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Chapter 1

INTRODUCTION

1 . 1 OVERVIEW

This thesis reports on a school-based project designed to enrich the use of

computers in school administration beyond merely providing statistical data for decision

makers to providing them with actual recommendations. The project involved the

development, trialing and evaluation of an expert system to recommend appropriate

subject selection for individual students.

Remus and Kottemann (1986, 2) noted that "making a good decision starts with

having or gathering the right information upon which to base a decision". Simple

computer systems provide a means of filing data while more complex computer

systems can use techniques to sort and interrogate data, but decision makers still need

the expertise to ask the right questions and thus gather the right information on which to

base decisions. Computer decision support systems, such as expert systems, are

designed to incorporate this expertise and provide decision makers with a range of

options rather than a range of data.

There is an increasing volume of literature in three related yet distinct areas. (1)

Authors associated with computer technology and reporting on, or advocating its use

by, practising administrators. (2) An expanding interest in the use of computers by

schools to assist administrative practices. Such literature, especially in Australia, has

primarily focused on clerical tasks. (3) A growing volume of information about

artificial intelligence in general, and expert systems in particular.

Thus far the emphasis in the use of computing to assist a school's

administration has been on systems to sort and present data. There appears to be a lack

of information, let alone strategies, as to how schools can use sophisticated computer

technology as a decision support system. This situation is illustrated by the

implementation strategies for the introduction of computer systems into schools, which
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sometimes include training on how to operate the computers, but rarely include training

on how to use the computers (Bucknall 1994a). The research reported in this thesis

aims to make a contribution to this area by designing and implementing a specific

decision support system for use in a trial school; that is, the development of a computer

program which provides users with a range of options to facilitate decision making.

1.2 BACKGROUND TO THE STUDY

In late 1984, the Northern Territory Department of Education commenced a

project to place a dedicated mini-computer network in every government school where

the enrolment exceeded 250 students. These computers were installed specifically for

use in school administration, and were not for teaching students. All the schools are

using a common suite of software which caters for word processing, student personal

details, student and staff timetables, student assessment and reporting, and school

financial records. Additional programs are available to provide asset registers, library

cataloguing and borrowing facilities, and electronic mail services.

The evolution of computer assistance for decision making can be traced through

three stages. The first involves Electronic Data Processing (EDP) in which tasks are

relatively self contained and routine for recording data. The second involves

Management Information Systems (MIS) which are intended to extract data from which

decisions can be made. More recently, expert systems are being designed to

recommend appropriate decisions. The introduction of the Northern Territory School

Information System has reflected the first two of these stages. In most Northern

Territory schools there are Electronic Data Processing programs to maintain student,

financial and other records; there are some Management Information Systems to

generate reports that summarise data. However, there are no computer programs

providing decision support systems which provide recommendations rather than data

and thus competent decision making remains critically reliant on effective procedures

and the individual training, knowledge and expertise of the decision makers.

Romiszowski (1987, 17) expressed the view that access to effective and efficient expert

systems "would be welcomed by many and would no doubt make itself felt in terms of

improved decisions ... the moot point is whether the field of education will attract the

investment necessary to develop such special aids".

Over the last decade there has been an increase in the number of Australian

secondary schools offering term or semester length curriculum units through a vertical

timetable. A number of writers (for example, Middleton 1982, Maxwell et al. 1987 and
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Marshall et al. 1988) have reported on these curriculum and timetabling arrangements in

some Australian schools. Fowler's (1993a) more recent comparison of several

Northern Territory schools is especially pertinent to the research reported in this thesis.

Her main criticisms of a vertical timetable confirm the informal and anecdotal

statements, which in part prompted this project, of the difficulties faced by students,

parents and teachers keeping track of subject pathways and their consequences. Unit

selection is a critical component of the timetabling process, which Johnson (1980, 9)

described as "probably the most important single event in the school year ... [which]

may easily distort or destroy the curriculum philosophy of the school." The process of

recommending appropriate units for students is complex and requires a variety of

expertise and thus was considered an appropriate domain for attempting to develop a

computer program to provide a decision support system.

1.3 RESEARCH DOMAIN

Research during the late 1950s and early 1960s into artificial intelligence

concentrated on discovering the fundamental laws of reasoning which a computer

system would then be able to apply. The failure of the early research into artificial

intelligence to achieve satisfactory reasoning performance indicated that effective

reasoning systems needed to include domain specific knowledge. Expert systems, one

of the sub-sets of artificial intelligence, are computer models containing both logic and

knowledge data and through their ability to explain their reasoning are a sophisticated

example of a decision support system.

The title of this thesis, "Using Artificial Intelligence as a Decision Support

System in School Administration", suggests a broader study than in fact has been

undertaken. The term artificial intelligence has been used in the title as it appears to be

more readily recognised in the wider community, though not necessarily any better

understood, than the term expert system. The researcher hopes that the main title

indicates a potential role for computers in school administration, and that the sub-title

"The Development of an Expert System for Student Subject Selection" indicates an

example of that role.

The study of expert systems increased rapidly in many countries during the

period 1989-1993. In keeping with other computing developments, comments and

predictions for the research field made relatively recently are occasionally already out-

of-date, especially in relation to expectations concerning the design and implementation

of expert systems. Thus some technical aspects of this thesis are probably already out-
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of-date, but the researcher anticipates that the central findings will be confirmed rather

than contradicted by further developments in expert systems.

One difficulty in researching this developing field has been the breadth of

literature ranging from articles in the popular press through to complex mathematical

treatises. Further, the perceived variations and contradictions between many

publications in describing what would appear to be key tenets of expert systems

suggests that attempts by some authors to contribute to this domain still have a long

way to go. This thesis has concentrated on non-technical literature with the intention

that amateurs in computer system design and construction be able to read a non-

technical document.

1.4 PURPOSE OF THE STUDY

The primary purpose of this research project has been to ascertain whether

computerised decision support systems, such as expert systems, can be developed to

assist in the administration of schools. Reports in the literature suggest they should and

thus a central research problem was to demonstrate that they could. Resolution of this

problem involved several elements: (1) modelling a specific decision making domain in

a school, (2) designing and implementing an expert system to assist decision making in

this domain, and (3) evaluating the expert system to validate its recommendations and

compare its performance with the current system and human experts. It is hoped that

the findings reported in this thesis will encourage school leaders to consider the

applicability of computerised decision support systems for this and other areas of

responsibility or interest.

In addition to the primary aim, the research had several related objectives, three

of which are specified here.

(1) One objective of this research was to explore the degree of involvement that

school personnel can have in the development of an expert system. Most computer

systems in Northern Territory schools have been developed as standard applications.

There have been some attempts to involve representatives from schools in these

developments but school personnel have generally lacked a sense of participation and

ownership in the new technology (Bucknall 1988). In addition to enhancing product

acceptance, it is anticipated that increased staff participation may enrich the development

process and outcome. On the other hand, the development of an expert system may be

too complex or time consuming to meaningfully involve school personnel.
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(2) Another objective was to develop a facility to encapsulate the expertise of

leaders in the domain and make it available to guide others. Schools, like many other

organisations, are frequently faced with the need for decisions based on the expert

knowledge of individuals. The quality of the expertise available in a school at a given

time will vary. A variety of methods have been adopted to encapsulate the expert

knowledge: for example, keep the expert, train more experts, document the expert's

knowledge, and prepare contingency plans in the event that the expert is not available.

However, and despite these endeavours, the nature of some tasks and a lack of

available experts inevitably results in some decisions being made by people who are

less than expert.

(3) A subsequent objective was to select a specific area of decision making to

develop a computerised decision support system. The research domain, recommending

units for student selection, was chosen because it satisfied the criteria suggested by

various authors; for example, the following responses could be made to eleven

questions posed by Silverman (1987). The domain is an acknowledged problem area,

an expert system may provide significant benefits, the administrators in the trial school

had positive attitudes to technology, the problem has an identifiable solution, the

problem's scope can be defined, the problem is not trivial, the problem is not suitable

for implementation using conventional manual or computer systems, the problem

occurs regularly, a solution will not be made redundant in the foreseeable future, .there

are experts available who are willing to spend time developing the system, and the

solution could be relatively easily transported to other schools.

1.5 SIGNIFICANCE OF THE STUDY

Public schooling in Australia has, for most of this century, been characterised

by highly centralised administrative systems. In the 1970s, some Australian States and

Territories started to undergo radical changes and "a fundamental shift has occurred in

the way Australian schools and school systems have been managed" (Beare 1989, 3).

Beare also noted that "the trend around the world is towards deregulation of schools"

(21). Reasons for these changes were summarised by Duignan and Macpherson

(1991, 1) who cited a series of studies which identified three major trends: (1) an

economic concern for efficiency, (2) the desire for educational effectiveness of systemic

and school management, and (3) increased pressure for political effectiveness of school

management. Nadebaum (1991) reasoned that these trends provided the opportunity to

consider changing the way education is delivered in schools and thus to "better meet the
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needs of teaching and learning" (2). Whether by choice or direction, "the management

roles in education are becoming both differentiated and quite diverse" (Beare 1989, 22)

and "the kind of leadership needed now more than ever, must be knowledgeable as well

as flexible" (Lakomski 1993, 2). However, Macpherson (1991), after examining the

restructuring in Australia and New Zealand, drew attention to the "uneven level of

technical expertise ... [as] ex-teachers had been promoted above and beyond the level

and specificity of their expertise" (53). Telem (cited Hedberg et al. 1992, 134)

identified the major problems faced by small educational organisations planning

information systems as "the lack of specialised professional skills in system design and

implementation and the highly fluid nature of the services and organisation structure."

Hedberg et al. (1992, 138) aptly summarised the situation as follows.
The need to examine the uses and potential uses of school information
systems flows from the confluence of two current trends in educational
administration. At the same time as the technology to manage information in
the schools has become increasingly available, the need for more
information and for more widespread use of the information has been tied to
the efforts at making schools more effective.

Increased student retention rates, acknowledgment of student diversity and the

need for flexibility in student choice, decentralisation of many functions including

financial devolution and the increased responsibilities of school councils have each

impacted on the nature of school administration in Northern Territory secondary

schools. With this increasing complexity and range of personnel involved, there has

been an expansion in the range of options available for many decisions. These

decisions remain significantly reliant on the individual knowledge and experience of the

decision makers, even though their knowledge and experience has normally been

obtained in and for a different environment.

Clemson (1980) has noted that no computer application in education "has made

a noticeable impact on the practices or the management of education" (98). Since then

there have been many examples of computers impacting on the practices of education.

There are even reports of expert systems that have been developed for student

instruction or intelligent tutoring. However, Gould and Casperson (1991, 82)

observed that "less [use] is made [of computers] in decision making in spite of the

growing awareness within the administrative community of such computerised aids as

decision support systems." Previous research (for example, Pratt 1983, Brown 1984,

Crawford 1985, Hill 1986, Carbines 1987, Bucknall 1988, Hedberg et al. 1992) has

examined the use of computers to improve the clerical efficiency and, at least indirectly,

decision making in schools. The research presented in this thesis examines a means of

directly assisting decision making in schools. The current research is significant as it

appears to be the first formal study in Australia to examine the development of an expert
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system for use in school administration, and hence may contribute to and encourage

future developments in this field.

The domain chosen for this study is significant because the subjects that

students undertake "have a major influence upon the educational and career options

available ... when they leave school" (Ainley et al. 1994, 13). Winning (1992, 41)

reasoned that "the philosophical assumptions which lie behind curriculum policy come

from particular historical, ideological and social contexts" and that the process of

reviewing what knowledge is worthwhile will assist educational systems to "move

beyond taking for granted the existing social dictates" (41). Education systems and

schools thus need to ensure that the curriculum is appropriate and that the subjects

available for students will satisfy systemic and individual requirements. The

curriculum for Northern Territory schools is determined by the Northern Territory

Board of Studies. "In Territory schools the curriculum consists of the total of all the

planned learning experiences provided by the schools ... the high school curriculum

attempts to ensure an appropriate degree of uniformity" (Northern Territory Board of

Studies 1992, 4). The Northern Territory Board of Studies awards the Junior

Secondary Studies Certificate to students on completion of Year Ten. To receive the

certificate, students need to study the approved curriculum in ten subject areas "in

accordance with minimum hours" (Northern Territory Board of Studies 1992, 4) for

each of these subject areas. To facilitate the educational end-points, schools are

involved in a variety of administrative and technical issues. Within the framework

determined for schools in the Northern Territory, junior secondary students might

exercise choice in subject selection but the choice offered to students by most schools is

predominantly 'when' rather than 'what' subjects will be studied.

Recommending subject (unit) selection is a real problem, at least at the trial

school, which has a unitised curriculum and a vertical timetable. Here the year-level

curriculum set by the Northern Territory Board of Studies has been divided into

discrete term-length units. Further, the school arranges classes using a vertical

timetable to accommodate individual student progress rather than arranging classes by

year level. Under these arrangements it is probable that a 'year nine' student may

attend some classes which include 'year eight' and possibly 'year ten' students.,
Similar arrangements exist in many tertiary institutions but are less common in

secondary schools.

Students are required to select their study units each term. Selection is based on

the need to complete the minimum requirements, achievement in pre-requisite units,

individual interest in particular subject areas, and on the need to prepare for further
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study and career aspirations. An effective computerised decision support system to

recommend unit selection would help to ensure that student options were carefully

examined and thus reduce the danger of wrong decisions. With the trend in increased

litigation it could reasonably be argued that schools, and principals in particular, have a

duty to ensure that they have not been professionally negligent in advice given to

students and parents. The study is significant for the pilot school because the provision

of a computerised decision support system to recommend unit selection should enable a

collective expertise to be more readily available to a wider clientele. The principal,

students, parents and staff could then be more confident that they have not overlooked

important details, such as compulsory subjects or necessary pre-requisites for later

units, when selecting study units.

Research by Martin and Law (1988, 580) indicates that the study is also

significant for the trial school because the process of developing an expert system

promotes discussion about the processes and reasoning and thus heightens the school

communities' awareness of the issues and reasoning involved. A related benefit would

be the proper documentation of this expertise to help safeguard the school against the

loss of expertise arising from personnel turnover. Further, the resulting increased

awareness within the school of the role of decision support systems may lead to other

expert systems being initiated.

Gaines (1988, 271) aptly described the dilemma whether to cease introducing

new technologies until users became competent in current systems, or to by-pass

current technology and introduce new systems to overcome the current lag in training

and competency. The research reported in this thesis is significant because it examines

one attempt to by-pass current training and competency problems by replacing

Management Information Systems with Decision Support Systems.

