
Chapter 4

A Stochastic Frontier Production Function
Incorporating a Model for Technical Inefficiency

Effects

4.1 Introduction

Most theoretical stochastic frontier production functions do not explicitly formulate a

model for the technical inefficiency effects. Empirical papers, in which the issue of the

explanation of these inefficiency effects is raised, include Pitt and Lee (1981), Kalirajan

(1981, 1982, 1989), Kalirajan and Flinn (1983) and Kalirajan and Shand (1989). These

papers adopt a two-stage approach, in which the first stage involves the specification

and estimation of the stochastic frontier production function and the prediction of the

technical inefficiency effects of the firms involved. The second stage of the analysis

involves the specification of a regression model for the predicted technical inefficiency

effects of the firms in terms of various explanatory variables and an additive random

error. The parameters of this second-stage inefficiency model have been generally

estimated by using ordinary least-squares regression. Kalirajan (1981) specifies that

the random errors in the second-stage model for technical inefficiency effects have

half-normal distribution. In all these empirical studies, the methods of estimation of the

parameters of the second-stage inefficiency model are based on assumptions which are

clearly false, because the effects of estimation of the stochastic frontier production

function are not accounted for.1

Pitt and Lee (1981) investigate the sources of technical inefficiency by specifying that

firm intercepts in the stochastic frontier are a function of firm characteristics. The

authors regress the estimated firm intercepts on the specified firm characteristics or

incorporate the firm characteristics into the production frontier and jointly estimate the

parameters involved.

1 For example, many studies assume the technical inefficiency effects (usually denoted by 11) are
independently and identically distributed in the first-stage estimation. They then regress the predicted
Uis upon firm-specific factors in a second stage. The specification of this second-stage model clearly
conflicts with the assumption that the 11; are identically distributed.
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More recently, models for the technical inefficiency effects in stochastic frontier

production functions have been proposed in Kumbhakar, Ghosh and McGuckin

(1991), Reifschneider and Stevenson (1991) and Huang and Liu (1994). Kumbhakar,

Ghosh and McGuckin (1991) assume that the technical inefficiency effects are non-

negative truncations of a normal distribution with mean, which is a linear function of

exogenous factors whose coefficients are unknown, and an unknown variance. In

addition, Kumbhakar, Ghosh and McGuckin (1991) consider allocative inefficiencies

associated with the side conditions for profit maximisation not being exactly satisfied.

In the application of their model to US dairy farms, they find that the technical

inefficiency effects are significantly related to the level of education of the farmers and

the size of their farming operations. Technical and allocative inefficiency effects are

investigated in the context of a frontier production function of Zellner-Revankar

(1969) type, which proves to be significantly different from the Cobb-Douglas model.

Reifschneider and Stevenson (1991) propose a model for the technical inefficiency

effects of the stochastic frontier production function involving the sum of a non-

negative function of relevant explanatory variables and a non-negative random

variable, which is assumed to have half-normal, exponential or gamma distribution.

This model is applied in the analysis of data on electricity generation in the US during

three different time periods. The hypothesis, that the inclusion of the model for the

technical inefficiency effects does not change the estimates of the frontier function

parameters, is rejected in their study.

Huang and Liu (1994) consider a stochastic frontier production function in which the

non-negative technical inefficiency effects are a linear function of variables involving

firm characteristics. The additive random error of the model for the technical

inefficiency effects is assumed to be the truncation of a normal distribution with mode

zero, whose point of truncation is dependent on the firm characteristics, such that the

technical inefficiency effects are non-negative. Hence the random errors are not

required to be non-negative, as in the Reifschneider and Stevenson (1991) model.

Huang and Liu (1994) apply their inefficiency frontier model in the analysis of cross-

sectional data from the electronics industry in Taiwan and assume that the explanatory

variables in the model for the technical inefficiency effects are a function of firm-
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specific variables and their interactions with the explanatory variables of the stochastic

frontier. This makes their model a non-neutral shift of the traditional average response

function, in that the marginal products of inputs and marginal rates of technical

substitution depend on the firm-specific variables in the model for the technical

inefficiency effects.

The model specified in the following section is a special case of the model of

Kumbhakar, Ghosh and McGuckin (1991), which is extended to account for panel

data. In doing so the model can account for both technical change in the stochastic

frontier and time-varying technical inefficiency effects, along with other exogenous

factors which influence the technical inefficiency effects. The model is applied in the

analysis of farm-level data from an Indian village in Section 4.3. Some concluding

comments are made in Section 4.4.

4.2 Model Specification

Consider the stochastic frontier production function for panel data, which is defined by

equation (4.1),

Yi, = exp(xit(3 + Vit - Uit)	 (4.1)

where Yit denotes the production for the i-th firm at the t-th period of observation

(i=1,2,...,T; i = 1,2,...,N);

xi, is a (lxk) vector of values of known functions of inputs of production

associated with the i-th firm at the t-th period of observation;

p is a (kxl) vector of unknown parameters to be estimated;

the Vats are assumed to be iid N(0, av 2) random errors, independently

distributed of the U its which are non-negative random variables, associated

with technical inefficiency of production;

the U its are assumed to be independently distributed, such that U i, is obtained

by truncation (at zero) of the normal distribution with mean, zitO, and

variance, a2;

zit is a (lxm) vector of firm-specific variables (and possibly input variables)

which may vary over time; and
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8 is an (mx 1) vector of unknown coefficients of the explanatory variables for

the technical inefficiency effects.

Although it is assumed that there are T time periods for which observations are

available for at least one of the N firms involved, it is not necessary that all the firms

are observed for all T periods.

Equation (4.1) specifies the stochastic frontier production function (e.g., of Cobb-

Douglas or transcendental-logarithmic form) in terms of the original production values.

However, the technical inefficiency effects, the Uits, are assumed to be a function of a

set of explanatory variables, the z its, and an unknown vector of coefficients, 8. The

explanatory variables in the inefficiency model would be expected to include any

variables which explain the extent to which the production observations fall short of

the corresponding stochastic frontier production values, exp(xit13 + Vit). The zit-

vectors may have the first element equal to one and include some firm- and time-

specific variables. If the first z-variable has value one and the coefficients of all other

z-variables are zero, then this case is similar to the models specified in Stevenson

(1980) and Battese and Coelli (1988, 1992). If all elements of the 8-vector are equal

to zero, then the technical inefficiency effects are not related to the z-variables and so

the half-normal distribution originally specified in Aigner, Lovell and Schmidt (1977) is

obtained. If interactions between firm-specific variables and input variables are

included, then a non-neutral stochastic frontier model, similar to that proposed in

Huang and Liu (1994), is obtained.

The technical inefficiency effect, UA, in the stochastic frontier model (4.1) can be

equivalently specified as,

Uit = zit8 + Wit,
	 (4.2)

where the random variable, WA, is defined by the truncation of the normal distribution

with zero mean and variance, a2, such that the point of truncation is -z its, i.e.,

Wit � -zits. These assumptions are consistent with UA being a non-negative truncation

of the N(zi,8, &)-distribution.

The assumption that the U its are independently distributed for all t = 1,2,...,T, and i =

1,2,...,N, is obviously a simplifying, but restrictive, condition. Alternative models are
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required to account for possible correlated structures of the technical inefficiency

effects over time.

It should be noted that the inefficiency frontier model (4.1)-(4.2) is not a generalisation

of the Battese and Coelli (1992) model for time-varying technical inefficiency effects

(see Chapter 3), even if they are time invariant. The Battese and Coelli (1992) model

specifies that the technical inefficiency effects are the product of an exponential

function of time and non-negative firm-specific random variables, i.e.,

Uit = expEri(t-T)1}U1, where ri is an unknown parameter and U; is a non-negative

truncation of the N(1..t, &)-distribution. This model does not define the technical

inefficiency effects in terms of additional explanatory variables. Further, the Battese

and Coelli (1992) model implies particular correlated structures for the technical

inefficiency effects over time for particular firms.

When the model in equation (4.1) is assumed, the technical efficiency of production for

the i-th firm at the t-th observation is defined by

TEit = exp(-Uit) = exp(-zit8 - Wit). 	 (4.3)

If for two firms i and j, z ieS + WA > zit8 + Wit, then it does not necessarily imply that the

inefficiency effects for another time period, s, will have the same relationship, namely,

Zis8 W, > z;s8 + W s. Hence the same ordering of firms in terms of technical

efficiency of production at one period of time does not necessarily apply for other time

periods, as for the Battese and Coelli (1992) model.

The inefficiency frontier production function (4.1)-(4.2) differs from that of

Reifschneider and Stevenson (1991) in that the W-random variables are not identically

distributed, as in the latter paper. Reifschneider and Stevenson (1991) assume that the

W-random variables in the model for the technical inefficiency effects are non-negative

random variables which have half-normal, exponential or gamma distribution. In our

model, the W-random variables could be negative if z ieS > 0 because WA is not less than

-zits, but they are independent truncations of the normal distribution with zero mean

and variance, 62.

The technical inefficiency frontier model (4.1)-(4.2) is closely related to the models

proposed by Kumbhakar, Ghosh and McGuckin (1991) and Huang and Liu (1994), in
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that it is an extension of these models to account for panel data and hence may be used

to account for both technical change and time-varying technical inefficiencies. This

extension for time-series data has the same distributional assumptions as if the cross-

sectional dimension of the data was increased. However, for our panel-data model

there would be particular interest in the behaviour of the technical efficiencies of

production of the panel of firms over time.

The parameters of the model defined by (4.1) and (4.2) may be estimated by the

method of maximum likelihood. The derivation of the likelihood function and its

partial derivatives with respect to the parameters of the model are presented in

Appendix 2. These functions are expressed in terms of the variance parameters
2	 2	 2
=av +o and y=-/as , to facilitate obtaining the maximum-likelihood estimates.

4.3 Empirical Example

Data on paddy farmers from the Indian village of Aurepalle are considered for an

empirical application of the stochastic frontier and technical inefficiency model

discussed in the previous section. These data were collected by the International

Crops Research Institute for the Semi-Arid Tropics (ICRISAT). Battese and Coelli

(1992) use data on 15 farmers over the ten-year period from 1975-76 to 1984-85.

Because 21 observations were not available for some farmers in some of the years in

the ten-year period, only 129 observations are used in that paper. Refer to Chapter 3

for further discussion of these data.

We have endeavoured to obtain data on farmer characteristics that may explain the

level of the technical inefficiency of production. Information on the age and years of

schooling of 14 of the 15 farmers are available. Hence the data in the present study

comprise 14 farmers and a total of 125 observations. Information on other variables,

such as the frequency of contacts with agricultural extension officers, access to credit

and the use of high-yielding varieties, fertilisers, etc., were not readily available. While

not providing a thorough analysis for practical policy purposes, the use of age, years of

formal schooling and year of observation in the inefficiency model satisfactorily

illustrate the methodology involved.
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The stochastic frontier production function to be estimated is similar in structure to

that considered in Chapter 3. It is defined by

log(Yit) = PO + O i log(Landit) + p2(ILit/Landit) + 133log(Labourit)

+ 13410g(Bullocksit) + 13 51og (Costsit) + 136(Yearit) + V it - Uit	 (4.4)

where the technical inefficiency effects are assumed to be defined by,

Uit = 8,9 + Si (Ageit) + 82 (Schoolingit) + 83(Yearit) + Wit	 (4.5)

where

Age is the age of the primary decision maker in the farming operation;

Schooling refers to the number of years of formal schooling of the primary

decision maker;

Year indicates the year of the observation involved;

the WA are as defined in the previous section;

and all other variables are as defined in Chapter 3.

The variables in the production frontier (4.4) are those which are in the preferred

model in Battese and Coelli (1992). However, the stochastic properties of that model

are identical to the ordinary-least squares model, given the assumptions of the

stochastic frontier model with time-varying technical inefficiency effects proposed in

Battese and Coelli (1992). In this chapter, however, the technical inefficiency effects

are assumed to be present in the stochastic frontier and be linearly related to age and

education of the paddy farmers and the year of observation involved, such that an

intercept parameter is included.

The inefficiency frontier model, defined by equations (4.4) and (4.5), account for both

technical change and time-varying technical inefficiency effects. The Year variable in

the stochastic frontier production function, defmed by equation (4.4), accounts for

Hicksian neutral technical change. However, the Year variable in the model for the

technical inefficiency effects, defmed by equation (4.5), specifies that the technical

inefficiency effects may change linearly with respect to time. Given that the technical

inefficiency effects are stochastic and have the specified distributional assumptions, the

parameters associated with technical change and the time-varying technical
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inefficiencies are identified, in addition to the intercept parameters in the stochastic

frontier and the model for the technical inefficiency effects.

Maximum-likelihood estimates of the parameters of the model, defined in equations

(4.4) and (4.5), are obtained using the computer program, FRONTIER (see Coelli,

1994). This computer program is discussed in detail in Chapter 7. The parameter

estimates are given in the second last column of Table 4.1, indicated by Model 1. The

last column of Table 4.1 gives the maximum-likelihood estimates for the parameters of

the preferred frontier model, to be discussed below, in which some parameters in the

general model are specified to be zero.

The signs of the 0-estimates are all as expected, with the exception of the negative

estimate of the bullock-labour variable. Possible reasons for the parameter associated

with bullock labour being negative are discussed in Saini (1979), Battese, Coelli and

Colby (1989) and in Chapter 3 above. The positive coefficient of the proportion of

land which is irrigated confirms the expected positive relationship between the

proportion of irrigated land and total production.

The coefficients of the explanatory variables in the model for the technical inefficiency

effects, defined by equation (4.5), are of particular interest to this study. The estimate

for the coefficient associated with Age is positive, which indicates that the older paddy

farmers are more technically inefficient than the younger ones. The estimate for the

coefficient associated with Schooling is negative. This implies that the paddy farmers

with greater years of schooling tend to be less technically inefficient. However, the

relationship is very weak, because the coefficient is highly insignificant (by an

asymptotic t-test). The negative coefficient of the Year variable suggests that the

technical inefficiencies of production of the paddy farmers decline throughout the ten-

year period.

