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1. Introduction.

The rare gases play an important role in electrical discharges of many types,

including commercial light sources and laser systems. Their importance rests on their high

efficiency of excitation by electron impact into long-lived, energetic atomic and molecular

states. An understanding of the mechanisms of creation and destruction of these states is

therefore essential to the accurate modelling of these discharges.

In many discharge regimes, the electric field and pressure are such that the electrons

approach a state of local equilibrium. Their interaction with the gas particles is then

characterised by a number of state parameters which depend only upon the average energy

of the electrons. Useful information about these parameters can only be gathered if the

strength of the electric field is known - a quantity that is difficult to measure with

accuracy. The pre-breakdown discharge between plane parallel electrodes is therefore a

useful tool for unravelling fundamental discharge processes because the field strength in

this arrangement is uniform and easily calculated. In the past, two principal methods have

been used to investigate discharges of this type, namely, measurements of the current

passed by the discharge, and measurements of the light given off by the radiative decay of

excited states. As described in chapters 2 and 3, measurements of the discharge current

can return accurate values of the average number of ions produced by electron collision

per unit length of electron travel (known as the primary ionisation coefficient); information

of similar quality about the diffusion and destruction of metastable excited states, where

these are present, can also be obtained by these techniques. Methods of detection of

current which utilise short pulses of excitation permit the values of other electron

transport parameters to be measured (eg Nakamura and Kurachi 1988, Dall'Armi et al

1992). On the other hand, experiments which measure the light given out by the discharge

have a number of advantages. The primary ionisation coefficient can be measured without

having to deal with perturbations due to ionisation mechanisms involving excited states

(eg Buursen et al 1972, Bhattacharya 1976); electron transport parameters, and the rates

of creation and destruction of the excited states themselves, can also be determined with

increased accuracy (Blevin and Fletcher 1992). Note, however, that some parameters,

such as the rates of excitation of energetic states of the rare gases, have remained resistant

to measurement by any of these methods.

A third technique which has received much less attention is the detection of excited

states by the absorption of light. This has two main disadvantages: firstly, the discharge is
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perturbed by the measurement; secondly, the technique is intrinsically noisy, because the

noise level is a function of the total light level rather than the small absorption signal.

Nevertheless, useful experiments have been performed using optical absorption. For

example, many authors have employed the technique to determine the values of the

diffusion coefficients and rate of collisional decay of metastable states in the rare, and

other, gases (eg Phelps and Molnar 1953, Ellis and Twiddy 1969 and Barbet, Sadeghi and

Pebay-Peyroula 1975). More recently, Tachibana (1986) and Tachibana and Phelps

(1987), using tuneable lasers as a light source, have measured the excitation coefficient of

the argon and neon ls states by measurements of optical absorption in a pre-breakdown

discharge, averaged over the whole discharge. However, the present author is unaware of

any attempts to map the distributions of excited states in a pre-breakdown discharge. This

is potentially a valuable technique because it allows the simultaneous resolution in both

space and time of the concentrations of metastable particles. The greater number of

degrees of freedom of such an experiment allows, in principle, more accurate information

to be obtained about many of the discharge parameters.

The aim of the present work is the investigation of the possibilities of this technique.

The anticipated availability of detailed information about the spatial distribution of

excitation in the discharge meant that new, three-dimensional models of the discharge

were required in order to analyse the data. Chapters 5 and 6 contain discussions of the

treatment of the respective distributions of electrons and metastable excited atoms in this

paradigm. Several methods were evolved of solving the coupled equations that describe

the concentrations of these particles.

Some theoretical attention has also been paid to aspects of the saturation of the

absorption coefficient, the behaviour of metastable states near an absorbing boundary,

problems with the analysis of the Molnar experiment, and the effect on the discharge of a

radial variation across the cathode of the secondary ejection efficiency.

An experiment was designed which utilised a laser tuned to one of several transitions

in argon between states in the ls and 2p manifolds. Argon was chosen because the

wavelength region in which these transitions occur in this gas is suited to the use of

inexpensive tuneable semiconductor lasers as a light source. The beam was restricted to a

small radius and the optical absorption, integrated along this beam path, was measured as

the concentration of metastable particles was modulated. The power was kept to a low

level to avoid excessive perturbation of the discharge, and the noise problem was
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ameliorated by careful design of the laser control and signal detection apparatus and by the

extensive use of signal-averaging and digital filtration techniques. Some preliminary results

were obtained which confirm the promise of the method.

Some measurements of the discharge current were also performed. In part these

were done in an attempt to obtain accurate values of the primary ionisation coefficient ai

as a function of the average electron energy. This coefficient had not previously been

measured in argon using the technique of Haydon and Williams (1976), which allows the

contribution made by metastable-produced secondary electrons to be subtracted from the

total current. Measurements were made at values of the reduced electric field E/N of

between 50 and 450 Td (1 Td equals 10- 17 V cm2). Below 50 Td, ai was found to be too

small to measure with acceptable precision (see figure 9.6); at the upper end of the range,

non-equilibrium effects become important (Kruithof 1940) and it becomes increasingly

difficult to apply the Townsend analysis described in chapter 2. The other reason for

performing current measurements was to repeat the measurements made by Molnar

(1951b) of the effective diffusion and quenching coefficients of argon metastables, for

purposes of comparison with a similar determination made by use of the optical absorption

technique.
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2. Steady state growth of current.

There is a long history of experiments designed to measure the current passed by a

pre-breakdown discharge under conditions of varying pressure, potential difference or

electrode separation. A class of these experiments involves measurement of the current

transmitted by a discharge between plane parallel electrodes as the electrode separation d

is varied, while maintaining a constant electric field between the electrodes. This is the so-

called spatial growth-of-current or Townsend experiment. In this chapter, Townsend's

original theory is reviewed in the light of present knowledge about the effects of excited

gaseous particles and the diffusive motions of electrons upon the discharge, and the

theoretical expressions necessary to analyse the growth of current experiment are

described. Where appropriate, techniques are described for extracting discharge

parameters from experimental data by the use of these expressions. Some of the basic

physical processes are discussed in section 2.1; the growth of current formula in its

simplest useable form is then derived. Two modifications to this expression are considered

in the two subsequent sections: in section 2.2, the influence upon the discharge of a

significant concentration of excited gas particles is discussed; the last section treats the

modifications necessary in the case that the diffusive motion of the electrons cannot be

neglected.