This research may also be viewed as a response to Zuboffs (1988) contention

that organisations
can choose to exploit the emergent informating (sic) capacity and explore
the organisational innovations required to sustain and develop it (53).
... If not, we will be stranded in a new world with old solutions. We
will suffer through the unintended consequences of change, because we
have failed to understand this technology. By neglecting the unique
informing capacity of advanced computer technology and ignoring the
need for a new vision of work and organisation, we will have forfeited
the dramatic ... benefits. Instead we will find ways to absorb the
dysfunctions, putting out bush fires and patching wounds in a slow
burning bewilderment (55).
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1.6 STRUCTURE OF THE THESIS

This first chapter has defined the purpose of the research study, and its potential

significance for the trial school and general research into expert systems.

The second chapter of this thesis reviews the literature, with particular reference

to modelling, the development and use of expert systems, knowledge elicitation and

representation, and the potential impact of an expert system. The chapter contributes to

the thesis by presenting the argument that expert systems can be used to support

decision making, and that computer systems are available to enable some schools to

develop effective expert systems.

Chapter Three details the research aim, design, timing, and the research

paradigm which has three main stages: modelling the domain, designing and

implementing an expert system to recommend unit selection (named RUS from the

domain acronym), and evaluation of this expert system.

Chapter Four describes the preliminary studies which were undertaken to select

appropriate computer hardware and software, and determine a process for knowledge

elicitation and representation.

Chapter Five describes the main features of the working system; the process of

knowledge elicitation and knowledge representation, and the computer system used to

model and present the knowledge in the expert system RUS.

An evaluation of the prototype is presented in Chapter Six. This chapter

contributes to the thesis through an evaluation of the RUS system highlighting (1) the

reliability of the expert system's recommendations compared to those of the human

experts and (2) the positive response by users to the prototype expert system.

The findings are discussed in Chapter Seven, in which the success of the RUS

system is used to support recommendations for the potential role of computerised

decision supp9rt systems in the administration of schools.

The appendices consists of (1) the construction models used in preparing the

unit recommendations, and (2) the programming code for the knowledge-bases.
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1.7 CONCLUSION

This thesis (1) reports on an endeavour to design and implement a prototype

expert system to demonstrate that expert systems have the potential to be relevant and

useful in the administration of schools, and (2) suggests that schools can be

significantly involved in introducing these computerised decision support systems.

This thesis is not intended to instruct readers how to develop an expert system;

but it does aim to inspire readers to consider developing expert systems and highlights

the key elements which need to be considered by schools before developing an expert

system. The research does not aim to develop an expert system that can be universally

applied; rather it reports on a longitudinal study in the development of an expert system

for a specific domain in the pilot school.
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Chapter 2

REVIEW OF RELATED LITERATURE

2.1 INTRODUCTION

Computer systems are increasingly being used to provide enhanced clerical

efficiency in schools but are virtually unknown in school decision making. The

emphasis remains on manipulating data rather than interpreting data. There is a number

of possible reasons for this: a shortage of effective computer hardware and software,

protection of current practices and status, fear of technology, and a lack of incentives

and accountability.

Educators have tended to use computers as teaching aids and have started to use

them as administrative clerical aids, but seem unaware of their potential use as

management aids. That is, they may be using computers to enhance data storage,

retrieval and presentation; but they have yet to use computers to assist decision making

other than to provide the information on which to make decisions. This situation

presents a contradiction in schools which aim to prepare students for the future, yet use

the technology of the past. In light of the increased administrative and management

complexity of schools, the result of financial devolution and other factors, computer

competence will be essential if educationalists are to fulfil their dual role as

administrators and educational leaders. Zuboff (1988, 55) stressed the importance of

leadership that could exploit the capabilities of the new technology rather than be left

"stranded in a new world with old solutions".

"We tre beginning the transition from data processing to knowledge

processing" (Feigenbaum 1989, 3), aptly described by Sell (1985, 1) as "from the

tedious to the difficult". Decision makers may presently seek advice and support from

human assistants, but in the future they are also likely to seek intelligent assistance from

computers. There is emerging a new group of computer programs that capture the

knowledge and experience of one or more human experts and which can mimic their

capabilities and rule-of-thumb methods to solve appropriate problems. These computer
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expert systems may adopt a consultative process similar to that followed by the human

expert: a request for information on a specific problem, the provision of a

recommendation based on the knowledge available and the expertise of the system, and

an explanation of the recommendation should this be required. Bielawski and Lewand

(1988, 20) noted that human experts are not infallible and computerised expertise will

also have weaknesses, especially since it is based on human expertise and as a

consequence these computer systems should only be seen as tools to support decision

makers.

The conspicuous benefits of developing an expert system are: (1) to convert

intangible assets into information or real value that remains with the organisation, (2) to

maintain an expert that does not have lapses and is able to give advice when other

experts are not available, (3) to facilitate reliable problem solving which remains

relevant through continual upgrading, and (4) to provide an expertise that can be

replicated for distribution as well as provide a training tool for non experts. There are

also indirect benefits that accrue because the process of developing an expert system is

in itself an advantageous exercise for an organisation through the clarification of ideas

previously taken for granted, the increased awareness of organisational structures, and

the heightened discussion about the expert's knowledge and reasoning.

The use of models provides an opportunity to understand a real system by

extracting and simplifying key features. Models can be used for description, to

simulate or to explore alternatives. Because models are representations of larger

complex systems, it is critical that appropriate entities and relationships are included but

that non-essential elements are excluded. This selectivity needs to take cognisance of

the modelling purpose and, equally important, other possible uses of the model need to

recognise the limitations of the original construction.

The study of knowledge, an important precursor to expert systems, has a long

and honourable tradition in philosophy. To avoid this philosophical debate, developers

of expert, systems tend to adopt a pragmatic approach and treat any rules, facts, truths,

reasons and heuristics as knowledge if the experts have found these to be useful to

solving problems in that domain. There are three traditional sources of this knowledge:

literature, , human experts and examples. These may be expressed as laws, experience

and models; and may be perceptual, heuristic or strategic.

Knowledge Engineering is the general term applied to eliciting the facts and

heuristic knowledge, encoding this information in the expert system's knowledge base

and developing an inference system to use this knowledge. A central problem is not
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just in eliciting knowledge from the domain experts, but in eliciting the correct

knowledge! Elicited knowledge may be encoded in a set of rules that cater for the

varying degrees of confidence to reflect the uncertainties experienced in the real world.

The inference process may proceed forward from the known to infer conclusions, or

backwards from a given goal to detect solutions that will facilitate such goal. In

support of the recommendations or conclusions, the knowledge engineering will

provide the expert system with the capacity to explain the outcome. The capacity to

explain what it is asking or recommending is central to the effective use of and

confidence in an expert system, and is much more than a nice user-friendly touch.

The introduction of an expert system should adopt the same principles of any

other change, but especially those which should apply to the introduction of new

technology. Much has been written on the problems of introducing technological

change. Problems inevitably arise when staff feel alienated by changes being thrust

upon them. Successful implementation is more likely to occur when staffs are involved

in the planning and implementing of change, when meaningful training and counselling

are provided, when respect for individual staff and their skills are maintained, and

when implementation is not rushed.

In addition to the particular issues already highlighted, a number of general

concerns have also been raised: whether a computer can or should replace people;

whether the advice can be trusted, and how it should be used and by whom; the impact

on employee esteem and the impact on employment.

2 . 2 MODELS

A model can be constructed to represent theory, empirical observation or a

combination of these (Fishman 1978, 2). There are many reasons for using models but

typically they endeavour to represent the operation of an existing or proposed system.

Effective modelling may result in an understanding of the real system, the opportunity

to predict changes or the possibility of optimising performance (Osborne and Watts

1977, 6). The use of models may save costly, time consuming or even arduous real

situations; models may be repeatable and non-destructive, and may provide statistical

data for analysis (Zeigler 1985, 6). Many types of models have been used in the past

but the development of computers has increased and will further propagate the

applicability and practicality of models in old and new areas of application, especially

because of the improved output presented via enhanced computer graphics.



14

One essential characteristic of a model is its incomplete representation of a real

system, because only a careful selection of the real or proposed system's properties

correspond to the model; though the actual model may be complete. Gordon (1978, 6)

identified two main tasks in creating a model: establishing the model structure with its

boundaries, entities, attributes and activities; and supplying the data to provide values

for these attributes. The form of model needs to be related to the modelling purpose

and thus it is important that the model is used with regard to its purpose and form.

The differentiation between the development and use of models is illustrated in

figure 2.2.1. In this relationship, modelling is the identification and representation of

the real system whilst simulation is the process by which a model is manipulated to

achieve the real system's essential characteristics.

Figure 2.2.1
Models classified by relationship (Zeigler 1985, 4)

Models can also be classified into categories analogous to their purpose, as shown in

figure 2.2.2
Figure 2.2.2

Models classified by purpose

Descriptive models provide an aid to understanding whereas prescriptive models aim to

provide a solution and normative models describe goals and standards. Both

descriptive and prescriptive models may use simulation to mimic the behaviour of the

real system, prescriptive models may also use optimisation to solve problems by
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deriving the optimum from alternative solutions (Greenberger et al. 1976, 60). Hussey

(1972, 19) noted that the modelling process usually begins with descriptive models

before proceeding to quantitative models and the inferences which these may provide.

There is also a variety of model classifications based on the modelling language

or mode of expression. For example, Gordon (1978) described a range of physical and

mathematical models and Naylor (1979) examined corporate planning models. Other

writers, such as Osborne and Watts (1977) and Ellison and Tunnicliffe Wilson (1984)

have presented broader classifications of model forms which are compatible with

figure 2.2.3.

Figure 2.2.3
Models classified by form (Greenberger et al. 1976, 50-52)

Mental models are subjective perceptions which need not be consistent but are

frequently used by people in their daily response to situations and in lateral thinking,

especially when the factors involved are neither numerous nor complicated. Formal

models are necessary once the magnitude of a problem exceeds the capacity of the

mental modeller, though formal models need not be excluded from simpler modelling

exercises. Whereas mental models are elusive to scrutiny and modification, formal

models are open to examination and disagreement and although not as immediately

flexible may be modified and mutually accepted (Greenberger et al. 1976, 48). Littman

examined the cognitive activity of building expert systems and concluded that "building

an expert system is nothing more, or anything less, than building a mental model"

(1989, 89) and that the computerised result is a translation of the designer's mental

model to behave in such a manner that solves problems that experts solve — and are

thus expert systems.
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Because a model is intended to represent and simplify the reference system by

including selected features and relationships, it is convenient to organise the system into

a series of blocks based on the elementary entities and their immediate interactions.

This extraction process facilitates concentration on a specific entity at a time, the blocks

and their interactions can be independently tested, with further blocks being added as

the need arises. In preparing the blocks, it is necessary to balance the need for detail

with the need to simplify the reference system and avoid a potential combinatorial

explosion of outcomes. Thus blocks will not necessarily represent all features of the

reference system but will retain aspects relevant to the purpose and use of the model.

Osborne and Watts (1977, 4) described this process as "simplification, idealisation and

approximation". Greenberger et al. (1976, 63) detailed the need for balance between

theory, data and methodology, which they reasoned were not independent of each

other. A model based on sound and appropriate theory, using valid and appropriate

data, and established methodology is not guaranteed of acceptance, but it is more likely

to be accepted and used.

Fishman (1978, 3) remarked on three apprehensions apropos the use of models:

(1) caution that time and effort do not guarantee success, (2) defence of the model by its

developer may diminish its validity, and (3) the use of models beyond their original

purpose. Hussey (1972, 19) also commented that the test of a good model inevitably

depends not only on compliance with the prescriptions inherent in its construction, but

also on its use which may be adequate for one purpose but not another and thus must

be used with an understanding of its limitations.

Models are simplifications of a real system and it is crucial that these abstract

representations be tested during construction and on completion (Pidd 1989, 6).

Osborne and Watts (1977, 23) outlined four causes of problems: incorrect

methodology, poor experimental data, incorrect interpretation, and model instability.

They also listed two steps in assessing models: comparison of the data input and output

of the model and the real system; and prediction testing by comparing model output

with real system experiments. Because assessment by clients and others depends on an

understanding of the model, effective communication between designer and client is

one of the most important aspects of modelling. Zeigler (1985, 7) advocated six steps

to assist in making the model transparent and easier to assess:

• Informal description of the model and the assumptions that
went into directing its construction.

• Formal description of the model structure.
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Presentation of the program with which the simulation was
carried out.

Presentation of the simulation experiments performed, and
their results and analysis.

Conclusions about the range of applications of the model, its
validity and its running cost.

Relating of the present model to other models.

Similar steps or procedures have been suggested by other authors, such as Alberts and

Cormier (1988, 70), who described those models that cannot be professionally

scrutinised as black boxes. Figure 2.2.4 is representative of flow charts which suggest

an appropriate process for developing models.

Figure 2.2.4
Progress of a simulation study (Gordon 1978, 54)
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2.3 ARTIFICIAL INTELLIGENCE

Computers are relatively fast and reliable at processing specific instructions and

thus computers have been increasingly used for complex mathematical calculations and

filing information that could be sorted and retrieved. In addition to these tasks there

have also been developments in knowledge processing ranging from manipulative file

processing through to artificial intelligence. Increasing attention has been focused on
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the potential benefits of a natural language interface between users and computers as

well as the desire to solve problems that are imprecise and thus beyond the capability of

precise algorithmic processes. Barr and Feigenbaum (1981a, 3) noted that this move to

develop computer systems that demonstrate reasoning characteristics normally

associated with human behaviour will play an increasingly important part in the

evolving role of computers in our lives to the extent that they will not merely be useful

but essential.

Research during the late 1950s and early 1960s into artificial intelligence

concentrated on discovering the fundamental laws of reasoning which a computer

system would then be able to apply. Falk and Aungles (1987, 16) describe these

endeavours as the strong claim in which it was asserted that artificial intelligence would

eventually replicate human intelligence, as distinct from the more modest weak claim

based on capturing a limited but useful sub-set of human skills. The failure of the early

research into artificial intelligence to achieve satisfactory reasoning performance in the

strong claim indicated that effective reasoning systems needed to include domain

specific knowledge to at least provide some constraint to the combinational explosion

that resulted during the earlier generate-and-test (trial-and-error) methods to find

possible solutions to a problem. Further, many problems do not have algorithmic

solutions as they are located in complex social contexts which resist precise description

(Hayes-Roth et al. 1983, 4). Early commercial users of artificial intelligence were also

often disappointed due to high product costs and/or low performance. As a

consequence, a number of software producers went out of business and the term Al fell

out of favour with many people (Light 1992, 134). Research into artificial intelligence

has since fallen into three main subsets: robotics, natural language processing and

expert systems (Knowledge Engineering), as illustrated in figure 2.3.1.
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Figure 2.3.1
The evolution of expert systems (Harmon and King 1985, 3)
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2.3.1 EXPERT SYSTEMS

Much of the manipulative power once considered the domain of large

mainframe computer systems is now available with mini-computer and also personal

computer systems. These powerful tools have already enhanced productivity in many

areas. A key element in this transition has often been the change in the information

user/owner relationship typically changing from a 1:1 situation to many users sharing

the same database. One result has been the need for increased attention to the problems

related to the integrity and efficiency of large shared data-bases in an on-line

environment (Garner 1987, 60). Also arising from the increased use of shared data

bases by novice computer users has been the need for new interrogative processes more

akin to natural languages.
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Hall (cited in Finlay 1986, 434) identified four phases associated with the

application of administrative computer systems: (1) individual electronic data

processing (EDP) of routine transactions; (2) linked electronic data processing systems

sharing resources; (3) Management Information Systems (MIS) which provide

information pertaining to current performance and/or information for planning; and (4)

Decision Support Systems (DSS) with an emphasis on dealing with semi-structured

problems. Expert systems, computer models containing both logic and knowledge

data, are a sophisticated example of a decision support system and through their ability

to explain their reasoning provide a distinct advance over earlier decision support

systems. In practice, expert systems do not generally demonstrate intelligence, — that

is, the ability to learn, respond to unpredicted questions, recognise their limits or make

educated guesses when their data is inadequate. They can, however, deal with some

problems beyond the capacity of conventional programming - especially problems that

involve uncertain input and output derived from reasoning as well as facts.

