ALLELLOCHEMICALS FROM BRASSICA SPP. (CANOLA) RESIDUES: EFFECTS ON OTHER PLANTS AND CEREAL FUNGAL PATHOGENS.

by Alan C Umbers, B. Rur. Sc. (Hons).

Thesis submitted as a requirement for degree of Master of Rural Science at the University of New England, Armidale, New South Wales, 2351.

December 1994.
Acknowledgements:

The author wishes to acknowledge with gratitude my supervisors, Professor J.V. Lovett, Managing Director, Grains Research and Development Corporation, Canberra, recently Head, Department of Agronomy and Soil Science, UNE Armidale, NSW, and Dr A.D. Rovira, formerly Director CSIRO Cooperative Research Centre for Soil and Land Use, Adelaide. Their assistance, helpful suggestions and criticism of the work were highly valuable. Also the contributions of Associate Professor J.E. Pratley, Charles Sturt University, Wagga Wagga, NSW. are gratefully acknowledged. I also thank Anne Hoult, Department of Agronomy and Soil Science, UNE, for her suggestions and discussions.

The efforts and sacrifices made by my wife, Jenny, and children, Kathryn, Sally, Daniel and Timothy during the course of this work were enormous. I thank them for all the holidays missed, evenings and weekends given up, help and support given throughout the work. Without their contributions the work would not have been completed. To them I dedicate this thesis.
TABLE OF CONTENTS

ABSTRACT... 1
INTRODUCTION ... 2
1. ALLELOPATHY IN AGRICULTURE AND NATIVE COMMUNITIES........................... 3
2. CONTEXT OF ALLELOPATHY IN MANAGED AND NATURAL ECOSYSTEMS....... 5
3. SIGNIFICANCE OF ALLELOPATHY IN AGRICULTURE.. 18
4. TYPES OF ALLELOCHEMICAL COMPOUNDS AND THEIR EFFECTS.................. 23
5. BRASSICAS AND GLUCOSINOLATES.. 50
6. POSSIBLE ROLE OF CANOLA RESIDUES IN SUPPRESSION OF FUNGAL DISEASES OF CEREALS .. 70
6. HYPOTHESIS... 78
EXPERIMENT 1. The effect of seed meal derived glucosinolates on the germination and early growth of wheat... 80
EXPERIMENT 2. The effects on germination of indicator species of glucosinolate containing meal from two varieties of rapeseed... 83
EXPERIMENT 3 The effect of fresh rapeseed material on germination and early growth of three indicator species. ... 88
EXPERIMENT 4 The effect of sinigrin and myrosinase on the germination and early growth of indicator plants... 95
EXPERIMENT 5 The effects of Brassica spp. residues on test species....................... 100
EXPERIMENT 6 The effect of some glucosinolate breakdown products on test species... 117
EXPERIMENT 7 High Performance Liquid Chromatography (HPLC) analysis of test compounds and leachates... 135
EXPERIMENT 8 The effect of canola residue and glucosinolate breakdown products on the growth of some fungi pathogenic to cereals in Southern Australia... 151
EXPERIMENT 9 Confirmation of the results seen in Experiment 8, length of incubation of canola residue... 160
EXPERIMENT 10 The effect of canola residues on wheat growth and pathogen infection in pots. .. 165
EXPERIMENT 11 The effect of canola residues and phenylethyl amine on germination and early growth of wheat.. 171

EXPERIMENT 12 The effect of canola residues and fungal pathogens on germination and early growth of wheat.. 180

SUMMARY ... 186

REFERENCES .. 188
ABSTRACT

Brassica spp. have been reported as showing allelopathic activity against other plants and fungi, with both living material and residues shown to be active. Glucosinolate breakdown products have been implicated in many of these allelopathic effects.

Canola is a popular crop in Australia, with evidence of increased crop yields and freedom from fungal root diseases in cereals grown following canola. This supports canola’s potential as an inhibitor of pathogens.

It was hypothesised that allelopathic activity against other plants and fungi is due to compounds produced from canola residues, notably glucosinolate breakdown products.

The experiments reported here supported the hypothesis that glucosinolate breakdown products can be phytotoxic to a number of indicator plant species. Indoleacetylnitrile (IAN), indoleacetylmethanol (IAM) and phenylethylamine (PEA) were shown to inhibit germination and early growth, with IAN being the most active. These compounds were found, using HPLC, to be present in canola residue leachates and their concentration estimated.

With both the leachates and compounds, very low concentrations (for example, 1µM) frequently caused inhibition, with higher concentrations (for example, 10µM) causing stimulation to growth, with highest concentrations (for example, 0.1mM) causing great inhibition. This effect is discussed.

Canola residue leachates were shown to have antifungal activity, both *in vivo* and *in vitro*. Leachates were most active against *Gaeumannomyces graminis var tritici* (Ggt), with lower and more variable activity against Rhizoctonia and Pythium. The compounds identified as phytotoxic showed no antifungal activity in this work, indicating that different compounds were involved in the antifungal activity. Recent work (Angus *et al.* 1994) supports the idea of alternate glucosinolate breakdown products as being involved in the antifungal activity from canola residue leachates.

The antifungal compounds, notably those against Ggt, were thought to be volatile. Reduction of pathogen infection in wheat in pots was up to 80% for Ggt, with subsequent increases in dry weights of 16.7%. Wheat germination in the presence of Pythium was lifted by up to 100%. Rhizoctonia damage in wheat was reduced 22.5% in one experiment and 54% in another.

Canola is, thus, seen as capable of producing phytotoxic compounds, active against germination and early growth of plants. Residue leachates are seen to be active against cereal fungal pathogens, making canola a valuable crop to be grown in cereal rotations.