The estimate for the variance parameter, y = 62/6s2 , indicates that the variance, o2,

associated with the inefficiency effects is about 95 percent of the total of the two

variances.
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Table 4.1

Maximum-likelihood Estimates for Parameters of Stochastic Frontier Production

Functions and Inefficiency Models for Paddy Farmers in Aurepalle

Variable
	 Parameter Model 1	 Model 2

Stochastic Frontier
Constant

log(Land)

IL/Land

log(Labour)

log(Bullocks)

log(Costs)

Year

2.86	 3.01
(0.60)*	 (0.57)
0.37	 0.37

(0.12)	 (0.13)
0.38	 0.42

(0.21)	 (0.23)
0.85	 0.79

(0.13)	 (0.12)
-0.33	 -0.28
(0.11)	 (0.10)
0.071	 0.084

(0.031)	 (0.032)
0.014	 0

(0.013)

po

13i

R2

P3

04

P5

136

Inefficiency Model
Constant	 80	 -1.5	 0

(2.8)
Age	 81	 0.035	 0.0154

(0.034)	 (0.0046)
Schooling	 62	 -0.006	 0

(0.077)
Year	 63	 -0.57	 -0.34

(0.60)	 (0.20)
Variance Parameters

2
OS

I
Lo s -likelihood Function

0.74
(0.75)
0.952

(0.047)
-22.60

0.40
(0.20)
0.922

(0.048)
-23.06

* Estimated standard errors are given in parentheses to two
significant digits. The estimated coefficients are given to the
corresponding numbers of digits behind the decimal places.
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Generalised likelihood-ratio tests of null hypotheses that the technical inefficiency

effects are absent or that they have simpler distributions are presented in Table 4.2.

The second column of Table 4.2 gives the values of the logarithm of the likelihood

when the restrictions specified by the null hypothesis in the first column are applied.

The null hypothesis that the technical inefficiency effects are absent from the model

(i.e., Ho: y = So = ... = 83 = 0) is rejected. The second null hypothesis considered in

Table 4.2, Ho: y = 0, specifies that the technical inefficiency effects are not stochastic.

If the parameter, y, is zero, then the variance of the technical inefficiency effects is zero

and so the model reduces to a traditional mean response function in which the

variables, age and schooling of the farmers, are included in the production function.

However, if the fly-parameter is equal to zero, then the parameters, 80 and 83 , are not

identified, given that the production function involves an intercept parameter and year

of observation. In this case the model reduces to a traditional average response

function in which the constant term is f30-80, the coefficient of year of observation is

136-83 and the age and years of schooling of the farmers are explanatory variables along

with the other variables specified in equation (4.4) If there are no random technical

inefficiency effects in the model, then the parameters, 80 and 83 , are not identified.

However, the null hypothesis that the technical inefficiency effects are not random is

rejected.

The null hypothesis that the technical inefficiency effects are not a linear function of the

year of observation and the age and schooling of the farm operator,

Ho: 81 = 82 = 83 = 0, is also rejected. This indicates that the joint effect of these three

explanatory variables on the levels of technical inefficiencies is significant, although the

individual effects of one or more of the variables may not be statistically significant.

However, the hypothesis that the technical inefficiency effects have no intercept

parameter, Ho : 80 = 0, is not rejected.

Because the estimate for the intercept parameter in the model for the technical

inefficiency effects is small relative to its estimated standard error, the model was re-

estimated without this parameter. As expected, the estimates for the parameters in this

model were little different from those obtained for the more general model, but the

estimated coefficients of year of observation in the frontier and schooling in the
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Table 4.2

Tests of Hypotheses for Parameters of the Stochastic Frontier and Inefficiency

Model for Paddy Farmers in Aurepalle

Null Hypotheses

0

Log-
likelihood
Function

-37.59

-36.08

-27.94

-22.89

-23.06

-36.25

-39.02

Test
Statistic

X

29.99

26.97

10.69

0.59

0.92

26.39

31.93

Critical
Value*

5.14-10.37

5.14-7.05

7.81

3.84

7.81

2.71

5.99

Decision

Reject Ho

Reject H.

Reject Ho

Accept Ho

Accept Ho

Reject Ho

Reject Ho

Ho: y = 80 = ... = 83 = 0

Ho: y = 0

Ho: 81 = 82 = 83 = 0

Ho: 80 = 0

Ho: (36=80=82=0

Restrict: 136 = So = 82 =

Ho: y=0

Ho:51=83=0

* Critical values are calculated in the manner discussed in Chapter 3.

inefficiency model ([36 and 152 , respectively) were less than their estimated standard

errors. In fact, the generalised likelihood-ratio statistic for testing the null hypothesis,

Ho: 06 = 80 = 82 = 0, is not significant and so we consider that the preferred stochastic

frontier and inefficiency model has the three parameters, 136, 80 and 452 , equal to zero.

The maximum-likelihood estimates for the parameters of the preferred frontier model

are presented in the last column of Table 4.1. All the parameter estimates for this

model are considerably larger than their estimated standard errors. The generalised

likelihood-ratio statistic for testing the null hypotheses of the absence of stochastic

inefficiency effects, Ho: y = 0, and of the absence of age and year effects in the model

for the technical inefficiency effects, Ho: 8 1 =83 = 0, in the preferred frontier model are

highly significant (see Table 4.2).
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The parameter estimates for the preferred stochastic frontier production function

indicate that the elasticity of land is estimated to be 0.37. The estimated elasticity for

labour, 0.79, is quite large. The elasticity for bullock labour is significantly less than

zero. The estimated elasticity for other input costs is relatively small, 0.084, but is

significantly different from zero. These estimates imply that the returns-to-scale

parameter is estimated to be 0.965, with estimated standard error of 0.048. Thus the

technology of the paddy farmers is such that the hypothesis of constant returns to scale

would be accepted.

The technical inefficiency effects in the preferred model are significant, such that older

farmers tend to have larger values of the technical inefficiency effects. However, the

technical inefficiency effects for the paddy farmers tend to decrease over time.

The technical efficiencies of the paddy farmers in the different years involved are

obtained using the predictor, presented in equation (A2.10) of Appendix 2. The

parameters involved are estimated by their maximum-likelihood estimates. The

predicted technical efficiencies obtained for the 14 paddy farmers involved are

presented in Table 4.3.

The predicted technical efficiencies show considerable variability among the paddy

farmers. The technical efficiencies of individual paddy farmers also vary up and down

over time. Some farmers had the highest level of technical efficiency in one or more

years, but had the lowest technical efficiency in at least one year, as well. For example,

Farmer 1 had the highest technical efficiencies in the years 1975-76 and 1977-78, but

also had the lowest technical efficiencies among the paddy farmers in 1978-79 and

1984-85. These values indicate that there is considerable variation in the levels of

technical efficiencies over time for given paddy farmers, although there is a general

decline in the technical inefficiencies of the paddy farmers over time. Given that the

values of the explanatory variables in the model for the technical inefficiency effects

(i.e., age of farmer and year of observation) change little from year to year, the

variability in the technical efficiencies of the farmers in the panel is presumably largely

due to random variations in the inefficiency model.

60



Table 4.3

Technical Efficiencies of Paddy Farmers in Aurepalle

Farmer 75-76 76-77 77-78 78-79 79-80 80-81 81-82 82-83 83-84 84-85

1 .887 .615 .928 .606 .856 .730 .733 .944 .839 .814

2 .724 .628 .898 .622 .853 .712 .727 .944 .835 .873

3 .518 .215 .835 .847 .908 .653
4 .540 .287 .751 .902 .777 .565 .744 .876 .872 .918

5 .460 .606 .886 .768 .837 .778 .904 .838 .918 .852

6 .730 .510 .922 .866 .794 .767 .761 .913 .884 .885

7 .505 .310 .914 .824 .759 .715 .763 .899 .797
8 .758 .465 .749 .873 .690 .906 .936 .899 .908
9 .623 .229 .792 .793 .820 .742 .763 .901 .904 .928
10 .664 .737 .875 .812 .913 .723 .928 .940 .898 .943
11 .718 .399 .819 .819 .868 .755 .885 .904 .861 .941
12 .569 .486 .886 .799 .764 .753 .915 .946 .914 .937
13 .420 .402 .888 .800 .825 .293 .570
14 .410 .884 .861 .896

mean .624 .450 .859 .794 .839 .683 .800 .913 .875 .900

4.4 Conclusions

The results obtained in the empirical application of the proposed model for the

stochastic frontier production function and technical inefficiency effects exhibit some

interesting differences from those obtained in the application of the time-varying model

for technical inefficiency effects presented in Battese and Coelli (1992) and discussed

in Chapter 3. Given the specifications of the latter model, it is concluded that there are

no technical inefficiencies of production, even though the analysis in Battese and Coelli

(1992) involves essentially the same sample of paddy farmers as in this study.

However, the Battese and Coelli (1992) model assumes that the technical inefficiency

effects are the product of an exponential function of time and the (random) inefficiency

effects for firms in the last period of the panel. The present model specifies that the

technical inefficiency effects are a linear function of some firm-specific variables and

time, together with an additive stochastic error which is assumed to be independent

over time and among firms.
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One possible reason for the differences in the results obtained in Chapter 4 relative to

those in Chapter 3 (in particular the differences in the significance of the y-parameter in

the two analyses) could be that the model specification in Chapter 3 imposes a very

rigid structure upon the pattern of the technical inefficiency effects. In that model the

rankings of the firms in terms of technical inefficiency are assumed to not differ from

one time period to the next and the technical inefficiency effects are also assumed to

follow a particular expontial time pattern which is governed by a single parameter, fl.

This rigidity may be masking the existence of inefficiencies which only become

apparent when the less rigid model specification in this chapter is considered. It

appears that when the inefficiency effects of a particular firm are allowed to differ

randomly between firms and time periods inefficiencies are observed which previously

were not visible in the more restrictive panel data model considered in Chapter 3.2

The two models form Chapters 3 and 4 are clearly separate and so it is difficult to

conclude which is the "best" model for the data involved. However, we do observe

that the logarithm of the likelihood function for the data is greater under the

assumptions of the above model than for the one proposed in Battese and Coelli

(1992).

The next two chapters consider two additional applications of the stochastic frontier

model specification proposed in this chapter. These applications involve the analysis of

data on farmers from three different villages in India and an analysis of data on

electricity generation by coal-fired power stations in Australia.

2 An interesting issue arises from this discussion. When one is estimating a regular error-components
panel data model and finds that the variance of the firm effect is insignificantly different from zero
one would normally then revert to estimating an OLS regression. However, in the case of a stochastic
frontier panel data model, if the variance parameter (y) is found to be insignificantly different from
zero one should not immediately assume that OLS is appropriate. One should first estimate a
stochastic frontier model which does not assume the inefficiency effects are related across time and
then conduct a hypothesis test to see if the y-parameter is non-zero in that model.
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Chapter 5

Identification of Factors Which Influence the
Technical Inefficiency of Indian Farmers

5.1 Introduction

The measurement of the productive efficiency of a farm relative to other farms or to

the "best practice" in an industry has long been of interest to agricultural economists.

Much empirical work has centred on imperfect, partial measures of productivity, such

as yield per hectare or output per unit of labour. Farrell (1957) suggested a method of

measuring the technical efficiency of a firm in an industry by estimating the production

function of a "fully-efficient firm" (i.e., a frontier production function). The technical

efficiency of a farm may be defined as the ratio of its observed output to that output

which could be produced by a fully-efficient firm, given the same input quantities.

Many subsequent papers have applied and extended Farrell's ideas. This literature may

be roughly divided into two groups according to the method chosen to estimate the

frontier production function, namely, mathematical programming versus econometric

estimation. Debate continues over which approach is the most appropriate method to

use. The answer often depends upon the application considered. The mathematical

programming approach to frontier estimation is usually termed Data Envelopment

Analysis (DEA).

The primary criticism of the DEA approach is that measurement errors can have a

large influence upon the shape and positioning of the estimated frontier. Aigner,

Lovell and Schmidt (1977) and Meeusen and van den Broeck (1977) independently

proposed the stochastic frontier production function to account for the presence of

measurement error in production in the specification and estimation of frontier

production functions. Stochastic frontiers have two error terms, one to account for

technical inefficiency of production and the other to account for other factors such as

measurement error in the output variable, luck, weather, etc. and the combined effects

of unobserved inputs on production. This favourable property of stochastic frontiers

comes with a price, namely, that the functional form of the production function and the
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distributional assumptions of the two error terms, must be explicitly specified. Bauer

(1990) and Greene (1993) present comprehensive reviews of the econometric

estimation of frontiers.

In the agricultural economics literature the stochastic frontier (econometric) approach

has generally been preferred (see Chapter 2). This is probably associated with a

number of factors. The assumption that all deviations from the frontier are associated

with inefficiency, as assumed in DEA, is difficult to accept, given the inherent

variability of agricultural production, due to weather, fires, pests, diseases, etc.

Furthermore, because many farms are small family-owned operations, the keeping of

accurate records is not always a priority. Thus much available data on production are

likely to be subject to measurement errors.