The development of expert systems has tended to follow the same evolutionary

path as other advances in computing. Davis (1985, 18) described this path as initially

dominated by a group of "back-room prima donnas" using remote and awkward

technology followed by improvements which, inter alia, allowed the technology to

become more widely accessible, and which will culminate in personal expert systems

becoming commonplace in society at large. A key factor has and will be the advances

in computer hardware and software, especially in personal computers. Martorelli

(1988, 56) noted that one of the largest expert system development markets has been in

the United Kingdom where small personal computer expert systems have been actively

advocated as ideal for exploration and experimentation by customers just beginning to

work with expert systems technology. Analogously, Bielawski and Lewand (1988, 3)

commented "just as the affordable Model T popularised the automobile. Inexpensive

PC based expert system development tools are bringing artificial intelligence into the

mainstream corporate America."

The main reason that expert systems have not become readily available yet is

due to the complexities of expert systems development. Worthwhile prototypes can

often be developed quickly, but development of a major operational system is a more

complex and longer task. Although some of the problems stem from computing

difficulties, the most often-cited bottleneck is the process of extracting and translating

the expert's knowledge.

The aim of an expert system is to capture the specialised knowledge and

experience of human experts, code this in a manner to be applied to a structured
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Descriptive model of an expert system
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knowledge base pertinent to the given domain such that the computer simulates the

conclusions of human experts confronted with the same problem. An expert system

attempts to model the outcomes of a thought process rather than the thought processes

themselves. Rather than apply strict application rules as in conventional programming,

expert systems make use of heuristic rules that do not necessarily apply all of the time

and thus are particularly useful in unstructured and poorly defined problems.

Standard computer programs use exact instructions contained in an algorithm to

manipulate a complete set of data to provide a unique solution to a given problem. On

the other hand, people tend to symbolise their experiences and use knowledge that

applies most of the time to solve many problems. The use of these incomplete sets of

data may produce varying solutions to a problem, each with varying degrees of

confidence, but which tend to work in a pragmatic environment. The core of an expert

system is the inference engine; a computer program that applies domain knowledge to

known facts in order to draw conclusions. Expert systems use relatively little coding

and their power is found in the knowledge base, as distinct from conventional software

which is procedural oriented and code intensive. The differences between conventional

programs and expert systems are summarised in figure 2.3.3.
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Figure 2.3.3
Some typical differences between conventional programs & expert systems

(Giarratano and Riley 1989, 47)
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The increased sophistication of computer systems continues to break down the

delineation between computer languages and the tasks they were initially designed to

accommodate. Thus there are some programs which may be clearly identified as expert

systems and others which clearly are not. For the end user there is little point in

worrying about labels and ascertaining how many tenets of an expert system can be

relaxed before the program is no longer considered an expert systems. Basden (1984,

71) and Silverman (1987, 12) noted that such distinctions are less important to users

than the need to ensure that they obtain a system that will satisfy their requirements,

which Hildreth (1989, 3) categorised as: an improved and wider useability plus a

smarter functionality as part of the information retrieval system.

This may be placed in an historical perspective by observing that computers in

the 1950s were often called electronic brains, even though they could do little more than

arithmetic functions. Nowadays such machines are considered primitive and not at all

intelligent. Similarly, the current work into expert systems will soon be considered

commonplace and less than intelligent and the "mystery of intelligence will continue to

be a moving target" (Myers 1986, 100).

There is some debate as to what constitutes an expert and thus the domains in

which expert systems may be entitled to use the expert nomenclature. Savory (1988,

28) described an expert as someone who "has a large knowledge domain in the form of

facts and rules, and in addition has individual experiences not found in the literature of
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the domain." Hayes-Roth et al. (1983, 13) described expertise as the difference

between knowledge and skill. Joyce and Ramasamy Uthurusamy (1986, 1) also use

the criteria of human ability to develop an expertise and to reason. They accepted, for

example, that complex electronic diagnosis is an expert area, but they deny expertise to

complex tasks which "many people could easily learn and purvey". Pedersen (1989b,

4) reasoned a wider view that "seemingly mundane tasks [such as scheduling] make

excellent expert system targets", especially when the loss of knowledge accumulated by

the present staff would involve lost production while other staff were trained. Carrico

et al. (1989, 13) reasoned that the size of a problem should be "irrelevant in

determining whether or not its worth tackling."

Over the last decade many expert systems have been developed and perhaps

several hundred are currently in use over a wide range of domains: engineering and

science, medicine and finance, for designing and planning, diagnosis and problem

solving, monitoring and control, interpretation and training. The exact nature and

extent of successful working systems is difficult to ascertain because many users are in

highly competitive areas and are not eager to share their success. It is "often difficult to

determine whether a system is in actual use, in the developmental stages, or a paper

model only" (Scherer and White 1989, 290). Edwards (1991, 42) cited several

surveys which suggest that although many expert systems have been developed, only a

very small number are really in use, and Coats (1988, 403) cited estimates that less than

one percent of serious expert system endeavours reach implementation. Munakata

(1993, 3) summarised the history of expert systems in three eras: the academic era from

1965 to 1981, an expansion era from 1981 to about 1989, and the current massive

production era. Lewinson (1994, 5) also described an optimistic outlook for expert

systems, but acknowledged the "long [and] bumpy road for expert systems" and their

failure to gain significant commercial success "in their first incarnation".

It appears that many organisations are at least considering expert systems. It

has been estimated that there are from several to many billion dollars of current

expenditure on expert system development in the United States of America (Coats

1988, 397). The indications are that expert systems in the United Kingdom

predominantly,use smaller personal computer based expert systems. The United States

of America appears to be ahead in the development of larger expert systems,

particularly in the problem solving and high technology sectors: telecommunications

and electronics, defence and aerospace with less application in finance and

manufacturing. Australia has adopted a wide use for expert systems, including

advertising, finance, equipment maintenance and a wide range of planning and
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administrative tasks (Jones 1986, 115, Silverman 1987, 6, D'Angelo 1988, 56, de

Jong 1988, 418, Plunkett 1988. 9, Bundy 1989, 42).

The 1985 report of the Australian Education Council Task Force on Education

and Technology was prefaced as "the first national report to examine in a broad way

both technology and education, with particular focus on their interaction" (Australian

Science and Technology Council 1987). The report examined and made

recommendations regarding the use of technology for the production of materials, as an

instrument for teaching and learning, and for the delivery of education at a distance, but

only briefly mentioned technology and educational administration, with a

recommendation for improved communications within and between education systems.

A dearth of examples for the use of technology in educational administration was also

noticed during the relatively extensive review, reported in this chapter, of Australian

and international literature. An on-line search of the Current Index to Journals in

Education (CJIE), undertaken at the start of research for this thesis, failed to trace any

citations linking 'educational administration' and 'expert system' and similar or related

topics. A recent search indicated citations for educational administration and for expert

systems but none combined. Checking each of the citations for expert system revealed

articles on (1) a 1987 proposal to assist student admission at Northeastern University,

(2) a 1992 prototype at the University of Wisconsin for students to maintain an

individual academic advisory system, and (3) a 1992 project by an un-named College to

advise students who are uncertain about college selection. When Bucknall (1993 and

1994a) published articles and addressed an international conference (1994b) pertaining

to the research reported in this thesis, expressions of interest were received for further

information but no comments indicating similar research undertaken elsewhere.

Hedberg et al. (1992) commissioned an extensive review of American and Australian

literature and surveyed schools in New South Wales, after which they noted that

"schools have barely begun to utilise [decision support systems]" (138) and "that

school administrators tend to use SIS [school information systems] for greater

efficiency in traditional functions ... than for more effectiveness [in decision making]"

(151).

2 . 4 KNOWLEDGE ENGINEERING

Even relatively simple tasks that require intelligent solutions are normally

knowledge rich (Amarel 1984, 40). Because expert systems are data-oriented rather

than procedure-oriented, it is necessary to establish and encode initial knowledge,

reduce or avoid erroneous knowledge, and augment previously encoded knowledge.
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Knowledge may be classified in a number of ways. Figure 2.4.1 illustrates

general categories in the study of knowledge (epistemology) with particular distinction

between a priori knowledge which is considered to be a universal truth that cannot be

denied without contradiction, and a posteriori knowledge which can be denied without

contradiction on the basis of new knowledge.

Figure 2.4.1
Some categories of knowledge (Giarratano and Riley 1989, 64) .

McGraw and Harbison-Briggs (1989, 22) detailed four further categories of

knowledge: (1) procedural knowledge which involves a, usually reactionary, automatic

response to a stimulus; (2) declarative knowledge, which can be expressed as facts; (3)

semantic knowledge reflecting cognitive structure, organisation and representation, and

thus tending to distinguish between people's level of expertise on a subject; (4) episodic

knowledge, which may be described as perceptual characteristics. They concluded that

it is necessary to use different techniques to elicit knowledge from these categories.

Sternberg and Lasaga (1984, 220) stressed the importance of recognising that computer

models aim to simulate human behaviour at a functional rather than a structural level.

While the computer model may represent the steps taken by a human expert, it cannot

claim to replicate these steps.

The general role of a knowledge engineer is to extract the expert's knowledge.

It is generally accepted that this involves being critically involved from initial

investigation through to on-going maintenance. One of the key functions is cognitive

analysis, which involves eliciting and separating facts, rules, heuristics and inference

strategies as illustrated in figure 2.4.2.
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Figure 2.4.2
Illustration of and distinction between cognitive elements

(Adapted from Edwards 1991, 47)
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Copper is a metal

Example of a Rule	 IF the connector is copper
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Example of a Heuristic 	 IF the bulb does not light

THEN the battery might be flat (Probability 70%)

OR the bulb might be faulty (Probability 20%)

OR the connector may not be a conductor (Probability 10%)

ACTION check the battery first

Inference Strategy	 steps followed to solve problem by testing the possible solutions

Knowledge may be considered over three levels: rules, rules of thumb, and

meta-rules. The rules provide a base of facts, theorems and operations. The heuristics,

or rules of thumb, provide the first-order correction which are sometimes applied to the

rules. Meta-rules provide second-order corrections to the heuristics. Waterman and

Hayes-Roth (1983, 222) reasoned that if meta-knowledge is a factor then it should be

recognised and dealt with explicitly. The use of demons is one way of achieving this.

Demons are either internal or external functions which are not explicitly invoked, but

are activated by a pre-defined condition. They are particularly useful because, once

activated, a demon takes precedence over other processes until it is satisfied. Thus, for

example, a demon activated within a program may result in that program being held in

abeyance until an external condition is satisfied upon which the original program will

resume. Alternatively, a demon can impose a condition which causes some rules to be,
fired and others denied.

There are four main technical aspects of knowledge engineering: (1) eliciting the

knowledge, (2) representing the knowledge, (3) the reasoning approach to be used, and

(4) the programming source.
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2.4.1 KNOWLEDGE ELICITATION

In 1985, Sell (1985, 31) commented that "unfortunately there is no science of

knowledge acquisition ... [and] what advice is available tends to be ad hoc and often no

more than common sense". However, with the growing interest in expert systems

more authors appear to be addressing this situation. Although Roth and Woods (1989,

245) stated that efforts to improve knowledge acquisition had been concentrated in

either behavioural analysis research or the development of computer tools, the work by

Cooke and McDonald (1986), Finin (1986), Brule and Blount (1989), McGraw and

Harbison-Briggs (1989), and others specifically addressed the pragmatic issue of

system-oriented knowledge-acquisition methodology.

It is generally recognised that knowledge acquisition is probably the central

problem in developing successful expert systems, a problem compounded by a

mismatch between knowledge acquisition and representation (McGraw and Harbison-

Briggs 1989, 18). A variety of reports suggest that at least six months and up to two

years can be occupied in eliciting information, coding the data and completing even a

small prototype.

Eliciting and formalising the expert's knowledge is usually a difficult task

because an expert's knowledge is the sum total of different aspects of that person's

entire life and even expertise within a particular domain may well be influenced by

factors seemingly outside that domain. The expert's knowledge is often complex,

unconscious and heuristic. Because the expertise is usually in solving a problem,

rather than explaining all aspects of how the solution was derived, experts may simplify

or forget some details and thus may not provide all the relevant relationships. In many

situations people are simply unable to describe how they complete a task. Some facts

and relations may be stripped of context and correlation when reduced to a set of rules;

a process described by Bylander (1991, 74) as "knowledge approximation" rather than

"knowledge compilation". Huang (1989, 489) summarised the situation thus: "most of

these systems are brittle in the sense that they are not immune to even minor flaws in

their encoded knowledge or slight changes in the environment".

An expert's knowledge may be used in three ways: (1) to develop a series of

case studies against which similar problems can be compared, (2) by extracting a set of

rules which can be applied to appropriate problems, and (3) by compiling causal

models to simulate problems (Goel 1991, 72). However, the process of extracting a

set of rules from explanations provided is unlikely to be completely successful, even
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after testing for inconsistencies. Williams (1986, 67) noted that these problems are

further compounded by a general lack of skilled knowledge engineers to elicit and

structure the experts' knowledge.

Knowledge engineers need to recognise that decision making and the process of

deciding how to decide may be biased for a variety of reasons. Remus and Kottemann

(1986) reviewed the literature pertaining to such bias and noted that bias in initial data

may reduce the quality of decisions. This may be the result of excessive irrelevant data,

the greater impact of human interaction over raw data, a preference for summarised data

to raw data, the possibility of ignoring alternatives to the data presented, undue

importance given to the first and last items presented, and the tendency to select data

which conforms to expectations and previous experience. They also noted that bias in

information processing may arise from the use of heuristics based on previous

experience and the tendency to match new problems to old solutions and use old

solutions which had been successful.