2.1. Townsend theory.

The first systematic study of the pre-breakdown discharge was performed by J S

Townsend (1902). Townsend found that the increase in current transmitted by a pre-

breakdown discharge in a constant, uniform electric field (such as that produced at low

current densities between plane parallel electrodes) as the electrodes were drawn apart

could, for small separations d, be described by the exponential relation

I (d) = /(0)exp(oc id)	 (2.1)

where I is the total current and a i is a constant. Townsend explained this finding by

postulating that electrons ejected from the cathode reach an equilibrium state in which the

rate of energy loss through inelastic collisions with gas particles is, on average, equal to

the rate of gain of energy from the electric field between collisions. The average collision

energy of the electrons would then be proportional to the electric field E multiplied by the
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distance X travelled between collisions. Because X is inversely proportional to the number

density N of gas particles, the average collision energy could be expected to be

proportional to the quantity EIN, known as the reduced electric field. Owing to the

statistical nature of the process, there will always be some fraction of electrons (larger at

higher values of E/N) with sufficient kinetic energy to ionize a gas particle upon collision.

The stream of electrons would thus be expected to ionize gas particles at a constant rate,

producing an exponential increase in the total current with distance from the cathode. The

parameter °co known as the primary ionization coefficient, can therefore be understood as

the average number of ionizing collisions made by an electron in drifting a unit distance

toward the anode.

Townsend found that equation (2.1), while satisfactory for low values of the

reduced field E/N, did not explain his experimental results at higher values of E/N. In this

regime the measured current increased at a rate greater than exponential as the electrodes

were drawn apart; a point would eventually be reached where the current would increase

through many orders of magnitude, the discharge then becoming self sustained. These

phenomena were eventually explained (Ho1st & Oosterhuis 1923) as being due to the

ejection of secondary electrons from the cathode by positive ion bombardment. The

Townsend equation, modified to accommodate the production of secondary electrons,

becomes
Io exp(ccio) 

I(d)=

	

	 (2.2)
1-7i[exp(ocid)-1]

where Ic, is the current passed in the limit d --> 0 and yi , the secondary ionization

coefficient, is the average number of secondary electrons ejected from the cathode per ion

impact. This equation is much more successful at explaining the growth of current in the

Townsend experiment.

Further modifications were required when it was realised that the distance travelled

by electrons before reaching equilibrium with the field was, in some cases, not negligible.

In this situation there is a layer of gas next to the cathode within which ai is not a

constant. An analysis which does not make this assumption of constancy yields



d
I0 exp[So dz a; (z)

	

I(d) = 	 •
1 — y o dz a i (z)exp[fo ds ai(s)]

The variation in ai is usually confined to a thin 'non-equilibrium' layer at the cathode of

thickness d6 a ; is approximately constant for z > c/6. This z-dependence of ai can be

approximated, in many discharge regimes, by the step function

{ 0, z < do

	

a i (z) =	 (2.4)
a i , z > do

where do is defined such that

d
= 

1  f
dz oci(z),

d — do 0

without significant error (Haydon and Williams 1973a, b). In this approximation equation

(2.3) is replaced by
exp[a i (d — do)} 

	

1(d)	 r
1—y 1 texp[a i (c/ — do)] —11.

In those situations where equation (2.6) remains a good approximation, a simple yet

powerful analysis due to Gosseries (1939) allows the deduction of ai and y; from

measurements of transmitted current at equally spaced values of the electrode separation

d. Gosseries showed that I(d), the current measured at spacing d, was related to I(d+Ad)

by
11	 Yi

I(d)
=
 I(d + Ad) 

exp(a
j
Acii+ [exp(a i Ad) — 11, (2.6a)

where Ad is the increment in the electrode spacing d. The value of ai may therefore be

obtained by plotting 11I(d) against 11I(d+Ad).

An extensive discussion of the d0 approximation, together with an extension to the

Gosseries analysis to those cases where it is no longer valid, may be found in Folkard &

Haydon (1971a).

6

(2.3)

(2.5)

(2.6)
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As a final point, the Gosseries analysis returns the values of ai and yi//0. The

secondary coefficient 'yi can therefore be evaluated if the current I 0 is known. However,

circumstances may arise in which it is difficult to measure 4 with accuracy (see chapter 9

for an example). In this case, a plot of exp[oc i (d— do )]/I(d) against exp[a i (d — do )] —1

allows both 1 0 and 'yi to be determined, the slope of such a plot being proportional to Pyillo

and the intercept to 1/ /0. This appears to be a new method.

2.2. Generation of secondary electrons by neutral species.

It was recognised early in the history of studies of pre-breakdown discharges that

gas particles in excited states (at least, those with energies larger than the cathode work

function) can play a big role in secondary electron generation in some gases (Engstrom

and Huxford 1940). This may occur via the radiative decay of the state if the emitted

photon strikes the cathode; another mechanism is via the direct collision of the excited

atom with the cathode. Although all these processes are known to occur in argon, in

practice it is only necessary to take the metastable excited atoms into account when

attempting to apply equation (2.6) to the growth-of-current experiment. This difficulty is

elaborated in the following two subsections. Section 2.2.3 deals with metastable excited

particles reviews some methods which have been used to extract, from the Townsend

experiment, information about these particles as generators of secondary electrons.