There have been many applications of frontier production functions to agricultural

industries over the years. Some of these papers are reviewed in Chapter 2. Battese

(1992) and Bravo-Ureta and Pinheiro (1993) also provide surveys of applications in

agricultural economics, the latter giving particular attention to applications in

developing countries. Bravo-Ureta and Pinheiro (1993) also draw attention to those

applications which attempt to investigate the relationship between technical efficiencies

and various socio-economic variables, such as age and level of education of the farmer,

farm size, access to credit and utilisation of extension services. The identification of

those factors which influence the level of technical efficiencies of farmers is,

undoubtedly, a valuable exercise. The information provided may be of significant use

to policy makers attempting to raise the average level of farmer efficiency. Most of the

applications which seek to explain the differences in technical efficiencies of farmers

use a two-stage approach. The first stage involves the estimation of a stochastic

frontier production function and the prediction of farm-level technical inefficiency

effects (or technical efficiencies). In the second stage, these predicted technical

inefficiency effects (or technical efficiencies) are related to farmer-specific factors using

ordinary least-squares regression. This approach appears to have been first used by

Kalirajan (1981) and has since been used by a large number of agricultural economists,

the most recent example of which may be found in Parikh and Shah (1994).
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Recent papers by Kumbhakar, Ghosh and McGuckin (1991), Reifschneider and

Stevenson (1991), Huang and Lui (1994) and Battese and Coelli (1995) specify

stochastic frontiers and models for the technical inefficiency effects and simultaneously

estimate all the parameters involved. The Battese and Coelli (1995) stochastic frontier,

discussed in Chapter 4, is specified for panel data where the model for the technical

inefficiency effects involves farmer-specific variables and year of observation. Battese

and Coelli (1995) apply their model in the analysis of a small panel of ten years of data

on fourteen paddy farmers from the village of Aurepalle in India. In this chapter a

variant of the Battese and Coelli (1995) model is applied in the analysis of data for 34

farmers from this village and also in the analysis of data for farmers from two other

Indian villages.

The method of simultaneous estimation of all parameters is preferred to the two-stage

approach, referred to above, because the latter is not satisfactory on statistical

grounds. There are inconsistencies in the assumptions regarding the distribution of the

technical inefficiency effects in the two-stage approach. In the first stage, the technical

inefficiency effects are usually assumed to be independently and identically distributed

random variables. However, in the second stage, the predicted technical inefficiency

effects are regressed upon a number of explanatory variables involving farmer- or

farm-specific factors. The predicted technical inefficiency effects in this second

equation are not independent and even their corresponding true values would only be

identically distributed if the coefficients of the explanatory variables in the efficiency

relationship were zero.

The remainder of this chapter consists of four sections. In Section 5.2, the data on the

farmers from the three Indian villages are briefly described. In Section 5.3, the

proposed stochastic frontier and inefficiency model is discussed. In Section 5.4, the

empirical results are presented and several hypotheses are tested. In the final section

some conclusions are made.

5.2 Panel Data on Indian Agriculture

During the decade from 1975-76 to 1984-85, the International Crops Research

Institute for the Semi-Arid Tropics (ICRISAT) collected farm-level data on the
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agricultural operations of a sample of farmers in three different regions in India. These

Village Level Studies (VLS) were designed to obtain reliable data on the broad agro-

climatic sub-regions in the semi-arid tropics of India, in order to better understand

traditional agriculture in the region, with a view to encouraging improved methods of

agricultural production.

The three villages of Aurepalle, Kanzara and Shirapur were selected by ICRISAT for

the in-depth study of the farming operations involved because they were considered

broadly representative of the semi-arid tropics of India. These villages are located in

the districts of Mahbubnagar, Akola and Sholapur, respectively, and are approximately

70 km south, 550 km north and 336 km west of the Headquarters of ICRISAT at

Patancheru, near Hyderabad in the State of Andhra Pradesh. The three districts were

selected because they represented the major soil types, rainfall and cropping patterns in

the semi-arid tropics of India. Within each of the selected villages, farmers were

stratified into small, medium and large farming operations. Samples of ten farmers

were then selected from each of the three groupings in each of the three villages. The

numbers of farmers involved in the three villages are 34, 33 and 35 for Aurepalle,

Kanzara and Shirapur, respectively. These numbers exceed 30 because some farmers

withdrew from the survey program and were replaced by other farmers from the

appropriate size category. The total numbers of yearly observations involved in our

analyses are 273, 289 and 268, for Aurepalle, Kanzara and Shirapur, respectively.

A brief description of the agro-climatic conditions in the three districts involved is

presented below. Walker and Ryan (1990) present a detailed discussion of the regions

and the VLS data. Aurepalle is characterised by red soils of shallow-to-medium depth

which generally have low water-retention capacities. Kanzara and Shirapur have black

soils, which are deeper and have higher water-retention qualities than Aurepalle's red

soils. The soils in Shirapur are regarded as better than the soils in Kanzara. Mean

annual rainfalls over the ten-year period were 611 mm in Aurepalle, 629 mm in

Shirapur and 850 mm in Kanzara, with year-to-year variation between 400 and 1200

mm. The majority of rain falls in the period from June to October. The predominant

crops in the three villages are castor, sorghum and paddy in Aurepalle; cotton, pigeon

pea and sorghum in Kanzara; and sorghum, chickpea, wheat and vegetables in
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Shirapur. More details on the various input variables, and the age and education levels

of the farmers, are in Table 5.1 , which is presented and discussed in Section 5.4.

5.3 The Stochastic Frontier and Inefficiency Model

The stochastic frontier production function which is specified for the farming

operations in each village is

log(Yit) = flo + Pilog(Landit) + 132(ILA/Landit) + 133log(Labourit)

+ 134(1-1LilLabourit) + 1351og(Bullocks it) + P61og(Costsit)

+137(Yearit) + Vit - Uit	 (5.1)

where the technical inefficiency effects, U it , are such that they are independently

distributed and arise by truncation (at zero) of the normal distribution with variance,

&, and mean, _t it, where Ilit is defined by

[tit = 80 + 81(Ageit) + 82(Schooling it) + 83(Sizeit) + 84(Yearit) (5.2)

where HL is the quantity of hired labour; Size of the farming operation is proxied by

the Land variable; and all other variables are as defined in Chapters 3 and 4.

The expected signs on the 8-parameters are not clear in all cases. The age of the

farmers could be expected to have a positive or a negative effect upon the size of the

inefficiency effects. The older farmers are likely to have had more farming experience

and hence have less inefficiency. However, they are also likely to be more

conservative and thus be less willing to adopt new practices, thereby perhaps having

greater inefficiencies in agricultural production.

Schooling is expected to have a negative effect upon technical inefficiency effects.

That is, we expect that a greater level of formal education will be associated with

smaller values for the technical inefficiency effects.

The sign of the coefficient of the Size variable is expected to be negative. This

expectation is partially based upon the likelihood that the farmers with smaller

operations may have alternative income sources which are more important and hence

put less effort into their farming operations compared to the larger farmers. It is also

possible that the modified Cobb-Douglas form used in this analysis does not
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appropriately accommodate a range of scale economies and hence that some scale

inefficiency may be included in the estimated technical inefficiencies of production.

The coefficient of year of observation in the model for the technical inefficiency effects

is expected to be negative. This would imply that the levels of the technical

inefficiency effects of farmers in the three villages tend to decrease over time. That is,

farmers tend to become more technically efficient over time. This time-trend variable

is expected to pick up the influence of factors which are not included in the inefficiency

model which vary systematically through time. For example, it may reflect the

influence of government agricultural extension programs over the sample period.

The stochastic frontier production function, defined by equation (5.1), is identical to

those estimated in Chapters 3 and 4, except that the ratio of hired labour to total

labour used, HL/Labour, is included to account for possible differences in the

productivity's of hired and family labour in the farming operations in the three villages.

This variable was not considered in the analyses of the Aurepalle paddy farmers in

Chapters 3 and 4 because of earlier analyses which had indicated that hired and family

labour were equally productive in the farming operations of the Aurepalle paddy

farmers. The study in this chapter, however, considers both paddy and non-paddy

farmers in Aurepalle, as well as farmers from two other villages, hence it is appropriate

to include this variable in our models to allow hired and family labour to have differing

productivity's.

The stochastic frontier production function, defined in equation (5.1), is a linearised

approximation of a Cobb-Douglas production function in which the land and labour

variables are linear combinations of irrigated and unirrigated land and hired and family

labour, respectively. For more on this particular specification, see Battese, Coelli and

Colby (1989), Battese and Coelli (1992) and the discussion in Chapter 3. A test of the

hypothesis that hired and family labour are equally productive is obtained by testing the

null hypothesis that the coefficient, 13 4, of the labour-ratio variable, HL/Labour, is zero.

This hypothesis is of particular interest in Indian agriculture, cf. Bardhan (1973). A

similar test can be defined for the two different components of the land input.

As stated in Chapter 4, there is interest in testing the null hypothesis that the technical

inefficiency effects are not stochastic, i.e., Ho: y = 0, given the level of the inputs
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involved. Further, the null hypothesis that the technical inefficiency effects are not

related to age or education of farmers, the size of their farming operations and the year

of observation, is specified by Ho: 8 1 = ...= 84 = 0. Tests of these hypotheses are of

interest in assessing the characteristics of the technical inefficiency effects for farmers

in the three Indian villages involved.

5.4 Results and Discussion

A summary of the sample data on the different variables in the stochastic frontier and

inefficiency model, defined by equations (5.1) and (5.2), is presented in Table 5.1. The

sizes of the holdings are small relative to those seen in modern western agriculture.

The average farm sizes vary from 4.29 ha in Aurepalle to 6.02 ha and 6.68 ha in

Kanzara and Shirapur, respectively. The smaller holdings in Aurepalle could be

attributed to the greater use of irrigation in Aurepalle (an average of 0.95 ha per farm

in Aurepalle versus approximately 0.5 ha per farm in the other two villages). Labour

use is higher in Aurepalle and Kanzara where paddy planting and cotton picking are

labour-intensive activities. The use of bullock labour and costs of other inputs in

Aurepalle and Kanzara are higher than in Shirapur. Much of this is due to the high

input use required with the above two crops. The average age of farmers vary from

43.7 years in Kanzara to 53.9 years in Aurepalle, while average education levels are

quite low, varying from about two years in Aurepalle to about four years in Kanzara.

5.4.1 Maximum-likelihood Estimates

The maximum-likelihood estimates for the parameters in the stochastic frontier and

inefficiency model are presented in Table 5.2 for the three villages involved. The

estimated 8-coefficients associated with the explanatory variables in the model for the

technical inefficiency effects are worthy of particular discussion. We observe that age

has a negative effect upon the technical inefficiency effects in Aurepalle and Kanzara.

That is, the older farmers tend to have smaller technical inefficiencies (i.e., are more

technically efficient) than younger farmers in Aurepalle and Kanzara, but the reverse is

true in Shirapur. This mixture of signs is not unexpected, given the various effects that

farmer age may have upon efficiency, as discussed in the Section 5.3. The result for

Aurepalle differs from that reported in Chapter 4 in the analysis of Aurepalle paddy
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Table 5.1

Summary Statistics for Variables in the Stochastic Frontier and Inefficiency

Models for Farmers in Three Indian Villages

Variable	 Sample
Mean

Standard
Deviation

Minimum
Value

Maximum
Value

Value of Output (Rupees)
Aurepalle 3679.6 4559.2 10.15 18094
Kanzara 5231.3 7226.5 121.58 39168
Shirapur 3270.7 3482.7 22.00 26423

Land (hectares)
Aurepalle 4.29 3.87 0.20 20.97
Kanzara 6.02 7.40 0.40 36.34
Shirapur 6.68 5.49 0.61 24.19

Irrigated Land (hectares)
Aurepalle 0.95 1.41 0 7.09
Kanzara 0.51 1.22 0 9.79
Shirapur 0.64 1.07 0 4.96

Labour (hours)
Aurepalle 2206.2 2744.1 26 12916
Kanzara 2578.5 3145.7 58 15814
Shirapur 1674.8 1576.9 40 11146

Hired Labour (hours)
Aurepalle 1468.3 2349.6 0 11662
Kanzara 1841.2 2852.3 6 14130
Shirapur 719.1 768.4 24 4823

Bullock Labour (hours)
Aurepalle 528.2 604.6 8 4316
Kanzara 570.6 765.1 12 3913
Shirapur 342.3 282.2 14 1240

Cost of Other Inputs (Rupees)
Aurepalle 651.02 981.06 0 6205.0
Kanzara 628.96 978.49 0 5344.3
Shirapur 464.49 1038.00 0 6746.0

Age of Farmer (years)
Aurepalle 53.9 12.6 26 90
Kanzara 43.7 9.6 23 67
Shirapur 48.2 10.2 24 72

Schooling of Farmer (years)
Aurepalle 2.01 2.87 0 10
Kanzara 4.03 4.10 0 12
Shira s ur 2.94 3.35 0 16

* Sample sizes are 273, 289 and 268 for Aurepalle, Kanzara and Shirapur, respectively.
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farmers. However, the size of the farm is not considered as a factor in the inefficiency

model in the Chapter 4 analysis and, furthermore, that study only involved those

farmers who grew some amount of paddy while the present analysis involves all sample

farmers in Aurepalle, including those who have no paddy fields.

The coefficient of Schooling is observed to be negative in Aurepalle and Shirapur, but

positive in Kanzara. That is, in the villages of Aurepalle and Shirapur, farmers with

greater years of formal education tend to be more technically efficient in agricultural

production. The positive value obtained for Kanzara is unexpected, but could be due

to the generally small numbers of years of formal schooling observed throughout the

sample (see Table 5.1). We hypothesise that the result may have been different if a

wider spread of education levels were observed.

The sign of the estimated coefficient of the Size variable in each village is negative, as

expected. This indicates that farmers with larger farms tend to have smaller technical

inefficiency effects than farmers with smaller operations. As discussed in Section 5.3,

this result may be due to a number of factors, one of which could be some scale

inefficiency being measured as technical inefficiency. We intend to investigate this

issue by replacing the modified Cobb-Douglas functional form with a modified translog

functional form in future work.

The coefficient of year of observation in the model for the technical inefficiency effects

is also estimated to be negative in all three villages. This implies that the levels of the

technical inefficiency effects of farmers in the three villages tend to decrease over time.

That is, farmers tend to become more technically efficient over time. This time-trend

variable may be picking up the influence of factors which are not included in the

inefficiency model. For example, it may reflect the positive influence of government

agricultural extension programs over the sample period.