To reduce the cost of building and maintaining expert systems, a number of

automated aids have been developed to manipulate knowledge elicitation,

conceptualisation and representation. Although most of these are still experimental

devices, some research has been undertaken to generate models, such as semantic

networks, from which rules can be derived. Although usually developed as research

prototypes, some at least have been used in exploratory applications. Kahn (1988, 30)

and Buchanan et al. (1983) noted their weaknesses which include poor user interface, a

tendency to meaningless or trivial generalisations, and abbreviated iterative processes.

Thus far these tools have usually been used to support rather than replace the

knowledge engineer. Systems include BLIP, DISCIPLE and LEAP (Kodratoff and

Tecuci 1989, 136). Buchanan et al. (1983) outlined several systems, including

EURISKO, META-DENDRAL and AQII. Marcus (1988) described five sets of tools

for assisting knowledge acquisition, noting that each focussed on the particular problem

solving technique used by its accompanying expert system. She cited six advantages in

clearly understanding the role that domain knowledge plays in problem solving: (1)

providing a focus for interrogating experts, (2) helping to identify missing knowledge,

(3) assisting ip determining appropriate use of the knowledge in the resulting expert

system, (4) providing the source of end-user explanations, (5) help limit the task to its

original purpose, and (6) assist mapping the domain expert's description of the

problem. Thus these tools, although reducing the need for skilled knowledge

engineers, still require an appropriate person to undertake an inventory of the domain

and identify the symptoms associated with that domain. The tools also presumed
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identification of the problem-solving technique and types of relevant knowledge

(Eshelman 1988, 47).

A collection of rules cannot replace a theory, and conclusions induced from an

incomplete set of rules may be refuted when further facts and rules are ascertained.

Thus, at the very least, provision must exist for knowledge base modification. Just as

human learning is expanded and theories modified as additional information is

presented, thus also an expert system needs provision for further input and

modification. Ideally an expert system should be introspective about its knowledge and

learn from experience. Kolodner (1984) has done some interesting research into

reasoning models in which the program refines both the reasoning process and the

domain knowledge. Huang (1989) proposed a framework in which feedback to the

expert system, related to the usefulness or failure of the outcomes, from the actual

situation (the environment) provided a basis for defining the usefulness of rules,

which, in turn, modified their importance.

Sell (1985, 28) abstracted four stages in knowledge acquisition: converting it

from an internal to external mode to make it available for examination, rendering it

explicit to clarify the detail, recording it in symbolic form, and verifying the final

symbolic model against the original intention. Sell's stages are compatible with other

models, such as figure 2.4.3, which also reflects that, although the phases are

theoretically sequential, work in one phase may affect earlier as well as later phases.

Thus, in practice, these stages are "not clear-cut, well defined, or even independent"

(Hayes-Roth et al. 1983, 24).
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Phases of knowledge base construction (Kulikowski 1989, 164)
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The data derived from knowledge elicitation techniques is usually in the form of an

expert's verbal comments and actions. This may be obtained through interviews with,

instructions by, or observations of, the expert; usually a combination of these

approaches is used. This presumes that experts can be identified, are available, and are

willing and able to share their expertise. Pollard and Crozier (1989, 50) reported on

research into the validity of verbal reports and concluded that it was very unlikely that

even experts perform tasks perfectly and that they are less likely to recognise influences

that reduce their effectiveness. Pollard and Crozier recommended "a very strong

cautionary note regarding asking people, experts or otherwise, to describe the basis of

their decisions and judgments" (49). McGraw and Harbison-Briggs (1989, 17) cited

research which suggested that experts may tend to see only one solution even though

other effective solutions existed. Holtzman (1989, 46) further argued that, since "most

people find it unproductive to be their own devil's advocate", the decision analyst and

decision maker should be separated.

Interviews require little equipment, are "highly flexible, portable and can yield a

considerable amount of information" (McGraw and Harbison-Briggs 1989, 9), though

the ratio of relevant to irrelevant knowledge can be very low (Bachant 1988, 202).

Further, interviews typically involve lengthy sessions in which the knowledge engineer



31

endeavours to establish facts and rules for the domain. Protocol analysis involves

observation for patterns, heuristics and other clues as an expert solves a problem.

Scaling techniques use descriptive statistical techniques to represent relationships.

These discoveries need to be skilfully interpreted to ascertain the underlying knowledge

and to discern that "people are better at remembering events or facts when provided

with clues" and thus structured tasks should be more successful when eliciting ideas

from experts (Cooke 1989, 61). Morik (1989, 131) concluded that modelling is an

interactive process which reveals laws, but through a process requiring reversibility and

the possibility of starting all over again because of their tentative nature.

When developing an expert system it is necessary to achieve a fine balance

between a narrow, implementable domain that is yet wide enough to be useful (Sell

1985, 16) but avoiding the danger of becoming "bogged down in a combinatorial

explosion of preferences" (Eshelman 1988, 79). An ever present danger is that

information may be ignored because it does not appear to be relevant or important.

Thus it is recommended that "a rich view of expert knowledge should be adopted"

(Kidd 1985, 16). However, Holsapple et al. (1987, 290) noted that rule syntax can

lead to fragmentation of a conclusion into multiple rules and this proliferation can

impinge not only on the rule specification process but also on inference efficiency.

Further fragmentation can occur when the use of several experts results in diverse or

conflicting information. This problem may be further compounded as experts

sometimes contradict themselves when considering their own stated knowledge from a

different viewpoint at a later date (Ramsey and Basili 1988, 45). The reality is that most

complex problems require access to a number of specialists even when there is one

expert who may be able to cover these fields, if only because THE expert is unlikely to

have sufficient time to be available whenever needed, and there are potential benefits in

eliciting more than one solution to a problem.

There are three typical knowledge sources for creating a knowledge base:

human expertise, textbooks and manuals, and examples from previous cases.

Although the first is not always easy to extract, and the second is not always available,

it is perhaps surprising that greater use is not made of examples of previously solved

cases (Kuliko,wski 1989, 165). Although considerable effort may be needed to find

and collate such archival material, such data may be invaluable not only in preparing but

also testing an expert system.

The development of an inductive knowledge base is an alternative to manual

rule creation. Here the expert provides examples of problems and their solution and it

is the function of the expert system to induce the rules to be used in conjunction with
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the knowledge base. However, common to other knowledge elicitation techniques,

information may be left out or denied because it did not seem to be important at the time

or was simply overlooked; thus the induction tool may build its conclusions on

incomplete and potentially misleading information. A number of expert systems

developed using the iterative refinement approach have failed when too few cases have

been used to cover all the possible outcomes, or developers have bowed to pressure to

put the system to work sooner rather than later. Further, examples will not necessarily

provide the structure or mechanisms to cater for new and different situations (Roth and

Woods 1989, 235).

Thus far, inductive systems have only provided limited flexibility because few

useful general principles have been articulated and there do not appear to be many

situations where concept learning has been successful in creating or enhancing expert

systems outside the laboratory (Whittaker et al. 1989, 18). Sell (1985, 29) noted that

induction methods worked best in scientific disciplines where the heuristics are less

partial; similarly, Bielawski and Lewand (1988, 14) suggested that an inductive system

is more appropriate if the information is derived from a spreadsheet or database which

already has distinct relationships.

2.4.2 KNOWLEDGE REPRESENTATION

Whereas conventional programs are based on data structures and fixed

algorithms, expert systems are based on inferring information and knowledge from

data. Figure 2.4.4 helps to illustrate this hierarchy of knowledge. Analysis of the

knowledge implies that it can be decomposed through cognitive and evaluative

processes to reveal key components and their relationships. This analysis may also

indicate other knowledge required for the expert system to function properly and/or the

need for alternative knowledge elicitation techniques.
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Figure 2.4.4
A hierarchy of knowledge (Giarratano and Riley 1989, 65)

The first task, which also continues throughout an expert system project, is to

analyse the elicited knowledge and abstract the general concepts and heuristics to

ascertain the overall patterns between concepts and attributes. Once these patterns have

been established, the individual data structure may be represented in a variety of

formats to construct a model of how the human expert's mental processes are

organised. This is normally a two step process: knowledge analysis using techniques

such as semantic networks, decision tables and decision trees to provide a formal model

of the domain; and knowledge coding using techniques such as rules and frames to

transform the model into working code. Some literature makes the distinction between

model based and rule based problem solving, but Chandrasekaran (1991, 75) reasoned

that these are not "genuine alternatives ... [as] all descriptions of any aspect of reality

are models" and that "the important research issues have to do with how problem

solvers can move flexibly from one model to another in the pursuit of goals" (79).

Baskin and Michalski (1989, 113) also reasoned that there was no "single best"

paradigm for representing knowledge or problem solving.

The relationships established by an effective format are critical to the success of

an expert system. Gevarter (1982, 20) cited the game of chess as an example of

incremental pattern based networks in which thirty rules could be used to cover

approximately two million configurations in a King and Knight verses King and Rook

situation. The power of these relationships is a key to distinguishing between expert

systems and conventional programming. The knowledge analysis and coding also need

to deal with potentially large search spaces, and thus need to be factored or pruned to

enable effective examination.
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SEMANTIC NETWORK

These networks help to identify relationships among a set of objects which may

have subordinate relationships and property characteristics. A simple semantic network

may be seen in airline route maps such as figure 2.4.5

Figure 2.4.5
Example of a simple semantic network

Some Darwin Armidale air-routes

Darwin

Brisbane

Tamworth

1111.	 Armidale

Sydney

The structure of semantic networks is based on nodes (objects) connected by

arcs (links or edges). The arcs are the critical component converting the collection of

unrelated facts into organised knowledge. ISA (is-a) and AKO (a-kind-of) are two

commonly used arcs to demonstrate relationships and characteristics. For example,

from figure 2.4.6 it can be inferred that Fiona owns a cat with a Tail.
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Figure 2.4.6
Example of a more complex semantic network

Semantic networks have a simple syntax and are very flexible, and thus easy to

modify. This flexibility may be of benefit in enabling a variety of models to represent a

situation, but may be disadvantageous if links and nodes become tangled through

excessive intertwining. To reduce this problem, one approach to maintaining order

encourages a hierarchical approach within the semantic network (Warnier/Orr cited in

Carrico et al. 1989, 65). Giarratano and Riley (1989, 80) noted that semantic networks

are useful in showing binary relationships but that searching nodes can lead to a

combinatorial explosion, especially when the response is negative. Further, such nets

are "logically inadequate because they cannot define knowledge in the way that logic

can".

DECISION TABLE

One problem in keeping track of knowledge is to ensure that redundant and

contradictory details are excluded from the knowledge base. A strategy, advocated by

Francioni and Kandel (1988), is the use of decision tables. Figure 2.4.7 illustrates a

decision table/to identify fruit. However, although decision tables may provide an

effective way of capturing, cataloguing and sorting data, they do not clearly describe a

decision process (Carrico et al. 1989, 74).



Figure 2.4.8
Example of a decision tree (Bielawski and Lewand 1988, 25)

Medium

Air --111. Rotors 	Ø■ Aircraft = Helicopter

No --Ø. Propellors	 Yes--00► Aircraft = Plane

Water
	 No ---l■ Aircraft = Jet
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Figure 2.4.7
Example of a decision table (adapted from Carrico et al. 1989, 75)

Attributes
shape round round oblong oblong
smell add sweet sweet sweet
colour yellow red yellow green
taste sour sweet sweet sweet
skin rough smooth smooth smooth
seeds yes yes no yes

Conclusions
grapefruit Y

apple Y
banana Y

pear Y

DECISION TREE

A decision tree pictorially represents the relationship between items in a certain

class, as illustrated by figure 2.4.8 and is a relatively easy way to represent complex

diagnostic structures.

Tree searching has been used previously in mathematical optimisation and is

thus not unique to the field of artificial intelligence; but what is unique is the use of

heuristics to ascertain the strategy for searching the tree, based on the implications

developed by the expert system (Keller 1987, 98). For example, by translating the

decision tree into production rules then such rules can be used to determine the line of

questioning. In figure 2.4.8 the process could be along the lines:

If question = "Does it have Rotors"
and response = No
then question "Does it have Propellers?"
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If question = "Does it have Rotors"
and response = Yes
then answer "Aircraft is Helicopter"

However, these structures suffer the disadvantage of drawing users in a forward

direction and thus are not applicable in situations when a backward reasoning approach

would be more appropriate. Further, noted Holtzman (1989, 57), they usually "do not

allow independent relations to be exploited".

RULE

In a rule based system the expert's advice is expressed as a series of IF-THEN

statements. Each entry in the knowledge base is a rule of the form

IF antecedent	 THEN consequent.

If certain attributes have certain values then other attributes are asserted to have certain

values. This relatively simple format has two significant extensions: (1) the antecedent

may have conjunctions [this and that] as well as disjunctions [this or that], while the

consequent may only have conjunctions; and (2) both the antecedent and consequent

may include factors which are less than fully true. The main advantages of rules are

that (1) their order is not critical and they can be modularised and grouped together for

easier comprehension; (2) individual rules can be written in language that users can

understand; (3) more than one rule can contribute to the conclusion; and (4) individual

rules can be added, modified, or deleted. The main disadvantage of rules are that (1)

some representations are unwieldy as there is almost no capacity for generalisation, or

impossible because they lead to circular reasoning, and (2) the format of production

rules is difficult to apply in diagnostic problems.

Rules are transparent because their contents and meaning stand alone without

relying on their location or order. However, this location flexibility can also result in

rules having a low visibility which may present difficulties when evaluating the

knowledge base. Access to rule tracing facilities may be essential, especially in

systems with many rules that cause the firing of other rules. Jackson (1990, 152)

noted that rules are good for linking conditions with actions, but are less suitable for

representing knowledge about events or objects.
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Figure 2.4.9
Example of a rule base

IF
	

Temperature is over 100 OR

Pressure is over 250

THEN
	

Situation is dangerous

IF	 Time is after 1800 OR

Time is before 600

THEN	 Hot water not required

IF
	

Situation is dangerous OR

Hot water not required

THEN
	

Turn off boiler

In response to an inquiry, the antecedent of each rule will be examined and, if

satisfied, the consequent will be enacted. The action resulting from the firing of a rule

may call on other rules. The rule base will continue to be examined until no additional

rules are fired. Not every rule will necessarily be fired despite many passes through the

rules. For example, rules about birds are unlikely to be fired for an inquiry about four

legged animals. Some rules might only be fired as the consequence of other rules

firing. For example, rules which distinguish between breeds of dogs would not be

fired until another rule identified the four legged animal as canine. Data may prevent

some rules from being fired. For example, the four legged canine may be male and

thus female characteristics may be irrelevant.