2.2.1. Photoelectric generation of secondary electrons.

In argon, the 15 2 and 1s4 states are strongly coupled to the ground state, decaying

with lifetimes in the nanosecond range by the emission of photons of wavelength 1048 and

1067 A respectively. There is no reason to suppose that these states are generated within

the discharge volume at a rate which is significantly different to that of the metastable 1s3

and 1s5 states, which are known to play a significant role (see section 2.2.2 below); there

is evidence also that V the quantum efficiency of ejection of electrons from the cathode

by photons, is comparable at these wavelengths to the efficiencies of ejection by ions or

excited neutral atoms (see the tables at the end of this chapter). In principle, therefore,

these short-wavelength photons might be expected to contribute a significant proportion

of the secondary current in the steady-state argon discharge. Because the flux of photons

to the cathode is unlikely to be related in a simple way to the electrode separation or gas
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pressure, the simple analysis of chapter 2.1 would, in this circumstance, be rendered

useless. In practice, effects that can unambiguously be ascribed to photoelectric generation

of secondaries are far from obvious. As was said in the introduction to section 2.2,

equation (2.6), the modified Townsend equation, is found to be a good predictor of the

measured discharge current after the contribution of the metastable states has been

subtracted.

Some clues as to an explanation for this discrepancy between expectation and

actuality may be found in the yp data in table 2.1. Although the value for copper is the only

datum that is of direct relevance to the present work, values of the photoelectric efficiency

of many metals at -- 1050 A have been included. This is because only two measurements

could be found for copper, and one of these is of doubtful validity. Data for other surfaces

have been included so that the copper value can be seen in context and a better assessment

made of its reliability. One notices straight away that there is a considerable spread in the

values measured for the same metal by different authors. However, most of the high

values have been obtained from experiments in vacuo; measurements made in electrical

discharges are typically an order of magnitude lower*. Most of the authors who used

discharges employed an analysis that did not take into account the phenomenon of

radiation trapping, whereas the argon resonant radiation is known to be strongly trapped

at pressures greater than about 0.1 Torr (Ellis and Twiddy 1969). It therefore seems that

the trapping somehow reduces the effective value of y p. The values of yp in table 2.1 may

be compared with the available ym and yi data in tables 2.2 and 2.3.

In recent years it has been recognised that the pathway

Ar* + 2Ar ---> Are + Ar ,

Ar; --> 2 Ar + hv

plays a significant role in the decay of both metastable and resonant ls states at pressures

greater than a few Torr (Manzanares and Firestone 1983, and references within). The

(vacuum uv) radiation from the decay of the excimer species (thought to be mainly ''3E+,,

states) is not at a resonant frequency of the ground-state atom and is therefore not

* The exception is the result obtained by Kenty (1933) for Constantan (an alloy of Cu and Ni in the ratio
1:1). The reason for this anomaly is unknown. Note, however, that Kenty's apparatus was maintained at a
pressure that was too low for significant trapping to occur.
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trapped. The radiative lifetimes of the excimers states are less than 10 ptsec (Boucique and

Mother 1970). Photoelectric production by this radiation may be dealt with under two

heads. That component produced by the decay of metastable states is separable by the

same techniques as the production of secondary electrons by direct collision of metastable

particles with the cathode. However the component due to the decay of resonant states is

likely, in general, to be as difficult to handle analyically as the 1s 2,4 resonant radiation, for

the same reason: the concentration of these atomic states changes with d in a non-trivial

way, and ought not to be easily separable by time-resolved detection schemes. It is not

understood why this phenomenon is observed experimentally to be of negligible

significance to the growth-of-current experiment in argon.

2.2.2 Generation of secondary electrons by the flux of excited atoms into the

cathode.

Excited particles can be divided into short- and long-lived (ie, metastable) types

depending on whether a significant fraction decay to the ground state before diffusing to

the cathode. The number densities of short lived states, and therefore the flux of these

particles into the cathode, can, by definition, be expected to be negligible. The exception

to this rule arises in the case of a strong radiative coupling between the excited and ground

states. The effective lifetime of these states may then be lengthened by the phenomenon of

radiation trapping. The problem of finding the distributions of resonant states under these

circumstances is an intractable one (Holstein 1947) and will not be attempted here.

However, the difficulty may be avoided if the effective lifetime of the excited state is

significantly longer than the time required for ions to drift between the electrodes. Amies

and Fletcher (1983) found this to be true in helium, for example. Unfortunately, this is not

the case in argon, the gas that is the main subject of this study. Ellis and Twiddy (1969)

found the effective lifetimes (that is, including trapping effects) of the argon resonant 1s4

and 1s2 states to be about 10-4 and 10-6 seconds respectively at 1 Torr. These times are

comparable to the time taken for Ar + ions to drift from anode to cathode (Hornbeck

1951). However, within the discharge regimes that were studied in this work, the

concentrations of these resonant is states have been found to be orders of magnitude

smaller than the concentrations of the metastable 1s 5 and 1s 3 states (Ellis and Twiddy

1969, Copley and Lee 1975, Tachibana 1986). It is therefore considered that their

contribution to the secondary current by the mechanism of cathodic impact can be

neglected.
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There are two aspects to consider when attempting to extend the theory of the pre-

breakdown discharge to include the generation of secondary electrons at the cathode by

the impact of metastable excited states. Firstly, there is the effect this source of secondary

electrons has on the analytical tools, described earlier in this chapter, for deducing the

values of oci and yi . A method is described in section 3.2 for separating the secondary

electrons produced at the cathode by neutrals from those generated by ions, in effect

allowing the continued use of the Folkard-Haydon-Gosseries analysis in cases where the

contribution of neutral particles is not negligible. Secondly, a complete model of the

discharge in these cases must include the contribution of the neutral particles themselves.

It is therefore desirable to identify a set of parameters that allow the construction of such a

model and to find some method of measuring these parameters. The steady-state

concentration of metastable particles, and their effect upon measurements of the DC

current passed by the discharge, are discussed in section 2.2.3; methods of measuring

some parameters of interest are discussed in chapter 3.

Some measured values of If. and 'If; for argon are given in tables 2.2 and 2.3. No yi

data could be found for copper, so results for a selection of transition metals have been

given in both tables for purposes of comparison. There are theoretical reasons for

suspecting that the mechanism for ejection of secondary electrons by metastables is similar

to that for ejection by ion impact (Hagstrum 1961, Dunning et al 1971, Schohl et al.

