
Chapter 1

Introduction

1.1. Multimedia systems

In the past few years we have seen great advances in computer technology. The current

generation of computer CPUs are much faster than previous generations. Computer networks

operating at 100 Megabits per second are becoming widely available, and storage devices with

capacity larger than hundreds of megabytes can be found even in the simplest personal

computers.

The advances in hardware technology have prompted the emergence of new software

techniques. New types of digital media are increasingly common in current computer systems

[Ga11,91][Liebhold,91][Liou,91]. Among the new types of digital media some deserve a special

mention: digital video, digital audio, formatted music encoding, and computer generated

animation. These new types of digital media are known as continuous media because they

continuously change over time [Anderson,91]. Continuous media incorporate an inherent

temporal dimension that has to be maintained in order to preserve the integrity of the

information.

The integration of continuous media with traditional computer applications has resulted in

multimedia systems. The term multimedia is widely used in the computer community, but there

are many different meanings associated with it. For instance, the PC industry uses the term

multimedia to describe personal computers with CD-ROM and audio playback facilities (e.g.:

multimedia PC). In the academic community, the term multimedia is used to describe the use of

continuous media types together with traditional computer media.

Although the various definitions for multimedia differ considerably, almost everyone seems

to agree that multimedia is somehow associated with the manipulation of continuous media

data streams. A system that is not capable of handling at least one type of continuous media is

not considered a multimedia system. This leads us to the following definition:

Multimedia is the ability to manipulate and possibly integrate continuous

media data types (e.g.: digital video, digital audio, formatted music

encoding (e.g.: MIDI), and computer animations) together with traditional

computer media such as ASCII text, computer graphics, and real-life still

images.

Very recently there have been great expectations for multimedia systems. One motivation

for this is the wide range of new applications that are feasible by using multimedia resources.

Also, a great number of existing applications, such as electronic mail and presentation systems,

can be vastly improved by integrating multimedia with their current specifications.

Multimedia computing is in its very early stages and we can expect great changes in the

way computers interact with users. Multimedia-ready workstations from Silicon Graphics and

Apple are setting the standard for computer-user interaction. These workstations have built-in

hardware to manipulate digital video and digital audio. It is possible to foresee a wide range of

new multimedia applications that will be developed to explore the multimedia capacity of such

hardware.

1.2. Distributed multimedia systems

Distributed systems are characterised by the use of computer networks to interconnect

otherwise independent computer nodes [Tanenbaum,92]. The network is used to exchange

information between nodes, which then cooperate to solve a specific task. This way the work is

not performed by a single node. The work is divided into tasks that are then distributed to

multiple nodes that will work together in order to produce the final result.

Distributed systems have several advantages over non-distributed [Tanenbaum,92]. Firstly,

multiple CPUs can work together to solve a single problem. This increases the computational

power by the number of CPUs available on the system. Secondly, data for the application can

be scattered over different locations. Thirdly, sharing expensive peripherals such as CD-ROMs

and printers is a very cost effective solution. And fourthly, a distributed system allows smooth

degradation in case of failure.

Distributed systems also introduce some new problems. For instance, issues such as

network reliability, communication protocols, data representation format (e.g.: big-endian vs

little-endian) [Zahn,90], and overall performance have to be addressed during the design of

distributed applications. These issues can potentially increase the complexity of new

applications.

Despite the increase in complexity of new applications, it is generally accepted that the

advantages of distributed systems outweigh the disadvantages. In the case of distributed

multimedia systems, two main reasons lead us to this conclusion.

Firstly, the storage requirements for multimedia presentations are in the order of hundred of

megabytes or even gigabytes [Little,90b], which is well above the storage capacity available in

most workstations and personal computers. Using a distributed multimedia system the

information can be stored away from the user workstation and fetched at real time during the

presentation. In addition, multimedia data can be stored over different physical locations and

2

still be accessed transparently. This contributes to the implementation of dedicated storage

servers as proposed by [Gemme1,92]. Storing data in a public storage server also allows the

information to be shared by a large number of users without the need to duplicate the data.

Secondly, new multimedia applications are inherently distributed [Williams,91]. They

usually involve a group of people that need to interact with each other from independant

computer nodes. Multimedia applications that involve group presentation rely upon the ability

to deliver the information simultaneously to a group of individuals scattered in different

locations. A distributed multimedia system allows the application to select a group of

individuals and then transmit the information to them independent of their locations.

Applications such as remote class education and news broadcasts can benefit immensely from

these facilities. Multimedia applications that involve Computer Supported Collaborative Work

(CSCW) [Pehrson,92] require a great level of integration. Most of the time there is a need for a

two-way flow of information between each pair of participants. Usually the participants of a

CSCW session are located in different physical locations and a distributed system is necessary

to allow the exchange of information. Multimedia applications such as video conferences and

joint authoring tools fall into this category [Knister,90][Watabe,90].

In order to fully exploit the potential of new multimedia applications, a distributed

multimedia system is essential. It provides a very efficient mechanism to facilitate the

interaction of people in different locations. It also promotes a better utilisation of data and

peripherals by sharing them among multiple users.

1.3. Media synchronisation

Continuous media data streams need constant attention from the CPU during their

presentation [Anderson,91]{Campbell,92]. They include a constant time interval between the

playback of successive frames that must be strictly maintained by the CPU. It is important that

this interval be kept constant so that the information is represented correctly. The

characteristics of the application may also impose similar requirements on traditional data

streams. For example, in an audio visual presentation it may be required to display a sequence

of pictures with a pre-defined time interval between each picture, so that the user has enough

time to analyse and understand each picture. This temporal relationship between successive

frames requires an accurate synchronisation during the playback, so that this important

characteristic of the media stream or presentation is correctly maintained.

Multimedia presentations are usually composed of multiple physically independent data

streams. The ordering of the presentation is controlled by establishing a temporal relationship

between the various data streams [Horn,93][Little,90b][Little,91a][Rowe,92]. The temporal

relationship specifies the order in which events should happen. For example, consider a

multimedia audio visual presentation comprised of still pictures and a sound track. For each

picture displayed there is a corresponding audio track. The temporal relationship must ensure

3

that the corresponding audio track is always in synchrony with the image being displayed. The

correctness of the presentation depends upon the capacity to maintain the time ordering of

events as specified by the temporal relationship.

On current computer systems the synchrony of a presentation can easily be lost.

Considerations such as the processing speed of the CPU, the number of processes running on

the system, the load on the network sub-system, and the maximum data retrieval capacity can

greatly influence the processing speed of a given media stream. This results in variations in

processing delays and consequently interferes with the synchrony of the presentation.

The temporal dimension associated with multimedia data streams and multimedia

applications creates the requirement for media synchronisation. A media synchronisation

environment is necessary to accurately maintain the ordering and timing of events during

multimedia presentations. The synchronisation environment must be able to quickly detect and

recover from any loss of synchrony resulting from variations in delays.

1.4. Research objectives

As described above, media synchronisation requires a synchronisation environment to

correctly maintain the temporal relations during multimedia presentations. The aim of this

thesis is to provide a framework in which such an environment can be built.

This work concentrates on the design of a Distributed Synchronisation Architecture (DSA)

that implements media synchronisation transparently to multimedia applications [Bastian,94].

The design attempts to meet two major goals:

• To provide a synchronisation formalism to specify the temporal relations required in

multimedia applications. The formalism must hide the details about the different

characteristics of each media stream.