FRAME

Frame systems are useful in the classification of knowledge by using a

representation which is true for the majority of cases in that classification, for example,

that birds fly. Things and events are represented by a collection of frames in which

there will be one entity per frame but with labelled slots for other information pertinent

to that frame. Thus it is through the existence, or non existence, of these slots that

information is related or excluded. Figure 2.4.10 illustrates a frame for Mammal which

contains the default values to save repetition in the other frames. The other frames

contain specific values for individual mammals, including exceptions to the default

values. This feature may, however, be a problem if every frame is able to deny



WHALE

A KIND OF MAMMAL

SwimsMoves

Legs None
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inheritance factors thus detracting from the reliability of the composite frame

(Giarratano and Riley 1989, 86).

Figure 2.4.10
Example of a frame knowledge base

MAMMAL

Skin Fur

Birth Live

Legs Four

Infant Food 	 Milk

RABBIT

A KIND OF MAMMAL

Ears Long

Moves 	 Hops 

MONKEY

A KIND OF  MAMMAL

Tail Curly

Legs Two

Frames can be put together in sequence, linked hierarchically or in a network

such that a frame may inherit information from more than one ancestor and thus are

potentially useful for large data structures which can be naturally organised into

relationships. Frames can include both declarative and procedural knowledge (Alty

1989, 190). Jackson (cited in Giarratano and Riley 1989, 85) noted that "the frame

paradigm has an intuitive appeal because their organized representation of knowledge is

generally easier to understand than logic, or production systems with many rules".

Because frames are based on hierarchy and inheritance, they are useful in representing

knowledge involving cause and effect, whereas rules may represent unorganised

knowledge that does not have a causal relationship.

One study (Ramsey et al. 1988, 46), using two systems on the same problem

(involving a new field with unclear knowledge), demonstrated that the rule system

"provided more interpretations and exhibited a higher rate of agreement with the

database than did the frame system. ... However, as a field becomes more established,

a frame-based, system may provide better solutions". Brule and Blount (1989, 123)

stressed the benefits of adopting a flexible approach when selecting rules and/or frames

to ensure that knowledge was not lost. Frames are often used in conjunction with other

systems, such as rules. Examples of this combination include LOOPS and KEE where

the frames provide a rich data structure for objects referred to by the rules (Srihari

1989, 6).
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UNCERTAINTY

A potential problem with rules relying on antecedents and consequences is the

difficulty created by competing hypothesis; that is, in situations when the input is not

conclusive and/or when the domain knowledge is imperfect. There are a variety of

methods for dealing with unreliable data and knowledge. For example, probabilistic

reasoning (Bayes), Dempster-Shafer theory, set-covering techniques, fuzzy sets

(Zadeh) and certainty factors (MYCIN). The use of certainty factors is an increasingly

commonly adopted departure from predicate calculus

Heuristics are the general rules-of-thumb which people often apply in

formulating a decision. Just as these are not always true in real life, so the expert

system needs to make allowance for the degree of certainty or confidence that it can

have in a specific rule. Thus the knowledge bases of many expert systems need to cater

for the confidence of rules through a spectrum of certainty factors (CF), as illustrated in

figure 2.4.11, so that structure of rules changes from 'IF this THEN that' to 'IF this (to

some extent) THEN that (to some extent)'.

Figure 2.4.11
Example of certainty factors

	

1.0	 absolutely right

	

0.75	 probably true

	

0.50	 reasonably correct

	

0.25	 possibly true

	

0.0	 unknown

	

-0.25	 possible false

	

-0.50	 reasonably false

	

-0.75	 probably false

	

-1.00	 absolutely false

These certainty factors will be used by the inference engine in determining whether a

condition has been satisfied. Thus, for example, a rule with a certainty factor of 0.25

might not be deemed to have satisfied a condition and thus not held to be true. On the

other band, a combination of certainty factors may be held to satisfy that condition. In

some programs, the certainty factors for a given situation might not necessarily add up

to 1.0; for example, the probability of success could be 0.9 even though the probability

of failure may be 0.3. Not all software is this flexible, however!

Jackson (1990, 99) noted that although there is general agreement amongst

researchers that confidence factors are important, there are diverging views on their

method of calculation. The difficulty in satisfying statistically correct probabilistic

approaches, such as Bayes's theorem (detailed in Negoita 1985), has resulted in greater
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acceptance of subjectivist probability involving human judgement. Certainty factors are

therefore often ad hoc just as expert reasoning is also often ad hoc; but the important

thing in this situation is not their pedigree but whether they work. Silverman (1987,

17) described this approach as "phenomenological", an approach which is used because

it works, despite its lack of rigorous theory. The important thing to remember is that

the knowledge content of the rules is more important than the algebraic confidences that

hold the system together (Luger and Stubblefield 1989, 311).

The utility of certainty factors is repudiated by some researchers, such as

Holtzman (1989, 95), who argue that attempts to use certainty factors have failed

because of variations in individual assessments of probability, because the range of

outcomes is unimaginably large, and because they are of limited practical use in

decision making. A further disadvantage is that a string of consequential rules will

gradually reduce the overall confidence in the result, an outcome that might not reflect

the expert's thinking. Some systems accommodate this by, for example, only applying

the highest certainty factor of contributing rules.

The uncertainty concept is further extended through the use of "fuzzy logic"

which provides a link between the numeric needs of the computer and the imprecise

facts of the real world. The use of quasi natural language allows, for example, age to

be expressed by the terms young or old. The uncertainty of such an answer may arise

because the user does not know the person's age; or it may result from uncertainty on

how to define age. An Australian thirty year old is not usually considered middle-aged,

nor is someone who is thirty years and one month. But how many months after thirty

years is one middle-aged? The use of fuzzy logic, as illustrated in figure 2.4.12, helps

to resolve this problem and thus would appear to be well suited to some expert system

environments. Fuzzy logic may also be seen as an extension of certainty factors in

ascertaining membership of a given set when a datum may only exhibit some of the

properties associated with that set. Fuzzy logic is to meaning what Certainty Factors

are to confidence.
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Figure 2.4.12
Example of a fuzzy logic set (Adapted from Summers 1990, 292)

Ascertaining middle-age

	

Age	 Strength of set membership

	

30	 not a member

	

35	 membership uncertain

	

40	 probably a member

	

45	 full member

	

55	 full member

	

60	 probably a member

	

65	 membership uncertain

	

70	 not a member

Although the key ideas for fuzzy set theory were first espoused by Zadeh in 1965, the

theoretical concepts have been developed most over the last two decades. Klir noted

that the theory continues to advance rapidly in sectors of the academic community, but

that applications and wider interest appear limited other than in Japan where there were

"some highly successful applications of fuzzy control in the late 1980s" (1991, 8).

Munakata (1993, 4) reported on the more recent use of fuzzy logic systems in a

widespread and expanding range of electrical appliances.

2.4.3 PROGRAM REASONING

A chain of reasoning is formed when multiple references connect a problem

with its solution. Forward chaining is the processing strategy in which the program

commences with the known facts and attempts to infer conclusions from these.

Forward chaining is useful when the user needs to know everything about the domain

which applies to a given situation. Backward chaining commences with the final goal

and seeks information to solve that problem, but in the process ignoring the

implications of facts that do not appear to have immediate significance. An example of

forward chaining would include a student wishing to know the subjects available given

current achievement, whereas backward chaining would indicate the subjects required

for entry to a given course. Although some computer software accommodates forward

and backward chaining, most expert systems only chain reasoning in one direction.

The reasoning approach to be used will have implications for the knowledge engineer in

the design of the knowledge base and selection of software.
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Figure 2.4.13
Chaining characteristics (Based on Pedersen 1989b, 80)

Trait
	

Forward Chaining 	 Backward Chaining

solutions are	 not prenumerated	 prenumerated

the goal is	 not necessarily known	 known

the objective is to 	 flush out all facts 	 infer key facts

starting situation 	 some facts known	 few facts known

questions and answers

user input required 	 not necessarily	 yes

% rules typically applying	 relatively high	 relatively low

strategy	 build solution	 detect solution

problem type	 configuration	 classification

planning	 selection

interpretation	 diagnostic

REASONING INTERFACE

The quality of reasoning is a critical aspect of an expert system. But even

"excellent decision making performance does not guarantee user acceptance" (Langlutz

and Shortliffe 1984, 77). If people cannot question and follow the reasoning process

of an automated system, they cannot be expected to endorse its decisions and hence

may not use it even if the computer system is known statistically to outperform the user

on that particular task. Without an effective interface between the user and the expert

system, the user might override the expert system's recommendation through ignorance

of how it was reached. Preparing an effective interface is a valid and important aspect

of the knowledge engineer's job. Construction of the interface needs to be considered

in conjunction with the knowledge representation and computer software.

In addition to preparing an interface able to meaningfully explain the reasons for

requesting particular input data and to provide justification for any recommendations

made, the knowledge engineer needs to provide audit facilities to enable queries over

the knowledge base procedure or accuracy to be checked. A range of audit facilities, to

facilitate confidence in advice given by expert systems, is examined in section 2.6.

The early expert systems, in providing any explanation, tended to quote a rule.

Such explanations were, at best, only a by-product of the system's ability to trace the
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rules which had been fired (Brachman et al. 1983, 48). Later systems increasingly

include provision for text within the rule structure, and/or for plain English rules, so

that users can understand them better. Some systems include specific text segments for

user-interface while allowing mnemonics for programming. Slagle (1988, 93)

described the development of an expert system shell AGNESS which provided eighteen

explanation types: six forms of response (who, what, when, where, why, how) and

three categories (past, present, future). But these are still short of providing

explanations in terms of basic principles and a rational line of argument using an

unlimited vocabulary and syntax capable of reasonable human discourse, and well short

of speech synthesis and recognition.

It is important to avoid frustration that would be created by providing a

technically correct response when the nature of the feedback was not what the user

expected, especially if a null answer was provided. Most attempts to deal with this

situation have used natural language interfaces. Some have adopted a loose structure

data model using an object-oriented logic based approach to at least distinguish between

user mistakes and genuine null responses, so that users do not presume the null

response was an error on their part and needlessly try again. Another approach is to

present users with a complete menu of questions that can be put to the expert system

and for which a valid response will be provided (Olson and Lindahl 1988, 82). Shin

(1988) described preliminary results of the ongoing project MTDMAN which intended

to accommodate incomplete user queries through a natural language interface.

Systems which provide facilities for users to ask questions increase the range of

situations that the system is expected to cover. This situation obviously becomes even

more complex when responses are open ended and extended by variables. Motro

(1986, 598) cited several cooperative systems to interpret failures and improve the

interaction by monitoring the data and informing the user when a change occurs for

example, "No you are not eligible to enrol in that unit - shall I let you know what you

need to complete first".

Langlutz and Shortliffe (1984, 77) outlined a program (ONCOCIN) which went

one step further to provide a critique on alternative solutions provided by human

experts. Wick and Slagle (1989) designed an expert system in which the user interface

included an Interface Engine and a Justification Engine, the latter assessed additional

information to provide a global justification as distinct from the hitherto local

justification which merely restated the collection of rules. The Justification Engine

more accurately mimicked the human experts who may justify a decision by outlining
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the various rules, but is more likely to explain how the facts in a given situation

supported the conclusion.

Knowledge engineers and client users both require systems to explain output,

and thus the needs of the user will affect the type of explanation required. The users

are more commonly provided with, if anything, a trace of rules applied; when in fact

the user may be seeking a justification for the overall problem solving approach. In an

attempt to tackle this problem, Ellis (1989, 123) reported on XPLAIN, in which it was

proposed that domain knowledge would be represented in a descriptive domain model

and a prescriptive set of domain principles so that justification of program behaviour

could be provided in addition to justification of program outcomes.

Mays (1988, 559) cited several studies which have shown "questioner's

expectations of the computer system are increased when the mode of interaction is

natural language ... [and] may even exceed those of similar human exchanges." Gaines

(1988, 271) described the changes in computing technology and user-interface over the

last four decades. These are summarised in figure 2.4.14. The supplementation or

replacement of keyboard and textual interaction with graphic displays and pointers have

been considered beneficial. But these changes have also created problems because of

their speed and frequent lack of foundation. This dilemma is compounded by the

increasing variety of users, ranging from computer novices to those experienced in

different systems; ranging from older people experienced in the real world but computer

illiterate, to computer literate young people who lack experience in the real world. The

dilemma is whether to halt the introduction of new interface technologies until the

problems are resolved and the world catches up, or to introduce further advances in

order to bypass the current problems and help the world catch up.
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Figure 2.4.14
Dialogue style changes (Gaines 1988, 274)

Computer
generation

Graphic
Representing world

Formal
Representing computer

Natural Language
Representing person

2
1956-63

Expensive
Flight simulators
Process simulators for
limited military and
industrial use

Simplistic
Job control languages
giving operators access to
machine features

Output only
From stored script in early
computer aided instruction

3 Practical Standard Primitive
1964-71 Mimic diagrams Simple prompt response Keyword recognition

Light pens Menus Incorporation of words from
Touch screens Form-filling input in output	 •

4 Creating reality Sophisticated Practical
1972-79 Windows Dialog engineered prompt Understanding fixed domain

Icons response Meta-level understanding
Desktop simulation Interactive form-filling

Intelligent form-filling
5 Low cost Integrative Sophisticated

1980-87 PC flight simulators Integration through •
INTELLECT & GURU

Integration through 1-
Macintosh

Integration through ...?...
Symphony & Framework •

4- Fifth generation objectives ÷

2.4.4 COMPUTER SOFTWARE

Developers of an expert system may use a programming language such as LISP

(John McCarthy 1959) or PROLOG (Alain Colmerauer 1972) to prepare their own

programs. These languages were developed to enable mapping of natural concepts and

to provide rich representation constructs to enable processing of symbolic information

such as words and phrases. For example, standard PROLOG uses backward chaining

and thus is especially useful for diagnostic systems. LISP and PROLOG can also

provide significant programming productivity compared with earlier languages. For

example, a "program that is 1000 lines long in FORTRAN can typically be written in

less than 100 PROLOG statements" (Citrenbaum et al. 1987, 53).

Developers may also consider using a shell to provide the main architectural

features of the desired expert system to which the local knowledge is then entered. The

early shells were a by-product of existing expert systems in which the specific

knowledge base had been removed but other structures left intact, but many shells are

now purpose built (Alty 1989, 192). Shells are designed for general domains and a

particular shell is unlikely to be suited to all tasks, thus requiring careful assessment of
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potential shells for use in a specific domain. Shells may also contain components

additional to the specific requirements or, more importantly, may not have all the

components necessary to satisfy the specific requirements. Newcomers to expert

system programming usually start with shells on personal computers (Bielawski and

Lewand 1988, 5, Martin and Law 1988, 582, Alty 1989, 199, Whittaker et al. 1989,

18).