1992). The quantum efficiencies of the two processes might therefore be expected to be

comparable. Some support for this hypothesis can be found in the listed values. (See also

Borst 1971.) Some of these measurements of y i were performed in electrical discharges,

but the bulk have been done using beams of ions in a high vacuum. It might be argued that

the efficiencies recorded in beam experiments, where the ions typically have energies in the

tens of eV, do not extrapolate to the discharge regime, where the ions have energies of

fractions of an eV. However, the variation of y i with energy in the beam experiments is

invariably small. Unless some previously unknown mechanism is operating in the sub-eV

range, the extrapolation is felt to be justified.

To sum up sections 2.2.1 and 2.2.2, one may conclude that, although short-

wavelength photons and short-lived excited states might be expected to complicate the

analysis of the growth-of-current experiment, in practice this is not the case (at least in

argon). The reasons for this do not appear to be well understood.
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2.2.3. Models of metastable-particle number densities in the steady state.

As was pointed out in the previous two sections, it has been found to be possible in

practice to ignore the contributions to the secondary current made by photons and short-

lived excited atoms; however, the case of metastable excited atoms is very different. If

equations (2.3) or (2.6) are used to analyse experiments performed with a steady source of

primary current where there is a strong contribution by metastable particles, the value of

the secondary coefficient yi appears to vary with d. Haydon & Williams (1973b) recast

equation (2.3) in terms of a generalised, spatially varying secondary coefficient w(z),

giving

Io exp[fo dz ai(Z)1

	

= 	 •
1- fo dz co(z) expLio ds ai(s)1

This can be changed into a more tractable form by means of another quantity,

fo dz co(z)exp[foz ds oci(S)1

	

w(d)	 = 	

f o dz exp[Sz ds a i (s)1

equation (2.7) then becomes

/0 exp[fo dz a i (z)1

	

/(d) = 	 •
d1- c-1)(d)fo dz expLi zo ds a i (s)]

If the step-function approximation for a i (z) is used (equation (2.4)), this gives

/0 exp(aiAd) 
1(d) -

0)(d) [ 
m	

\
1 	  exaiAd) -1]

ai

(2.10)

The application of this equation has been discussed at length by Haydon and Williams

(1973a, b). It is, however, worthwhile treating it in some depth here because many of the

approximations and expressions that arise are required again in chapters 3 and 4.
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The functional form of cT)(d) can be predicted under certain circumstances by

considering the transport of metastable particles within the discharge volume. The rate of

generation of secondary electrons by metastable particles is proportional to fink, the

fraction of metastables created within the discharge which subsequently arrive at the

cathode. This quantity may be expressed as

where  bm (z) is the total flux of metastable particles flowing toward the cathode through

a plane at z and R is the total rate of creation of metastable particles within the discharge

volume. The first of these two quantities can be evaluated by recalling that

00

(z) = 2nidr r (I) (r, z)	 (2.12)

where the flux density 0.(r,z) is given by

O rn (r,z)= Din anm .
az

(2.13)

Provided that radiative coupling with the ground state is not too strong, the number

density n k(r ,t) of particles in the kth excited state obeys a diffusion equation of the form

ank

at
= DkV 2 nk — Gk nk + wa k (r)ne (r, + A jkn j

j�k

(2.14)

where Dk is the diffusion coefficient, Gk is the total volume quenching rate, w is the

electron drift speed, ak is the average number of particles in state k generated per electron

per unit distance of travel, n e is the number density of electrons and Ajk is the transition

rate from the jth excited state. In the case that all the Aikni terms are negligible, the sum

may be omitted with little error. This was found by Ellis and Twiddy (1969) to be a valid

approximation when considering the free decay of the concentrations of argon metastables

in afterglow. Equation (2.14) then becomes
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anm Dm V2 nm –Gm nm + wa rn (r)ne (r, t).	 (2.15)at 

As mentioned above, the argon 1s5 state is normally present in far greater concentration

than the 1s3 ; because of this, the total contribution made by metastable particles to the

argon discharge can be calculated to a good approximation by considering the 1s5 state

alone. Because we are now dealing only with a single metastable state, the numerical

subscript 'k' has been replaced by an 'm' for 'metastable' in equation (2.15). (This

convention will be continued whenever the other excited states can be ignored.)

Integration of this equation parallel to the cathode plane produces

where

n2aNm	 AaNm_D u 	 Gm 	 Wam(z)Ne(z,t)
at 

= m az2

00

N(z,t) = 27ri dr r n(r,z,t)

for both metastable particles and electrons. In the limit of negligible diffusion of the

electrons, wNe(z,t) may be replaced by I(z,t)/e, where I is the electron current and e is the

electronic charge. Within a Townsend discharge in a non-attaching gas such as argon,

I(z,t) may be replaced by

I(z,t)= /(0,t)exp[fozdsa i (s)1,	 (2.18)

giving
aNm D

at
a2Nm G Naz 2	 m m

+ a m(z) / 0, t) expLi:ds a i ( s)] .	 (2.18a)e 

Equation (2.18) is equivalent to the assumption that electrons drift from cathode to

anode at infinite speed. This is a good approximation so far as metastable particles are

concerned, because the typical speeds of these particles are orders of magnitude smaller.

Some consequences of this difference are discussed in chapter 3, section 3.2.

Solutions to equation (2.16) have been discussed by Davidson (1959), Molnar

(1951a) and Haydon and Williams (1973a). Some further approximations must be made
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before a closed-form solution can be found. Firstly, let the step-function approximation for

ai(z) given in equation (2.4) be used. This reduces equation (2.18) to

I(z,t) = /(0,t)exp(cc iAz),	 z > do,	 (2.19)

where Az = z - do. Secondly, let am(z) be approximated in a similar way by

Equation (2.18a) can now be written as

2
0 

it 7aNm	 iv m	 N	 1-1'1(0 t)exp(oc iAz).= Dm 	 2 — m m •	 'at	 az	 e (2.21)

The solution to this equation in the steady state (aNm iat= 0, 1(z,t)= 1(z)) is easily

shown to be

N.(z)=
am1(0) 	 Pl cosh(pz)+ Ql sinh(tz),	 z < do

x
Dm e(.t2 —at) exp(a iAz)+ P2 cosh(iAz) + Q2 sinh(Oz), z > do

(2.22)

where 112 =	 Dm . The constants P and Q can be evaluated by the application of

appropriate boundary conditions (these are discussed in section 3.1.1). The cathodic flux

tom(0) can be evaluated from equation (2.22). This solution was given in a more general

form by Haydon and Williams (1973a).

