0.000029) (0.00024)
Brown coal o4 0.114 0.189 0.304
(0.023) (0.039) (0.060)
Log-likelihood Function 185.16 182.01 159.50
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this is the case, the consideration of these individual t-ratios may lead to the omission

of some important coefficients, resulting in misspecification of the model.

6.4.2 Tests of Hypotheses
A more appropriate testing procedure is to simultaneously test the significance of

groups of coefficients. In this study the generalised likelihood-ratio test is used. This

involves the calculation of
A=-2{log[L(Ho)]-log[L(H1}, (6.3)

where L(Hp) and L(H;) are the values of the likelihood function under the null and
alternative hypotheses, respectively. This A-statistic has asymptotic chi-square
distribution, with degrees of freedom equal to the difference between the number of

parameters involved in Hp and H,."?

The first hypothesis test considered is a test of the null hypothesis of Hicks-neutral
technical change. Technical change is Hicks-neutral if the coefficients of the
interactions between the logarithms of the inputs and the time trend are all zero. This
is the first null hypothesis considered in Table 6.3, i.e., Ho: B1o=P11=P12=0. The
maximum-likelihood estimates of the parameters of the model defined by equations
(6.1) and (6.2), with these restrictions imposed, are listed in the second column of
Table 6.2. As can be seen from the results in Table 6.3, the value of the likelihood-
ratio statistic is calculated to be 6.30, which is less than 7.81 (the 5% critical value
from the ys>-distribution). Hence the null hypothesis of Hicks-neutral technical change
is not rejected, implying that technical change has not favoured the use of one

particular input over another in this industry.

The second null hypothesis considered in Table 6.3 specifies that there has not been
any technical change over the sample period. This test involves a test of the
restrictions that all the coefficients associated with the time trend are equal to zero,

i.e., testing Ho: B1o=Pi11=...=P14=0. The results for this test, listed in Table 6.3, show a

12 As noted in Chapter 3, this statistic has a distribution which is a mixture of chi-square distributions
when the null hypothesis specifies that the y-parameter is zero.
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Table 6.3
Tests of Hypotheses of Parameters of the Stochastic Frontier and Inefficiency

Model for Electricity Generation in Australia

Null Hypothesis Log- Test Statistic  Critical Decision
likelihood A Value
Value
Ho: B1o=B11=P12=0 182.01 6.30 7.81 Accept Hyp
Ho: Bio=B11=...=P14=0 177.27 15.78 11.07 Reject Hp
Ho: Bs=Ps=...=P14=0 159.50 51.32 18.31 Reject Ho
Ho: y=00=08,=...=0,=0 154.34 61.64 5.14-11.91 Reject Hyp
Ho: 8,=80,=6;=0,=0 155.97 58.38 9.49 Reject Hy

test statistic of 15.78 which exceeds the ys’-critical value of 11.07, resulting in a

rejection of the null hypothesis of no technical change."

The third null hypothesis that is considered in Table 6.3 is that the Cobb-Douglas
production frontier with neutral technical change is an adequate representation of the
data. This null hypothesis is specified by Ho: Bs=Ps=...= B12=P14=0. The maximum-
likelihood estimates of this Cobb-Douglas model are listed in the last column of Table
6.2. The value of the log-likelihood function has reduced substantially to 159.50. This
provides a generalised likelihood-ratio test statistic of 51.32 which exceeds the sz_
critical value of 18.31 by a large amount. Thus we confidently reject the Cobb-
Douglas form, given the specification of the translog frontier model. It therefore
appears that the extra effort involved in estimating and analysing the translog form is
warranted in this instance. Furthermore, we note that the rejection of the translog
functional form because of the small t-ratios associated with the individual B-

coefficients would have involved poor statistical inference.

We now turn our attention to the estimates of the coefficients associated with the

technical inefficiency effects of the model specification. We note that, in column 1 of

3 This hypothesis test, and all other hypothesis tests listed in Table 6.3 are conducted with the
unrestricted translog as the model under the null hypothesis. Since we have seen that the hypothesis
of Hicks-neutral technical change is not rejected, it could be argued that the translog with Hicks-
neutral technical change should be used as the model for subsequent hypothesis tests. These tests
were also conducted, but have not been reported because none of the conclusions differ from those in
Table 6.3.
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Table 6.2, the estimated coefficients associated with the y- and the d-parameters
(except &) are much larger than their corresponding standard errors. Thus the
indications are that these terms are significant additions to the model. However, even
though multicollinearity is unlikely to have as large an influence upon these
coefficients, as was the case with the P-coefficients, we conduct two generalised

likelihood-ratio tests to confirm our observations.