A shell does, however, provide a compromise situation in which users sacrifice

flexibility and complexity. Some of these disadvantages are diminished when using the

more powerful shells, which are usually associated with mainframe computers. Most

shells do, however, usually have important support facilities such as editing,

debugging and in-built command structures. Further, users do not need formal training

in a computer language to commence and maintain simple shells. Shells, like many

other recent computer applications, such as word processors, do not require an

understanding of how they work to use them effectively. The relevance of these factors

will depend on the likely frequency with which an individual or organisation is likely to

develop expert systems. Bratko (1989, 85) reasoned that the use of each new shell

requires time to learn and implement whereas PROLOG already has a sophisticated

formal base, its syntax is clear and semantics easily understood. However, Giarratano

and Riley (1989, 17) argued against re-inventing the wheel and that it is "more efficient

to use specialised tools designed for expert system building than general purpose

tools". Carrico et al. (1989, 10) also described the benefits of using a product which

presumably would have vendor support and thus be less dependent on individuals,

have standard features enabling a team approach, and have relative portability.

Because shells will potentially be used by people with limited computing skills,

it may be difficult for them to find the correct shell for a particular situation. To

overcome this dilemma, an increasing number of articles is being published to assist

developers in this decision (for example Raeth, 1990 contains six chapters of such

evaluation including a comparison of twenty seven shells), and some expert systems

have been developed specifically to compare shells.

A varrn of Tools (also described as Toolkits) have been developed to assist in

the construction of expert systems. An important group of toolkits lies somewhere

between a language and a shell, to the extent that some are described as shells rather

than pseudo-languages. Their use may, however, be limited by their complexity and

the need for intensive training and special hardware (Alty 1989, 190 and Rothenberg

1989, 205). Williams (1986, 70) noted that "those acquiring overly simple expert

systems development tools may find their caution counterproductive" because such
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tools usually cannot deliver the desired outcomes and thus require upgrading and

retraining. Program maintenance has also been recognised as a potential problem when

using relatively unknown toolkits; for this reason Matthews (1987, 433) advocated

translating the finished product into mainstream languages, such as LISP and

PROLOG, which could be more readily maintained by a wider pool of programmers.

The situation regarding development tools appears to have changed dramatically

in the relatively short time since the above comments were made. The first large

development tool was released in 1984. By 1989 approximately two dozen software

development tools had appeared on the market with varying degrees of efficiency and

acclaim. In 1988, the price for personal computer Tools ranged from US $100 to

$10 000, mini-computer and specialised work station tools ranged from US $15 000

to $75 000, and mainframe computer tools from US $25 000 to $250 000 (Carrico

et al. 1989, 144). By 1988 the next generation of software development tools was

emerging and could be expected to improve on earlier tools. Gevarter (1987, 51)

predicted that the "current tools are only forerunners of [those] yet to come" and that the

future tools will be available for general computers and may be embedded into larger

systems.

Edwards (1991, 72) reported a 1988 British survey which indicated that 11% of

expert systems used conventional languages (such as FORTRAN), 23% used special

purpose languages (such as LISP), 11% used toolkits, and 56% used shells. These

statistics help to demonstrate that there is no single or simple solution in the selection of

an appropriate software base for an expert system. Figure 2.4.15 summarises the main

comparative features of the three approaches outlined in this thesis. Shells are intended

to enable non-programmers to benefit from efforts that have already been made to solve

similar problems, but shells are not suited to all tasks. Languages give experienced

programmers more flexibility at low cost, with some languages including improved

user interfaces and routines to make life easier for the developer and user. Toolkits are

emerging to combine modular components (as in shells) and system philosophy with

the kind of control normally associated with languages.

Figure 2.4.15
A Comparison of Languages, Toolkits and Shells (Based on Alty 1989, 190)

Language Toolkit Shell
Applicability wide wide and specific specific
Abstraction low high medium
Facilities limited  rich medium
Hardware $ low high low
Software $ medium high medium
Training medium long and intensive short
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Considerable effort is necessary to ascertain which approach is best for a

particular situation; that is, to match the problem with what is available. In particular,

the characteristics of the domain problem, an appropriate problem-solving technique,

and the desired characteristics of the resulting expert system (Waterman and Hayes-

Roth 1983, 211). However it is also important to note the increasing variations and

hybrids of these approaches such that the boundaries between the three approaches are

often quite blurred.

2.5 INTRODUCING AN EXPERT SYSTEM

Much has been written on the problems of introducing technological change into

the office environment. Problems inevitably arise when staff feel alienated by changes

being thrust upon them. Successful implementation is more likely to occur when staff

are involved in the planning and implementation of change, when meaningful training

and counselling are provided, when respect for individual staff and their skills is

maintained, and when implementation is not rushed (Bucknall 1988, 47). Many

writers have suggested strategies to facilitate the effective development and introduction

of expert systems through the use of rational, predetermined steps or processes. There

are flow charts, waterfall models, spiral models and many other life-cycle proposals.

The nomenclature and number of steps vary but most include the following stages:

identification, conceptualisation, prototyping, user interfaces, testing and maintenance.

Figure 2.5.1 illustrates one specific life cycle.

Figure 2.5.1
An expert system life cycle (Guida and Tasso 1989, 19)

PHASES
	 OUTPUTS

opportunity analysis

plausibility study

demonstration prototype
construction

full prototype
construction

target system
development & installation

operation, maintenance
and extension

plausibility report

demonstration
prototype

full prototype

target system
and manuals
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The plausibility report would analyse a specific problem, assess the plausibility of

applying an expert system and propose a draft design and project plan. The

demonstration prototype is intended to provide a practical insight into the complexities

which may arise and any necessary design modifications, gain participation of at least

some people who would be involved in the main project, and elicit commitment to the

project. These early stages are critical to the ultimate success of the whole project.

There are many examples (for example, Lindsay 1988) of projects which have fallen by

the way because the problem was not clearly understood, typically illustrated when

people are impatient at the beginning.

The full prototype would normally be completely different from the earlier

demonstrator. Whereas the demonstrator was intended to indicate potential, the

prototype will contain a detailed examination of the technical components, such as the

knowledge base structure and language rules. The target system should have the

functional performance of the prototype but be installed in the real environment ready

for routine use. The final phase represents support of the target system to ensure that it

satisfies the original intentions plus developments to satisfy future requirements.

The uncertainties in conventional computer systems analysis are potentially

higher in developing an expert system because these systems are essentially vague.

Thus throughout the life cycle there needs to be provision for a return to earlier stages

of the cycle. Such feedback loops may result in radical revisions and will at least help

to facilitate fine tuning as errors and additional needs are ascertained. It is important for

all the parties involved to be flexible and appreciate that these feedback loops, and any

resulting changes, are healthy mechanisms and are not indicative of poor performance.

2.5.1 PARTICIPATION

Although there appear to be common elements in the stages advocated, there is

less agreement on who should be involved in these developments. Surrounding the

arguments that such exercises are best left to the technicians, Jagodzinski and Holmes

(1989, 240) noted that the acceptability of an expert system depends on much more

than the computer/user interface; it also depends on "a user-oriented, process-centred

approach to the design and implementation of expert systems" which also identifies and

addresses human issues.

Within the wider considerations pertaining to the introduction of an expert

system into school administration, the source of the expert system is a prominent
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consideration: to purchase an existing product, to purchase a shell for in-house

modification, to contract an external organisation to prepare a custom product, or to

develop an expert system with the school's own resources. Silverman (1987, 9)

reasoned that the development of the knowledge base and rules is too important to be

left in the hands of engineers and was, instead, a potentially significant opportunity for

direct involvement by managers to identify and correct problems within the

organisation. Harmon (cited in Bielawski and Lewand 1988, 14) reasoned that

managers were unlikely to get involved in creating an expert system if they had to learn

all the intricacies of such a system, and thus there were considerable benefits in uiilising

a personal computer based shell. Nydahl (1991, 17) noted that people utilising shells

on such tasks "learnt a lot in their target area whether they succeed in building a good

system of not". Bonnet et al. (1986, 12) also presented a strong case for self

sufficiency in the design, construction, operation and maintenance of expert systems.

On the other hand, Babrow et al. (cited in Jagodzinski and Holmes 1989, 227) does not

recognise a role for friendly users until the testing of prototypes. In criticising this

approach Jagodzinski and Holmes cited a number of studies which reported the

practical consequences of not involving end-users in the early stages. Gaschnig et al.

(1983, 245) noted that the psychological benefits arising from the early involvement of

end users "cannot be over-emphasised."

Carrico et al. (1989, 12) expressed the view that an organisation's decision-

makers needed at least to have a background understanding of expert systems in order

to make wise decisions regarding their use. Wright (1993, 48) also reflected that the

people who decide which computer software will be used in organisations "generally

know precious little about how the programs are used" even though the need for

computer literacy at all job levels had increased in recent years. He cited an American

survey which indicated that 71 percent of companies surveyed expected these skills

from their managers and supervisors, yet training for such literacy remained ad-hoc.

Blaming (1988, 162) noted that although expert systems have in the past been

developed at operating levels, "there appears to be a potential for applying expert

systems in high-level staff units." He noted that the growing use of expert systems by

corporate headquarters is likely to be mirrored in the US Army. A beneficial part of

this development would be to ascertain what high-level staff officers and analysts

actually do. McGraw and Harbison-Briggs (1989, 20) argued that, beyond research

situations, it is unlikely that an individual will have the necessary skills to be domain

expert, knowledge engineer and programmer, as individuals highly skilled in one of

these areas is unlikely to be trained in the other areas. But Shin (1988, 304) reasoned



5 2

that the answer lies in selecting appropriate solutions for appropriate problems so that

amateurs can with minimal training develop practical expert systems.

"People who believe that expert systems can be built by unskilled personnel

following some simple recipe are headed for disappointment" (Jackson 1990, 366).

Jackson expressed this view after examining a number of surveys which confirmed his

own experiences with post-graduate students. Indications are that learning to use

complex shells and toolkits is no easier than learning a new programming language.

Since programming is not everybody's forte, it is inappropriate to suggest that anybody

can develop an effective expert system; but this is not to suggest that inexperienced

people should be discouraged from considering such involvement. Indeed, the

continued development of shells and toolkits will undoubtedly make it easier for people

working in a given field to become knowledge engineers. Nydahl (1991, 16) noted

that knowledge engineers become "some sort of expert within the area" and that, with

the development of better expert systems, it was being demonstrated that experts could

be successful knowledge engineers. Edwards (1991, 4) stated that people do not have

to be "steeped in AI ... [to] make use of the fruits of AI research", any more than

people using conventional programming need to undergo theoretical research in

mathematics. Edwards also noted (1991, 83) that people with a background in

conventional computing sometimes found the non-procedural aspects of expert systems

difficult to accommodate.

Finkelstein (1988) approached this debate from a different direction, describing

a family of Australian expert systems designed to enable managers without a

knowledge of computing to generate Expert Business Systems that automatically

designed and generated knowledge bases. These systems which had been used by

several businesses and government groups, were described as a revolution in the way

computer applications are designed and implemented - especially because the amateurs

have to be involved.

Whoever is involved, but especially amateurs, should not ignore the underlying

truth that effectively programming an expert system requires the same discipline as

programming, other computer systems and therefore they need to address matters such

as "data modelling, quality assurance, quality control, testing, modular design,

maintenance, etc." (Carrico et al. 1989, 14).
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2.5.2 FEASIBILITY

Two major aspects need to be examined when considering the introduction of

an expert system: the problem to be tackled, and the resources available. Not only does

the problem need to be compatible with expert system software and hardware, it also

needs to be worth solving with an expert system. Problems should be neither too

simple (less than ten rules) nor too complex (more than 10,000 rules) and are most

appropriate if the domain is narrow but deep. An expert system should be considered

where it is necessary to save time, preserve endangered knowledge, be used as a

training device or be used in a hostile environment. Expert systems may also be

considered for situations where human experts would not have time to consider a vast

and rapidly changing array of variables. For example, 500 warning lights were

activated in the first minute of the Three Mile island nuclear power station incident

(Bauer 1983 cited in Paterson and Sachs 1989, 218).

Edwards (1991, 33) warned against solution-driven decisions which can arise,

especially when, as the result of increased publicity or commercial endeavours, people

presume that the new, exciting and apparently successful products will provide the

solution to as yet undefined problems.

It is generally recognised that expert systems should not be used in situations

which could be effectively solved by conventional programming; that is, where there is

an efficient algorithmic solution. Nor should expert systems be considered where the

benefits do not warrant the hardware, software and other costs. Giarratano and Riley

(1989, 21) suggested that while tackling apparently ill-structured problems, knowledge

engineers may "unknowingly discover an algorithmic solution", in which case the

problem "may be a good candidate for recoding as a conventional program". But why?

If the expert system is at least efficient as a conventional program but retains the option

to include ill-structured problems in the future, then it may be a good candidate for

leaving as an expert system. Reynolds and Cartwright (1989, 155) noted that expert

systems may yield improved performance over conventional systems even when an

algorithmic approach is possible. They supported the notion of exploiting a wider

system and cited a successful project for a ship's propulsion system involving

communication with human operators as well as data sources and control interfaces.

They also reasoned that a "well designed knowledge based program should be easier to

maintain and easier to re-use in new circumstances than a conventional program."

Three main resource issues need to be confronted prior to commencing such an

exercise. (1) Personnel: is there a source of knowledge — an expert, is there a
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knowledge engineer, can someone implement the expert system? (2) Hardware: what

is or can be available, what is required by the shell or language, are development and

real time environments compatible? (3) Time: can all involved commit sufficient time,

can someone maintain the expert system?

The selection of a domain is a task critical to the ultimate outcome of a project

and the effort which needs to be devoted to this selection should not be lightly

dismissed if one is to ensure that potential problems are minimised or eliminated

(Prerau 1989, 27). This selection process includes not only the evaluation of the

domain to which the expert system is to be applied, but also includes an indication of

the desirable attributes of the intended expert system. Potential users of an expert

system would do well to apply their situation to the pseudo expert system in figure

2.5.2 to help ascertain the appropriateness of the domain and the use of an expert

system in this domain.
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Figure 2.5.2
A rule set describing when to use an expert system (Based on Silverman 1987, 10)

Goal : Determine if an Expert System approach is appropriate

IF	 the ES approach is
relevant, AND
feasible, AND
optimal, AND
success oriented

THEN an ES approach will be appropriate (cf 100)

IF	 there is a recurring shortage of skilled employees, OR
problems regularly require innumerable solutions, OR
job excellence requires unreasonably high levels of training, OR
no single person can know all the expertise, OR
management keep applying existing knowledge to

basic problems,
THEN ES is relevant (cf 85)

IF	 the problem typically takes time to solve, AND
no controversy over problem domain rules exist, AND
problem domain experts exist, AND
knowledge can be expressed,

THEN ES appears feasible (cf 85)

IF	 it is necessary to make heuristic judgements, AND
ES software is more appropriate than conventional, AND
human interaction is required, AND
reasons must be given for asking questions, AND
the answer must be justified,

THEN an ES is the optimal approach (cf 100)

IF	 solutions are of high value, AND
management supports an ES approach, AND
a prototype can be constructed, AND
it can be incrementally implemented, AND
the knowledge engineering team have a successful record,

THEN ES approach is likely to be successful (cf 75)

If the four conditions are satisfied, by their own second level rules, then the goal can be

satisfied and an expert system approach would be appropriate.

