MATE SELECTION FOR JOINT CONTROL OF RESPONSE AND INBREEDING IN CLOSED PIG BREEDING HERDS

By K.L. Bunter B. Rur. Sc. (Hons) (UNE)

A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF RURAL SCIENCE OF THE UNIVERSITY OF NEW ENGLAND June, 1995

Acknowledgements

My last thesis was dedicated to my dog, Basil. This one is dedicated to my family. May they have the sense never to read it!

I have many people I wish to thank. Firstly, my husband Andrew, who has been supportive of my efforts, both academic and in real life. He has contributed patience, good cooking, critiques and goodwill to enable me to complete this work. Also to my children, Braden and Angus, who put up with a tired working Mum and occasionally run out of socks and undies as a consequence. I have many weekends in store for them - just to remind them they are the real lights of my life.

Secondly, Dr. Keith Hammond and Dr. Hans Graser. Keiths' enthusiasm and faith got me into this project. Since then Hans has been trying to manage me, while I labour my way through various AGBU jobs, a baby, and the epic thesis. I thank them, and the current Director of AGBU, Dr. Mike Goddard, for their patience and allowing me time at work to complete this project.

Thirdly, my original and long lasting supervisors, Dr. Brian Kinghorn and Dr. Tom Long. Brian has maintained a friendly smile on his face for five years, and has read my thesis at least twice. He is a dedicated and very talented supervisor for many students, and will probably be glad to see the last of at least one of them. Tom is Australia's original imported pig specialist, and taught me much of what I know about pigs. Somehow, I think I drove him back to the USA. Perhaps the size of this epic? I thank Dr. Ernst Tholen for stepping in on the pig front.

Fourthly, to my colleagues, cohorts and friends, who never fail to make life more pleasant and productive. In particular, I would like to thank Bruce Tier for his bouts of insight and contributed software. To the staff of AGBU, and other scientists too numerous to mention. So many post-graduates and often their partners. To my longstanding housemates, Heather and Vol. To the coffee crowd, many of them recent visitors to Australia, who have made the last month or so bearable.

Finally, to my parents who have always encouraged me in my studies, no matter how old I get. My brother Grant and wife Jacqui, who took time out to visit chilly Armidale for a memorable night out.

I also thank PRDC for providing financial support while I was a full-time student. I hope they think it was worth it!

Abstract

Simple mate selection procedures for the joint control of response to selection and inbreeding were evaluated in a dynamic pig breeding population using stochastic simulation. The simulated populations modelled a closed breeding herd of moderate size (approx. 270 sows), characterised by overlapping generations and continuous cycles of performance testing and selection. Two studies were conducted: 1) where selection was for a single trait under three different heritabilities (ST), and; 2) where selection was for an aggregate genotype under three different breeding objectives (MT). Trait heritabilities for ST studies were 0.1, 0.35 and 0.6, and breeding objectives for MT studies defined general purpose (GP), terminal sire (TS) and maternal (MAT) selection lines.

Within each of these studies, comparisons were made between selection criteria and mating system. The selection criteria were: ST:

- Individual performance (mass selection)
- Estimated breeding values (EBVs) calculated using Best Linear Unbiased Prediction (BLUP)

MT:

- Selection index values combining information on reproductive performance of the dam (number born alive: NBA), and individual records for average daily gain (ADG) and P2 backfat (BF).
- BLUP index values combining EBVs for NBA, ADG and BF.

Within each selection criterion, six non-random mating systems were compared with fully random mating (\mathbf{R}) :

- A: Assortative mating with a positive correlation of mates' selection criterion values.
- MS1: Mate selection with full emphasis on maximising predicted genetic merit in the progeny.
- MS5: Mate selection with full emphasis on minimising inbreeding in the progeny.
- MS2, MS3 and MS4: Mate selection combining information on additive merit with information on progeny inbreeding, with the aim of maximising joint merit. Increasing emphasis is placed on inbreeding information from MS2→MS4.

Results from ST and MT studies illustrated that both response to selection and inbreeding were increased relative to mass or index selection alternatives where an EBV was the selection criterion (random mating). Relative changes in response and inbreeding using BLUP EBV depended on trait characteristics. In ST studies, improvements in response under EBV selection ranged from 7% to 64% with decreasing heritability, accompanied by increases in inbreeding of 1.5- 4.3 times. Similarly, response in aggregate merit under BLUP index selection ranged from 16% to 19% according to breeding objective, and increases in inbreeding were up to 2.5 fold. In comparison to random mating, both response and inbreeding were further altered under non-random mating systems.