First, we consider a test of the null hypothesis that the technical inefficiency effects are
absent in this industry. The omission of Uj is equivalent to imposing the restrictions
specified in the null hypothesis, Hy: y=8p=0;=...=8,=0. The relevant information for the
test of this hypothesis test are in Table 6.3. The generalised likelihood-ratio statistic is
calculated to be 61.64, which is substantially larger than the critical value range of 5.14
to 11.91. Thus we reject the null hypothesis of no technical inefficiency effects, given

the specifications of the stochastic frontier and inefficiency model.

One question of particular interest to this study, is whether the four firm-specific
factors, considered in the inefficiency model, have a significant influence upon the
degree of technical inefficiency associated with the plants. Thus a test of the null
hypothesis that Ho: 8,=8,=8;=8,=0 is conducted. The results of this test are listed in
the final row of Table 6.3. The generalised likelihood-ratio statistic is calculated to be
58.38, which is much larger than the xf-cn’tical value of 9.49. Hence the null
hypothesis that these four factors do not have an influence upon technical inefficiency

is also rejected in this case.

6.4.3 Economic Plausibility of the Resuits

Production Structure

When the conclusions of the above five tests of hypotheses are considered together,
the preferred model appears to be that, defined by equations (6.1) and (6.2), with
Hicks-neutral technical change imposed. The estimates of the parameters of this model
are given in the second column of Table 6.2. Due to the complexity of the translog
form, the economic plausibility of the estimated coefficients is not easy to assess
without first calculating some more easily interpreted estimates. Thus, the estimated

values of the production elasticities of the three inputs, evaluated at the sample means,
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Table 6.4
Key Estimates Derived From the Transiog Frontier and Inefficiency Model With
Hicks-Neutral Technical Change

Description Estimate
Capital elasticity 0.170
(0.038)
Labour elasticity -0.022
(0.034)
Fuel elasticity 0.932
(0.040)
Returns-to-scale parameter 1.080
(0.022)
Technical change 0.0074
(0.0026)

are given in Table 6.4 (above). Also given in Table 6.4 are the estimates for the
returns-to-scale parameter and the annual percentage change in production due to
technical change. Approximate standard errors of these estimates are listed in

parentheses under each estimate.

The estimated elasticities have the expected positive signs, except for labour, but the
estimate is not significantly different from zero at the 20% level using an asymptotic t-
test. The production elasticity for capital is 0.170 and that for fuel is 0.932. These
results are not unlike those seen in many past analyses of electricity production. For
example, in their analysis of 111 privately owned steam-electric generating plants in the
US, Schmidt and Lovell (1979) obtained production elasticities which are not
significantly different from zero for labour and also obtain a value close to one for the
elasticity of fuel. Kopp and Smith (1980) conducted preliminary analyses of 43 private
and public coal-fired plants in the US, using the three inputs of capital, labour and fuel,
and decided to omit the labour input from the reported analysis completely. Kopp and
Smith (1980, p.1053) argued that “capital and fuel appear to be the most important
inputs to the production technology” and that labour “appears to bear a direct
relationship to the scale of the plant”. Thus it appears that the elasticity estimates in
Table 6.4 are similar to those obtained in other studies and that, in particular, the

insignificant labour elasticity is not unusual in electricity generation.
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The estimated returns-to-scale parameter of 1.080 indicates mildly increasing returns
to scale. This value is significantly different from zero, according to an asymptotic t-
test. This result again does not conflict with the findings in previous studies. If
anything, the scale elasticity obtained here is slightly smaller than those reported in
previous studies. For example, Kopp and Smith (1980) report values ranging from
1.142 to 2.131 for a variety of estimation methods and capital vintages. Given that
many of these past studies are based upon data a decade or more before the data used
in this study (e.g., Kopp and Smith use data from 1969 to 1973), it is not surprising
that unexhausted scale economies diminish as the plants being analysed become
progressively larger. This observation conforms with the conclusions of Christensen
and Greene (1976) who investigate differences in scale economies in US electric power

generation between 1955 and 1970 using a translog cost function.