The second quantity, the total rate of creation of metastables, is given by

R = w Jdz am(z)Ne(z)
	

(2.23)
0

where

le (z) = 27cf dr r ne (r,z).	 (2.24)

If the same approximations used to derive 43,40) are applied, this becomes
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R ---- 
am/(0) 

[exp(ociAd)-1].*
ea;

(2.25)

The quantity Ank can now be found by use of equation (2.11). Once this quantity is

known, an expression for -(7-) (d) can be obtained as follows. The steady-state current

density j(r,0) leaving the cathode may be expressed as

i(r>0) = ./.0(0+ eYiCr,0)+eI7kOk(r,O)
	

(2.26)
k

where j0(r) is the density of primary current, 4(r,z) represents the flux density of either

ions or excited neutral particles toward the cathode through a plane at z and Yk is the

average number of secondary electrons ejected by a gas particle in excited state k that

strikes the cathode. If it is again assumed that there is only one metastable state that makes

a significant contribution to the cathode current, equation (2.26) may be replaced by

Ar , 0 ) ---' .lo( r)+ q j O i (r,0)+ ey m O m (r,0).	 (2.27)

Integration of equation (2.27) parallel to the cathode plane gives

I(0) ,--- I 0 + ey i cI3. i (0)+ eym cbm (0).	 (2.28)

The flux cb i (0) of ions at the cathode can be calculated using a procedure similar to that

used above in the derivation of R, the difference being that essentially all the ions that are

produced in the discharge arrive at the cathode. This flux is therefore given by

r	 ,	 \
(D i (0) ----- 

AO  
lexmaiAd)-1j.

e

Also, from equations (2.11) and (2.25), we have

(2.29)

0m (0) = /(0) fink(d)ocm [exp(aiAd)-1].
eai

(2.30)

* Note that R is equal to anpi(0)/ai . The quantity fnt may therefore be viewed as a measure of the ratio
between the cathodic flux of metastables and that of the ions.



Substitution of equations (2.29) and (2.30) into equation (2.28) allows an expression for

/(0) to be obtained in terms of the fundamental primary and secondary cathodic currents.

Comparison of this expression with equation (2.10) allows one to deduce that

?TS ( d ) a i7 i + am'Ymfmk (d).	 (2.31)

An alternative representation is

Zii(d)= a i [y i (D i (0)+ 7mcto m (0)]/(D i (0).	 (2.31a)

It can therefore be seen that, subject to many approximations, information about

metastables can be deduced by fitting equation (2.10) to experimental measurements of

the total current passed by the discharge at varying electrode separations. This approach

was used with some success by Haydon & Williams (1973b, 1976) to deduce the value of

the product aom appropriate to the A 3Zu+ metastable state of the nitrogen molecule.

Time-resolved measurements of current can also be used to gather information

about the diffusion and decay rates of metastable particles. This technique is discussed in

chapter 3.

2.3. Diffusion of electrons.

A simple random-walk analysis shows that the self-diffusion coefficient of a neutral

molecular species is proportional to 	 where T, is the average velocity of the molecules

and X, is their mean free path (McDaniel 1964a). The motion of charged particles is also

characterised by a spread of velocities, so the same analysis should be applicable. The

mean velocity of a charged particle is related to the square root of the reduced electric

field E/N, whereas the mean free path of any species may be shown to be proportional to

1/N. The diffusive motion of electrons might therefore be expected to become significant

in the limit of low number density N and/or high reduced field E/N. In these regimes, the

Townsend growth of current analysis is no longer valid: if the distribution of the electrons

is dominated by their own diffusive motion, the current depends in significant part upon

the gradient in electron concentration. A quantitative analysis of these effects would

require the solution of the electron diffusion equation (Huxley and Crompton 1974)
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d 2 N	 dN
DI.,	 2	 +	 (z)Ne = 0,

dz	 dz
(2.32)

where DL is the longitudinal electron diffusion coefficient and

00

N e (z) = 27c dr r ne (r, z).	 (2.33)
0

Chapter 5 contains a discussion of some methods of solving the three-dimensional form of

equation (2.32). It suffices to note here that Lucas (1965) has examined the effect of

electron diffusion upon the growth of current equation, arriving at the modified form

where

and

/0 exp[(X – u)(d – de)] 
1(d) =	 r

1–y i exp[(A, –	 – d e)]–

w
2DL

U/- = 2 –2aik

ln(u/X,) 
de = do

–u

(2.34)

(2.35)

(2.36)

(2.37)

This implies that, at values of E/N where the diffusion of electrons is significant, the usual

Gosseries type analysis will return

a; -FoqDL /w	 (2.38)

instead of the true value of oc i . Similar conclusions were reached by Huxley (1959), Hurst

and Liley (1965), Crompton (1967) and Blevin and Fletcher (1984).

On the following pages, tables have been provided which list some previously

published values of the secondary emission coefficients yp, ym and yi. These coefficients

are discussed in sections 2.2.1 and 2.2.2 of the present chapter.
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Table 2.1. Values of yp.