• To provide a platform that supports the described synchronisation formalism and

transparently provides multimedia applications with the correct synchronisation. The

platform must provide multimedia applications with a set of controlling functions so that

applications can accurately control the behaviour of presentations.

1.5. Organisation of the thesis

The rest of this thesis is organised as follows:

Chapter 2 attempts to provide a comprehensive list of characteristics and requirements of

continuous media streams.

Chapter 3 defines media synchronisation, the problems facing media synchronisation on

distributed systems, and the techniques available to correctly maintain synchronisation.

Chapter 4 presents the state of the art in media synchronisation on distributed systems. The

research is grouped into three sections: synchronisation at the operating system level,

4

synchronisation at the network communication level, and synchronisation at the presentation

level.

Chapter 5 presents a distributed framework for media synchronisation support. The

distributed framework provides a synchronisation formalism and a distributed platform that

implements media synchronisation transparently to multimedia applications.

Chapter 6 describes the application interface and an experimental implementation of the

distributed platform.

Chapter 7 draws some general conclusions and highlights some limitations wherein further

research is necessary.

5

Chapter 2

Continuous Media Characteristics and Requirements

2.1. Introduction

Continuous media streams are the core base for multimedia systems. They add some new

characteristics to those of traditional data streams. Unfortunately, computer systems and their

sub-systems (e.g.: computer networks) are not well designed to support these new

characteristics [Sammartino,91]. New mechanisms and techniques are needed to support

continuous media streams on distributed environments. This chapter attempts to describe the

characteristics of continuous media and the requirements for the current generation of

computer systems.

2.2. Characteristics of continuous media

2.2.1. Temporal dimension

Continuous media streams are achieved by continuously "freezing" or sampling the

incoming signal at pre-defined fixed intervals, and storing the result into digital form. For

example, digital audio is recorded by repetitively sampling the analog signal and recording the

wave's amplitude at the time of the sampling [Luther,91]. The sequence of digital values can be

used to accurately reconstruct the initial wave. Digital video is recorded in a similar way. At

fixed time intervals the image is "frozen"' and the colour of each pixel in a two dimensional

matrix of pixels is stored in digital form. This technique enables the reconstitution of each

frame and consequently, of the video stream.

Every continuous media stream is composed of a sequence of samples or frames, which

convey meaning only when presented continuously in time. Each frame contains different

information that has to be presented at the correct time. Speeding up or slowing down the

presentation of successive frames will result in different information than originally recorded.

The continuity of both presentation and recording, associated with the time interval required

between samples, creates the temporal dimension of continuous media. This is the

characteristic that clearly distinguish continuous media from traditional media streams.

1 In reality, most digital video streams are generated by continuously converting an analog signal
from an existing analog video format (eg: NTSC or PAL) into digital values.

-6

2.2.2. Tolerance to errors

Continuous media streams have various degrees of tolerance to errors

[Anderson,91][Campbe11,92]. Unlike traditional media, where even the smallest error in the

data stream could be disastrous, continuous media streams can successfully deal with some

degree of data error.

Because of the temporal characteristic of continuous media streams, the data presented in

one frame is quickly overwritten by the subsequent frame. Therefore, frame n+1 overwrites

frame n, correcting any errors introduced during the presentation of frame n. This allows

continuous media to successfully tolerate data errors.

There are two types of data error. Firstly, because of distortion into computer peripherals,

the original electrical or optical signal may deteriorate and a misinterpretation of the binary

stream will result. This type of error generates a change in the quality of the presentation and

the user may or may not perceive the error. Secondly, information may be lost. When part of a

frame or the whole frame is lost, the missing information can be substituted for "dummy"

data, just to maintain the correct temporal relationship. The presentation is corrected as soon

as the next frame is played/displayed.

When the occurrence of such errors is kept to very small levels, the temporal characteristic

of continuous media can successfully recover the original meaning of the information. Even

though both types of data error incur a loss of quality, the information can still be successfully

manipulated and presented to the user.

2.2.3. Storage demands for continuous media

The storage requirements for continuous media greatly exceed the requirements for

traditional media [Little,90b]. The amount of storage required by a continuous stream is a

factor of the quality of the presentation and its duration.

Digital audio quality can be measured by the amplitude of the analog wave and its

bandwidth. The amplitude of the analog signal dictates the sample size and the bandwidth

dictates the sampling rate required to properly digitise the original signal. Speech is represented

by a 4 khz bandwidth and requires 8000 samples per second, 8 bits per sample to be properly

digitised [Tanenbaum,88]. CD quality audio has a 22 khz bandwidth and requires 44000

samples per second and 16 bits per sample.

Digital video quality depends on the size of the image, the frame rate, and the colour

accuracy required. NTSC [Luther,91] format video uses 640x480 pixels per frame and a

frame rate of 30 frames per second. PAL [Luther,91] format video uses 768x576 pixels per

frame and a frame rate of 25 frames per second [Corre1,92].

The table below summarises the storage requirements for these types of continuous media.

7

CM type Details 1 second 1 minute 1 hour

Speech 8 bits/sample 64 kbps 480 Kbytes 28.8 Mbytes
8000 samples/sec

CD audio 16 bits/sample 704 kbps 5.2 Mbytes 316 Mbytes
44000 samples/sec

NTSC format 640x480 pixels/frame 221.1 Mbps 1.6 Gbytes 99.5 Gbytes
24 bits/pixel for colour
30 frames/sec

PAL format 768x576 pixels/frame 265.4 Mbps 1.9 Gbytes 119.4 Gbytes
24 bits/pixel for colour
25 frames/sec

Figure 2.1. Storage requirements for continuous media

When continuous media have to be delivered in real-time, the storage requirement shown

above for one second also represents the network and retrieval throughput required for the

continuous media stream.

Clearly, the storage requirements of continuous media can saturate most workstations and

personal computers. Also, real-time transmission of continuous media can pose a real problem

even for fast networks such as Fiber Distributed Data Interface (FDDI) [Tanenbaum,88].

2.2.4. Time requirements for continuous media

The temporal dimension of continuous media imposes timing requirements when recording

or presenting the information. These timings must be strictly controlled to avoid lost of fidelity.

The following table highlights the time granularity for the continuous media types described in

the previous section.

CM type
	

Rate	 Time granularity

Speech	 8000 samples/sec	 125 microseconds

CD audio	 44000 samples/sec 	 22.72 microseconds

NTSC format	 30 frames/sec	 33.3 milliseconds

PAL format	 25 frames/sec	 40 milliseconds

Figure 2.2. Timing requirements

2.3. Continuous media requirements

In the past two decades the trend was to share computer resources. Great effort was put in

to develop techniques that would allow multiple applications to share scarce computer

resources. The idea was to improve the total processing throughput while decreasing the

throughput for a single application.

Sophisticated scheduling mechanisms were developed so that multiple processes could share

the same CPU [Bach,86][Leffler,89]. Data multiplexing and packet switching mechanisms

allowed computer networks to support multiple connections simultaneously [Tanenbaum,88].

Buffering and retrieval algorithms were fine-tuned for high performance when storage devices

were being accessed concurrently [Leffler,89].

The above techniques have been successful with traditional media streams because delays

did not cause applications to produce the wrong information. However, any small delays when

manipulating continuous media can render the information useless. The temporal dimension of

continuous media requires a constant degree of performance and any variations result in a loss

of quality.