The final estimate listed in Table 6.4 is a measure of technical change. The value of
0.0074, indicates that the industry has experienced a rate of technical progress over the
sample period of approximately 0.74 per cent per year. This indicates that a
hypothetical plant could produce 7.4 per cent more output in 1991 than could be
produced in 1981, using the same levels of inputs. This estimate of technical progress
is found to be significantly different from zero using an asymptotic t-test. The
statistical significance of the technical change estimate conforms with the earlier
finding in this study, of the coefficients associated with the time trend being a
significant addition to the model, using a generalised likelihood-ratio test (see the

second hypothesis test in Table 6.3).
Technical Inefficiency Effects

The maximum-likelihood estimates of the variance ratio parameter, vy, and the &-
parameters for the preferred model are listed towards the bottom of the second column
of Table 6.2. All of these estimates have t-ratios which are larger than 1.96 in absolute
value, with the exception of &. These significant t-ratios are not surprising, given the
conclusions of the likelihood-ratio tests above. The interpretation of the y-estimate of
0.234 is not as clear in this model specification as it i in the half-normal stochastic
frontier (i.e., the model where all the §; are zero), where it could be shown to be a

simple function of the ratio of the variance of the inefficiency error term to the sum of
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the variances of the two error terms. For the model specification used in this study, it
may be loosely interpreted as an indication of the amount of unexplained variation in
the technical inefficiency effects, relative to the sum of this value and the variance of

the random error, V.

The signs of the d-parameters need to be considered carefully. The negative sign of
the estimated coefficient of capacity factor indicates that an increase in capacity factor
results in a decrease in the value of the technical inefficiency effect and hence an
increase in technical efficiency. This conforms with the expectation that a plant which
is permitted to utilise more of its capacity is likely to appear to be more technically
efficient using the measures defined in this study. The estimated coefficient associated
with the age of the generating units at a plant is observed to be positive. Thus, the
older plants tend to have greater levels of technical inefficiency relative to the newer
plants. This also conforms with what one would expect, given that the capital measure
used in this study is simply name-plate capacity, and hence that no allowances have
been made for the effects of embodied technical change in this capital measure. The
positive sign on the estimate of the coefficient of the size of units in a plant is
somewhat surprising. It was expected that technical inefficiency would decrease as the
size of the generating units increase, because of labour savings, etc. One possible
explanation for this unexpected sign is that the plants with smaller unit sizes are more
flexible in their ability to adjust to unexpected demand variation."* The positive sign
on the estimated coefficient of the dummy variable associated with the use of brown
coal is consistent with expectations. The plants which are using this lower quality
brown coal must handle larger volumes of coal than the black coal plants. Hence it is
not surprising that this contributes to the level of the technical inefficiency effects for

these plants.
Technical Efficiencies of Plants

The technical efficiencies of each plant in each year can be predicted from the
estimated model. Given the stochastic frontier and inefficiency model defined by
equations (6.1) and (6.2), the technical efficiency of production of the i-th plant in the

t-th year is defined by

* Tom Cowing suggested this interpretation in a personal communication.
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TE; = exp(-Uy). (6.4)

This is predicted using the conditional expectation of exp(-U,), given the value of
Ei=Vi-Uy. This expression is presented in Appendix 2 for the model involved in

Chapter 4.

The technical efficiency predictions for our preferred model, calculated by the
FRONTIER program, are listed in Table 6.5. They are also plotted in Figures 6.1a and
6.1b. These range in value from 0.618 for Morwell in 1990-91 to 1.000 for Vales
Point B in 1982-83 and 1983-84. The mean of technical efficiencies in this industry is
calculated to be 0.925. This suggests that, on average, plants produce 92.5 per cent of
the output that could be potentially produced with the same bundle of inputs by a
technically efficient plant. This figure is comparable to estimates of mean technical
efficiency reported in other studies of electricity generation. For example, Kopp and
Smith (1980) report estimated mean technical efficiencies of 0.846 and 0.954 from the
estimation of stochastic frontier models for two different capital vintages. The
estimates of mean technical efficiency for electricity generation, reported in the
literature, tend to be larger, on average, than those reported for many other industries.
For example, mean technical efficiencies reported in analyses of agricultural industries
are usually in the region of 0.6 to 0.7." The higher levels of mean technical efficiency
in electricity generation are most likely a consequence of the size of the plants and
hence the resources that they have available to ensure that they are always aware of,

and using, the latest advances in technology.

It should be noted, however, that the measures of technical efficiency, reported in this
paper, are calculated relative to a frontier that has been estimated using a sample of
firms taken from the Australian industry only. If we were to estimate a frontier using
data taken from electricity industries from a number of countries, it is conceivable that
the mean technical efficiency of these Australian firms may be lower, relative to this

“international best-practice frontier”.