Reference: Experiment: Metal: Heat treatment: yp (%)

Kenty (1933) A Constantan nil 2.0

W, Ni –2000 °C, ? min? 0.8

Molnar (1951b) A Ta Yes, but no quant- 0.9

Mo itative details given. 0.5

Wainfan et al (1953) a B Ta nil 5.0

1000 °C, 10 min 2.5

Colli et al (1954) A Ni –1000 °C, 10hr 0.5

Walker et al (1955) B Cu nil 4.5

Cub 700 °C, ? min 1.5

Ni nil 5.0

1000 °C, 1 hr 2.0

Mo nil 8.5

1000 °C, ? min 4.0

Berglund & Spicer (1964) B Cup nil 10.0

Vehse & Arakawa (1969)a B Nid nil 3.0

Table headings: 
Column 2: the experimental apparatus used can be divided into two types. In type A,

yp was determined by more or less indirect methods in an electrical discharge in argon.
Type B experiments were wavelength-resolved measurements performed in vacuum.

Column 4: In this column is recorded the temperature and duration of any heat
treatment applied to the surface.

Notes: 
a: The authors' data has been slightly extrapolated to yield a value at the wavelengths of the argon

resonance lines.
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b: No further change in yp was detected after deliberate oxidation of the surface. It therefore seems
that the measured value of yp for copper is really the value appropriate to the oxide.

c: The surface was coated with a monolayer of Cs. The authors are ambiguous about the effect that
this had on their measurements, reporting on the one hand that "the optimum thickness was gauged by
maximising the photoelectric yield from a tungsten lamp," but later stating that "the coating had no effect
on the photoemission data". The most sensible inference to be made seems to be that the effect was
confined to wavelengths much nearer to the photoionisation threshold than are the argon resonance lines.

d: The nickel surface was freshly deposited by evaporation under vacuum. It is interesting that,
despite this attempt to ensure the purity of the surface, the shape of the ;Q) curve obtained by these
authors closely matches that obtained from oxidised Ni by Walker et al (1955).

Table 2.2. Values of yin.

Reference: Type: Surface: 'yin (%): Remarks:

Greene (1950) A Mo <10 Deduced from a measurement of >
90% metastables reflected. Subsequent
measurements of very small values for
the reflectivity of metastables (eg
Conrad et al and references within)
must cast doubt on this figure.

Molnar (1951b) A Ta —2.3 Estimated by equating yin to yi.

Mo —6.0 Estimated by equating yn, to yi.

Dunning et al
(1971)

C Stainless
steel

—110 Chemically cleaned surface.

Dunning & Smith
(1971)

C Stainless
steel

—100 Chemically cleaned surface.

Cu 88 Chemically cleaned surface.

W 8 Heated to 2000 °C for > 20 sec before
measurement.

Schohl et al (1992) B Mo 2.3 Chemically cleaned surface.

14.4 After heating to 360 K (!)

Cu + 2% Be 6.5 Chemically cleaned surface.

25.7 After heating to 360 K.

Stainless 21.7 Chemically cleaned surface.

steel 21.2 After heating to 360 K.



Table 2.3. Values of yi.

Reference: Type: Surface: yi (%): Remarks:

Molnar (1951b) A Mo 7.1 Heat treated, but no quantitative details

given.Ta 2.6

Varney (1954) A Mo 3 yi + 'y0 . Electrodes brought to red heat
and sputtered prior to measurements.

Parker (1954) B Ta 0.65 Lowest energy was 2 eV. Surface flashed
to 1400 °C before measurement.

Hagstrum (1956a) B Mo 12 Lowest energy was 10 eV. Target
flashed to 1900 °C before measurement.

Hagstrum (1956b) B W 9.5 > 200 eV. Target flashed to 2000 °C.

3 . 5 Same surface after 1 hr in 10- 8 torr N2.

Experimental type: The experimental apparatus used to determine 7 can be divided into
three types. In type A, 7 was determined by more or less indirect methods in an electrical
discharge in argon. In type B experiments, beams of argon atoms or ions were used in a
high vacuum. Dunning & Smith (1971) used a third procedure (type C) in which they
utilised rates of Penning ionization in a gas cell to determine the flux of metastables.
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3. Time-resolved experiments.

Chapter 2 contains a discussion of the 'Townsend' experiment, that is, the

measurement of the steady current passed by a pre-breakdown discharge as a function of

electrode separation at a constant electric field. It was shown in that chapter that the

values of the primary and secondary ionisation coefficients could be deduced fairly easily

from such measurements, provided that it was possible to neglect the contribution made

by photons to the secondary current. In section 3.2 of the present chapter it is shown that

time-resolved measurements of the current passed by the discharge may also yield useful

information about the contribution made to the discharge process by metastable excited

particles. The particular procedure that is described is usually known as the 'Molnar'

experiment because of the contribution made to its analysis by J P Molnar (Molnar 1951a

& b). In this experiment, the source of primary current is 'chopped', ie periodically

switched on and off. There are other methods of performing time-resolved experiments

(eg Hornbeck 1951, Dall'Armi et al 1992, Tsurugida & Ikuta 1993) but these have not

been described herein because they have not been used in the present study.

There are some difficulties inherent in the analysis of the Molnar experiment:

ambiguities are introduced in cases where atoms in more than one excited state is a

significant producer of secondary current; even where this is not the case, the analysis is

complicated by the need to maintain a potential difference across the electrodes (if this

were not done there would be no current to measure). While the potential difference

remains non-zero, electrons are continually removed from the vicinity of the cathode and

accelerated across the gap, providing a mechanism for the regeneration of metastable

particles, and therefore complicating the time-evolution of their concentration. These

difficulties arise in a large part because, in the Molnar experiment, measurements are made

of only a single variable: the total current. An alternative procedure is to make direct

measurements of the concentrations of excited atoms within the discharge volume, by

exploiting the interaction between these atoms and tuned laser radiation. There is no need

to maintain the potential difference across the electrodes while this is done, and different

metastables can be easily distinguished. There are some practical difficulties involved in

the performance of these optical measurements, but the analysis is much simpler.

There are two broad classes of optical technique: measurement of the amount of

light emitted or the amount absorbed by the excited atoms. Both techniques have been

used extensively to examine glow discharges and afterglows. Most of the published results
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that are quoted in section 9.2, for example, were performed in this regime.