Overall, the signs of the estimated 8-coefficients conform quite closely with our

expectations. Only the coefficient of schooling in Kanzara has a sign which is contrary

to our expectations. Note, however, that the ratio of this estimate to its estimated

standard error (t-ratio) is only slightly larger than one in value, indicating that this
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Table 5.2

Maximum-likelihood Estimates for Parameters of the Stochastic Frontier and

Inefficiency Models for Three Indian Villages*

Variable	 Parameter Aurepalle Kanzara Shirapur 

130

So

S2

S3

84

Stochastic Frontier
Constant

Land

IL/Land

Labour

HL/Lab our

Bullocks

Costs

Year

Inefficiency Model
Constant

Age

Schooling

Size

Year

Variance Parameters

Lo -likelihood Function

-5.62 -4.90 -4.69
(0.33) (0.37) (0.32)
0.264 0.066 0.012

(0.070) (0.066) (0.061)
0.093 0.083 -0.076

(0.058) (0.038) (0.030)
1.212 0.785 0.905

(0.076) (0.079) (0.060)
-0.00047 -0.000019 0.00020
(0.00012) (0.000091) (0.00040)
-0.430 -0.006 -0.086
(0.056) (0.060) (0.060)
0.009 0.098 0.002

(0.014) (0.011) (0.010)
0.0279 -0.0182 0.016

(0.0088) (0.0081) (0.012)

-1.8 0.80 1.37
(1.5) (0.35) (0.50)
-0.0150 -0.015 0.0133
(0.0092) (0.010) (0.0099)
-0.064 0.039 -0.217
(0.046) (0.033) (0.088)
-0.29 -0.083 -0.208
(0.14) (0.056) (0.082)
-0.36 -0.077 -0.39
(0.15) (0.046) (0.12)

2.19 0.39 0.96
(0.92) (0.20) (0.35)
0.9826 0.915 0.944

(0.0069) (0.040) (0.023)
-99.51 -80.29 -128.81

132

P3

P4

135

06

137

GS
2

I

* Estimated standard errors are given below the parameter estimates, correct to at least two significant
digits. The parameter estimates are given correct to the corresponding number of digits behind the
decimal places.
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estimate may not be statistically significant. Also note that this t-ratio is the smallest

among all the 8-estimates in any of the three villages.

The y-parameter associated with the variances in the stochastic frontier is estimated to

be greater than 0.9 in all of the three villages. Although this parameter cannot be

interpreted as the proportion of the variance of the inefficiency effects relative to the

sum of the variances of the inefficiency effects and the random variation, it indicates

that the random component of the technical inefficiency effects do make a significant

contribution in the analysis of agricultural production in the Indian villages involved.

The estimated coefficients of the stochastic frontier, defined by equation (5.1),

reported in Table 5.2, have signs and sizes which generally conform with those

obtained in past analyses of these data. The estimated coefficients of Land and Labour

are positive for all of the three villages. The coefficient of IL/Land is expected to be

positive, reflecting the higher productivity of irrigated land. However, for Shirapur the

coefficient of the proportion of irrigated land is estimated to be negative and

significantly different from zero. Further investigation is required to discern the basis

for this result.

If the productivity of hired labour was lower than that for family labour, then the

coefficient of HL/Labour would be negative. Negative estimates are obtained for

Aurepalle and Kanzara, but for Shirapur the estimated coefficient is positive.

However, the ratio of the estimated coefficient to the estimated standard error suggests

that hired and family labour in Kanzara and Shirapur are equally productive.

The estimated coefficients of bullock labour are negative for all three villages, but only

the estimate for Aurepalle is significantly different from zero. This negative influence

is contrary to what one would expect, but conforms with earlier analyses, reported by

Saini (1979), and Battese and Coelli (1992, 1995) and discussed in earlier chapters. A

number of explanations have been suggested for this result, the most often quoted is,

that the bullocks are often used for weed control and repairs of irrigation banks in poor

seasons when the land is less water-logged. Thus the quantity of bullock labour may

be acting as an inverse proxy for rainfall.
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5.4.2 Tests of Hypotheses
Formal tests of hypotheses associated with the technical inefficiency effects are

presented in Table 5.3. These tests of hypotheses involve the use of the generalised

likelihood-ratio statistic, which has been discussed in Chapter 3. The generalised

likelihood-ratio test is often preferred to the asymptotic t-test since the estimated

standard errors can sometimes be unreliable when they are calculated as a by-product

of the iterative procedure for ML estimation. Furthermore, the t-test can only be used

when the null hypothesis involves a single restriction.

The first null hypothesis considered in Table 5.3, Ho: y = So = = 84 = 0, specifies

that the inefficiency effects in the frontier model are not stochastic (i.e., a 2=0 and

hence y=0) and all the coefficients of the explanatory variables in the inefficiency model

are zero. This hypothesis implies that the technical inefficiency effects are, in fact, zero

or absent from the model, which, in turn, implies that the stochastic frontier model,

defined by equation (5.1), is equivalent to the traditional average response function.

This null hypothesis is clearly rejected by the data for all of the three villages involved.

Thus the traditional average response function is not an adequate representation for the

agricultural production in the three villages, given the specification of the stochastic

frontier and inefficiency model, defined by equations (5.1) and (5.2).

The second null hypothesis in Table 5.3, Ho: y = 0, specifies that the technical

inefficiency effects in the frontier are non-stochastic. This null hypothesis is also

strongly rejected for all three villages.

The third null hypothesis in Table 5.3, Ho: 80 = = 84 = 0, specifies that all the &-

parameters in the model for technical inefficiency effects in the stochastic frontier

production function have value zero (and hence that the inefficiency effects have half-

normal distribution). This hypothesis is also strongly rejected for all three villages.
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Ho: y = So =... = as =
-138.02 77.02 5.14-11.91 Reject Ho
-106.03 51.48 5.14-11.91 Reject Ho
-183.68 109.74 5.14-11.91 Reject Ho

-137.86 76.70 5.14-7.05 Reject Ho
-100.18 39.78 5.14-7.05 Reject Ho
-177.54 97.46 5.14-7.05 Reject Ho

= 0
-113.12 27.22 11.07 Reject Ho
-93.27 25.96 11.07 Reject Ho

-161.58 65.54 11.07 Reject Ho
= 0

-101.92 4.82 9.49 Accept Ho
-91.13 21.68 9.49 Reject Ho

-151.98 46.34 9.49 Reject H

Aurepalle
Kanzara
Shirapur

Ho: 'y = 0
Aurepalle
Kanzara
Shirapur

Ho: So = ... = 84
Aurepalle
Kanzara
Shirapur

H0 : 1 =... = 84
Aurepalle
Kanzara
Shira ur

Table 5.3

Tests of Hypotheses for Coefficients of the Explanatory Variables for the

Technical Inefficiency Effects in Stochastic Frontier Production Functions for

Three Indian Villages

Null Hypothesis	 Log-likelihood	 Test	 Critical	 Decision
	  Value	 Statistic, A	 Value 

The final null hypothesis considered in Table 5.3, Ho: 8 1 = = 84 = 0, specifies that all

the coefficients of the explanatory variables in the inefficiency model are equal to zero

(and hence that the technical inefficiency effects have truncated-normal distribution).

This null hypothesis is rejected for the villages of Shirapur and Kanzara, but it is

accepted for Aurepalle. Thus for Aurepalle, it could be concluded that the technical

inefficiency effects are not significantly influenced by the age and education of the

farmers, the size of the farming operation, and that they are not time-varying. Hence it

appears that, given the specifications of the stochastic frontier and inefficiency model,

defined by equations (5.1) and (5.2), the technical inefficiency effects for Aurepalle

farmers can be regarded as independent and identically distributed random variables

which arise from the truncation of a normal distribution with non-zero mean.

Thus, to summarise the tests of hypotheses in Table 5.3, it appears that there are

significant technical inefficiencies in the agricultural production in the three villages

considered in this study. In the villages of Shirapur and Kanzara, the explanatory
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variables (age, education, farm size and time) are observed to have a significant

influence upon the technical inefficiency effects. In Aurepalle, however, these variables

do not appear to have a significant influence. It could thus be concluded that there is

considerable unexplained variation in the technical inefficiency effects in Aurepalle,

suggesting the investigation of alternative explanatory variables, such as access to

credit and extension advice, is particularly warranted in the case of Aurepalle.

Several tests of hypotheses regarding the 0-parameters are also of interest.

Generalised likelihood-ratio tests of the null hypothesis that the coefficient of the hired-

labour ratio is zero are presented in Table 5.4 for the three villages. The null

hypothesis, HO: P4 =0, is rejected for farming operations in Aurepalle, but accepted for

Kanzara and Shirapur. The conclusion that hired and family labour are not equally

productive in Aurepalle may be associated with the labour-intensive operations

required in paddy production, and the nature of the well-developed labour market in

that region.

In our stochastic frontier production function, the cost of other inputs, such as

fertiliser, manure and pesticides, is included as an explanatory variable. It has been

suggested that this variable should not be used in a frontier production function,

because it is a composite variable which contains the costs of various items which are

likely to influence production in different ways. We maintain that the inclusion of this

variable is preferable to its exclusion, on the grounds that it should reduce the degree

of misspecification. Also considered in Table 5.4 is a test of the null hypothesis,

Ho: 06 =0, which specifies that the coefficient of the cost of other inputs is zero. For

Aurepalle and Shirapur, this null hypothesis is accepted, while for Kanzara it is

strongly rejected. This result may be due in part to the importance of cotton

production in Kanzara. The cotton plant is susceptible to a number of insect pests and

so the regular use of pesticides in cotton production appears to be a highly significant

factor in the agricultural production in Kanzara.

The final hypothesis considered in Table 5.4 relates to the question of technical change.

This involves a test of the null hypothesis, Ho: 13 7 =0, that the coefficient of year of

observation in the stochastic frontier is equal to zero. The test statistics indicate that

the null hypothesis of no technical change is rejected in Aurepalle and Kanzara, but is
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Table 5.4

Statistics for Tests of Hypotheses Involving Some Coefficients of the Stochastic

Frontier Production Functions for Three Indian Villages

Null Hypothesis Log-Likelihood	 Test Statistic	 Critical	 Decision
Function	 A.	 Value

Ho: 04 =
Aurepalle -104.90 10.78 3.84 Reject Ho
Kanzara -80.31 0.04 3.84 Accept Ho
Shirapur -128.97 0.32 3.84 Accept Ho

Ho: 136 = 0
Aurepalle -99.69 0.36 3.84 Accept Ho
Kanzara -111.28 61.98 3.84 Reject Ho
Shirapur -128.81 0.00 3.84 Accept Ho

Ho: 137 = 0
Aurepalle -103.32 7.62 3.84 Reject Ho
Kanzara -83.04 5.50 3.84 Reject Ho
Shira ur -129.80 1.98 3.84 Acce t H

accepted for Shirapur. We note that the coefficient of year of observation in the

stochastic frontier, p7 , is positive for Aurepalle, but negative for Kanzara. The latter

result is surprising and may merit further investigation. One possible reason why one

may observe technical regress is the situation where intensive cropping practices

reduce the nutrient content of the soil at a faster rate than fertiliser application

replenishes it. A closer inspection of the farming practices in Kanzara is required

before any conclusions can be made.

Finally, it is interesting to note that the conclusions of the generalised likelihood-ratio

tests listed in Table 5.4 are the same as those that would have been made if asymptotic

t-tests had been used. Thus, in this application, the standard errors of the ML

estimators appear to be well estimated using the Davidon-Fletcher-Powell algorithm

which is used in the program, FRONTIER.

5.4.3 Technical Efficiencies of Farmers
The technical efficiencies of farmers are predicted for each year in which they were

observed, using the method proposed in Battese and Coelli (1993) and presented in

Appendix 2. These predictions are derived from the estimated models presented in

Table 5.2. The predicted technical efficiencies of the farmers in Aurepalle, Kanzara
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and Shirapur are presented in Tables 5.5, 5.6 and 5.7, respectively. Also presented in

these tables are estimates for the mean technical efficiencies of each farmer (over the

ten-year period) and the mean technical efficiencies for farmers in each of the years

involved. The predicted technical efficiencies differ substantially within each village.

They range from quite small values of less than 0.1 to values in excess of 0.9. The

mean technical efficiencies of the farmers range from 0.353 for farmer 32 in Shirapur

to 0.921 for farmer 28 in Kanzara. The mean technical efficiencies of the farmers in

the three villages do not appear to differ substantially. They are 0.747 for Aurepalle,

0.738 for Kanzara and 0.711 for Shirapur.

To give a better indication of the distribution of the individual technical efficiencies,

frequency distributions of the technical efficiencies are plotted for Aurepalle, Kanzara

and Shirapur in Figures 5.1, 5.2 and 5.3, respectively. The plots are quite similar, with

a thin tail in the left of the distribution, gradually rising to a maximum in the 0.8 to 0.9

interval, and then dropping sharply in the 0.9 to 1.0 interval. The fact that the mode of

the distribution is not in this final interval offers support for the use of more general

distributions (than the often considered half-normal distribution) for the technical

inefficiency effects, such as the general truncated-normal distribution used in this study.

The annual mean technical efficiencies, which are presented in the bottom row of each

of Tables 5.5, 5.6 and 5.7, are plotted in Figure 5.4. A general upward trend in the

levels of mean technical efficiency is observed over the sample period in all three

villages. The mean technical efficiencies in Shirapur tend to follow a rather smooth

upward trend, in comparison with the more volatile results for Aurepalle and Kanzara.

