Using Artificial Intelligence as a Decision Support System in School Administration

THE DEVELOPMENT OF AN EXPERT SYSTEM FOR STUDENT SUBJECT SELECTION

A Thesis submitted for the degree of Doctor of Philosophy of the University of New England

by

Ruary James BUCKNALL Bachelor of Economics (Monash) Diploma in Education (Monash) Graduate Diploma of Education (Educational Computing) (S.A.C.A.E.) Master of Educational Administration (U.N.E.)

June, 1995.

UNIVERSITY OF NEW ENGLAND

Using Artificial Intelligence as a Decision Support System in School Administration

R. J. Bucknall

ABSTRACT

It is now relatively common for schools to use computers for clerical purposes, and they have been demonstrably successful in supporting these tasks. Nevertheless the potential for computers to analyse data and provide recommendations from which decisions can be made has been greatly under-utilised.

The aim of this research project is to ascertain whether computerised decision support systems, such as expert systems, can be developed to assist in the administration of schools. Reports in the literature suggest they should and thus a central research problem was to demonstrate that they could. Resolution of this problem involved several elements: (1) modelling a specific decision making domain in a school, (2) designing and implementing an expert system to assist decision making in this domain, and (3) evaluating the expert system to validate its recommendations and compare its performance with the current system and human experts.

An expert system was developed to provide recommendations pertaining to the selection of subjects each term for junior secondary students. The trial school used a unitised curriculum and vertical timetable; students could select from a wide range of subjects each term but had to comply with a complex array of school prerequisites and certification requirements.

The performance of the expert system prepared as a result of this project was demonstrably superior to the current manual system dependent on human experts. The evaluations clearly demonstrated the validity and reliability of the prototype's recommendations. Users' responses were positive, and confirmed the value of using an expert system in this domain.

Date of Project Date of Abstract October 1989 to September 1993 June 1995

ACKNOWLEDGMENTS

This thesis was produced as a result of the cooperation of a number of people, particularly the staff and students at Dripstone High School. The University of New England, Northern Territory Department of Education and UNISYS each provided encouragement, advice and financial support. I particularly express appreciation for the advocacy provided by my supervisors Dr Tony Marshall, Dr Maurice Anker, Professor Don Fitzgerald, Dr Alan Walker and Dr Jim Cameron. Special recognition is also given to Ross Champion and Abraham Caroca at the Northern Territory Department of Education for their assistance in interfacing the prototype expert system with school records. To my wife and daughters, who were also university students while I undertook the research and prepared this thesis, I give my thanks for the precious time they lost.

TABLE OF CONTENTS

Chapter 1	INTRO	DDUCTION	1
1.1	OVER	VIEW	1
1.2	BACKGROUND TO THE STUDY		2
1.3	RESEARCH DOMAIN		3
1.4	PURPOSE OF THE STUDY		
1.5	SIGNIFICANCE OF THE STUDY		5
1.6	STRU	CTURE OF THE THESIS	9
1.7	CONC	LUSION	10
Chapter 2	REVIE	W OF RELATED LITERATURE	11
2.1	INTRO	DUCTION	11
2.2	MODE	LS	13
2.3	ARTIF	FICIAL INTELLIGENCE	17
	2.3.1	Expert Systems	19
2.4	KNOW	VLEDGE ENGINEERING	24
	2.4.1	Knowledge Elicitation	27
	2.4.2	Knowledge representation	32
		Semantic network	34
		Decision table	35
		Decision tree	36
		Rule	37
		Frame	38
		Uncertainty	40
	2.4.3	Program reasoning	42
		Reasoning interface	43
	2.4.4	Computer Software	46
2.5	INTRO	DUCING AN EXPERT SYSTEM	49
	2.5.1	Participation	50
	2.5.2	Feasibility	53
	2.5.3	Evaluation	56
	2.5.4	Reliability	62
	2.5.5	Maintenance	63
2.6	GENE	RAL CONCERNS	63
	2.6.1	Whether a computer can and should replace people	64
	2.6.2	Whether the advice can be trusted	66
	2.6.3	How it should be used and by whom	68
	2.6.4	Impact on employee esteem and employment	69
2.7	CONC	LUSION	70

Chapter	: 3	RESEARCH DESIGN AND METHODOLOGY		
	3.1	INTRODUCTION		
	3.2	SYNOPSIS OF THE SUBJECT SELECTION PROCESS		
	3.3	TIMING	76	
	3.4	RESEARCH DESIGN	77	
		3.4.1 Modelling the research domain	77	
		3.4.2 Developing and implementing an expert syste	em. 81	
		3.4.3 Evaluating the expert system.	82	
	3.5	CONCLUSION	83	
Chapter	· 4	PILOT STUDY	85	
	4.1	INTRODUCTION	85	
	4.2	TRIAL IMPLEMENTATION WITH A SHELL	86	
	4.3	SHELL TRIAL FINDINGS	96	
	4.4	TRIAL IMPLEMENTATION USING A TOOLKIT	97	
	4.5	TOOLKIT TRIAL FINDINGS	98	
	4.6	KNOWLEDGE ENGINEERING	100	
	4.7	CONCLUSION	101	
Chapter	5	THE WORKING SYSTEM	102	
	5.1	INTRODUCTION	102	
	5.2	KES II	103	
		5.2.1 Definitions	104	
		5.2.2 Rules	105	
		5.2.3 Action	106	
		5.2.4 Demons	107	
		5.2.5 Certainty factors	108	
		5.2.6 Inference engine selection	108	
		5.2.7 System selection outcome	109	
	5.3	KNOWLEDGE ELICITATION	110	
	5.4	KNOWLEDGE REPRESENTATION	116	
	5.5	A FACULTY EXPERT SYSTEM	129	
	5.7	COMBINED EXPERT SYSTEM	150	
	5.8	CONCLUSION 1		