To properly support continuous media, computer systems have to exploit the particular

characteristics of continuous media streams. These characteristics impose new constraints that

must be taken into consideration when designing multimedia systems.

Continuous media requirements can be grouped into four sub-categories: storage

requirements [Gemme1,92][Little,90a], which comprises storing and retrieving continuous

media files; communication requirements [Anderson,90][Ferrari,93]; operating systems

requirements [Jeffay,92][Witana,93]; and general requirements. These categories are

described in the following sections.

2.3.1. Storage requirements

2.3.1.1. Storing continuous media files continuously

Continuous media data are usually stored in rewritable storage devices. Because of their

large size, continuous media files are generally stored in non-contiguous blocks of information

scattered on the physical device. When the data is retrieved, the file system is responsible for

providing transparent sequential access to the data. Nevertheless, at a physical level, the data

has to be retrieved from non-continuous spaces, which increases the retrieval time.

Another consequence of larger files is that some file systems incur performance penalties

for files larger than a threshold. The performance of the Unix file system in particular

decreases as file size increases[Leffer,89]. As the size of the file grows, the file system uses

multiple indirections to locate the data. This may cause a performance problem for continuous

media files because files larger than a few tens of megabytes are very common to store digital

audio or digital video.

Continuous media files do not change often, therefore storing them contiguously on the file

system may considerably improve the performance of the retrieval mechanism as well as

eliminate the multiple indirection problem. Gemmel [Gemme1,92] has shown that for

continuous media files, contiguous allocation achieves better performance than non-contiguous

allocation mechanisms.

9

2.3.1.2. File system buffering

File systems tend to have a buffering mechanism to improve performance when reading

and/or writing into a file [Bach,86][Silberschatz,88]. The buffering mechanism is composed of

two parts: a buffer cache and a read-ahead algorithm.

The buffer cache mechanism maintains frequently accessed data in the system buffers, so

that accessing this data is faster than accessing the physical device. The read-ahead algorithm

assumes that the application will soon need the data which is just ahead of the information

being currently accessed. Therefore, it reads a few more blocks than the initial amount

requested by the application and keeps these blocks in the buffer cache.

The buffer cache is not necessary for continuous media streams. During a multimedia

presentation, data that has already been displayed is rarely needed again. Therefore, buffers are

better utilised if they are returned to the free pool immediately after their use, so that they can

be reused.

Standard cache systems are global per storage device and not per process. Each buffer

mirrors a specific block of the storage device that was accessed recently. When all buffers are

allocated and more data has to be accessed, the buffer which has the oldest time is chosen to

contain the new data. This technique works fine for non-continuous media streams. In case of

continuous media streams, the large amount of data that has to be brought into the system

buffers may quickly overwrite all data in the buffer cache, resulting in poor performance for

the cache mechanism.

Continuous media files can greatly benefit from dedicated file systems that are fine tuned to

account for their characteristics. Gemmel [Gemmel] has proposed buffering schemes to

support these type of file systems.

2.3.2. Communication requirements

2.3.2.1. Transport protocols

The transport layer is the fourth layer in the ISO Open System Interconnection (OSI) 7

layers specification [Tanenbaum,88][La Porta,91]. The transport layer is the first end-to-end

layer and it provides important services for the layers above. This includes error free data

delivery, usually through retransmission and checksum, flow control, and management of end-

to-end connections between hosts.

Current transport protocols (e.g.: TCP [Poste1,81] and TP4 [Tanenbaum,88]) were

designed to effectively support error free data delivery. Sophisticated mechanisms for

checksum and retransmission are incorporated in these protocols. The use of checksums

guarantees that on arrival the packet is free from errors. The retransmission mechanism

guarantees that packets which are lost due to network congestion or error are retransmitted by

the originator of the packet.

It has been shown that computing the checksum on every packet consumes a considerable

amount of time from the total packet processing time [Doeringer,90][La Porta,91]. Also, the

retransmission mechanism needs to allow enough time for a packet to be acknowledged before

retransmitting the information. This is necessary to avoid duplicating packets and consequently

causing network congestion.

Continuous media streams can tolerate a small degree of bit error. Current generation

computer networks provide very small error rates during normal operation. For an FDDI

network, the maximum tolerable error rate is 1 error in 2.5x 10 1 ° bits [Tanembaum,88]. This

rate effectively withdraws the need for checksums when transmitting continuous media

streams. The CPU time saved by not computing the checksum can be an important factor when

transmitting continuous media streams.

Error recovery by retransmission is another technique which is not well suited to the

transmission of continuous media streams [Doeringer,90]. The temporal relationship of

continuous media streams often requires very short times (e.g.: 33 millisec or less) between the

playback of consecutive packets. A continuous media packet is useless if it is not present at the

precise time it is needed. To guarantee that a packet is present at the required time, the

retransmission mechanism is limited by the time interval between packets. Therefore,

retransmission has to take place within the maximum time interval between packets. These

time intervals are so small that they can not be used to trigger retransmission without causing

duplication of packets. This limitation renders retransmission mechanisms useless for

continuous media streams.

2.3.2.2. Performance guarantee

The temporal characteristic of continuous media streams requires a constant demand of

network resources once a connection has been established [Ferrari,92][Fry,93]. Parameters

such as the required throughput, maximum end-to-end latency, and maximum delay jitter are

constant during the connection lifetime.

The use of packet switching technology does not automatically reserve the necessary

resources required for continuous media streams when the connection is established. Network

resources are free to be used simultaneously by multiple virtual circuits. The result is that a

sudden surge in traffic may change completely the performance of any virtual circuit operating

on the network. This may cause unacceptable delays when transmitting continuous media

streams.

To guarantee the transmission performance for continuous media streams, virtual circuits

that can statically reserve the required performance for every connection are necessary.

2.3.3. Operating systems requirements

2.3.3.1. Scheduling mechanism

Conventional multitasking operating systems are not well suited to handle the real-time

characteristics of continuous media streams [Bulterman,91][Jeffay,92]. These systems

typically use a round-robin scheduling mechanism which associates a time slicing to each

nimble process in the same priority level [Bach,86][Leffler,89]. However, processes handling

continuous media streams need a more deterministic scheduling mechanism so that they can

meet the deadlines imposed by continuous media streams.

The performance of the scheduling mechanism for conventional operating systems depends

on how scheduling priorities are allocated. The Unix scheduler uses a mechanism that tries to

be fair with all processes running on the system. It systematically adjusts the priority of

processes according to the CPU usage of each process. The scheduler decreases the scheduling

priority of CPU intensive processes and increases the priority of 1/0 bounded processes. This

dynamic change of process priorities does not favour continuous media processes because they

need constant attention from the CPU. On a medium to large CPU load, continuous media

processes are likely to miss deadlines as the scheduler reduces their priorities to allow other

processes to run.

In order to properly support continuous media processes, operating systems need to provide

scheduling mechanisms with fixed, high-priority scheduling levels that can be statically

associated to continuous media processes.

2.3.3.2. Preemptible kernel

At the kernel level, the Unix operating system is non-preemptible

[Leffler,89][Bulterman,91]. That means that if a process is executing a system call and another

process with a higher priority becomes ready to run, the process with the higher priority will

not receive the CPU until the system call for the first process is completed. Depending on the

system call being executed, this delay may vary from a few microseconds to up to a few

hundred milliseconds.

For continuous media processes, the wait for lower priority processes to finish may

compromise their correct execution [Mercer,92]. Therefore, operating systems that can support

immediate scheduling for higher priority processes are required to properly support continuous

media processes.