The domain selected, 'student subject selection', is very important to the end

users, the students, for their future study, for their personal ambitions, and for their

careers. Ainley et al. (1994) reviewed studies, undertaken since the early years of the

twentieth century, of school subject preferences and subject choice and noted that
there is now a great deal of psychological and sociological information ...
[which] suggests that interests are very strongly related to subject
preferences. These interests seems to activate students in their choice of
both school subjects and their preferred occupations. Clearly, local factors -
timetabling, school size and so on - can limit a student's choice (19).

Although students in the Northern Territory need to comply with defined subject time

allocations to attain their Junior Secondary Studies Certificate, there still remains

sufficient flexibility for students in some schools, including this school, for subject

selection decision making. Subject selection in junior secondary schooling is

important, not the least because senior secondary patterns "do not simply arise from
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decisions taken at Year 11 and Year 12 but as a result of gradual focussing over time"

(Ainley et al. 1994, 3). Davies and Ellison (1992, 13) also noted that those market

forces which have accompanied the devolution of responsibility in schools have started

to move the attitude of schools from being "product-orientated to being more client-

orientated", thus ensuring that schools adopt a high-quality, service approach for their

products so as not to let clients down. Schools which offer a unitised curriculum

through a vertical timetable do not provide the open-learning, personalised schedule

favoured by English (1993) but are more responsive to individual student needs than

schools which adopt the timetabling strategies of Lewis (1961, 4) who noted that
the majority of boys present no difficulties as the courses they choose are of
a conventional kind; it is only the occasional eccentric wishing to combine
... subjects from different sides who is liable to be awkward.

The organisation of subject selection has also become more complex through

increased student numbers. Retention rates to Year Twelve in Australia rose over the

decade to 1989, with the most dramatic increase in the Northern Territory where they

nearly doubled from 22.2 to 42.7 percent (Department of Employment, Education and

Training 1989). 1993 projections indicate some minor fluctuations at various year

levels but predict a general trend for increased enrolments in the Northern Territory

over the next decade (Department of Employment, Education and Training 1993).

Subject selection is of central importance to the students and thus must be of

central importance to the organisation of the school. Curriculum content, student

assessment and accreditation, subject availability, increasing enrolments and higher

community expectations of service providers are all factors which increase the pressure

on schools to provide an effectively managed education for students. The domain is

therefore an acknowledged problem area for which an expert system may provide

significant benefits.

2.5.3 EVALUATION

Evaluation should be a component of the overall implementation program and

not simply responses to problems that may arise. Formal and informal evaluations

should "pervade the system building process [as they] are crucial for improving system

design and performance" (Gaschnig et al. 1983, 242). To help ensure that a project

remains on task, and to facilitate confidence in the end product, evaluation requires

feedback from at least the domain experts and end users to ensure that what goes in and

comes out complies with the requirements of these two groups.
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Gupta (1991, 200) noted that faults in expert systems often arise from two

factors: "the developer's reluctance to invest project resources in writing specifications,

and the user's ignorance regarding what an expert system can and should do". Bench-

Capon et. al. (1993, 76) noted that the construction of knowledge bases is typically

"too shallow" and may be biased by failing to recognise the actual boundaries of the

expertise embodied in the domain. Other authors, such as Green (1988), have

described difficulties that inevitably arise when the requirements of an expert system are

not documented and monitored, and have advocated the appointment of a Requirement

Specialist to be responsible for this co-ordinating role. Documentation often appears

difficult, especially when the goal of the intended expert system is not clearly

understood by the customer (for example, "we want a program to do what Sam does").

As in conventional programming, there are significant benefits in planning and

reducing unnecessary errors and misdirection. An early evaluation should be

undertaken to confirm the project's intended outcomes and determine the feasibility of

developing an expert system to satisfy these aims. If the project proceeds then its

implementation model should be evaluated. Finally, the expert system needs to be

evaluated during construction and on completion, with on-going monitoring.

Implementation models should include provision for evaluating the expert

system before it becomes a critical function within the organisation. Evaluation may

include the use of a prototype to facilitate clarification of a system's characteristics and

operations through the construction of a scaled-down working version. This is

especially important when the user's requirements are not easily understood and thus

subject to change as the system is developed and demonstrated.

Prototypes may be paper or computer models of the intended expert system, but

necessarily in an incomplete stage of development commencing with a minimal but

functional system. Because some components have been simplified, the prototype will

be unlikely to truly reflect the finished product. Many authors, such as Keller (1987,

111) have outlined the concept of a rapid prototype in which models are incrementally

developed. Not only do rapid prototypes reflect typical human development of

establishing then refining procedures, but also avoid a long gestation period before

something can be demonstrated and evaluated. Rapid prototypes result in early models

and concepts and thus become a basis for further thought and refinement. Olson and

Lindahl (1988, 84) cited Texas Instruments (1980) statistics that more than 70% of

errors are not detected until a computer system is fielded, even though more than half

the errors occurred during the design stage. Rapid prototyping helps to identify errors

more quickly and reduce the cost of correcting them. Kahn and Bauer (1989, 59)
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reported informal indications that the use and impact of rapid prototypes was

encouraging and expected to increase.

Hollnagel (1989b, 411) noted that the evaluation process has a tendency to

focus attention on situations where the expert system outcomes differ from expectations

and tend to ignore situations where the outcome is as expected, without evaluating these

results. Hollnagel explained a clear distinction between evaluation methodology and

system evaluation, and concluded that current expert system evaluation techniques are

too few and ad hoc to provide an adequate methodology in this field. To avoid the

pitfalls of evaluation being misunderstood, it is important that the purpose and expected

benefits of formal evaluations are understood by all concerned. Inherent in this is the

need to ensure that the parties involved know what is being evaluated, why and for

whom.

Many authors distinguish between verification and validation. Gupta (1991, 1)

described verification as determining that the system was built right, whereas validation

determines that the right system was built. Verification to ensure that the actual coding

is free of errors, a process greatly assisted by computer programs which have in-built

debugging facilities, and validation to ensure the adequacy of the program output to

meet the intended objectives and standards. Some authors, such as Hollnagel (1989b)

and Guida and Mauri (1993), also distinguish between evaluating the construction of an

expert system and assessing whether the expert system is actually used and any

ramifications of its use in the context where it is applied.

Evaluating expert systems will often be more complex than evaluating

conventional programs because of the inclusion of heuristics and the lack of precise

algorithms. On the other hand, Culbert et al. (1987, 233) commented that the

separation of knowledge and procedures may actually make testing the knowledge base

easier. Gupta (1991, Section Two) described a number of attempts which have been

made to develop systems for knowledge base verification. These systems were

designed inter alia to evaluate interaction, syntax and semantics. Some systems can

take remedial action to correct the knowledge base, others produced a variety of

reports. In most cases, however, the expert system had to be at least functional, and in

some instances in use, before the debugging system could be used.

Liebowitz (1986, 249) reflected that "there has been a myriad of approaches,

through the years, on how to perform evaluation". O'Leary (1987, 57) summarised the

role of validation as "1. ascertaining what the system knows, does not know, or knows

incorrectly; 2. ascertaining the level of expertise of the system; 3. determining if the
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system is based on a theory for decision making in the particular domain; 4.

determining the reliability of the system". Bielawski and Lewand (1988, 272)

identified six specific criteria for testing and validating an expert system: accuracy,

completeness, reliability and consistency, effective reasoning, user friendliness, and

run time efficiency. O'Keefe et al. (1987, 3) examined seven major problems

encountered in evaluating expert systems: (1) what to validate, (2) what to validate

against, (3) what to validate with, (4) when to validate, (5) how to control the costs of

validation, (6) how to control bias, and (7) how to cope with multiple results. O'Leary

(1987, 59) noted that validation should not be restricted to the actual expert system but

needs to include evaluation of the user interface, documentation, as well as the language

- shell - toolkit used to develop the expert system. While Rushby (1988, 79)

distinguished between the desired and minimum competency requirements for expert

system performance as distinct from the service requirements for the expert system

development and construction. Naser (1988, 30) described several evaluation life

cycles (such as figure 2.5.3) to accommodate the different (from conventional

programming and from each other) needs of types of expert systems to verify their

knowledge base for consistency, completeness and correctness.



Figure 2.5.3
A verification & validation life cycle (Naser 1988, 40) 
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More recently, Guida and Mauri (1993, 204) reviewed the work previously

undertaken in., this area and proposed what they described as "a novel approach to

[expert system] evaluation which comprises a foundation of the concept of evaluation

and a general evaluation methodology." This approach is summarised in figure 2.5.4.



Figure 2.5.4
Expert system design and evaluation

(Simplified from Guida and Mauri 1993, 210)
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Guida and Mauri reasoned that there are five evaluations which need to be

undertaken to ensure performance and quality of the system. These five evaluation

points are shown in figure 2.5.4: (A) Assessing the actual system use and utility within

the organisation, (B) Validation of the systems requirements and actual behaviour, (C)

Verification of the systems specifications and actual behaviour, (D) Evaluation of the

system design against its specifications, and (E) evaluation of the constructed systems

ontology (foundation principles) against the design intentions.

Just as it is sometimes difficult to evaluate an expert's performance, it may also

be difficult objectively to evaluate an expert system. This problem is compounded

when determining acceptable standards of performance. A 100% performance by an

expert system is probably unrealistic if the human experts perform at a significantly

lower level. Chandrasekaran (1983, 261) noted that the success-failure dichotomy is

insufficient in that it ignores intermediate performance which may be very acceptable.

Evaluation needs to consider not only how well an expert system works but also how

badly it can fail before such failure presents a meaningful problem. Rushby (1988, 77)

reasoned that although errors should be avoided, end-users will inevitably be faced
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with a range of fault tolerances from benign to catastrophic. The significance of fault

tolerance will vary between tasks; for example, a benign fault in air traffic control may

have catastrophic consequences while a catastrophic fault in an expert system for

selecting fishing lures may have relatively benign consequences. In some cases of

student subject selection there may not necessarily be a correct answer, though some

answers would be clearly incorrect.

Blanning (1987, 28) and Whittaker et al. (1989, 19) recommended that

evaluation should include both open book and a blind validation (also described as the

Turing Test); the first by people who knew they were comparing human and expert

system recommendations and the second by a person who did not know which was

which but was asked to comment on a mix of human and expert system

recommendations. However, several studies have indicated a potential problem with

open book evaluations: viz, bias against computers by those judging the

recommendations (Gaschnig et al. 1983, 263). Other studies cited by Gaschnig et al.

(1983, 249) have indicated that comparing the recommendations made by an expert

with those from an expert system ignore a bias which may work in favour of the expert

system dealing with a specific domain and not facing broader distractions. On the other

hand, the restricted domain of the expert system may reduce its performance in

situations where a richer or broader understanding is required, though perhaps this

reflects a poor choice of domain for the expert system, or its inadequate preparation.

Kulikowski (1989, 174) also reasoned that the expert system's performance is only "a

small part of the overall evaluation", which also needs to take account of its integration

into current arrangements and its economic and social impact.

"Perhaps the ultimate [evaluation] is whether an expert system is actually used

for expert consultation by individuals other than the system developers" (Gaschnig

et al. 1983, 245).

2.5.4 RELIABILITY

Related to, yet distinct from, validation and verification is the problem of
,

reliability. Bundy (1989, 43) listed four potential aspects of unreliability: (1) fragility

evidenced by the expert system failing in unexpected ways, (2) upredictability of the

answers, (3) brittleness and non-flexibility in new problems, and (4) discontinuity

evidenced by significantly different outputs from similar inputs. He observed that

some of this unreliability stems from poor practices when developing expert systems.

For example (1) mixing controls and facts in the same rule, (2) attaching arbitrary
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procedures to rules, (3) multiple knowledge representation without appreciating

relationships between these, (4) uncertain use of certainty factors, (5) incremental

development without adequate consideration of the overall expert system, and (6) a lack

of theoretical understanding of the system and its development.

2.5.5 MAINTENANCE

A key issue in developing an expert system will be provision for updating its

knowledge base. Software maintenance modifies an expert system without changing

the primary functions of that system. Despite effective validation and verification, it is

normal for expert systems to require ongoing maintenance, if only because expert

knowledge rarely remains static. Some predictions are that the cost will be more than

half the project budget (for example, 60-70% Carrico et al. 1989, 219). Some of this

ongoing maintenance may be to correct errors in or to enhance earlier versions; but it

should be reasonably expected to incorporate new knowledge or expertise since earlier

elicitation. Edwards (1991, 99) stated that maintenance "should be the longest of all the

phases in the life-cycle as far as elapsed time is concerned".

At some point the distinction needs to be made between maintenance and

functional updates. For example, XCON an expert system for Digital Equipment

Corporation grew from 700 to over 6200 rules over seven year's use (Carrico et al.

1989, 220), with the danger of such changes resulting in incoherent, dead or lost code.

Thus even if maintenance is undertaken by the system's original developers, and

especially because it is likely to be undertaken by other people, it is critical for expert

systems to be structured and well documented.

It will also need to be determined, preferably beforehand, who is going to

control the expert system and take responsibility for its contents and the impact any

changes may have on recommendations. There are several approaches to maintenance,

including: a) keeping it separate and independent from the current system, despite the

need to have more people who understand the system; b) using domain experts if the

system is relatively stable and easy to modify; and c) providing for and using end-user

responses (Carrico et al. 1989, 222).

2.6 GENERAL CONCERNS

Characteristic reactions by people, when first acquainted with the concept of

expert systems, fall into one of three genre: impressions that here is another science
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fiction scenario coming to realisation; positive and negative personal recollections of

other computer experiences; and vague ideas on how an expert system might effect

them. Initial reactions are then followed by in-depth considerations which lead to a

number of concerns: (1) whether a computer can and should replace people; (2)

whether the advice can be trusted, (3) how it should be used and by whom; and (4) the

impact on employee esteem and employment.

2.6.1 WHETHER A COMPUTER CAN AND SHOULD REPLACE PEOPLE

Pohl (1984) presented a taxonomic hierarchy (summarised in figure 2.6.1)

analysing the effect of machines on our social fabric and with which she examined,

inter alia, the necessary shift in people's view of self and their interaction with

machines that have human characteristics. She concluded that there are a number of

possible outcomes which could be beneficial or threatening. Hext (1991, 15) also

observed that the visible and immediate effects of new technologies "are ultimately far

less important that its subtle side effects" and thus an examination of new technologies

needs to examine the long-term impact on society. He reasoned that it is necessary to

strike a balance between the technological mindset and Luddite philosophies to find an

appropriate middle ground. Bucknall (1991, 13) reflected that "the future will not be a

projection of the past and if we are to empower schools then they must be proactive to

cope with change".