Chapter 6	EVALUATION OF THE WORKING SYSTEM	163
6.1	INTRODUCTION	
6.2	VALIDATION OF THE EXPERT SYSTEM	163
6.3	USER RESPONSE	
6.4	CONCLUSION	194
Chapter 7	FINDINGS AND RECOMMENDATIONS	196
7.1	INTRODUCTION	196
7.2	FINDINGS	197
	7.2.1 Evaluation of the RUS System	197
	7.2.2 Time	198
	7.2.3 School involvement	199
	7.2.4 Knowledge encapsulation	200
	7.2.5 Knowledge representation	201
	7.2.6 Toolkit	202
7.3	RECOMMENDATIONS	203
7.4	CONCLUSION	204
BIBLIOGRAP	НҮ	206

Appendix 1	CONSTRUCTION MODELS	227
A.1.1	ART	228
A.1.2	BUSINESS EDUCATION - COMPUTING	238
A.1.3	BUSINESS EDUCATION - TYPING	240
A.1.4	DRAMA	242
A.1.5	ENGLISH	249
A.1.6	HOME ECONOMICS	253
A.1.7	INDONESIAN	255
A.1.8	ITALIAN	257
A.1.9	MODERN GREEK	259
A.1.10	MATHEMATICS	261
A.1.11	MUSIC	264
A.1.12	PHYSICAL EDUCATION & HEALTH	266
A.1.13	SCIENCE	268
A.1.14	SOCIAL EDUCATION	271
A.1.15	TECHNICAL STUDIES	274

Appendix 2	KES KNOWLEDGE-BASE CODING	277
	NEXT-COMPUTING	278
	NEXT-TYPING.	289
	NEXT-DRAMA.	296
	NEXT-ENGLISH.	312
	NEXT-HOME ECONOMICS.	334
	NEXT-LOTE	346
	NEXT-MATHS.	361
	NEXT-MUSIC.	382
	NEXT-PE&HEALTH.	393
	NEXT-SCIENCE.	410
	NEXT-SOCED.	426
	NEXT-TECHSTUDIES	441

LIST OF FIGURES

Figure 2.2.1	Models classified by relationship	14
Figure 2.2.2	Models classified by purpose	14
Figure 2.2.3	Models classified by form	15
Figure 2.2.4	Progress of a simulation study	17
Figure 2.3.1	The evolution of expert systems	19
Figure 2.3.2	Descriptive model of an expert system	21
Figure 2.3.3	Some typical differences between conventional programs	
	& expert systems	22
Figure 2.4.1	Some categories of knowledge	25
Figure 2.4.2	Illustration of and distinction between cognitive elements	26
Figure 2.4.3	Phases of knowledge base construction	30
Figure 2.4.4	A hierarchy of knowledge	33
Figure 2.4.5	Example of a simple semantic network	34
Figure 2.4.6	Example of a more complex semantic network	35
Figure 2.4.7	Example of a decision table	36
Figure 2.4.8	Example of a decision tree	36
Figure 2.4.9	Example of a rule base	38
Figure 2.4.10	Example of a frame knowledge base	39
Figure 2.4.11	Example of certainty factors	40
Figure 2.4.12	Example of a fuzzy logic set	42
Figure 2.4.13	Chaining characteristics	43
Figure 2.4.14	Dialogue style changes	46
Figure 2.4.15	A Comparison of Languages, Toolkits and Shells	48
Figure 2.5.1	An expert system life cycle	49
Figure 2.5.2	A rule set describing when to use an expert system	55
Figure 2.5.3	A verification & validation life cycle	60
Figure 2.5.4	Expert system design and evaluation	61
Figure 2.6.1	Impact taxonomy	64
Figure 3.2.1	Northern Territory Board Of Studies	
	Minimum Time Allocations Years 8-10	74
Figure 3.3.1	Research development overview	77
Figure 3.4.1	Research development model	78
Figure 3.4.2	Computing flow chart model	79
Figure 3.4.3	Computing summative model	80
Figure 3.4.4	Extract from Drama options simulation model	81
Figure 3.4.5	Research paradigm	82