2.3.3.3. Data transfer

The read and write operations to transfer data from and to devices are widely used in

operating systems [Bulterman,91[Campbe11,92]. Every time an I/0 operation has to be

performed, one of these two system calls is executed. These operations are rather costly,

because they require switching back and forth to the operating system kernel. Furthermore,

there is generally a need to transfer data from the process address space to kernel buffers

during a write operation and vice-versa during a read operation.

These conventional interfaces are potentially inefficient at handling continuous media

streams. It is inherent to continuous media processes that I/O is necessary at continuous rates

[Campbell,92][Govindan,91]. There is no need to reissue I/O operations during manipulation

of continuous media streams. Instead, the data could be made automatically available to

applications through the use of shared circular buffers [Govindan,91]. If the location of the

information is already known, data can be transferred , by re-mapping page tables so that the

operating system buffers are directly mapped into the process address space.

2.3.4 General requirements

2.3.4.1. Data compression

The large amount of data generated by continuous media streams poses another problem for

computer systems. The throughput required for playback of a full-screen digital video (e.g.:

221 Mbps) exceeds the capacity of fast networks such as FDDI (e.g.: 100 Mbps). Also, the

great majority of workstations and personal computers are unlikely to have the hundreds of

megabytes required to store digital movies and the corresponding sound tracks. A full-screen,

one hour digital movie with stereo sound track requires a storage space of 100 gigabytes.

Compression techniques have been used successfully to compress traditional media streams

with compression ratios generally in the order of 2:1 or 3:1. However, in order for video

compression to be effective, compression ratios of at least 10:1 are necessary. The solution for

this problem is to use dedicated compression mechanisms that take into consideration the

characteristics of each continuous media type to provide very high compression rates.

Two standard compression techniques have being developed for digital video: the Motion

Pictures Expert Groups specification (MPEG) [Ga11,91] and the CCITT H.261 [Liou,91]

specification. Both compression techniques suppress spatial and temporal redundancies on a

sequence of video frames, achieving very high compression rates. Compressing the spatial

redundancies is known as infra-frame compression, while compressing the temporal

redundancies is called inter-frame compression. These two compression techniques provide

compression ratios of 20:1 to 200:1 [Jurgen,92].

Both video compression standards are lossy in that the reconstructed data are not identical

to the original. They exploit aspects of the human visual system and the resulting video stream

is hard to distinguish from the original.

The disadvantage is that these compression techniques are computationally expensive.

Compression of video streams can only be performed off-line or by dedicated compression

hardware. Decompression is less expensive than compression because it does not require the

extensive match and search routines used during compression. However, it is still a lengthy

process and can only be performed by fast processing units.

2.4. Quality of service reservation

The notion of guaranteed performance required by continuous media streams plays a

prominent role in distributed systems. Continuous media streams require a constant Quality of

Service (QoS) from all computer sub-systems [Campbe11,92][Ferrari,93]. File systems and

computer networks have to be able to maintain the required throughput, while operating

systems need to support the real-time deadlines of continuous media streams.

Because most computer sub-systems are shared by multiple applications, it is not possible

to guarantee the same level of performance for the lifetime of the presentation. It is generally

agreed that some sort of resource manager that can provide a guaranteed QoS to continuous

media is necessary.

Resource reservation mechanisms would allow a single client to specify the QoS it needs

for a correct execution and the negotiated QoS will be honoured for the lifetime of the client. If

for any reason the QoS negotiated during the start up of the application cannot be maintained,

the client would be notified and another QoS could be negotiated. The resource reservation

mechanism guarantees that a correct playback is always possible except in extreme error

conditions such as a hardware fault.

Chapter 3

Media Synchronisation

3.1. Introduction

Media synchronisation is automatically associated with multimedia presentations due to the

inherent temporal relation of continuous media streams. In addition, temporal relationships

between independent media streams are often required when multiple media streams are used in

a presentation. This chapter presents the definitions for media synchronisation and the

problems associated with maintaining the correct synchronisation on distributed multimedia

systems.

3.2. Media synchronisation definitions

3.2.1. Synchronisation

Multimedia presentations often contain multiple media streams that have a real-time

temporal relationship [Little,90b] [Little,914[Steinmetz,90]. The temporal relationship

describes the order in which events must happen and tie together previously independent media

streams. For example, consider a movie presentation composed of a video stream and an

independently stored audio track. When there is no formal relationship, the two streams can be

seen as completely independent media. However, when presenting the movie, an inherent,

constant data consumption rate is attached to both streams so that the correct relationship is

maintained.

In the field of multimedia, synchronisation refers to the ordering and relationship of

otherwise independent events. Synchronisation ensures that events occur in a pre-defined order,

independent of the content and of the playback speed of the media streams [Steinmetz,90].

3.2.2. Types of synchronisation

In this thesis, media synchronisation is classified according to the number of media streams

involved in the synchronisation. Synchronisation that does not depend on external media

streams is classified as intra-stream synchronisation, while synchronisation that depends on

other media streams is known as inter-stream synchronisation.

Presentation

Time (msec) Relationship

0
Frame 0 ' ,. Synchronisation

'	 Dependency

33
Frame 1 ' ,. Synchronisation

'	 Dependency

66
Frame 2 ' ,. Synchronisation

'	 Dependency

99
Tame 3 ' ,. Synchronisation

'	 Dependency

133
Frame 4

Video stream: 30 frames/second

Intra-stream synchronisation requirement: 33.3 msec

3.2.2.1. Intra-stream synchronisation

Whenever there is a temporal relationship between different units inside the same media

stream, we say that there is an intra-stream synchronisation requirement

[Bulterman,9 1] [Little,90b].

Infra-stream synchronisation may be inherent to the media stream or explicitly expressed by

an application. Continuous media streams have an inherent intra-stream synchronisation that

has to be strictly maintained during playback. Traditional media streams may have intra-

stream synchronisation set up by multimedia applications. For example, it is possible to have a

media stream containing a sequence of text annotations which have to be presented with a pre-

defined time interval between them. This creates a temporal requirement just like ordinary

continuous media streams. The difference is that the temporal requirement is not implicitly

associated with the media stream, but it is imposed by the multimedia application.

Figure 3.1. Intra-stream synchronisation

The details about the intra-stream synchronisation have to be known prior to playback.

There are several ways to inform the device that will perform the synchronisation of the intra-

stream synchronisation requirements:

• File type or input device - The intra-stream synchronisation characteristics for some

continuous media streams can be inferred for stored streams by associating certain

characteristics with a filename extension. For example, *.PCM files can be associated

with audio files with 8khz sampling rate and 8 bits per sample. Some input devices may

also have an association describing the characteristics of the continuous media stream

generated by the device.

• File header - On stored streams, the intra-stream synchronisation details may be stored

in a header located at the beginning of the data stream. For example, an MPEG video

stream includes a header which contains some information about the characteristics of

the movie (i.e. frame size, frame rate, etc.).

• Information in each data unit - When the intra-stream synchronisation is not constant

for the duration of the playback, the synchronisation information may be described in a

data unit basis. Each data unit contains its own intra-stream synchronisation information

which describes the temporal relationship with previous or future data units.