BRefer to Battese (1992) for a survey of applications of frontier production functions to agricultural
industries.
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Table 6.5
Technical Efficiencies for 13 Power Plants in Australia, 1981-82 to 1990-91

Plant 81-82 82-83 83-84 84-85 85-86 86-87 87-88 88-89 89-90 90-91 MEAN
Loy Yang A 0.804 0981 0979 0.984 0.995 0996 0995 0.962
Hazelwood 0905 0.845 0.843 0.852 0.826 0.828 0.821 0.777 0.817 0.835
Yallourn W 0.988 0992 0987 0984 0972 0977 0957 0957 0973 0.976
Morwell 0.887 0911 0.886 0813 0.772 0.747 0.725 0.646 0618 0.778
Bayswater 0996 0.996 0995 0.996 0997 0997 0.996
Eraring 0997 0996 0995 0992 0.992 0993 0994 0.992 0994 0.994
Liddell 0989 0992 0991 0948 0922 0919 0.888 0.888 0.860 0.933
Munmorah 0990 0982 0920 0.937 0906 0.878 0.863 0.857 0.788 0.902
Vales Point B 1.000 1.000 0997 0996 0.994 0.993 0985 0994 0991 0.994
Wallerang C 0.989 0983 0992 0996 0955 0994 0990 0989 0.931 0.98
Bunbury 0.877 0.849 0.761 0.716 0.710 0.663 0.716 0.706 0.681 0.742
Muja 0996 0.997 0.996 0996 0994 0995 0993 0.996 0997 0997 0.996
Kwinana 0971 0.933 0947 0951 0.968 0979 0983 0967 0.957 0.935 0.959
MEAN 0.950 0.956 0.939 0.936 0930 0922 0916 0.933 0.904 0.891 0.925

The means of the technical efficiencies of each plant are presented in the last column of
Table 6.5 and are graphed in Figure 6.2. These range in value from 0.742 for Bunbury
to 0.996 for Bayswater and Muja. It is interesting to note that the four least efficient
plants, appear to also be the oldest and smallest plants in the sample."® These plants
have also had their capacity factors reduced over the sample period. The addition of
extra capacity in the system has resulted in an excess of available capacity because of a
lower than expected expansion of demand for electricity over the sample period.
Hence a number of the hypothesised factors appear to be contributing to the low mean

technical efficiencies of these four plants.

The means of the predicted technical efficiencies in each of the ten years during the
sample period, presented in the bottom row of Table 6.5, are reproduced in Figure 6.3.
A gradual decline is observed in this plot, with mean technical efficiencies declining by
approximately 6 per cent over the sample period. This figure should not be considered
in isolation. Recall that a value of 7.4 per cent is estimated for the effect of technical
change. Thus the combined effect of these two influences could be a small overall
increase in productivity for the average plant. One should also note, that the four

plants which have the lowest technical efficiencies and which have also experienced the

16 This observation can be made when the technical efficiencies listed in Table 6.5 are compared with
the data used in estimation which is listed in Appendix 3.
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Figure 6.1a
Technical Efficiencies for 13 Power Plants in Australia, 1981-82 to 1990-91
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Figure 6.1b
Technical Efficiencies for 13 Power Plants in Australia, 1981-82 to 1990-91
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Figure 6.2
Mean Technical Efficiencies for 13 Power Plants in Australia,
1981-82 to 1990-91*
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greatest decline in technical efficiencies (see Figures 6.1a and 6.1b) are the smallest
plants in the sample. Hence, if the technical efficiencies were weighted by the scale of
the plant, the resulting measure of the average decline in technical efficiency would be

much smaller than that indicated by Figure 6.3.

6.4.4 A Comparison with the Two-stage Approach

The 19 parameters of the stochastic frontier and inefficiency model, defined by
equations (6.1) and (6.2), with Hicks-neutral technical change imposed, are estimated
simultaneously in the above analysis. Given that the majority of past analyses of the
determinants of technical inefficiency have estimated the parameters of similar models
in two stages, we also estimate the above model in this way for comparative purposes.
The first stage involves the ML estimation of the parameters of the stochastic frontier
model, defined by equation (6.1), assuming that the U are independently and
identically distributed as truncations at zero of an N(8,0%) distribution. The predicted
technical efficiencies, exp(-Uy), are obtained from this model. The second stage of the
estimation process involves the regression of the negative of the logarithms of the
predictions of the technical efficiencies from the estimated first-stage model upon the