Figure 4.2.1	Example of a MacSMARTS Logic Worksheet	87
Figure 4.2.2	MacSMARTS Logic Worksheet Facts entry	87
Figure 4.2.3	MacSMARTS Logic Worksheet Rules entry	88
Figure 4.2.4	MacSMARTS Logic Worksheet Advice entry	88
Figure 4.2.5	Extract from pilot study MacSMARTS Logic Worksheet	89
Figure 4.2.6	Example of a MacSMARTS example-based knowledge base	90
Figure 4.2.7	Example of a MacSMARTS knowledge base Factor Editor	90
Figure 4.2.8	Example of a MacSMARTS knowledge base Advice Editor	91
Figure 4.2.9	Example of a MacSMARTS knowledge base Examples Editor	· 91
Figure 4.2.10	MacSMARTS module selection	92
Figure 4.2.11	MacSMARTS in-use sample screen 2	92
Figure 4.2.12	MacSMARTS in-use sample screen 3	93
Figure 4.2.13	MacSMARTS in-use sample screen 4	94
Figure 4.2.14	MacSMARTS in-use sample screen 5	94
Figure 4.2.15	MacSMARTS in-use sample screen 6	95
Figure 4.2.16	MacSMARTS in-use sample screen 7	95
Figure 4.5.1	KES Pilot Extract	99
Figure 5.1.1	Research implementation model	103
Figure 5.2.1	Preparation of a parsed knowledge base	104
Figure 5.2.2	Example of KES attributes	104
Figure 5.2.3	Example of KES rules	105
Figure 5.2.4	Example of KES action section	106
Figure 5.2.5	KES attribute hierarchy	107
Figure 5.2.6	KES inference engine selection criteria	109
Figure 5.3.1	Extract of possible Drama unit combinations	111
Figure 5.3.2	Staff Background Briefing	112
Figure 5.3.3	Staff Participation Briefing	113
Figure 5.3.4	Certainty factor board design	114
Figure 5.3.5	Certainty factor board example	115
Figure 5.4.1	A faculty summary model	117
Figure 5.4.2	A faculty flow chart	118
Figure 5.4.3	A faculty decision tree	119
Figure 5.4.4	Association between prior grades and English levels	126
Figure 5.4.5	Technical Studies pre-requisites decision table	127
Figure 5.4.6	Extract from Art faculty expert system	128
Figure 5.5.1	Art faculty expert system	129

Figure 5.7.1	Subject area prototypes	150
Figure 5.7.2	Programming construction	150
Figure 5.7.3	Embedded software model	151
Figure 5.7.4	Linked systems	151
Figure 5.7.5	RUS programming code	153
Figure 5.7.6	RUS Sign-on screen	154
Figure 5.7.7	RUS Student selection screen	155
Figure 5.7.8	RUS English screen extract	156
Figure 5.7.9	RUS Science screen extract	157
Figure 5.7.10	RUS Social Education screen extract	158
Figure 5.7.11	RUS Mathematics screen extract 1	159
Figure 5.7.12	RUS Mathematics screen extract 2	160
Figure 5.7.13	Sample of Student Recommendation Report	161
Figure 6.2.1	Comparison of some actual outcomes	
	and recommendations for one student	165
Figure 6.3.2	Student user survey	184
Figure 6.3.2	Parent user survey	185
Figure 6.3.3	Teacher user survey	186
Figure A.1.1	Art flow chart	230
Figure A.1.1.2	Art decision tree	231
Figure A.1.2	Computing flow chart	239
Figure A.1.3	Typing flow chart	241
Figure A.1.4	Drama flow chart	243
Figure A.1.4.2	Some drama selection patterns.	244
Figure A.1.4.3	Drama potential unit combinations	245
Figure A.1.5	English flow chart	251
Figure A.1.5.2	Association between prior grades and English levels	252
Figure A.1.6	Home Economics flow chart	254
Figure A.1.7	Indonesian flow chart	256
Figure A.1.8	Italian flow chart	258
Figure A.1.9	Greek flow chart	260
Figure A.1.10	Mathematics flow chart	263
Figure A.1.11	Music flow chart	265
Figure A.1.12	Physical Education & Health flow chart	267
Figure A.1.13	Science flow chart	270
Figure A.1.14	Social Education flow chart	273

Figure A.1.15 Technical Studies flow chart

Figure A.1.15.2 Technical Studies Pre-requisites Decision Table

275

276

LIST OF TABLES

Table 6.2.1	Blind Evaluation Data	166
Table 6.2.2	Summary of Blind Evaluation Problems	177
Table 6.2.3	Parity between sample students' actual units	
	and RUS recommendations	180
Table 6.2.4	RUS recommendations for compulsory subjects	
	undertaken by students	182
Table 6.2.5	RUS recommendations for compulsory subjects	
	not undertaken by students	183
Table 6.3.4	Year 8 Student user response	187
Table 6.3.5	Year 9 Student user response	188
Table 6.3.6	Year 10 Student user response	189
Table 6.3.7	Combined Student user response	190
Table 6.3.8	Parent user response	191
Table 6.3.9	Teacher user response	192