• Information in an external file - The infra-stream requirements are stored in an

external file. The information contained in the external file has to identify and describe

the synchronisation characteristics for every data unit. This form of synchronisation

location is the most flexible because the format and type of information stored in the

external file is not constrained by the actual format of the data streams. However, the

inclusion of an external file means that this file must be accessed in order to retrieve the

synchronisation information which in turn may considerably increase the overhead on

the system.

3.2.2.2. Inter-stream synchronisation

Inter-stream synchronisation exists when there is a formal relationship between units in

different media streams [Bulterman,91][Little,90b]. Inter-stream synchronisation must be

explicitly formulated by establishing the temporal relationship among the streams to be

synchronised. For example, consider a multimedia slide presentation in which the presentation

of each image is followed by a verbal annotation. The first image is displayed at time 0 and

subsequent images are displayed after the verbal annotation for the previous image completes.

Each image and the end of each verbal annotation represents a synchronisation point that must

be formally described so that synchronisation is maintained throughout the presentation.

Another common form of inter-stream synchronisation is the synchronisation of video and

audio, particularly lip-synchronisation [Nicolau,90]. Lip-synchronisation involves the

synchronisation of the lips' movement on the screen with the spoken voice from the speaker.

Audio

Annotation

for slide 0

Audio

Annotation

for slide 1

Audio

Annotation

for slide 2

Audio

Annotation

for slide 3
n

Audio

Stream

Slide

Stream

0

Inter-stream

Synchronisation

Dependencies

Time

Slide 0

Figure 3.2. Inter-stream synchronisation

As with infra-stream synchronisation, there are also several ways to specify the inter-stream

synchronisation requirements:

• Cross references - In this scheme, each data unit that has inter-media synchronisation

requirements contains references to other data units in different streams. This approach

is very versatile but it increases the complexity for specifying and maintaining

synchronisation points.

• Master stream - A single media stream contains all synchronisation information

required for synchronised playback. The master stream must be available during the

lifetime of the presentation because all synchronisation information is contained within

it.

• Information in an external file - The inter-stream synchronisation is stored in an

external file. The external file contains references to the data units in the streams and

logically groups them according to the synchronisation requirements for the

presentation. This approach involves having the extra overhead and resources to process

the external file.

3.2.3. End-user synchronisation

End-user synchronisation refers to synchronisation as seen by the audience of the

presentation. It is not important if the system is internally altering the presentation as long as to

the user's perception the presentation is synchronised. This is particularly important on

distributed systems, because distributed systems involve three distinct processing steps:

retrieval, transmission, and presentation. It is not necessary to strictly control synchronisation

when retrieving or transmitting the information as long as the information is synchronised

before it is presented to the user.

3.3. Sources of delays

At first it seems that after the temporal relationship for intra- and inter-stream

synchronisation has been specified, maintaining the correct synchronisation is just a matter of

outputting the information at the correct time. However, allocation of computer resources (i.e.

CPU, network, disk, etc.) is non-deterministic in the sense that it is not possible to predict

when a given resource will be available to the application [Bulterman,91]. This characteristic

of current computer systems makes the task of synchronising media streams more difficult than

initially visualised.

Due to the temporal relationship of multimedia presentations, any small variations in the

processing speed of the media streams may result in delays in maintaining the temporal links.

Such delays interfere with the correctness of the presentation and represent a decline in the

overall quality of the presentation.

In a distributed environment, the sources of delays can be organised in three distinct groups:

retrieval delays [Gemmel,92], transmission delays [Escobar,92], and presentation delays

[Anderson,91][Rowe,92].

3.3.1. Retrieval delays

Retrieval delays account for time variations during the retrieval of media streams from

storage devices or input devices (i.e. video camera, microphone, etc.). It represents the time

elapsed since the application requested the data to the moment that the application can use the

information.

In multiprogramming environments, storage devices may have multiple requests for data

retrieval being executed almost simultaneously by different applications. In this case, the

maximum device transfer rate will be shared by all the applications requesting data from the

device. The result is that there is no guarantee that the required transfer rate will be available

to retrieve the media stream, even if the device transfer rate is greater than the maximum

transfer rate required by the media stream.

In addition, there are the issues of the bus transfer rate and how fast a process waiting for

I/O will execute after the I/0 operation has completed. Depending on the load on the system

and the number of processes sharing the CPU, the timing for these issues can vary widely.

3.3.2. Transmission delays

Transmission delays account for every delay introduced after the data is delivered to the

network sub-system and before the data is available at the destination application.

On distributed systems, the information is often stored in different physical locations and

has to be transmitted to the destination machine before it can be presented. This step involves

multiple processing layers with different time overheads. Usually, the time taken for

transmitting a packet includes the operating system buffering time, the protocol processing

time, and the actual transmission time. These times vary according to the implementation, the

length of the packet to be transmitted, and the load imposed on the system.

3.3.3. Presentation delays
Presentation delays account for the time elapsed from the moment the data is available to

the destination application until the information is actually presented to the end-user.

Presentation delays includes delays wich arise due to the multiprogramming environment and

the scheduling policy used by the operating system.

In multiprogramming environments, all processes are competing for the CPU and the

degree of CPU attention required for each process varies considerably. The Unix scheduler

uses a mechanism that tries to be fair to all processes, decreasing the priority of a process as

its CPU usage increases. As processes dealing with continuous media streams need constant

CPU attention, this policy does not favour them and they are likely to miss deadlines.

3.4. Techniques for maintaining synchronisation

During the course of a multimedia presentation, any small delay can interfere with the

correctness of the temporal relations, resulting in an incorrect or "poor quality" presentation.

Also, depending on the degree of delay being introduced, the presentation of continuous media

streams may turn out to be useless because the user can not understand the information that is

being presented. It is important that multimedia systems detect and deal with delays in order to

maintain the correct temporal relationship for the presentation.

The techniques available to smooth delays and maintain the correct synchronisation are:

buffering media streams, discarding frames, changing the QoS, and pausing the presentation.

The rest of this section describes these techniques.

3.4.1. Buffering media streams
The effect of delays can be reduced by using buffers to pre-fetch the information before

starting the presentation [Little,92][Ramanathan,93]. Buffering the information in the

destination machine can effectively smooth retrieval and transmission delays. However,

buffering is limited by the number of buffers available and by the time taken to fill up the

buffers. Ramanathan [Ramanathan,93] has shown that the buffering requirements for

continuous media streams are many times above what a normal computer system can support.

Also, the time that it takes to fill up the buffers at the start of a presentation adds up to the time

that the user has to wait before the presentation can be commenced.

Nonetheless, buffering can successfully smooth small variations in delays during a

multimedia presentation.

Delav I
t 12	 (3

4
1	 1:5 6

1
7	 8
1	 t

Intra-stream pattern

Playback time

Frames presented

Retrieval
Transmission
Presentation

I 1 I I

1
i
2

1

3

Frame
Discarded

V

1

5
i
6

Frame
Discarded

V

1

8 9

Real-time clock

3.4.2. Discarding frames

The technique of discarding frames is particularly useful when dealing with continuous

media streams [Anderson,91][Rowe,92]. It explores the tolerance to errors of continuous

media streams by discarding frames or samples which are known to be late for their playback

time. Discarding a frame speeds up the playback of the media stream in relation to the real-

time clock, effectively eliminating delays.

Figure 3.3. Discarding late frames

3.4.3. Changing the QoS

Changing the quality of the presentation to a lower quality reduces the amount of

information that has to be manipulated and results in better performance for the overall

presentation [Campbe11,92][Rowe,92]. It effectively improves the synchronisation as long as

the overhead on the system is being caused by the presentation. If the system is overloaded

with information generated by other applications, this technique does not produce much better

results.