four firm-specific factors."” This involves the estimation of
-log(T:Eit ) = 0o + 04 Cie + 0 A+ 03Sic + 0uBi + Wy (6.5)

where TAE;t is the technical efficiency prediction from the first-stage model and the W;,

is an error term, such that -Wjy < 09 + 04C;¢ + 00 Ay + 03S; + 0uB;:. The range of Wy,
must be limited in this way to ensure that the values of -log( TE; ) do not become

negative and hence that "fEh does not exceed one. Ordinary least-squares (OLS)
estimation of the parameters of equation (6.5) is unlikely to be optimal, because the
non-normality and bounded range of the error term, Wy, is not taken into account. A
more suitable estimation method would involve recognising that this is a limited
dependent variable model, and to consider estimation using an approach such as that

proposed by Tobin (1958). However, since none of the predicted efficiencies from the

7 The negative of the logarithms of the technical efficiency prediction, produced by the FRONTIER
program, is chosen as the dependent variable in this regression so that the estimated coefficients of the
firm-specific factors would have similar interpretations to those in the single-stage model.
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first-stage estimation were exactly equal to one, this method could not be
implemented. Hence OLS estimation is used in this instance. The OLS estimates of
the parameters in the model, defined by equation (6.5), are listed in Table 6.6. The
signs of the estimated coefficients are the same (as those obtained in the single-stage
estimation) in the case of capacity factor and coal quality, but they differ for age and
size. The t-ratios, however are all less than 1.96 in value and a joint test of the
significance of the four regressors yields an F-value of 0.882 which also is insignificant.
Thus the message from this two-stage procedure is that the four firm-specific factors
do not explain any of the variation in technical efficiency. This result is in direct
contrast to those obtained from the single-stage procedure discussed earlier. This may
be viewed as support for the single-stage procedure, as it is argued that the
simultaneous estimation of all parameters is more efficient than the two-stage

estimation procedure.

6.5 Conclusions

The primary contribution of this study is a substantial addition to the stock of
knowledge regarding the structure of production and relative efficiencies in coal-fired
electricity generation plants in Australia. Since there have been no previous
econometric analyses of electricity generation using plant-level data from different
States in Australia, and also that there have not been any past analyses of relative
efficiency, other than those using simple partial measures (such as fuel conversion

ratios), this analysis has broken new ground in this industry.

The main conclusions are that, when compared with the translog production frontier,
the Cobb-Douglas functional form is not an adequate representation of the production
technology in the electricity generation industry in Australia. The industry appears to
be characterised by Hicks-neutral technical progress and mildly increasing returns to
scale. The mean level of technical efficiency is estimated to be 0.925. The mean
technical efficiencies of the plants vary from 0.742 to 0.996, with capacity factor, age
and size of generating units in plants, and coal quality found to have a significant
influence upon technical inefficiency of generation. The mean level of technical
efficiency appears to decline over the sample period. This is likely to be due in part to

the increase in excess capacity in the industry during this time.
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Table 6.6
OLS Estimates of the Second-stage Regression of
Technical Inefficiency Effects

Regressor Estimate
Constant{ct) 0.083
(0.022)
Capacity factor -0.00050
(0.00030)
Average age of unit -0.00064
(0.00069)
Average size of unit -0.000016
(0.000025)
Coal quality 0.007
(0.022)

This study also makes two secondary contributions. The first is as an illustration of the
single-stage estimation of stochastic frontiers which incorporate a model for the
technical inefficiency effects which has been used in only a few studies to date. The
second contribution is the humble beginnings of a data base containing information on
electricity generating plants in Australia. This data base will hopefully grow over time
with additional States providing data on their electricity generating plants. It is hoped
that cost information can also be made available in the near future. With the planned
partial de-regulation of the electricity generating industry, the public reporting of
statistics on power plants will be very important for monitoring purposes. Data on the
variables we tried to obtain for this study will most likely form part of the minimum

reporting requirements.

A number possible extensions to this work could be considered. These include:
comparing the results when tonnes of coal is used as the fuel measure; estimating
separate functions for brown coal and black coal plants; and analysis involving extra
data from other States and/or the inclusion of cost data. Negotiations are also
currently under way with the funding body (the AESIRB) regarding a new project
which will include data on plants from the US and Europe in the analysis so as to
assess the performance of Australian plants relative to international best practice. That
study is also likely to involve the use of both stochastic frontier and DEA methods so

as to investigate the robustness of results to choice of methodology.
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