There is also a suggestion of a reduction in the variability of the mean technical

efficiencies in the three villages towards the end of the ten-year period, relative to the

greater divergence in the values in the earlier part of the sample period. This could

reflect an improvement in the ability of the farmers to adjust their production methods

to the year-to-year changes in the agro-climatic environments in the regions involved.
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Table 5.5

Predicted Technical Efficiencies for Farmers in Aurepalle

Farm 75-76 76-77 77-78 78-79 79-80 80-81 81-82 82-83 83-84 84-85 Mean
1 .554 .590 .909 .764 .867 .737
2 .558 .573 .721 .351 .551
3 - .323 .879 .601
4 - .586 .790 .890 .805 .756 .765
5 .756 .772 .928 .587 .818 .700 .642 .918 .700 .550 .737
6 .745 .804 .908 .606 .825 .674 .651 .922 .702 .707 .754
7 .894 .837 - .543 .664 .850 .388 .873 .826 .865 .749
8 .841 .154 .802 .800 .618 .582 .615 .846 .785 .847 .689
9 .767 .825 .472 .880 - .664 .938 .709 .875 .766
10 .919 .749 .836 .887 .828 .607 .896 .905 .914 .838
11 .454 .599 .702 .795 .813 .475 .929 .681 .758 .689
12 .939 - .811 .779 .680 .486 .304 .842 .045 .538 .603
13 .715 .778 .834 .834 .375 .604 .932 .563 .850 .721
14 .648 .809 .799 .835 .860 .790
15 .411 .372 .931 .750 .834 .758 - - .676
16 .705 .220 .826 .846 .908 .647 - .692
17 .358 - .487 .595 - .480
18 .752 .452 .903 .890 .777 .799 .697 .869 .859 .851 .785
19 .665 .393 .662 .650 .704 .506 .676 .852 .638
20 .673 .365 .757 .906 .790 .588 .769 .843 .819 .874 .739
21 .620 .813 .888 .779 .825 .847 .890 .878 .905 .872 .832
22 .903 .452 .878 .879 .880 .456 .845 .837 .864 .874 .787
23 .890 .478 .800 .803 .707 .465 .649 .685
24 .875 .767 .933 .897 .847 .822 .805 .887 .848 .847 .853
25 .934 .231 .901 .869 .754 .583 .696 .716 .825 .690 .720
26 .654 .423 .930 .838 .764 .788 .827 .890 .749 .763
27 .833 .610 .802 .827 .653 .885 .920 .841 .847 .802
28 .748 .254 .785 .776 .781 .704 .702 .863 .823 .868 .730
29 .864 .765 .853 .800 .888 .826 .747 .829 .877 .887 .834
30 .807 .891 .913 .848 .926 .838 .932 .935 .874 .929 .889
31 .834 .505 .855 .857 .871 .728 .854 .859 .797 .905 .807
32 .694 .555 .895 .791 .741 .716 .881 .925 .869 .899 .796
33 .504 .463 .905 .822 .793 .312 .636 .634
34 .428 .894 .833 .844 - .750

Mean .738 .554 .836 .795 .776 .660 .680 .880 .766 .801 .747
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Table 5.6

Predicted Technical Efficiencies for Farmers in Kanzara

Farm 75-76 76-77 77-78 78-79 79-80 80-81 81-82 82-83 83-84 84-85 Mean
1 .526 .558 .683 .378 .493 .774 .569
2 .596 .353 .737 .670 .690 .609
3 - .552 .847 .596 .824 .790 .722
4 .832 .794 .598 .740 .729 .506 .881 .819 .896 .883 .768
5 .871 .750 .819 .309 .591 .440 .649 .875 .900 .885 .709
6 .916 .596 .653 .378 .614 .372 .738 .741 .883 .674 .657
7 .904 .460 .841 .602 .652 .458 .825 .817 .889 .852 .730
8 .856 .414 .425 .498 .530 .690 .569
9 .740 .523 .843 .669 .679 .915 .883 .675 .904 .759
10 .906 .844 .757 .602 .900 .640 .909 .773 .792
11 .919 .708 .735 .654 .843 .466 .585 .837 .947 .777 .747
12 .695 .365 .629 .687 .773 .754 .704 .860 .886 .879 .723
13 .847 .853 .850
14 .372 .880 .470 .132 .782 .617 .593 .897 .688 .603
15 .873 .809 .791 .565 .699 .625 .860 .866 .914 .820 .782
16 .739 .792 .415 .337 .804 .461 .606 .878 .908 .660
17 .702 .765 .597 .810 .826 .785 .748
18 .844 .793 .910 .819 .837 .639 .920 .924 .910 .851 .845
19 .867 .863 .605 .427 .249 .692 .534 .762 .660 .866 .652
20 .585 .908 .727 .830 .886 .551 .746 .793 .876 .767 .767
21 .768 .864 .431 .593 .706 .329 .783 .579 .896 .796 .674
22 .435 .654 .611 .686 .845 .464 .712 .759 .849 .847 .686
23 .863 .720 .479 .393 .709 .408 .740 .756 .721 .853 .664
24 .942 .848 .838 .891 .850 .635 .794 .811 .835 .851 .830
25 .854 .923 .855 .860 .823 .792 .867 .901 .932 .838 .864
26 .625 .553 .387 .452 - .504
27 .805 .631 .606 .545 .783 .449 .733 .657 .812 .798 .682
28 .947 .934 .895 .867 .930 .901 .933 .944 .942 .918 .921
29 .754 .908 .808 .722 .780 .562 .842 .883 .883 .874 .802
30 .836 .777 .681 .402 .794 .458 .818 .773 .824 .850 .721
31 .903 .827 .653 .837 .756 .660 .902 .870 .881 .876 .817
32 .792 .815 .659 .626 .454 .855 .908 .925 .870 .862 .777
33 .856 .908 .872 .868 .898 .747 .902 .925 .939 .936 .885

Mean .795 .757 .682 .598 .730 .573 .764 .802 .855 .838 .738
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Table 5.7

Predicted Technical Efficiencies for Farmers in Shirapur

Farm 75-76 76-77 77-78 78-79 79-80 80-81 81-82 82-83 83-84 84-85 Mean
1 .613 .679 .715 .869 .800 .890 .910 .874 .775
2 .375 .670 .328 .181 .389
3 .749 .882 .727 .916 .867 .903 .712 .633 .392 .754
4 - .707 .761 .802 .611 .821 .740
5 .568 .192 .340 .404 .608 .827 .721 .696 .599 - .551
6 .352 .833 .811 .850 .885 .917 .770 .742 .463 .549 .717
7 .276 .739 .606 .781 .575 - .595
8 .100 .298 .338 .764 .762 .637 .888 .900 .818 .877 .638
9 .022 .427 .099 .443 .556 .661 .468 .382
10 .361 .709 .523 .778 .629 .626 .806 .482 .450 .596
11 .390 .727 .496 .767 .872 .836 .897 .919 .896 .554 .735
12 .865 .859 .552 - .759
13 .479 .737 .801 .789 .819 .839 .798 .567 .862 .880 .757
14 .345 .806 .454 .721 .721 .886 .722 .855 .760 - .697
15 .180 .601 .885 .636 .936 .922 .903 .926 .765 .855 .761
16 .297 .445 .511 .346 .690 .700 .869 .900 .595
17 .316 .528 .743 .503 .685 .884 - .610
18 .400 .688 .668 .586 .588 .847 .871 .892 .765 .877 .718
19 .178 .588 .745 .695 .843 .696 .864 .887 .893 .712 .710
20 .471 .882 .773 .845 .943 .910 .919 .820
21 .224 .464 .360 .778 .826 .864 .876 .628
22 .647 .756 .854 .787 .829 .859 .558 .891 .641 .912 .774
23 .152 .416 .284
24 .341 .718 .818 .780 .855 .848 .872 .876 .852 .859 .782
25 .700 .623 .828 .781 .928 .861 .905 .886 .804 .806 .812
26 .416 .700 .565 .731 .808 .717 .804 .838 .796 .867 .724
27 .776 .865 .926 .889 .599 .897 .905 .905 .460 .802
28 .735 .808 .855 .660 .769 .710 .901 .911 .893 .890 .813
29 .376 .813 .791 .849 .808 .833 .799 .891 .845 .834 .784
30 .892 .904 .812 .873 .888 .874
31 .932 .852 .827 .870
32 .353 .353
33 .195 .501 .523 .689 .768 - .535
34 .713 .651 .530 .851 .830 .900 .867 .763
35 .892 .853 .863 .910 .883 .888 .933 .889 .893 .889

Mean .434 .674 .690 .687 .743 .760 .814 .833 .771 .753 .711
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Figure 5.3

Frequency Distribution of Predicted Technical Efficiencies of Farmers in

Shirapur
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Figure 5.4
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5.5 Conclusions

Stochastic frontier production functions and inefficiency models are estimated for each

of three villages from diverse agro-climatic regions of the semi-arid tropics of India.

The production frontiers involve the inputs of land, labour, bullock labour and cost of

other inputs. The ratios of irrigated land to total land and hired labour to total labour

are included in the functions to permit the productivity's of irrigated versus unirrigated

land and hired versus family labour to differ. A time trend is used to proxy the

influence of technical change. All estimates have the expected signs, with the

exception of the coefficients of the ratio variables in the case of Shirapur and the

coefficient of year of observation in the case of Kanzara. The results for Shirapur may

be a consequence of there being no important labour-intensive irrigated crop grown in

that village.

The model for the technical inefficiency effects in the production frontier includes the

age and years of formal schooling of the farmer, size of the farm and the year of

observation as explanatory variables. A number of tests of hypotheses are conducted

to assess the relative influence of these factors and other random effects. The results

indicate a significant random component in the technical inefficiency effects in all three

villages and that the above four factors have a significant influence upon the size of the

technical inefficiencies of farmers in Kanzara and Shirapur, but not in Aurepalle. Farm

size and year of observation are estimated to be inversely related to the level of

technical inefficiency in all villages. In two of the three villages, the effects of age and

education of the farmers are found to be negatively related to the level of the technical

inefficiency effects.

The technical efficiencies of each farmer, in each year that the farmer was surveyed, are

predicted and tabulated. Technical efficiencies are observed to range from below 0.1

to above 0.9. The mean technical efficiencies for the three villages are estimated to be

0.747, 0.738 and 0.711 for Aurepalle, Kanzara and Shirapur, respectively. The mean

level of technical efficiency follows an upward trend over the ten-year period in all

three villages. The lowest annual mean technical efficiency was 0.434 in Shirapur

during 1975-76 and the highest was 0.880 in Aurepalle during 1982-83.
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The analyses reported in this chapter indicate that there are significant differences in

the behaviour of value of output and technical inefficiencies of production in the

different regions from which data were obtained in ICRISAT' s Village Level Studies.

Although this empirical study does not include discussion of various variables which

might be important in modelling output and inefficiency effects, e.g., rainfall data, use

of agricultural extension services and access to credit, it indicates the potential for

more refined analysis, if such data were readily available. It is evident, that in order to

be able to draw conclusions of significance for policy purposes, future studies need to

be devised to obtain extensive data sets on relevant variables for production frontiers

and models for technical inefficiency effects which are consistent with such policy

orientations.
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Chapter 6

Measurement and Sources of Technical
Inefficiency in Australian Coal-Fired Electricity

Generation

6.1 Introduction

The generation, transmission and distribution of electricity in Australia has traditionally

been a Government enterprise. The distribution of electricity within each of the six

States is conducted by State and/or Local Government Authorities, while the

generation and transmission of electricity within each State is the sole domain of the

State Governments.' This study is concerned with the measurement of the technical

efficiency of coal-fired electricity generation in Australia. Over 75 per cent of

electricity generated in Australia each year is produced by coal-fired power stations.

Australia is fortunate to have large reserves of black and brown coal, which are

inexpensive to extract, by world standards. The remainder of Australia's electricity is

produced by hydro and gas-fired plants, with some smaller oil-fired plants used in

remote districts.

Each State has traditionally been self-sufficient in its electricity needs, with interstate

trade in electricity being quite rare until recent years. Transmission lines presently link

the three States of New South Wales (NSW), Victoria and South Australia (SA)

together, and the interstate transfer of electricity has steadily increased over the past

few years. Proposals are presently being considered for the construction of

transmission lines to permit the inclusion of two more States, namely Queensland and

Tasmania, into this inter-connected grid. 2 At present, interstate sales of electricity, via

the inter-connected grid, are being used primarily to allow the States to stagger the

1 The one significant exception to this is the Snowy Mountains Hydro-Electric Scheme, which supplies
some of the electricity consumed in the States of New South Wales and Victoria (and all of that
consumed in the Australian Capital Territory).
2This would leave Western Australia (WA) as the only State without interstate trading opportunities.
The inclusion of WA, however, is unlikely, given the vast distances between the population centres in
WA and the remainder of Australia.
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construction of new power plants, so as to reduce the amount of costly excess-

generating capacity in each State.

The Federal and State Governments plan to use this inter-connected grid, not only for

the above purpose, but also to introduce competition within the Australian electricity

industry. They plan to establish a competitive national market in electricity. Part of

this process will involve the separation and corporatisation of the generation,

transmission and distribution divisions in each State, and, in certain States, the planned

privatisation of some, and perhaps all, generating plants and distribution authorities.

This process is at present well under way in Victoria, where one generating plant and a

number of distribution authorities have been sold to the private sector.

The overall effect of the above changes will be to introduce competition to Australia's

electricity generation industry for the first time in recent history. It is envisaged that

the generation divisions of each State will be competing against each other, and that

plants, or groups of plants, within a State will eventually be competing with each other

in some cases. Given the prospect of this exposure to market forces, information on

the relative efficiencies of each plant, both relative to other plants within a State, and

relative to plants in other States, are of particular interest to the managers of the

generation divisions within each State.

Econometric analyses of production and/or relative efficiency in the Australian

electricity industry are few and far between. Only a few studies consider power plants

within a particular State. Bateson and Swan (1989) estimate a cost function for power

plants in NSW to measure scale economies and also to investigate the influence of

capacity factor upon unit costs. Price et al. (1992) investigate the comparative

productivity of NSW power plants using multilateral index numbers. There have also

been a few comparisons of the relative productivity of the different State electricity

utilities using the same methodology (e.g., Lawrence, Swan and Zeitsch, 1990). We

were not able to identify, however, any plant-level analyses involving data from two or

more States. It is this void in the literature which the present analysis hopes to fill.