Reducing the quality of the presentation can be accomplished by using media streams that

contain the same information although with a lower overall quality. For example, a black and

white video stream that contains fewer frames per second compared to a colour video stream

with 30 frames per second.

3.4.4. Pausing the presentation

Pausing the presentation is the last resource to maintain synchronisation. If all the

previously described techniques fail to maintain the synchronisation, the presentation needs to

be paused until it can be resumed.

Chapter 4

The State of the Art in Media Synchronisation Support

4.1. Introduction

This chapter presents ongoing or recent research efforts which are related to multimedia

synchronisation. Most of these research efforts address particular characteristics of multimedia

synchronisation and are not necessarily aimed at end-user synchronisation.

Multimedia synchronisation requires proper support from the underlying software and

hardware and some particularly interesting research projects that address these issues are

included in this chapter. Although they are not directly related to multimedia synchronisation

they provide some insight into techniques to support media synchronisation.

This chapter has been divided into three sub-sections:

• Synchronisation at the operating system and storage device level

• Synchronisation at the network communication level

• Synchronisation at the presentation level

The chapter concludes with a summary of the research and points out some areas where

more research is necessary. Some of these areas are directly addressed in the work described in

this thesis.

4.2. Synchronisation at the operating system and storage device
level

4.2.1. University of North Carolina

At UNC, research has been undertaken in real-time requirements for multimedia ready

operating systems [Jeffay,92]. Rather than adding real-time scheduling to an existing operating

system, they have considered a new operating system specifically biased to provide real-time

services for multimedia. The YARTOS (Yet Another Real-Time Operating System) was

designed so that application programmers can specify both real-time throughput and latency

requirements for individual processes.

YARTOS supports two basic abstractions: tasks and resources. Tasks are units of

execution and they only execute in response to the arrival of events. When a task registers its

interest in an event, it has to specify the deadlines for invocation and completion of each

processed event. Resources provide applications that do not need real-time deadlines with a

non-time constrained communication facility based on shared memory. For a given workload,

YARTOS guarantees that all tasks are completed before their deadlines. Using a resource

reservation mechanism, new tasks can know in advance if their deadlines can be successfully

met.

YARTOS provides the basic support for resource reservation and performance guarantee

required for multimedia synchronisation. However, the use of a non-standard operating system

makes this approach somewhat less attractive.

4.2.2. Simon Fraser University, Canada

This work [Gemme1,92] establishes a theoretical framework for the retrieval and storage of

delay-sensitive multimedia data. It concentrates on the storage and retrieval of digital audio,

but the authors emphasise that the results apply equally to any similar delay-sensitive data.

Gemmel and Chrstodulakis have developed a set of theorems which account for the

requirements of continuous media and analyse the impact in the way continuous media data is

stored in storage devices.

Buffering and start time requirements for playback systems with dedicated and non-

dedicated storage devices are represented by functions that depend on the device characteristics

(e.g.: sector size, reading speed, number of samples, granularity of the sample). Storage

performance for various storage strategies including interleaved and non-interleaved techniques

are also analysed. The main conclusion of the work is that storage techniques that are biased to

handle the characteristics of continuous media are necessary to properly maintain the required

input/output flow when manipulating this type of information.

This work provides a good framework for implementing dedicated data retrieval

mechanisms that can properly deal with continuous media. Intra-stream synchronisation during

retrieval can be guaranteed using the theorems provided, however a higher level

synchronisation mechanism is needed to provide the end-user synchronisation required by

multimedia applications.

4.2.3. Syracuse University

At Syracuse University a model for storing and retrieving multimedia objects with temporal

dimensions is being developed. The model attempts to provide documents structured using an

enhanced version of the Petri Nets formalism with an infra-structure to allow synchronisation

and composition of multimedia data [Little,90a][Little,90b].

Object Composition Petri Net (OCPN) includes a new dimension which allows time to be

modelled. The database scheme preserves the semantics of the OCPN model to facilitate

reproduction and storage of multimedia synchronisation information. The hierarchical database

model contains three types of nodes: terminal nodes, non-terminal nodes, and meta nodes.

Terminal nodes maintain the pointers to the actual data. They do not contain any temporal

information and may have many parents. Non-terminal nodes contain a left and right child

pointer and the temporal information between the children. Meta nodes are like non-terminal

nodes but they are allowed to have many pointers to other nodes. Meta nodes associate many

temporal intervals with a single temporal relation.

The proposed database model allows quick access to the information. It is particularly

important for interactive multimedia applications where non-sequential access to the

information is necessary in response to user interaction.

4.3. Synchronisation at the network communication level

4.3.1. Purdue University

A set of protocols for providing synchronisation was proposed at Purdue University

[Little,91b]. The protocols are based on two levels of synchronisation support. The Network

Synchronisation Protocol (NSP) provides support for intra-stream synchronisation while the

Application Synchronisation Protocol (ASP) provides support for application defmed

synchronisation which may involve inter-stream synchronisation.

The NSP deals with single end-to-end connections and assumes that the network sub-system

can guarantee the required level of performance defmed during connection establishment. At

the time of connection establishment, the NSP provides the communication requirements (e.g.:

traffic, packet size, etc) and expects the network sub-system to return the channel delay and the

variations in the interarrival time for consecutive packets.

The ASP works by retrieving OCPNs (see Section 4.2.3) from a database and generating

scheduling deadlines and calls for the NSP layer.

This approach is specially designed to interface with the formal synchronisation

specification provided by an OCPN. The main limitation of this work is that because of the

static nature associated with the OCPN database, it does not account for synchronisation when

user interaction is required.

4.3.2. BBN

Julio Escobar [Escobar,92] at Bolt Beranek and Newman Inc (BBN) has described a Flow

Synchronisation Protocol that provides synchronised data delivery to multiple sites. The

protocol time-stamps data at the source and equalises delays at the destination based on

synchronised network clocks [Mills,91].

Multiple flows are synchronised by time-stamping the information as it leaves the source

machine and calculating the maximum delay that the data will take to travel from source to

destination. Once the data arrives at the destination, the protocol holds the data until the local

time is equal to the timestamp plus the maximum delay informed to the protocol by a

controlling device. This way multiple flows with variations in delay always appear to have the

same overall delay.

Flows with destinations in the same synchronisation group are synchronised to each other

by the protocol. Processors in the same synchronisation group regularly exchange information

to compute a common synchronisation delay, allowing the equalisation delay to change

dynamically to reflect changes in the communication sub-system.

The delayed delivery provides synchronised data delivery to multiple destinations, although

the protocol does not account for delays introduced by the application that processes the

information. Such delays may greatly interfere with the final presentation. In this scheme,

applications have to build their own synchronisation scheme on top of the synchronisation

protocol in order to guarantee the end-user synchronisation required during presentations.

4.3.3. Lancaster University

At Lancaster University, an orchestrator mechanism that dynamically manages and co-

ordinates the information flow in a distributed multimedia session has been

developed[Campbell,92]. The mechanism relies on the ability to establish a consumption ratio

between multiple related streams (e.g.: ten sound samples for each video frame). For each

continuous media stream a target is given for a specified interval, these targets ensure that each

stream is within a time limit imposed by a master clock.