Improvements in response were possible with positive assortative mating, with both response and inbreeding under assortative mating affected by trait characteristics. In ST studies, assortative mating improved response by less than 5% under phenotypic selection but by up to 11% under EBV selection. Corresponding inbreeding was up to .34 times higher under mass selection, but up to 1.9 times higher under EBV selection. Superiority of **A** under selection or BLUP index was no more than 4%-8% in MT studies, although four fold increases in inbreeding were apparent.

In comparison, **MS1-MS4** generally resulted in improved levels of response compared to that resulting under assortative mating, although substantial differences in inbreeding were apparent. For example, inbreeding differed between **MS1** and **MS4** by up to 2.4 times according to heritability (ST studies) or breeding objective (MT studies). Relative to assortative mating, final levels of genetic variation were higher under mate selection options as the result of lower inbreeding. Thus, substantial improvements in the balance between response and inbreeding were made under mate selection.

Overall, non-random mating systems were most effective for improving response where accuracy of selection was high, and where single trait selection was practised. As with the influence of selection criterion, the impact of alternative mating systems on response and inbreeding was dependent on trait characteristics. In addition, the relative emphasis which should be placed on inbreeding information under the mate selection approach outlined was identified as an area requiring further study.

Contents

ckno	wledge	ements	iii
bstra	ıct		\mathbf{v}
Ger	neral I	ntroduction	1
Imp	oroving	g Response to Selection	4
2.1	Introd	uction	4
2.2	Factor	s Affecting Selection Response and its Prediction	8
	2.2.1	Classical Response Theory	9
	2.2.2	The Effects of Finite Population Size	10
	2.2.3	Additional Effects of Selection on Genetic Variation	13
	2.2.4	Predicting Selection Response in Finite Populations	15
2.3	Inbree	ding	17
	2.3.1	Loss of Genetic Variation Due to Inbreeding	18
	2.3.2	Inbreeding Depression	20
	2.3.3	Predicting the Effects of Inbreeding	22
	2.3.4	Inbreeding Considerations for Selection Schemes	26
2.4	Mating	g Systems	31
	2.4.1	Mating Systems for Exploiting Additive Genetic Relationships	32
	2.4.2	Assortative Mating Systems	37
2.5	Mate A	Allocation and Mate Selection	42
	2.5.1	Mate Selection Rules Applied to Independent Two Stage Selec-	
		tion and Mating Decisions	44
	ckno bstra Ger Imp 2.1 2.2 2.3 2.4 2.5	cknowledge bstract General In Improving 2.1 Introd 2.2 Factor 2.2.1 2.2.2 2.2.3 2.2.4 2.3 Inbree 2.3.1 2.3.2 2.3.3 2.3.4 2.4 Mating 2.4.1 2.4.2 2.5 Mate A 2.5.1	cknowledgements bstract General Introduction 1.1 Introduction 2.2 Factors Affecting Selection Response and its Prediction 2.2.1 Classical Response Theory 2.2.2 The Effects of Finite Population Size 2.2.3 Additional Effects of Selection on Genetic Variation 2.2.4 Predicting Selection Response in Finite Populations 2.3.1 Loss of Genetic Variation Due to Inbreeding 2.3.2 Inbreeding Depression 2.3.3 Predicting the Effects of Inbreeding 2.3.4 Inbreeding Considerations for Selection Schemes 2.4.1 Mating Systems 2.4.2 Assortative Mating Systems 2.4.1 Mating Systems for Exploiting Additive Genetic Relationships 2.4.2 Assortative Mating Systems 2.5.1 Mate Selection Rules Applied to Independent Two Stage Selection and Mating Decisions

		2.5.2	Mate Selection Rules Applied to Unified Selection and Mating	
			Decisions	50
		2.5.3	Impact of Mate Selection Rules on Selection Response and Total	
			Progeny Merit	51
		2.5.4	Some Additional Considerations	56
	2.6	Genet	ic Evaluation and Selection Procedures	58
		2.6.1	Individual Performance	59
		2.6.2	Index Selection Procedures	61
		2.6.3	Best Linear Unbiased Prediction (BLUP)	66
		2.6.4	Multiple Trait Genetic Evaluation Procedures and Selection	72
	2.7	Concl	usions	76
3	\mathbf{Sim}	ulatio	n of a Closed Pig Breeding Herd	81
	3.1	Introd	luction	81
	3.2	Simul	ation Procedures	84
		3.2.1	Parameters Defining the Simulated Herd	85
		3.2.2	Parameter Values for the Simulated Herd	88
		3.2.3	Simulation of Records	88
		3.2.4	Calculation of Selection Criteria	95
		3.2.5	Selection and Culling Procedures	97
		3.2.6	Mating Procedures - Random and Positive Assortative Mating	
			Systems	99
		3.2.7	Mate Selection Procedures	100
		3.2.8	Summary Statistics	104
	3.3	Simula	ation Results	107
		3.3.1	The Impact of Selection Criterion	107
		3.3.2	The Impact of Mating System	112
	3.4	Discus	sion	121
		3.4.1	Simulation Performance	121
		3.4.2	The Impact of Selection Criterion	123
		3.4.3	The Impact of Mating System	125