The initial plan for this study involved the collection of physical and cost data on

output and inputs for all major coal-fired power plants in Australia over a ten-year

period. These data were to be used to estimate a variety of stochastic frontier
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production and cost functions, in order to investigate the structure of the technology

and to estimate technical, allocative and overall economic efficiencies for each plant.

The study proposal was readily accepted and funded by the Australian Electricity

Supply Industry Research Board (AESIRB), which is the research arm of the

Electricity Supply Association of Australia (ESAA). The collection of data, however,

proved a difficult task. A number of State Authorities deemed some or all of the

requested data too sensitive to release. This was most likely because of uncertainty

regarding the final form of the competitive model planned for the Australian electricity

industry. Thus, after three years of attempting to obtain these data, the present study

is limited to an analysis of physical data only, from only three of the five States which

have major coal-fired power plants. 3 Thus the present analysis involves the estimation

of stochastic frontier production functions and the prediction of technical efficiencies

from these estimated functions. The lack of cost data precludes the estimation of cost

frontiers and the prediction of allocative or overall economic efficiencies.

This chapter is divided into five sections. Section 6.2 provides a brief review of

literature on past analyses of electricity generation, involving both non-frontier and

frontier methodologies. In Section 6.3 the data and model specification used in this

study are detailed. Empirical results are presented and discussed in Section 6.4, and

some brief concluding comments are made in the final section.

6.2 Literature

Many past analyses of efficiency in electricity generation involve the calculation of

simple ratio measures, such as fuel efficiency (the ratio of power generated to the

energy content of the fuel consumed) or labour productivity (power generated per

employee). These measures can be very informative but can also be quite misleading

because they consider only a single input in isolation. In this chapter we use the model

outlined in Chapter 4 to obtain a measure of the relative efficiency of power stations

which accounts for all the factors of production simultaneously.

3One State utility did provide all physical and cost data requested. Unfortunately the lack of cost data
from other States meant that these data were not able to be utilised. It should also be noted that
Tasmania does not have any large coal-fired plants.
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We now provide a brief review of past studies which use econometric methods to

model electric-power generation. This review begins with a discussion of analyses

which use non-frontier econometric models, and progresses to describe some more

recent studies which model power generation using frontier methods.

6.2.1 Non-frontier Analyses

This brief discussion deals almost entirely with analyses of electricity generation in the

US and Europe. This is a consequence of the lack of Australian analyses, due

primarily to the secular nature of the Australian electricity industry. A number of

econometric analyses of electricity generation have used non-frontier econometric

methods to investigate the structure of the production technology. Their primary

interest is generally to investigate input-substitution possibilities, scale economies and

technical change in electricity generation.

These studies may be divided into those which estimate the parameters of the

production technology directly (e.g., Komiya, 1962 and Courville, 1974) and those

which assume some form of behavioural assumption, such as cost minimisation or

profit maximisation, and estimate a cost function, profit function, derived demand

functions, or some combination thereof (e.g., Nerlove, 1963 and Christensen and

Greene, 1976). An excellent survey of econometric analyses of electricity generation is

provided by Cowing and Smith (1978) and hence we do not attempt that task here.

Cost minimisation appears to be the assumption most often made in econometric

analyses of electricity. This is evident in the review paper by Cowing and Smith

(1978), and is especially evident in the vast number of cost-function studies which have

been published since 1978, such as the US studies by Stewart (1979), Gollop and

Roberts (1983), and Atkinson and Halvorsen (1984), and the analyses of Bateson and

Swan (1989) and Nemoto, Nakanishi and Madono (1993), involving the Australian and

Japanese electricity industries, respectively. The popularity of this behavioural

assumption is not surprising, given that a plant will normally have little say in what

quantity of output it produces, and that electricity industries are generally highly

regulated, to the extent that many are wholly government owned, as is the case in

Australia. Given a behavioural assumption, such as cost minimisation , then the direct

estimation of a production function suffers from simultaneous-equations bias, due to

89



the endogeneity of the input levels. It is disappointing, therefore, that a lack of cost

data prevents the estimation of the production technology from a cost perspective in

this study. We therefore estimate the parameters of the production technology directly

using a production function, and hope that the impact of any bias is not significant.4

6.2.2 Frontier Analyses

A number of studies apply frontier methodologies to a variety of electricity industries

around the world. These studies involve the estimation of both production and cost

functions, using both DEA and stochastic frontier approaches. Again, the vast

majority of these studies are US applications. The following survey provides an

indication of the breadth of analyses that have been conducted.

One of the earliest applications of frontier methods to electricity generation is an

analysis of 181 steam-electric plants by Seitz (1971), which involved the estimation of

a frontier production function, using linear programming, and the calculation of

technical, allocative and overall efficiency measures. A second-stage regression of the

technical efficiency measures upon a number of firm-specific factors (including number

of units and unit size) was conducted and found evidence of significant relationships.

Several papers, written in the late 1970s, use data from the electricity industry to

illustrate advances in stochastic frontier methodologies. These include analyses by

Schmidt and Lovell (1979, 1980) involving 111 US steam-electric plants to illustrate

extensions of the stochastic frontier model to allow for allocative inefficiency, and the

studies of Stevenson (1980) and Greene (1980b) which use US data to investigate

more general distributions for the inefficiency effects and more flexible functional

forms, respectively.

Kopp and Smith (1980) estimate stochastic frontier production functions for 43 US

coal-fired electric power plants. They consider three alternative functional forms, three

estimation methods, and divide their data into two capital-vintage groups, finding that

all three factors have an influence upon the measures of mean technical efficiency

obtained.

4 It should be noted that even if cost data were available, an estimated cost function may suffer from
specification error, due to government regulations resulting in other than cost-minimising behaviour.
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A number of papers apply DEA methods to US electricity data during the 1980s. The

Fare, Grosskopf and Logan (1983, 1984) studies consider the efficiency of Illinois

electric utilities and the relative efficiency of public- and privately-owned utilities,

respectively. The analyses by Fare, Grosskopf and Pasurka (1986, 1989) consider the

effects of environmental regulation upon relative efficiency.

The two themes of the influence of ownership and pollution controls upon efficiency

are also prevalent in the more recent literature. Bernstein, Feldman and Schinnar

(1990) use DEA methods to investigate the effects of pollution controls in US plants,

while Hausman and Neufeld (1991) use DEA to investigate the influence of ownership

in the US industry. Hammond (1992) uses a stochastic frontier cost function to look

at the same issue in the UK. The results of these last two studies, and those of Fare,

Grosskopf and Logan (1984) are of particular interest to policy makers in Australia at

present. Hausman and Neufeld (1991) and Fare, Grosskopf and Logan (1984) find

public plants more efficient than privately owned plants (with the difference in the

latter study not being significant), while Hammond (1992) finds the converse to be true

in the UK. Thus, the evidence is not conclusive in either direction at this stage.

6.3 Data and Model Specification

6.3.1 Data

The sample data used in this study comprise annual measures of output, inputs and a

variety of other variables, from each of 13 Australian coal-fired power plants. Of these

13 plants, six are from NSW, four are from Victoria and three are from Western

Australia (WA). The NSW data were obtained from annual reports5 while the data for

the other two States were obtained from a combination of annual reports and the direct

assistance of employees of the respective State electricity commissions of Western

Australia (SECWA) and Victoria (SECV). 6 Annual data were obtained for each

financial year from 1981-82 to 1990-91, with some exceptions. Some observations

were not available in certain years because a few plants did not begin operating until

after 1981-82, and, in some cases, because output and labour figures were missing

5 The NSW data were collected by Michael Plumb from Sydney University, and were kindly made
available for use in this study.
6 Thanks are due to Joy Johnson and Nenad Ninkov of SECWA and Michael Freeman from SECV.
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from the data provided. Because of these omissions, the final set of data involved 114

observations.

A number of choices needed to be made when deciding upon the exact definition of

each measure to be used. When considering an output measure, a choice had to be

made between electricity generated and electricity sent out. Engineers generally prefer

the first measure, but from an economic point of view, the amount of power sent out is

the measure of useful output. Hence the amount of electricity sent out is used as the

measure of output in this study. 7 The capital measure used is the name-plate capacity

(in mw). This is not the preferred choice. A measure of the overall capital investment,

adjusted for depreciation and embodied technical change, would have been preferred,

but unfortunately these data were not always available. 8 The labour input used is

simply the number of employees. A labour measure which accounts for differences in

hours worked and degree of training would have been preferred, but such a measure

was not possible because of data limitations.

The selection of a measure of the fuel input was the most difficult decision of all. The

most obvious choice was tonnes of coal burned, given that only coal-fired power plants

are considered. However, this measure suffers from a number of problems. The main

problem is that coal quality varies substantially from one State to another, and also,

from one coal mine to another within a State. The most visible difference in coal

quality is between the low quality brown coal used in Victorian plants and the higher

quality black coals used in other States. The average energy contents, in megajoules

per kilogram, vary from 7.4 for brown coal at Yallourn in Victoria to 26.4 for black

coal at Munmorah in NSW, which is different by a factor of over 350 per cent. The

fuel issue is further complicated by the additional use of fuel oil, briquettes and natural

gas in varying quantities in different plants, generally to assist with re-starting a unit

after a period of down-time. It was thus decided that the best way to avoid these

problems was to convert all fuels into terrajoule equivalents and to aggregate the

resulting figures. This approach, however, is not without problems. The main

'This measure of annual output in kwh does not account for the required distribution of production
through each day, nor throughout the year. The formulation of output measures to account for this
deficiency is beyond the scope of this study. For further discussion of this issue, see Cowing and
Smith (1978).
8See Swan (1990) for an example of the type of capital measure that can be constructed when the
necessary data are available.
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difficulty is that one terrajoule of brown coal is not the same input as one terrajoule of

black coal, because of the extra volume that must be handled and burned in the case of

the lower quality brown coal. For further discussion of these and other problems

associated with using aggregative measures of fuel energy, see Berndt (1978).

The 13 plants in the sample represent approximately 50 per cent of Australia's total

generating capacity. The sample means, standard deviations, minima and maxima of

the variables used in this study are presented in Table 6.1.9 The average capacity of

plants in the sample is 1270.5 megawatts (mw) and the average unit size is 345.18 mw,

indicating an average of three to four generating units per plant. The largest plant has

a total of 2640 mw of generating capacity, comprising four 660 mw units, and the

smallest plant has 120 mw, involving four 30 mw units. The ages of the plants vary

significantly from newly commissioned plants to one that was 32 years old in 1990-91.

The average age of the plants was 12.34 years (over the ten years considered). Coal is

the most important component of fuel in each plant. Oil is used in small quantities for

unit re-starts in all plants, with the exception of two Victorian plants which use

briquettes instead. The gas figure in Table 6.1 is due, almost entirely, to the Kwinana

plant which had two of its units converted to allow either gas or coal to be burned.

6.3.2 Model Specification

A translog stochastic frontier production function is specified for the Australian

electricity generation industry. The output of a plant is assumed to be a function of the

three inputs of capital, labour and fuel; technical change is permitted to be non-neutral;

and the stochastic frontier is assumed to have the properties of the model specified in

Battese and Coelli (1993, 1995) and discussed in Chapter 4. That is, the stochastic

frontier production function is assumed to be described by:

log(Qit) = 13 0 + 1311og(Kit) + 13210,g(L1t) + 13310,g(Fit) + 134[10g(KiM 2 + 05[10,g(Lit)]2

+ 06[10g(Fig + 13710g(Kit)log(Lit) + Oslog(Kit)log(Fit) + 09 10,g(LiOlog(Fit) +

131010g(Kit)t + Pillog(Liot + 131210g(Fiot + 1313t + P14t2 + VicUit,

i=1,2,...,N; t=1,2,...,T, 	 (6.1)

9 A full listing of the data is provided in Appendix 3.
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Table 6.1

Summary Statistics for Observations on 13 Coal-fired Electricity Generating

Plants in Australia during 1981-82 to 1990-91

Variable Sample Standard Minimum Maximum

Mean Deviation Value Value

Output (gwh) 5502.6 3744.9 65.1 15406.0

Capacity (mw) 1270.5 720.6 120.0 2640.0

Labour (persons) 639.79 329.39 41.00 1787.00

Fuel (terrajoules) 62925.0 39519.0 1282.0 156370.0

Capacity factor (%) 46.31 16.47 6.19 85.16

Age of units (average in yrs) 12.34 8.48 0.00 32.00

Size of units (average in mw) 345.18 227.65 30.00 660.00

Coal (1,000t) 4342.8 4427.7 60.6 18030.0

Gas (terrajoules) 1636.6 6977.0 0.0 40610.0

Oil (1,000t) 8.76 13.25 0.00 90.30

Briquettes (1,0000 13.54 37.76 0.00 216.30

where (2it represents the electricity sent out (in kwh) by the i-th plant in the t-th year;

Kit represents the capacity of the plant (in mw);

Lit represents labour (number of employees);

Fit represents fuel usage (in terrajoules);

t is a time trend;

the f3; are unknown parameters to be estimated;

the Vats are iid N(0,av2) random errors, which are assumed to be independently

distributed of the Uits,

the U its are non-negative random variables associated with technical

inefficiency, which are assumed to be independently distributed, such

that the distribution of Uit is obtained by truncation at zero of the
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normal distribution with mean, pit, and variance, o-2 , where ilk is defined

by

Pit = 80 + 81Cit + Sit + 83 S it + 84Bit
	 (6.2)

and	 Cit represents capacity factor;1°

Ait represents the average age of installed units;

Sit represents the average size of installed units (in mw);

BA is a dummy variable which takes the value 1 when brown coal is used and 0

when black coal is used; and

the 8; are unknown parameters to be estimated."