The mechanism is divided in two layers: the high level orchestrator (HLO) and the low level

orchestrator (LLO). The HLO is responsible for interfacing the application to the orchestration

sub-system at orchestration initiation time. The HLO elects a node, know as the orchestrating

node, from which the multiple streams will be coordinated. The orchestrating node supplies the

LLO with rate targets over specified intervals for each orchestrated connection. The LLO

attempts to meet the required rate target and reports its success or failure at the end of the

interval.

The HLO and LLO schemes provide the network support for implementing media

synchronisation over distributed multimedia system. However, the formal specification of the

temporal synchronisation is left to be handled at the application level and hence at least one

more synchronisation layer is required to provide end-user synchronisation.

4.3.4. University of Pennsylvania

An integrated multimedia approach has been developed at the University of Pennsylvania

[Nahrstedt,92]. This work differs from the previous works in the sense that it provides

synchronisation in an integrated end-to-end basis. Multiple media streams are combined into a

single stream that contains the events related to a given unit of time. The scheme requires the

multiplexing of multiple media streams at the source machine and the demultiplexing at the

destination machine. The advantage is that most synchronisation problems are eliminated, since

on arrival the data contains all information necessary for that given time.

The approach consists of a composition and a decomposition protocol. The composition

protocol runs on the source machine and is responsible for integrating the different media

,,,,..--,tN t f	 N
Camera
Vide

Screen
Text

Speaker
Voice

"'Screen
Video

Screen
Text

Microphone[
Voice

■	

captured in real-time into an Integrated Multimedia Message (IMM). Each IMM contains all

information produced at a given time in the source machine. The decomposition protocol

receives the IMM, demultiplexes the information, and outputs the information to the user

interface. The following figure demonstrates the interaction of the two protocols.

Composition of IMM Decomposition of IMM

Send IMM

T
Receive IMM

T
Figure 4.1. University of Pennsylvania - composition and decomposition protocols

Campbell [Campe11,92] has pointed out some drawbacks of this scheme, including the

overhead and complexity of multiplexing/demultiplexing and the non-availability of

multiplexing when data originates from different sources. However, this approach may have

strong advantages when used in real-time networked multimedia systems.

4.3.5. University of California at San Diego

The design of techniques and protocols for providing infra-stream and inter-stream

synchronisation in distributed multimedia systems is being investigated at UCSD

[Ramanathan,93]. A feedback technique, which transmits feedback units back to the server, is

used to dynamically adjust and maintain the playback continuity. The technique does not

assume the use of synchronised clocks, but assumes that communication delay can be

restricted within a minimum and a maximum threshold.

Synchronisation is controlled by the destination node returning feedback units to the server

when a given media unit is played back. Feedback units allow the server to estimate the

playback time of the media unit, hence the multimedia server can adjust the transmission time

of sub-sequent media units to avoid buffer overruns or starvation at the destination.

The temporal relation between multiple data streams is represented in the form of Relative

Time Stamps (RTS), where the RTS of a media unit represents its time of playback relative to

the commencement of the playback.

This work differs from other work in the sense that synchronisation is performed in the

node that transmits the media units rather than on the destination machine. This approach is

particularly suited for systems where the destination nodes do not have enough resources to

implement complex synchronisation techniques.

CMTP
	

RMTP

> RTCMP

Data Transfer Control

RCAP

Resource Manager

RTIP	>

4.3.6. University of California at Berkeley

At UCB a suite of real-time protocols is being developed [Ferrari,92]. The suite consists of

a Real Time Channel Administration Protocol (RCAP), a Real Time Control Message Protocol

(RTCMP), a Continuous Media Transport Protocol (CMTP) [Wolfinger,92], a Real Time

Message Protocol (RTMP), and a Real Time Internet Protocol (RTIP) [Zhang,93]. The RCAP

is a control protocol that establishes end-to-end connections and reserves the resources

necessary for the connection. The data transfers at the internetwork layer are performed by the

RTIP, which schedules data packets for transmission according to the resource reservation

made by the RCAP. The RTMP is a message based protocol providing real-time message

transmission between two endpoints. The CMTP offers a stream based interface and a time-

driven mechanism suitable for transmission of continuous media streams. The RTCMP

provides control functions similar to those of ICMP in the interne suite.

Data Link Layer

Figure 4.2. The Tenet real-time protocol suite

For this thesis, the CMTP is the most interesting protocol because it provides the intra-

stream synchronisation required for continuous media streams. The CMTP provides unreliable,

in sequence transfer, simplex connection between two ends with performance guarantee on

loss, delay, and throughput. Traffic and performance parameters are defined in relation to two

basic units: the stream data unit (STDU) and the periodicity of the transmissions. An STDU

transmitted by the sender at time t (i.e. relative to the beginning of transmission) has to be

received at the destination at time AO + t, where AO is the time corresponding to the first STDU

delivered to the application.

The strongest aspect of the CMTP is its ability to reserve the resources required for the

connection and its capacity to notify the application when an error occurs in the data stream or

when part of the information was lost during the transmission. However, the CMTP does not

support inter-stream synchronisation in any form. It is necessary to build a synchronisation

CM I/O Server

ACME

	 Video Screen

	 Speaker

layer on top of the CMTP layer to achieve the degree of synchronisation required by

multimedia applications.

4.4. Synchronisation at the presentation level

4.4.1. University of California at Berkeley

Anderson [Anderson,91] has described a continuous media I/0 server that controls access

to I/O devices and provides synchronisation for concurrent continuous media streams. The

continuous media I/O server has functions similar to the X-Windows server and the authors

suggest that the two servers could be merged into a single server. The ACME server

(Abstraction for Continuous Media) controls the access to several physical devices (i.e.

speakers, microphones, video displays, and video cameras) and allows clients to create logical

devices bound to single physical devices.

ACME divides the data streams into media units, and each media unit has a timestamp for

playback or a timestamp expressing the time the media unit was generated. The ACME

synchronisation abstraction is called a Logical Time System (LTS). Each logical device is

bound to an LTS, and an LTS can have several logical devices (both input and output).

Logical devices attached to the same LTS are synchronised in the sense that media units with

the same timestamp are displayed or retrieved at about the same time.

	 	 r-

Source Workstation Client. Workstation

Figure 4.3. The continuous media I/O server

The ACME server maintains synchronisation by skipping frames or pausing the

presentation. When the logical device time is running ahead of the LTS, the server pauses the

presentation on the logical device until the LTS time catches up. On the other hand, if the

logical device time is running behind the LTS, the server skips some data units in the logical

device so that it can catch up with the LTS.

A more recent work on the continuous media I/O server has been done by Rowe [Rowe,92].

This work differs from Anderson's work in three aspects: the use of the Network Time Protocol

(NTP) [Mills,91]; a new data model for synchronisation; and a network protocol dedicated to

continuous media transmission. The use of the NTP allows time to be synchronised between

the I/O server and the sources of the data streams so that the timestamp associated with the

data at the source can easily be interpreted at the server machine.

Data streams are now organised in clips, where each clip is composed of a sequence of

frames. A frame is a playable unit similar to the media unit concept used in ACME. The

duration of each clip is stored so that applications can support operations to seek a particular

time within the presentation. The continuous media network protocol provides an adaptive rate

control based on the available resources on the network. The I/O server calculates a penalty

rate based on the performance of the logical device and the occurrence of packet loss during

transmission. The calculated penalty is regularly send back to the source process, which then

adjusts the transmission rate based on the penalty rate.