		3.4.4	Limitations of Mate Selection Algorithms	131
	3.5	Conclu	1sions	133
4	Mu	ltiple I	Trait Selection within a Closed Pig Breeding Herd	135
	4.1	Introd	uction	135
	4.2	Simula	tion Procedures	138
		4.2.1	Parameters for the Simulated Herd	140
		4.2.2	Simulation of Records $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	141
		4.2.3	Calculation of Selection Criterion	147
		4.2.4	Selection and Culling Procedures	153
		4.2.5	Mating Procedures	154
		4.2.6	Summary Statistics	155
	4.3	Simula	tion Results	156
		4.3.1	Population Statistics	157
		4.3.2	Control Simulations	158
		4.3.3	The Impact of Selection Criterion	160
		4.3.4	The Impact of Mating System	164
	4.4	Discuss	sion	169
		4.4.1	Simulation Performance	170
		4.4.2	The Impact of Selection Criterion	173
		4.4.3	The Impact of Mating System	176
	4.5	Conclu	sions	180
5	Gen	eral Di	iscussion	183
	5.1	Selectio	on Criteria	183
	5.2	Positiv	e Assortative Mating	184
	5.3	Control	lling Inbreeding	185
	5.4	Perform	nance Under Mate Selection	186
	5.5	Implica	ations for Breeders	187
	5.6	Conclus	sions	189
Re	ferer	nces		189

List of Figures

2.1	Operational aspects of a breeding program
3.1	Flow diagram of events simulated for a closed herd undergoing selection. 86
3.2	The empirical correlation between true and estimated breeding values
	$(r_{u,\widehat{u}})$ when selection is on either phenotypic performance (I) or a BLUP
	EBV (B) for a simulated character with $h^2=0.1$ or 0.6 (random mating).109
3.3	Trends in genetic gain over sixteen years of selection on either individual
	performance (I) or an estimated breeding value (B) for traits with
	different heritabilities (random mating)
3.4	The relationship between heritability and final inbreeding following se-
	lection on either individual performance (\mathbf{I}) or a BLUP EBV (\mathbf{B}) for
	random (\mathbf{R}) , positive assortative (\mathbf{A}) , and two mate selection $(\mathbf{MS1})$
	and $MS5$) alternatives

List of Tables

•

3.1	Input parameter values used for the simulated population. \ldots .	89
3.2	Records generated for each individual in the simulated population	90
3.3	Additional records generated for selected individuals	90
3.4	Genetic and phenotypic parameters for simulated NBA	93
3.5	The objective, formulation of paired merit for sire i and dam j , and	
	scheme code for five mate selection schemes evaluated by simulation	104
3.6	Response to selection (Resp.) and percent inbreeding $(\%F)$ following	
	sixteen years of selection on either individual performance (\mathbf{I}) or a	
	BLUP EBV (B) for a simulated character with heritability, h^2 , under	
	random mating. \ldots	107
3.7	Trends in genetic variation, expressed relative to base population levels †	
	of genetic variation, where selection is based on either individual per-	
	formance (I) or a BLUP EBV (B) , for a simulated character with	
	heritability, h^2 , under random mating	111
3.8	Response to selection (Resp.) and percent inbreeding $(\%F)$ expressed	
	relative to results under random mating [†] , following sixteen years of	
	selection on either individual performance (I vs IR) or a BLUP EBV	
	(B vs IR and B vs BR) for a simulated character with heritability,	
	h^2 , when mating is at random (R), positive assortative (A), or one of	
	five $(MS1-MS5)$ mate selection alternatives	114