As discussed in Chapter 4, we replace 6v2 and a2 with as2=c5.2-Fav2 and y=a2/(av24-(72).

This transformation has advantages in the estimation process, where y can be searched

between zero and one to obtain a suitable starting value for an iterative maximisation

process. Values of the 22 unknown parameters in the above stochastic frontier and

inefficiency model are simultaneously estimated by the method of maximum likelihood.

It should be noted, that the four firm-specific factors included in the analysis are not

the only factors which could possibly influence the degree of technical inefficiency of

plants. A variety of management factors, such as the experience of managers and the

degree of bureaucratic and/or union constraints upon management could also be

expected to have an influence upon the technical efficiency of a plant. Data on such

variables have not yet been collected.

The above model specification permits certain firm-specific factors to shift the mean of

the technical inefficiency effects. It is possible that the firm-specific factors considered

in the study may not have a significant influence upon the degree of technical

inefficiency of electricity generating plants. This hypothesis, along with a number of

1° Capacity factor, in this study, is defined as the ratio of the actual power sent out to the amount of
power that theoretically could be sent out if all units produced to their name-plate ratings for 100% of
the time with no down-time and no wastage.
11 Note that a time trend was included in the inefficiency model in an earlier analysis. This was
included to account for the possibility of technical efficiency change through time resulting from
influences which had not been already accounted for in the model. This trend variable was found to
be insignificant and hence has been omitted from the models discussed in this Chapter.
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other hypotheses relating to the inefficiency effects, are tested in the following section.

Furthermore, we recall from Chapter 2, that the translog functional form, assumed in

the above specification, is a more general representation of the production structure

than is often assumed in empirical analyses of production, where simpler forms, such as

the Cobb-Douglas, have been more prevalent. The translog form permits more general

substitution, scale and technical change possibilities than simpler forms, such as the

Cobb-Douglas, but at the expense of needing to estimate substantially more

parameters. If the production technology is suitably represented by a simpler form,

then the estimation of unnecessary parameters will result in inefficient estimates.

Hence, a number of hypotheses, regarding restrictions upon this functional form are

considered in the following section.

6.4 Results and Discussion

6.4.1 Maximum-likelihood Estimates

The maximum-likelihood estimates of the parameters of the translog stochastic frontier

and inefficiency model, defined by equations (6.1) and (6.2), are obtained using the

computer program, FRONTIER Version 4.1, discussed in detail in Chapter 7. These

estimates are presented in the first column of Table 6.2. Asymptotic standard errors

are presented in parentheses below each estimate. The ratios of the estimated

coefficients to their corresponding standard errors (t-ratios) provide an indication of

the statistical significance of the coefficients. Only three of the estimates of the

coefficients associated with the production inputs and technical change have t-ratios

larger than 1.96 in absolute value, suggesting that very few of them are significantly

different from zero at the five per cent level. Furthermore, only eight of the 13-

coefficients have t-ratios larger than one in absolute value. This may suggest that the

model is a fairly poor fit. The consideration of these t-ratios, however, can be

misleading on two counts. First, the sizes of these tests will not be equal to five

percent when more than one test is conducted in sequence; and the second, and

probably the most important point, is that multicollinearity, resulting from the inclusion

of second order terms, may be contributing to the high standard errors observed. If
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Table 6.2

Maximum-likelihood Estimates of the Stochastic Frontier and Inefficiency Model

for Electricity Generation in Australia

Coefficient	 Parameter	 Translog	 Translog (neutral Cobb-Douglas
technical change) 

-1.17
(0.98)
-0.71
(0.29)
-0.46
(0.26)
1.62

(0.23)
-0.102
(0.058)
0.010

(0.056)
-0.018
(0.068)
0.25

(0.11)
0.06

(0.13)
-0.13
(0.13)
0.0082

(0.0069)
-0.0092
(0.0078)
0.0032

(0.0067)
-0.027
(0.035)
-0.00007
(0.00096)

-1.70
(0.73)
-0.80
(0.25)
-0.41
(0.22)
1.59

(0.21)
-0.058
(0.052)
0.065

(0.051)
0.028

(0.059)
0.26

(0.10)
0.01

(0.12)
-0.210
(0.099)

0.004
(0.011)
0.00029

(0.00088)

Stochastic Frontier
Intercept	 13o

log(Capital)	 13i

log(Labour)	 132

log(Fuel)	 13 3

[log(Capital)]2
	

134

[log(Labour)]2
	

135

[log(Fuel)]2
	

136

log(Capital)log(Labour)
	

137

log(Capital)log(Fuel)	 138

log(Labour)log(Fuel)	 139

log(Capital)t	 1310

log(Labour)t	 pi.

log(Fuel)t	 1312

t	 1313

t2
	

1314

-3.16
(0.15)
0.112

(0.041)
0.017

(0.027)
0.982

(0.037)

0.0068
(0.0029)

Variance Parameters
6

2
	

0.00234
	

0.00300
(0.00042)
	

(0.00038)
7
	 0.162	 0.234

(0.064)	 (0.067)
Inefficiency Model

Intercept	 8o	 0.14	 -0.009
(0.13)	 (0.071)

Capacity factor	 Si	 -0.00593	 -0.00567
(0.00022)	 (0.00077)

Age of units	 82	 0.0100	 0.0146
(0.0018)	 (0.0024)

Size of units	 83	 0.000106	 0.000174
(0.000085)	 (0.000029)

Brown coal	 84	 0.114	 0.189
(0.023)	 (0.039)

L II-likelihood Function 	 185.16	 182.01

0.0049
(0.0015)
0.40

(0.22)

-0.33
(0.15)
-0.0036
(0.0015)
0.019

(0.0044)
0.00038

(0.00024)
0.304

(0.060)
159.50
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this is the case, the consideration of these individual t-ratios may lead to the omission

of some important coefficients, resulting in misspecification of the model.

6.4.2 Tests of Hypotheses

A more appropriate testing procedure is to simultaneously test the significance of

groups of coefficients. In this study the generalised likelihood-ratio test is used. This

involves the calculation of

X.-21 log[L(H0)]-log[L(K)] 1 ,	 (6.3)

where L(Ho) and L(H 1 ) are the values of the likelihood function under the null and

alternative hypotheses, respectively. This X-statistic has asymptotic chi-square

distribution, with degrees of freedom equal to the difference between the number of

parameters involved in Ho and H1.12

The first hypothesis test considered is a test of the null hypothesis of Hicks-neutral

technical change. Technical change is Hicks-neutral if the coefficients of the

interactions between the logarithms of the inputs and the time trend are all zero. This

is the first null hypothesis considered in Table 6.3, i.e., Ho: 131o=1311 =1312=0. The

maximum-likelihood estimates of the parameters of the model defined by equations

(6.1) and (6.2), with these restrictions imposed, are listed in the second column of

Table 6.2. As can be seen from the results in Table 6.3, the value of the likelihood-

ratio statistic is calculated to be 6.30, which is less than 7.81 (the 5% critical value

from the x32-distribution). Hence the null hypothesis of Hicks-neutral technical change

is not rejected, implying that technical change has not favoured the use of one

particular input over another in this industry.

The second null hypothesis considered in Table 6.3 specifies that there has not been

any technical change over the sample period. This test involves a test of the

restrictions that all the coefficients associated with the time trend are equal to zero,

i.e., testing Ho: 131o=1311 =... =1314=0. The results for this test, listed in Table 6.3, show a

12 As noted in Chapter 3, this statistic has a distribution which is a mixture of chi-square distributions
when the null hypothesis specifies that the y-parameter is zero.
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Table 6.3

Tests of Hypotheses of Parameters of the Stochastic Frontier and Inefficiency

Model for Electricity Generation in Australia

Null Hypothesis Log-
likelihood

Value

Test Statistic
X

Critical
Value

Decision

182.01 6.30 7.81 Accept Ho

177.27 15.78 11.07 Reject Ho

159.50 51.32 18.31 Reject Ho

154.34 61.64 5.14-11.91 Reject Ho

155.97 58.38 9.49 Reject Ho

Ho: Dio=fin=1312=0
Ho: 1310411=...=1314=0
Ho: 134=135=...=014=0
Ho: y=80=81=...=84=0
Ho: 81=82=83=84=0

test statistic of 15.78 which exceeds the x52-critical value of 11.07, resulting in a

rejection of the null hypothesis of no technical change."

The third null hypothesis that is considered in Table 6.3 is that the Cobb-Douglas

production frontier with neutral technical change is an adequate representation of the

data. This null hypothesis is specified by Ho: 134 =135=... = 1312=1314=0. The maximum-

likelihood estimates of this Cobb-Douglas model are listed in the last column of Table

6.2. The value of the log-likelihood function has reduced substantially to 159.50. This

provides a generalised likelihood-ratio test statistic of 51.32 which exceeds the xio2-

critical value of 18.31 by a large amount. Thus we confidently reject the Cobb-

Douglas form, given the specification of the translog frontier model. It therefore

appears that the extra effort involved in estimating and analysing the translog form is

warranted in this instance. Furthermore, we note that the rejection of the translog

functional form because of the small t-ratios associated with the individual 13-

coefficients would have involved poor statistical inference.

We now turn our attention to the estimates of the coefficients associated with the

technical inefficiency effects of the model specification. We note that, in column 1 of

13 This hypothesis test, and all other hypothesis tests listed in Table 6.3 are conducted with the
unrestricted translog as the model under the null hypothesis. Since we have seen that the hypothesis
of Hicks-neutral technical change is not rejected, it could be argued that the translog with Hicks-
neutral technical change should be used as the model for subsequent hypothesis tests. These tests
were also conducted, but have not been reported because none of the conclusions differ from those in
Table 6.3.
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Table 6.2, the estimated coefficients associated with the y- and the 8-parameters

(except 80) are much larger than their corresponding standard errors. Thus the

indications are that these terms are significant additions to the model. However, even

though multicollinearity is unlikely to have as large an influence upon these

coefficients, as was the case with the 0-coefficients, we conduct two generalised

likelihood-ratio tests to confirm our observations.

First, we consider a test of the null hypothesis that the technical inefficiency effects are

absent in this industry. The omission of Uit is equivalent to imposing the restrictions

specified in the null hypothesis, Ho: y=80=81=...=84=0. The relevant information for the

test of this hypothesis test are in Table 6.3. The generalised likelihood-ratio statistic is

calculated to be 61.64, which is substantially larger than the critical value range of 5.14

to 11.91. Thus we reject the null hypothesis of no technical inefficiency effects, given

the specifications of the stochastic frontier and inefficiency model.

One question of particular interest to this study, is whether the four firm-specific

factors, considered in the inefficiency model, have a significant influence upon the

degree of technical inefficiency associated with the plants. Thus a test of the null

hypothesis that Ho: 8 1 =82=83=84=0 is conducted. The results of this test are listed in

the final row of Table 6.3. The generalised likelihood-ratio statistic is calculated to be

58.38, which is much larger than the x42-critical value of 9.49. Hence the null

hypothesis that these four factors do not have an influence upon technical inefficiency

is also rejected in this case.

6.4.3 Economic Plausibility of the Results

Production Structure

When the conclusions of the above five tests of hypotheses are considered together,

the preferred model appears to be that, defined by equations (6.1) and (6.2), with

Hicks-neutral technical change imposed. The estimates of the parameters of this model

are given in the second column of Table 6.2. Due to the complexity of the translog

form, the economic plausibility of the estimated coefficients is not easy to assess

without first calculating some more easily interpreted estimates. Thus, the estimated

values of the production elasticities of the three inputs, evaluated at the sample means,
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Table 6.4

Key Estimates Derived From the Transiog Frontier and Inefficiency Model With

Hicks-Neutral Technical Change

Description 
Capital elasticity

Labour elasticity

Fuel elasticity

Returns-to-scale parameter

Technical change

Estimate
0.170

(0.038)
-0.022
(0.034)
0.932

(0.040)
1.080

(0.022)
0.0074

(0.0026)

are given in Table 6.4 (above). Also given in Table 6.4 are the estimates for the

returns-to-scale parameter and the annual percentage change in production due to

technical change. Approximate standard errors of these estimates are listed in

parentheses under each estimate.

The estimated elasticities have the expected positive signs, except for labour, but the

estimate is not significantly different from zero at the 20% level using an asymptotic t-

test. The production elasticity for capital is 0.170 and that for fuel is 0.932. These

results are not unlike those seen in many past analyses of electricity production. For

example, in their analysis of 111 privately owned steam-electric generating plants in the

US, Schmidt and Lovell (1979) obtained production elasticities which are not

significantly different from zero for labour and also obtain a value close to one for the

elasticity of fuel. Kopp and Smith (1980) conducted preliminary analyses of 43 private

and public coal-fired plants in the US, using the three inputs of capital, labour and fuel,

and decided to omit the labour input from the reported analysis completely. Kopp and

Smith (1980, p.1053) argued that "capital and fuel appear to be the most important

inputs to the production technology" and that labour "appears to bear a direct

relationship to the scale of the plant". Thus it appears that the elasticity estimates in

Table 6.4 are similar to those obtained in other studies and that, in particular, the

insignificant labour elasticity is not unusual in electricity generation.
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The estimated returns-to-scale parameter of 1.080 indicates mildly increasing returns

to scale. This value is significantly different from zero, according to an asymptotic t-

test. This result again does not conflict with the findings in previous studies. If

anything, the scale elasticity obtained here is slightly smaller than those reported in

previous studies. For example, Kopp and Smith (1980) report values ranging from

1.142 to 2.131 for a variety of estimation methods and capital vintages. Given that

many of these past studies are based upon data a decade or more before the data used

in this study (e.g., Kopp and Smith use data from 1969 to 1973), it is not surprising

that unexhausted scale economies diminish as the plants being analysed become

progressively larger. This observation conforms with the conclusions of Christensen

and Greene (1976) who investigate differences in scale economies in US electric power

generation between 1955 and 1970 using a translog cost function.