We believe that the continuous media I/O server approach is the most comprehensive work

in providing end-user media synchronisation in distributed multimedia systems. The continuous

media I/O server effectively controls the pace of the presentation and can perform the required

actions to maintain the correct synchronisation. The downfall is that the I/O server has to

contain code to handle every single type of continuous media manipulated by the server,

including a MPEG video decoder, an H.261 video decoder, and many types of audio servers.

These may significantly increase the size and the complexity of the server code, potentially

decreasing the total performance of the server.

4.4.2. IBM European Networking Center

Steinmetz [Steinmetz,90] at IBM ENC has concentrated on programming language

synchronisation constructs to express media synchronisation. Media streams are seen as

objects and each object executes its own synchronisation operations. Steinmetz describes two

new elements that need to be addressed by synchronisation mechanisms: restricted blocking

and real-time semantics.

Restricted blocking is related to what should happen when a process has to wait for an

event to take place. Restricted blocking lets the programmer specify the action to be taken by

the process while it is waiting for the synchronisation event.

Real-time semantics is concerned with the real-time characteristics associated with

multimedia synchronisation. Three time parameters have being incorporated into the language:

timemin, timeave, and timemax. Timemin is the minimum acceptable delay between

synchronisation events. Timeave is the ideal delay between synchronisation events. Timemax is

the maximum acceptable delay between synchronisation events. The following program shows

a synchronisation between an object showing full-motion video and audio signal about an

audio visual presentation. The object that arrives at the synchronisation point (i.e. the

- 29 -

SYNCHRONIZE statement) first will execute the operation specified after the statement

WHILE_WAITING.

program of object A:

-- full-motion video

-- from HARDDISK

display (audio_visual)

SYNCHRONIZE

WITH object B

AT end

MODE

restricted blocking

WHILE_WAITING

display_last_image

TIMEMIN 0

TIMEMAX I s

TIMEAVE 0

EXCEPTION

display_last_image

program of object B:

-- audio

-- from CD-ROM

play(audio_visual)

SYNCHRONIZE

WITH object A

AT end

MODE

restricted blocking

WHILE_WAITING

play(music_Bach)

TIMEMIN 0

TIMEMAX 2s

EXCEPTION

play(music_Bach)

Figure 4.4. IBM ENC synchronisation language syntax

The general approach of the work is to consider that synchronisation operations are part of

the multimedia object and are therefore executed by the object interested in the synchronisation

using the syntax construction provided by the synchronisation language. One problem with this

approach is that the synchronisation language is directly dependent on the hardware and

operating system where it is running. Depending on the resources available, the language

implementation can be made more or less efficient and the resulting implementation will impact

directly upon how well the synchronisation can be performed.

4.4.3. Cambridge University
Nicolau [Nicolau,90] has proposed a scheme for synchronisation that divides continuous

media streams into two levels: Physical Synchronisation Frames (PSF) and Logical

Synchronisation Frames (LSF). A PSF is the basic stream unit and is expected to be generated

and transmitted at fixed time intervals. An LSF consists of a number of physical

synchronisation frames. PSF's are intended as the unit of synchronisation within the

communication sub-system, whereas LSF's are the unit of synchronisation for the controlling

application.

-30-

This work defines an organisation for achieving multimedia synchronisation, however it

does not addresses specific synchronisation services for applications.

4.4.4. Syracuse University
In this work, Little [Little,90a][Little,9 b] proposes a graphical representation of the formal

relationship for multimedia synchronisation. The graphical representation is based in a

modified version of the Petri Nets formalism called Object Composition Petri Nets (OCPN)

which includes a third dimension for representing the temporal relationship associated with

multimedia synchronisation. OCPN fundamentals are based on the temporal relationship

represented by Figure 4.5.

A before B
	 A
	 tq

A meets B A	 [B	 I

A overlaps B A

B

tb

A during B	 A	 I

1

tb

A starts B A

B

tb

A finishes B A

B

is

A equals B A

B

tb

t: duration of the event

Figure 4.5. Temporal relations and correspondent Petri Nets

Presentation of an OCPN object is based in a real-time scheduling that accounts for the

temporal constraints of the event, including deadline, minimum delay, and maximum delay.

Little's work is very significant for the design of formal relationship in multimedia

applications. The OCPN formalism also fits well into the storage model described in Section

4.2.3. One limitation of this approach is that an OCPN structure is static and cannot be

-31-

modified during the presentation. If user interaction is necessary, it must be built into the

application and the application must dynamically rebuild the OCPN relationship.

4.4.5. CNET, France

At the Centre National d'Etudes des Telecommunications, research is in progress to develop

a multimedia programming environment that supports the real-time synchronisation required

by multimedia applications [Horn,931. The work focuses on a programming language that

hides the characteristics of the underlying infrastructure so that application programmers do

not need to know the characteristics of the hardware or of the operating system. CNET uses a

real-time procedural language known as Esterel to achieve this goal.

An Esterel program can be viewed as a collection of parallel processes that communicate

instantly with each other and with the environment. Esterel syntax allows arbitrary

synchronisation points between multiple processes so that the required synchronisation can be

performed.

The disadvantage with this approach is that the synchronisation is hardwired into the

application code. Changing the final presentation requires changing the code of the application

and hence requires programmers that can deal with Esterel language.

4.5. Assessment

The research efforts described in Section 4.2 are concerned with providing mechanisms to

better handle continuous media streams. These mechanisms form the basis for correctly

maintaining synchronisation. Although they do not directly address media synchronisation,

they provide facilities which can be used to support the real-time requirements of media

synchronisation.

Various researchers have addressed the communication issues for synchronisation. It is

generally agreed that more flexible and configurable network protocols are necessary to

understand and deal with continuous media data types. Three of the protocols described above

(in Sections 4.3.2, 4.3.4, and 4.3.5) provide synchronised delivery of multiple data streams,

while another three (described in Sections 4.3.1, 4.3.3, and 4.3.6) provide intra-stream

synchronisation for independent virtual circuits, synchronisation between multiple streams is

left for a higher level. Only one of the protocols presented (in Section 4.3.5) provides end-user

synchronisation without the need for a higher synchronisation level.

Of the research on presentation levels, only two works (described in Sections 4.4.1 and

4.4.5) provide end-user synchronisation, the others are oriented towards specifying the formal

relationship for presenting the information. Two of the works (described in Sections 4.4.2 and

4.4.5) propose the use of programming languages with built in synchronisation primitives

suitable for multimedia synchronisation. The approach in Section 4.4.1 presents the concept of

a multimedia server that controls the synchronisation specified by external applications.

As can be concluded by this review, a significant number of research efforts are tackling the

problems of multimedia synchronisation. There is a consensus about how to transmit the

information, but little has been achieved towards end-user synchronisation. We believe that

there are three main outstanding issues need to be addressed to effectively provide end-user

media synchronisation:

• There is a need to formally specify synchronisation so that the temporal relationships

can be dynamically changed in response to user interaction.

• A synchronisation mechanism must closely monitor the issues of retrieval,

communication, and CPU scheduling, so that it can maintain the best synchronisation

support under a variety of adverse conditions.

• A synchronisation mechanism should concentrate on the temporal relationship between

events and provide a set of functions that can be used by application developers to

accurately specify both intra-stream and inter-stream synchronisation without requiring

an intimate knowledge of the underlying hardware or operating system.

Chapter 5 describes a multimedia synchronisation framework that attempts to provide a

synchronisation mechanism that addresses the above issues.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33