Figure 2.6.1
Impact taxonomy (Pohl 1984, 290)

Type Examples	 Consequences

Methodological Word processors
Automated tellers

Improved productivity but
essential skills not
significantly impacted

Dislocating	 Industrial robots
Electronic functions

Paradigmatic	 Artificial intelligence
Socialized machines

Large scale shifts in jobs
and life styles

Redefinition of Man's role
or essence

The process of translating someone's expertise onto a computer knowledge

base will inevitably express that knowledge as a phlegmatic collection of facts and

opinions devoid of the contextual and informal feedback that the human expert

experiences. It can be reasonably argued that much of the expert information is lost in

this process (Australian Science and Technology Council 1987, 9). Some writers
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argue that if a computer system simulates intelligent behaviour then it provides a model

of human intelligence, but Wells Coleman (1987, 781) strongly advocated the need to

emphasise the artificial component of artificial intelligence. He expressed the view that

"just because a computer looks like it is doing the same thing as a human ... does not

mean that it is". To reduce this problem, some authors (especially in the United

Kingdom) advocate the nomenclature Knowledge Base Systems to avoid the expert

connotation. Weizenbaum (1976, 203-223) stressed that "computers and men are not

species of the same genus" and that it is not a question of technical feasibility but,

rather, a more fundamental issue as to whether "it is appropriate to delegate this hitherto

human function to a machine" since "no other organism, and certainly no computer, can

be made to confront genuine human problems in human terms".

Decision making typically involves more than an impersonal expertise and

human experts are normally held responsible for their advice. Jagodzinski and Holmes

(1989, 229) cited Hollnagel who identified problems which could arise if experts

reduced their personal interaction and relied on expert systems as their main decision

support system, especially if these experts were unable or unwilling to challenge the

system's advice. Michie (1982, 253) also highlighted the potential danger of an

increasing dependence on computer systems which rapidly evolve beyond the

understanding and control of people.

However, the significance of these drawbacks will depend on one's definition

of artificial intelligence in general, and expert systems in particular. If the computer

software is intended to replicate the human expert, then the drawbacks are significant.

But if the computer software is only intended to mimic the advice provided by that

human expert, that is, is not intended to provide a model of human intelligence, then

providing the advice is correct, the drawbacks are insignificant. Developers have not

devised programs that will enable computers to do tasks that no human knows how to

do; but they have devised programs that will enable computers to do some tasks better

than humans and in this sense an expert system could excel over its creators (Silverman

1987, 8). Silverman also noted that people can only apply their own expertise to a

situation, whereas an expert system is able to apply several people's expertise

simultaneously. Little wonder that there is a demand in some areas for computers to

replace humans. But there is concern that we are already highly dependent on machines

and are increasingly dependent on computers, and therefore should question the

wisdom of further increasing our dependence on machines (Keir 1987, 15). The

Australian Science and Technology Council (1987, 7) recommended that expert

systems have in-built features that make it clear to users that the machine is only a tool

to assist them. Michie (1982, 135) aptly described computer systems as another
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example of idiot savants which are able to perform miracles in a specific domain yet are

otherwise subnormal - powerful but not intelligent. Light (1992, 134), less kindly

perhaps, described the computer as "that brilliant fool of modern times".

If the role of an expert system is clearly understood as assisting decision makers

determine the best course of action, then such systems will concentrate on formulating

the problem clearly to gain insight into the decision problem rather than producing the

correct decision (Holtzman 1989, 7). Lovie and Lovie contend that people should not

compete with computers, which hold and process large amounts of information;' rather,

experts are "better employed in adding meaning and significance" (1989, 92).

2.6.2 WHETHER THE ADVICE CAN BE TRUSTED

Without a doubt, the advice provided by an expert system could be dangerous,

have side-effects, traps and false assumptions, in exactly the same way that any human

expert advice could be dangerous, especially if taken out of its proper domain and

applied in another. Providing the computer expert system has been carefully

constructed, rigorously evaluated, and presented as a mechanical tool then the danger

should lie not in the tool but the manner in which it is used. However, even thorough

testing cannot guarantee reliability as such testing will only reveal bugs, not their

absence (Denning 1986, 422). This situation is compounded in expert systems, which

are based on opinion as much as fact. However, there is a number of strategies to

reduce at least the potential misuse of expert systems. One approach is to use the term

knowledge systems rather than expert systems. A knowledge systems nomenclature is

less likely to give the impression that the computer system learns from its environment

in the same way the human experts are continually learning and updating their

expertise.

People nowadays are aware of and use computers as a relatively common

occurrence. They are used to systems which give a definitive answer according to the

laws of mathematics and there is a danger that they will trust their expert systems to

give an answer that is true. When human experts are confronted with a problem

outside their domain, they can often apply some of their expertise and arrive at a

reasonable solution, a solution for which their common sense will provide some

indication of apparent validity. On the other hand, a computer expert system does not

know when it might be wrong because it is unable to transfer the general principles

from one domain to another and its lack of common sense will prevent it from graceful

degradation when confronted with a problem outside its domain and thus lacks the
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human robustness when dealing with problems (Barr and Feigenbaum 1981a, 10,

Amarel 1984, 3, Hollnagel 1989a, 22, Whittaker et al. 1989, 18).

The integrity of the database these systems use is critical in determining the

quality of the advice the system gives out and thus it is necessary to ensure that the

expert system's knowledge base is explicitly open and exposed to scrutiny. Expert

systems will frequently depend on knowledge which is changing and thus it is

important that provision be made for this knowledge to be updated over time and by

people other than the system creators. Bachant (1988) described the RIME project,

which was developed as a methodology to keep track of changes to the knowledge base

and their compatibility with stability of the system. Some systems, such as EMYCIN,

automatically record the author and date against any rules that are added or modified

(Buchanan 1983, 150). Great care must be taken in developing these data bases and

the very explicit rules needed to treat the information for, unlike human experts,

machines do not have any tacit or background knowledge which can guide the

interpretations (Hollnagel 1989a, 22). Unlike humans, expert systems do not resort to

reasoning from principles, analogies, or common sense (Silverman 1987, 19). Keir

(1987, 15) also noted the concern that proprietary expert systems may incorporate a

bias towards certain products or outcomes, for example, encouraging boys to do

woodwork and girls home economics.

An expert system which has a high internal reliability should reasonably provide

users with a reliable output. But Silverman (1987, 19) and Hollnagel (1989a, 15)

noted that "high reliability of the individual parts of the expert system does not

necessarily produce a good result, because the way they interact may be defective".

They consider that the combined input may lead to conflicting output and that an expert

system may develop its own tunnel vision.

Though most expert system's commentators insist that the ultimate

responsibility must be the user's, there is still a responsibility by the developers to

ensure that the systems work as they should (Australian Science and Technology

Council 1987, 9, Keir 1987, 14). The responsibilities of the experts, knowledge

engineers, programmers, manufacturers, retailers and users may yet be determined by

the courts. Thus far, expert systems do not appear to have been involved in legal cases

involving negligence or product liability. But given the general trend in many countries

to increased litigation, it is probably only a matter of time before a legal ruling will be

sought. Schwartz (1991, 5) examined some of the problems in determining ownership

(copyright and patents) and liability. He cited the example of using a licensed system

applying scientific principles to design a new automotive air-bag and raised questions
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about who owned the design and was responsible if the product was incorrectly

designed. Zeide and Liebowitz noted (1987, 452) that tracing liability back to a human

source will prove difficult given the number of people usually involved in producing an

expert system, and thus "the law will probably hold manufacturers responsible".

Litigation vis-a-vis educational administration has been relatively scarce in Australia

thus far and the use of expert systems has the potential to complicate future claims,

when trying to establish responsibility for advice. On the other hand, the introduction

of expert systems has the potential to reduce the incidence of poor decisions thereby

reducing future claims.

2.6.3 How IT SHOULD BE USED AND BY WHOM

Expert systems have usually been developed to undertake at least one of the

following tasks: 1) provide assistance as part of a wider task; 2) critique a decision,

especially looking for possible inconsistencies or omissions; 3) working parallel to a

task and providing a second opinion; 4) offering advice during an interactive exchange;

5) training staff in a given domain; and 6) independently monitoring a situation, ranging

from mechanical equipment through to stock exchange trends (Edwards 1991, 16).

The most prevalent rationale for expert systems is they should act as a decision

support system for people and therefore the best balance between people and the

computer expert system is when the computer is used in those narrow activities where it

is more skilful to support the intelligent skills undertaken by the human. Expert

systems should be used as another tool (Australian Science and Technology Council

1987, 6, Bielawski and Lewand 1988, 8). Thus, rather than replacing people, the

expert system can assume the role of an intelligent assistant to make people more

productive. Following the computer's analysis of the situation, it can extend the user's

ability to consider alternatives, draw attention to other factors that might have a bearing

on the decision to be made, and to inform the user of its conclusions and, most

importantly, be able to explain its inference process and/or conclusions (Silverman

1987, 19, Bielawski and Lewand 1988, 17). Thierauf (1988, 15) supported this

concept and extended it thus : "Such systems assist organisational personnel in reaching

effective decisions that contain elements of subjectivity and objectivity ... the capability

of combining subjectivity (individual judgement) with objectivity (the computer output)

permits a more thorough exploration of the problem". Roth and Woods (1989, 238)

reported that expert systems which treated their user intelligently through active human

participation, rather than retarding their input, resulted in more successful and rapid
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solutions. Appropriate training should make it clear to users that the program is only a

tool offering advice.

Another strategy is to avoid using language which implies that computers

perform like humans (Australian Science and Technology Council 1987, 7). On the

other hand, Finin et al. (1986, 279) argued strongly in favour of a natural language

interaction between users and the computer system, to the extent of not only using user-

friendly language beyond syntactically sugared interchanges, explanation and

reasoning, but also providing smarts to increase the programs tolerance to input errors.

They reason that these critical needs are even more important as expert systems move

beyond well-formed problems.

One argument concerning who should use expert systems is that only experts in

the domain should have access because these are the only people with the expertise to

evaluate the advice. On the other hand, these are the very people who are unlikely to

need the expert system. Thus novice users could be trained and tested to reach a

standard of expertise in the use of a complex expert systems before they were allowed

access (Australian Science and Technology Council 1987, 8, Keir 1987, 15).

However, these formal restrictions should be unnecessary as expert system developers

are able to define access, if only through ease of operation. One approach may be to

limit the more complex systems to those users with a higher level of expertise and the

ability on the part of the user to assess the accuracy and value of the advice provided.

Cuff (1982, 6) recommended the use of several query languages providing a level of

interface appropriate to individual users, especially interfaces with many heuristic aids

for casual users needing sympathetic help.

2.6.4 IMPACT ON EMPLOYEE ESTEEM AND EMPLOYMENT

It is their expert knowledge accumulated over many years that has enabled many

people to achieve their current status. For some, at least, there has been reported (Kraft

1985, 45, Light 1992, 135) a loss of status and esteem when their relatively

independent work style has been replaced by an apparently less than self-sufficient

output which requires consultation with a computer and possibly a remote data-base

located back at the office.

Statements which express, or even imply, that expert systems will replace

human experts may create resistance by those human experts to participate in the

development of such systems for fear of creating their own obsolescence. Even if the

potential to displace them is not actual, the "danger is that people may actually come to
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accept that in some sense they are becoming obsolete" (Falk and Aungles 1987, 18),

which may result in experts drifting away from that domain and perhaps not being

replaced by new entrants to the workforce. This does however raise the problem of the

devalued skills of employees who no longer are the expert. Keir (1987, 14) posed the

question of what is fair treatment for these employees whose skills are now distributed

for others to use?

Jagodzinski and Holmes (1989, 231) noted that organisational equilibrium can

change significantly in both task design issues and job design issues, ranging from the

nature of tasks through to control and status, with the potential to create significant rifts

within an organisation. Many solutions to this problem have been established in a wide

variety of user-oriented approaches in the analysis and design of systems. Put simply,

it is critical for the success of any introduction of new technology, especially that as

complex as expert systems, that the impact be carefully managed and not simply put to

one side in favour of tackling technical problems. Brule and Blount (1989, 169)

conclude that to ignore the organisational issues, which may be central to the expert's

situation, may be to endanger the project altogether.

2.7 CONCLUSION

Despite the usually optimistic lauding of expert systems, especially in

magazines, there are difficulties which impede the development and implementation of

expert systems as effective practical decision support systems. Some of these problems

relate to technical issues of programming, some relate to the cognitive aspects of

developing knowledge bases, and some problems relate to epistemology and how the

human experts use meta-knowledge. However, although the nomenclature Expert

System may be pretentious, and common predictions for expert systems naive, there is

a rapidly expanding and rigorous endeavour to develop cost-effective expert systems to

provide decision support systems.

Expert systems have developed from the research into artificial intelligence, and

provide a more sophisticated decision support system than the earlier management

information systems. Like many other computer applications, relatively powerful

expert systems are available for personal computers. Instead of using a programming

language, such as LISP, expert system developers increasingly have access to shells,

which provide the main architectural features and user interface procedures, and into

which local knowledge is entered. Shells offer the potential for novices to try ideas at a

low cost and with little training. But unlike some other software such as word
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processors, standard shells have not yet effectively replaced programming in serious

and/or complex domains.

Knowledge can be represented by a series of relationships which cater for

degrees of certainty and imprecise human input. These relationships may be expressed

as rules, decision trees, frames or hybrid combinations of these. The use of certainty

factors and/or fuzzy logic are two of the important elements which usually distinguish

expert systems from other computer applications. The opportunity for forward and

backward chaining is particularly important in mimicking interaction with human

experts when the user may wish to know the requirements to obtain a given goal or,

alternatively to ascertain one's options from a given starting point. Another key

element in humanising expert systems is the provision of explanations for

recommendations made by the computer. These explanations should extend from the

source of its knowledge, the procedure followed for utilising this knowledge, and the

ability to critique suggestions by the user.

There remains opposing views regarding who should be involved in developing

expert systems. Although there is general agreement that senior staff should participate

in the overall design, some authors argue strongly that the users should leave the

system's development to the knowledge engineers and other computing professionals.

However, the increase in user-friendly expert system development tools appears to be

breaking down the barriers and it is becoming more feasible for amateurs to be actively

involved in developing an expert system.

Many writers have discussed strategies for the effective introduction of new

technology, including expert systems. Typically these include feasibility studies,

demonstration prototypes, construction, installation, evaluation and maintenance

phases.

Not all decision support tasks are considered suitable for expert systems.

Despite the potential benefits which expert systems offer a decision support system,

there are reservations regarding their technical and moral appropriateness. Thus it is

important that, expert systems are able not only to provide accurate advice but also that

the source and rationale of this advice be readily accessible to users. In the final

analysis it is critical that expert systems be recognised as decision support systems and

not be used as decision makers.
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