The final estimate listed in Table 6.4 is a measure of technical change. The value of

0.0074, indicates that the industry has experienced a rate of technical progress over the

sample period of approximately 0.74 per cent per year. This indicates that a

hypothetical plant could produce 7.4 per cent more output in 1991 than could be

produced in 1981, using the same levels of inputs. This estimate of technical progress

is found to be significantly different from zero using an asymptotic t-test. The

statistical significance of the technical change estimate conforms with the earlier

finding in this study, of the coefficients associated with the time trend being a

significant addition to the model, using a generalised likelihood-ratio test (see the

second hypothesis test in Table 6.3).

Technical Inefficiency Effects

The maximum-likelihood estimates of the variance ratio parameter, y, and the 8-

parameters for the preferred model are listed towards the bottom of the second column

of Table 6.2. All of these estimates have t-ratios which are larger than 1.96 in absolute

value, with the exception of So. These significant t-ratios are not surprising, given the

conclusions of the likelihood-ratio tests above. The interpretation of the y-estimate of

0.234 is not as clear in this model specification as it is in the half-normal stochastic

frontier (i.e., the model where all the S are zero), where it could be shown to be a

simple function of the ratio of the variance of the inefficiency error term to the sum of
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the variances of the two error terms. For the model specification used in this study, it

may be loosely interpreted as an indication of the amount of unexplained variation in

the technical inefficiency effects, relative to the sum of this value and the variance of

the random error, Vit.

The signs of the 8-parameters need to be considered carefully. The negative sign of

the estimated coefficient of capacity factor indicates that an increase in capacity factor

results in a decrease in the value of the technical inefficiency effect and hence an

increase in technical efficiency. This conforms with the expectation that a plant which

is permitted to utilise more of its capacity is likely to appear to be more technically

efficient using the measures defined in this study. The estimated coefficient associated

with the age of the generating units at a plant is observed to be positive. Thus, the

older plants tend to have greater levels of technical inefficiency relative to the newer

plants. This also conforms with what one would expect, given that the capital measure

used in this study is simply name-plate capacity, and hence that no allowances have

been made for the effects of embodied technical change in this capital measure. The

positive sign on the estimate of the coefficient of the size of units in a plant is

somewhat surprising. It was expected that technical inefficiency would decrease as the

size of the generating units increase, because of labour savings, etc. One possible

explanation for this unexpected sign is that the plants with smaller unit sizes are more

flexible in their ability to adjust to unexpected demand variation. 14 The positive sign

on the estimated coefficient of the dummy variable associated with the use of brown

coal is consistent with expectations. The plants which are using this lower quality

brown coal must handle larger volumes of coal than the black coal plants. Hence it is

not surprising that this contributes to the level of the technical inefficiency effects for

these plants.

Technical Efficiencies of Plants

The technical efficiencies of each plant in each year can be predicted from the

estimated model. Given the stochastic frontier and inefficiency model defined by

equations (6.1) and (6.2), the technical efficiency of production of the i-th plant in the

t-th year is defined by

14 Tom Cowing suggested this interpretation in a personal communication.
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TE it = exp(-Uit)•	 (6.4)

This is predicted using the conditional expectation of exp(-Uit), given the value of

Eit=Vit-Uit . This expression is presented in Appendix 2 for the model involved in

Chapter 4.

The technical efficiency predictions for our preferred model, calculated by the

FRONTIER program, are listed in Table 6.5. They are also plotted in Figures 6.1a and

6.1b. These range in value from 0.618 for Morwell in 1990-91 to 1.000 for Vales

Point B in 1982-83 and 1983-84. The mean of technical efficiencies in this industry is

calculated to be 0.925. This suggests that, on average, plants produce 92.5 per cent of

the output that could be potentially produced with the same bundle of inputs by a

technically efficient plant. This figure is comparable to estimates of mean technical

efficiency reported in other studies of electricity generation. For example, Kopp and

Smith (1980) report estimated mean technical efficiencies of 0.846 and 0.954 from the

estimation of stochastic frontier models for two different capital vintages. The

estimates of mean technical efficiency for electricity generation, reported in the

literature, tend to be larger, on average, than those reported for many other industries.

For example, mean technical efficiencies reported in analyses of agricultural industries

are usually in the region of 0.6 to 0.7. 15 The higher levels of mean technical efficiency

in electricity generation are most likely a consequence of the size of the plants and

hence the resources that they have available to ensure that they are always aware of,

and using, the latest advances in technology.

It should be noted, however, that the measures of technical efficiency, reported in this

paper, are calculated relative to a frontier that has been estimated using a sample of

firms taken from the Australian industry only. If we were to estimate a frontier using

data taken from electricity industries from a number of countries, it is conceivable that

the mean technical efficiency of these Australian firms may be lower, relative to this

"international best-practice frontier".

15Refer to Battese (1992) for a survey of applications of frontier production functions to agricultural
industries.
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Table 6.5

Technical Efficiencies for 13 Power Plants in Australia, 1981-82 to 1990-91

Plant 81-82 82-83 83-84 84-85 85-86 86-87 87-88 88-89 89-90 90-91 MEAN
Loy Yang A 0.804 0.981 0.979 0.984 0.995 0.996 0.995 0.962
Hazelwood 0.905 0.845 0.843 0.852 0.826 0.828 0.821 0.777 0.817 0.835
Yallourn W 0.988 0.992 0.987 0.984 0.972 0.977 0.957 0.957 0.973 0.976
Morwell 0.887 0.911 0.886 0.813 0.772 0.747 0.725 0.646 0.618 0.778
Bayswater 0.996 0.996 0.995 0.996 0.997 0.997 0.996
Eraring 0.997 0.996 0.995 0.992 0.992 0.993 0.994 0.992 0.994 0.994
Liddell 0.989 0.992 0.991 0.948 0.922 0.919 0.888 0.888 0.860 0.933
Munmorah 0.990 0.982 0.920 0.937 0.906 0.878 0.863 0.857 0.788 0.902
Vales Point B 1.000 1.000 0.997 0.996 0.994 0.993 0.985 0.994 0.991 0.994
Wallerang C 0.989 0.983 0.992 0.996 0.955 0.994 0.990 0.989 0.931 0.98
Bunbury 0.877 0.849 0.761 0.716 0.710 0.663 0.716 0.706 0.681 0.742
Muja 0.996 0.997 0.996 0.996 0.994 0.995 0.993 0.996 0.997 0.997 0.996
Kwinana 0.971 0.933 0.947 0.951 0.968 0.979 0.983 0.967 0.957 0.935 0.959
MEAN 0.950 0.956 0.939 0.936 0.930 0.922 0.916 0.933 0.904 0.891 0.925

The means of the technical efficiencies of each plant are presented in the last column of

Table 6.5 and are graphed in Figure 6.2. These range in value from 0.742 for Bunbury

to 0.996 for Bayswater and Muja. It is interesting to note that the four least efficient

plants, appear to also be the oldest and smallest plants in the sample. 16 These plants

have also had their capacity factors reduced over the sample period. The addition of

extra capacity in the system has resulted in an excess of available capacity because of a

lower than expected expansion of demand for electricity over the sample period.

Hence a number of the hypothesised factors appear to be contributing to the low mean

technical efficiencies of these four plants.

The means of the predicted technical efficiencies in each of the ten years during the

sample period, presented in the bottom row of Table 6.5, are reproduced in Figure 6.3.

A gradual decline is observed in this plot, with mean technical efficiencies declining by

approximately 6 per cent over the sample period. This figure should not be considered

in isolation. Recall that a value of 7.4 per cent is estimated for the effect of technical

change. Thus the combined effect of these two influences could be a small overall

increase in productivity for the average plant. One should also note, that the four

plants which have the lowest technical efficiencies and which have also experienced the

16 This observation can be made when the technical efficiencies listed in Table 6.5 are compared with
the data used in estimation which is listed in Appendix 3.
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Figure 6.1a

Technical Efficiencies for 13 Power Plants in Australia, 1981-82 to 1990-91

Figure 6.1b

Technical Efficiencies for 13 Power Plants in Australia, 1981-82 to 1990-91
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Figure 6.2

Mean Technical Efficiencies for 13 Power Plants in Australia,

1981-82 to 1990-91*

* Means are for the years 1981-82 to 1990-91, with some observations missing in some years.

Figure 6.3

Annual Mean Technical Efficiencies of 13 Power Plants in Australia, 1981-82 to

1990-91
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greatest decline in technical efficiencies (see Figures 6.1a and 6.1b) are the smallest

plants in the sample. Hence, if the technical efficiencies were weighted by the scale of

the plant, the resulting measure of the average decline in technical efficiency would be

much smaller than that indicated by Figure 6.3.

6.4.4 A Comparison with the Two-stage Approach

The 19 parameters of the stochastic frontier and inefficiency model, defined by

equations (6.1) and (6.2), with Hicks-neutral technical change imposed, are estimated

simultaneously in the above analysis. Given that the majority of past analyses of the

determinants of technical inefficiency have estimated the parameters of similar models

in two stages, we also estimate the above model in this way for comparative purposes.

The first stage involves the ML estimation of the parameters of the stochastic frontier

model, defined by equation (6.1), assuming that the Uit are independently and

identically distributed as truncations at zero of an N( 0,0) distribution. The predicted

technical efficiencies, exp(-Uit), are obtained from this model. The second stage of the

estimation process involves the regression of the negative of the logarithms of the

predictions of the technical efficiencies from the estimated first-stage model upon the
17	 ifour firm-specific factors. This involves the estimation of

A

-log('rE ) = ao + alCit + a2Ait + a3 S it + a4Bit + Wit	 (6.5)

where M it is the technical efficiency prediction from the first-stage model and the Wit

is an error term, such that -Wit < ao + aiCit + a2Aii + oc3Sit + oc4Bit. The range of Wit

must be limited in this way to ensure that the values of -log( th it ) do not become

negative and hence that TE h does not exceed one. Ordinary least-squares (OLS)

estimation of the parameters of equation (6.5) is unlikely to be optimal, because the

non-normality and bounded range of the error term, W it , is not taken into account. A

more suitable estimation method would involve recognising that this is a limited

dependent variable model, and to consider estimation using an approach such as that

proposed by Tobin (1958). However, since none of the predicted efficiencies from the

17 The negative of the logarithms of the technical efficiency prediction, produced by the FRONTIER
program, is chosen as the dependent variable in this regression so that the estimated coefficients of the
firm-specific factors would have similar interpretations to those in the single-stage model.
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first-stage estimation were exactly equal to one, this method could not be

implemented. Hence OLS estimation is used in this instance. The OLS estimates of

the parameters in the model, defined by equation (6.5), are listed in Table 6.6. The

signs of the estimated coefficients are the same (as those obtained in the single-stage

estimation) in the case of capacity factor and coal quality, but they differ for age and

size. The t-ratios, however are all less than 1.96 in value and a joint test of the

significance of the four regressors yields an F-value of 0.882 which also is insignificant.

Thus the message from this two-stage procedure is that the four firm-specific factors

do not explain any of the variation in technical efficiency. This result is in direct

contrast to those obtained from the single-stage procedure discussed earlier. This may

be viewed as support for the single-stage procedure, as it is argued that the

simultaneous estimation of all parameters is more efficient than the two-stage

estimation procedure.

6.5 Conclusions

The primary contribution of this study is a substantial addition to the stock of

knowledge regarding the structure of production and relative efficiencies in coal-fired

electricity generation plants in Australia. Since there have been no previous

econometric analyses of electricity generation using plant-level data from different

States in Australia, and also that there have not been any past analyses of relative

efficiency, other than those using simple partial measures (such as fuel conversion

ratios), this analysis has broken new ground in this industry.

The main conclusions are that, when compared with the translog production frontier,

the Cobb-Douglas functional form is not an adequate representation of the production

technology in the electricity generation industry in Australia. The industry appears to

be characterised by Hicks-neutral technical progress and mildly increasing returns to

scale. The mean level of technical efficiency is estimated to be 0.925. The mean

technical efficiencies of the plants vary from 0.742 to 0.996, with capacity factor, age

and size of generating units in plants, and coal quality found to have a significant

influence upon technical inefficiency of generation. The mean level of technical

efficiency appears to decline over the sample period. This is likely to be due in part to

the increase in excess capacity in the industry during this time.
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Table 6.6

OLS Estimates of the Second-stage Regression of

Technical Inefficiency Effects

Regressor
Constant(a0)

Capacity factor

Average age of unit

Average size of unit

Coal quality

Estimate 
0.083

(0.022)
-0.00050
(0.00030)
-0.00064
(0.00069)
-0.000016
(0.000025)
0.007

(0.022)

This study also makes two secondary contributions. The first is as an illustration of the

single-stage estimation of stochastic frontiers which incorporate a model for the

technical inefficiency effects which has been used in only a few studies to date. The

second contribution is the humble beginnings of a data base containing information on

electricity generating plants in Australia. This data base will hopefully grow over time

with additional States providing data on their electricity generating plants. It is hoped

that cost information can also be made available in the near future. With the planned

partial de-regulation of the electricity generating industry, the public reporting of

statistics on power plants will be very important for monitoring purposes. Data on the

variables we tried to obtain for this study will most likely form part of the minimum

reporting requirements.

A number possible extensions to this work could be considered. These include:

comparing the results when tonnes of coal is used as the fuel measure; estimating

separate functions for brown coal and black coal plants; and analysis involving extra

data from other States and/or the inclusion of cost data. Negotiations are also

currently under way with the funding body (the AESIRB) regarding a new project

which will include data on plants from the US and Europe in the analysis so as to

assess the performance of Australian plants relative to international best practice. That

study is also likely to involve the use of both stochastic frontier and DEA methods so

as to investigate the robustness of results to choice of methodology.
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