Understandably, due to the lower signal strength involved, there has been much less work

done in pre-breakdown. The Hinders University group led by Blevin and Fletcher have

made a number of studies of the distribution of excited states in pre-breakdown. This

work was reviewed by Blevin and Fletcher (1992). Tachibana (1986) and Tachibana and

Phelps (1987) used measurements of the light absorbed by metastable states in,

respectively, neon and argon pre-breakdown discharges to deduce values for the excitation

coefficients of these states, but did not attempt spatially resolved measurements.

The purpose of the present chapter is to describe the theory that is fundamental to

the analysis of both the Molnar and 'optical' experiments. The chapter is organised into

two sections, corresponding to the two different experiments. In section 3.1, a simple

eigenvalue expansion is used to model the so-called 'free' decay of the population of

metastables that occurs after all sources of current are extinguished. In practical terms,

this is accomplished by removing the potential difference between the electrodes at the

same time that the primary current is extinguished. The conditions at a physical boundary

are discussed at some length in this section. It is shown that measurements of the rates of

free decay in a discharge of small physical dimension or at low pressure can return

information about the probability that a metastable particle will reflect from a surface

without suffering a decay to the ground state. Experiments of the Molnar type are

discussed in section 3.2. Molnar's original integral equation analysis is presented in section

3.2.1, whereas section 3.2.2 contains a discussion of an alternative method of solution

which relies upon the technique of separation of variables. It is shown in this sub-section

that Molnar's analysis is inadequate under some discharge conditions.

3.1. Free decay of metastable concentration.

The diffusion and volume decay coefficients of metastable excited states of many

gases have been determined by measurement of the decay in the number density of the

state in the afterglow of an electrical discharge. These number densities have mostly been

measured by optical absorption (see, for example, Phelps and Molnar 1953; Phelps 1959;

Ellis and Twiddy 1969; Copley and Lee 1974 and Kolts and Setser 1978), but natural or

laser induced fluorescence has also been used (McCoubrey 1954; Wieme and Wieme-

Lenaerts 1974; Levron and Phelps 1978 and Tachibana et al 1982). The present author
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has attempted similar measurements in a pre-breakdown discharge; the results are reported

in chapter 10.

In order to analyse the afterglow decay experiment, it is necessary to solve the

metastable particle diffusion equation (equation 2.15). With the source term removed, this

becomes
an  

= D V
2
n —G n .at	 in	 m	 m m

The geometry of the discharge model is illustrated in figure 3.1.

Cathode
	

Anode

Figure 3.1. The parallel-planar discharge geometry.

The cathode is set parallel to the xy plane at z = 0. The primary current is restricted to a

circle of radius Rw in the centre of the cathode. The cylindrical symmetry of this

arrangement allows all quantities to be expressed as functions of r = x 2 + y2 and z alone.

Equation (3.1), expressed in cylindrical polar coordinates, is

	

an	 a2n	 an
m = Dm ̀a

2 n m	 +  m +	 Gmnm.

	

at	 ar2	 r ar

In the present experiment, the radius of the electrodes is several times larger than the

electrode separation. In this situation the radial terms in V 2 nm are small and may be

neglected to a good approximation. Equation (3.2) then becomes

(3.1)

(3.2)



an' =D 
a 2nm G n

at	 m az 2	 m m

(similar to equation (2.16) without the source term). Boundary conditions must be

established before this can be solved. These are the subject of the next section.

3.1.1. A new expression for the boundary condition.

The boundary conditions on equation (3.3) are the same as those for the steady-state

equation

Gmnm— Dm
a 2 nr  = am (z)I(z) 

az	 e
	 .	 (3.4)

which can be obtained from equation (2.15) by setting the time derivative to zero and

neglecting the radial derivatives. Since it is expected that the boundary conditions will be

independent of time, the steady-state case is assumed for the remainder of this section.

It is commonly assumed that the number density nm is zero at a surface, although

this is clearly not true if a significant fraction of the metastables that collide with the

surface are reflected without relaxing to the ground state. Several authors have

independently shown that the correct boundary conditions are of the form

nm (0) f3
an (0)

= 0
az

and

nm(d)+ 13 
anm(d) 

= 0
az

for some constant p (Newton 1948; McCoubrey 1954; Davidson 1959; Lisitsyn et al

1970; Sadeghi and Pebay-Peyroula 1974 and Suzuki et al 1992). These authors derived

expressions for the coefficient 13 using arguments from the theory of gas kinetics, except

for Suzuki et al (1992) who used an approximation to a scattering equation borrowed

from the theory of radiative transfer. All these expressions contain some dependency upon

the reflectivity of the metastable, in such a way that p remains non-zero as the reflectivity

24

(3.3)

(3.5)

(3.6)
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tends to zero. In view of the sometimes severe approximations that were used to derive

these formulae, a new analysis was performed.

Before embarking upon this, it is important to point out that the number density of

metastable particles will not obey the diffusion equation (3.4) within a distance of about

one mean free path from the wall. This is because the validity of the diffusion equation

rests on the assumption that the velocities of the metastable particles follow a near-

maxwellian distribution. (The velocity distribution cannot be exactly maxwellian because

this would imply that the average velocity of the particles, and therefore also their net flux,

was exactly zero.) This is unlikely to be true a short distance from an absorbing boundary,

since the effect of this boundary is to deplete the proportion of particles that have

velocities directed away from the wall. We should therefore define two different number

density functions: a 'theoretical' function n m, representing the solution to the diffusion

equation (3.4), and the true number density function n true . These two may be expected to

be identical except within about one mean free path of the wall. The forms of n m and n true

near to the wall are illustrated qualitatively in figures 3.2 and 3.3.

43 0 d d

z

Figure 3.2. The shape of the fundamental decay mode in the case where the concentration
at the boundary is nonzero. The solid line represents the estimated shape of the actual
concentration ntnie(z); the dashed line is nm(z), the solution of the diffusion equation.



z

Figure 3.3. The concentration of metastable particles near a surface. The solid line
represents the estimated shape of the actual concentration n tme(z); the dashed line is n.(z),
the solution of the metastable-particle diffusion equation.