3.9	Trends in genetic variation under positive assortative mating, expressed	
	relative to initial levels of genetic variation ^{\dagger} , where selection is based on	
	either individual performance (I) or a BLUP EBV (B) for a simulated	
	character with heritability, h^2	116
3.10	Trends in overall accuracy of genetic evaluation within ${f B}$ schemes, for	
	a simulated character with heritability, h^2 , under random (R) and pos-	
	itive assortative (A) mating. \ldots \ldots \ldots \ldots \ldots \ldots \ldots	117
3.11	Average genetic variation at years nine and seventeen, expressed rel-	
	ative to initial levels of genetic variation ^{\dagger} , where selection is based on	
	either individual performance or a BLUP EBV, for a simulated char-	
	acter with heritability, h^2 , when mating is at random (R), positive	
	assortative (A) , or one of five $(MS1-MS5)$ mate selection alternatives.	119
3.12	Rates of inbreeding between year 4 and 17, expressed as a percentage	
	(ΔF_{yr}) , when selection is based on either individual performance (I)	
	or a BLUP EBV (B), for a simulated character with heritability, h^2 ,	
	when mating is at random (\mathbf{R}) , positive assortative (\mathbf{A}) , or one of five	
	(MS1-MS5) mate selection alternatives	122
4.1	Parameter values used for the simulated population	141
4.2	Heritabilities $(h^2 = \sigma_a^2/\sigma_p^2)$, temporary environmental values $(c^2 =$	
	σ_{cl}^2/σ_p^2 , and variances for genetic (σ_a^2) , environmental (σ_e^2) , common	
	litter (σ_{cl}^2) and permanent environmental (σ_{pe}^2) effects, as well as the	
	phenotypic variance (σ_p^2) of traits simulated.	142
4.3	Index weightings, standard deviations of the index (SD_I) and objective	
	(SD_H) , and the correlation between the index and breeding objective	
	(r_{IH}) for traditional selection (SI) and EBV based (BI) indices	148
4.4	Formulation of paired merit for sire i and dam j , based on a measure	
	of aggregate breeding value (ABV_{ij}) and progeny inbreeding (F_{ij}) , for	
	five mate selection schemes evaluated by simulation (see text for details).	155

4.5	Least squares means for total number of sires represented (Sires) and	
	average generation number of progeny (Gen. No.) under random (\mathbf{R}) ,	
	positive assortative (A) , and five mate selection $(MS1-MS5)$ altern-	
	atives, where selection is based on selection (SI) or BLUP (BI) indices	. 158
4.6	Least squares means for the maximum (MAX), minimum (MIN *) and	
	average (AV ^{\star}) number of litters sired per boar prior to culling under	
	random (R), positive assortative (A), and five mate selection (MS1-	
	MS5) alternatives	159
4.7	Response in NBA (s.e. = $0.04 pigs/litter$), ADG (s.e. = $1.1gm/day$)	
	and BF (s.e. = $0.05mm$), and percent inbreeding (% F : s.e.= 0.2 %),	
	following sixteen years of single trait selection for each trait (control	
	simulations: see Scheme) under random mating	159
4.8	Response in NBA, ADG, BF, \$ response for the aggregate genotype	
	(AGG), and percent inbreeding (%F) following sixteen years of selec-	
	tion on either a selection or BLUP index, where the index defines a	
	general purpose (GP) , maternal (MAT) , or terminal sire (TS) line,	
	under random mating.	161
4.9	Mean levels of genetic variation for NBA, ADG and BF, expressed	
	relative to initial levels of genetic variation ^{\dagger} , following sixteen years of	
	selection on either a selection or BLUP index, where the index defines	
	a general purpose (GP) , maternal (MAT) , or terminal sire (TS) line,	
	under random mating.	162
4.10	Empirical prediction error variances $(\mathbf{PEV}_{subscript})$ for NBA, ADG	
	and \mathbf{BF} , and the magnitude and direction of bias, expressed in base	
	population genetic standard deviation units (\mathbf{PE}_{NBA} , \mathbf{PE}_{ADG} , and	
	\mathbf{PE}_{BF} respectively), following sixteen years of selection on a BLUP in-	
	dex, where the index defines a general purpose (\mathbf{GP}) , maternal (\mathbf{MAT}) ,	
	or terminal sire (\mathbf{TS}) line, and where mating is at random (\mathbf{R}) , positive	
	assortative (A) or one of five (MS1-MS5) mate selection alternatives.	163

- 4.11 Response to selection in the aggregate genotype (Resp.) and percent inbreeding (%F), expressed relative to results under random mating[†], following sixteen years of selection on either a traditional selection (SI vs SI(R)) or BLUP index (BI vs SI(R) and BI vs BI(R)), where the index defines a general purpose (GP), maternal (MAT) or terminal sire line (TS), and mating is at random (R), positive assortative (A), or one of five (MS1-MS5) mate selection alternatives.
- 4.12 Response in NBA, ADG and BF, expressed relative to response under random mating[†], following sixteen years of selection on either a selection or BLUP index, where the index defines a general purpose (GP), maternal (MAT), or terminal sire (TS) line, under positive assortative mating (A) or one of five (MS1-MS5) mate selection alternatives. . . 167

166