The boundary condition is derived at the cathode, which (see figure 3.1) is located at

the z = 0 plane. Consider a volume bounded by the cathode on one side and a parallel

plane at z = z' on the other. Provided that the characteristic dimension A of the container

is much larger than the mean free path 7 of metastable particles in the gas, z' can be

chosen such that 2 < << A. (Note that A can be identified with A 1 , the diffusion length

of the fundamental decay mode, which is defined in section 3.1.2.) Metastable particles

created in the bulk discharge are assumed to diffuse into this volume through the plane at

z = z'; some fraction of these will be destroyed at the surface at z = 0. It is assumed that

there are no other significant sources or sinks of metastables within this volume, implying

that annlaz is approximately constant for 0 < z < z' . In other words, because A >> z', it

is assumed that the curvature of the solution n m is very slight over the distance 0 < z < z'.

Lastly, it is assumed that an,,, /ay = anm /az — 0 within the volume. The above

approximations should be valid, for example, near a planar electrode in a diffuse discharge

through a gas at pressure greater than about 0.01 Ton contained in a chamber of

dimensions on the order of centimetres. Given these assumptions, the theoretical number

density nm can be represented to good approximation within the space 0 < z < z' by the

linear relation

26

nm(z) k(z + 13).	 (3.7)
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where k and 13 are constants. Equation (3.7) may be regarded as a line drawn tangent to

the solution of the diffusion equation (3.4) at z = -13.

The boundary condition on equation (3.4) depends on the behaviour near the wall of

the actual number density ntrue . Although a rigorous derivation of ntrue is difficult, it is

shown below that an acceptable approximation can be found. The first step in this analysis

is to consider the flow of particles toward the wall. It is convenient to break this flux into

a diffusive component and a drift component. Diffusive flow dominates where the only

departure from equilibrium is the presence of a concentration gradient; however, as

mentioned above, the presence of an absorbing surface may be expected to introduce an

asymmetry into the velocity distribution of metastable particles close to the surface. Under

these conditions, the particles will have a net velocity and therefore a net 'drift' toward the

wall.

An approximate expression for the total flux 0 toward the wall can be derived using

a mean free path analysis similar to that of Chapman and Cowling (1970). To simplify the

notation, the following quantities are defined:

-15z,± = f dv, vz P(vz)
	

(3.8)

0

and
0

T z,_ = f dvz vz P(vz )	 (3.9)
-.0

where P(vz )dvz is the probability that the particle has a z component of velocity between

1,, and 1,, + dvz . Note that 17,, the mean z component of velocity, is given by

viz = ( 17z,+ +17z,-).
	 (3.10)

Consider first a system at thermal equilibrium in which the concentration of

metastable particles is uniform. It is easy to show that

1 7.,+ = -17z,- = 4
	 (3.11)



where -7 is the maxwellian mean speed,

v= 118 kT
- , (3.12)
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and therefore that Tz = 0. Let us now introduce a concentration gradient. The flux 44 (z)

of particles crossing from the negative to the positive side of a plane lying normal to the z

axis is given by
00

(I) + (z) = f dvz vz ntnie(z,vz)
0

00

= ntrue (z) J dVz vz P(vz)
0

= ntrue(Z)7z,+•

Similarly, the flux crossing in the other direction is

4)-(z) = ntrue(z)Vz,-

the net flux 4)(z) being therefore

(0( z) = ntrue( z) X ( 17z,+	 )

= ntnie(z)-1.1z

(3.13)

(3.14)

(3.15)

The fact that a net diffusive flux can exist where there is a concentration gradient is

because i7z,+ is not quite equal to 17z,_ in this case (Langevin 1905). One of the standard

routes to Fick's Law is to replace equations (3.13) and (3.14) by the approximations

(Chapman and Cowling 1970)

(z) --=,[ntrue(z)- uX
an

true17z,+
az

(3.16)

and

_(z) t.,[ntrue(z)+uX
an

true
az

(3.17)

where u is a number of order unity. The net flux 4)(z) crossing the plane is now given by:
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(1)( z) n true( Z); la( 7z,+ Vz,-) an
true  

•
OZ

(3.18)

While the concentration gradient remains the only significant departure from

equilibrium, the distribution of velocities among the metastable particles remains

maxwellian to a good approximation (Langevin 1905). Application of equation (3.11)

annihilates the first term in equation (3.18), which then reduces to Fick's law

(I)(z)= —Dmantrue 
az

(3.19)

with the diffusion coefficient Dm given by

Dm = 2 1121.37.	 (3.20)

The value of u in the last equation has been found to be exactly unity (McDaniel 1964a).

Since z' was chosen to be greater than X, the gas at z = z' may be considered to be

sufficiently far from the influence of the surface at z = 0 for equation (3.20) to be a good

approximation to the flux through the plane at z = z'. In other words

(1)(f) =	
antrue 

2 az z=z'.
(3.21)

Consider now the situation near the partially absorbing surface at z = 0. At distances

from this surface of the order of one mean free path or less, the velocity distribution

cannot be maxwellian, since the effect of the surface is to deplete the population of

particles that have velocities with a positive z component. This will give rise to a non-zero

value for V. The contribution of the first term in equation (3.18) to the total flux

therefore becomes significant as the boundary is approached. Provided that the total flux

remains approximately constant in the region 0 < z < z' (as it must if there are, as

assumed, no other significant sources or sinks of metastable particles in the region), the

diffusive contribution must decrease by the same amount. At the wall itself, the diffusive

component falls to zero. To see this, consider that, at z << X, essentially all the particles

with velocities directed toward the wall will go on to collide with it; likewise, metastable

particles at this z with velocities directed away from the wall must have just rebounded
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without relaxing to the ground state. The net loss flux On, representing particles that

strike the wall and are 'absorbed', ie quenched to the ground state, is the difference

between these two fluxes. From equation (3.15), this is equal to

(0(0) = n true (0) i7z (0)	 (3.22)

which is the first term in equation (3.18) for z = 0. This implies that the diffusive term in

equation (3.18), and therefore the concentration gradient antrudaz, both fall to zero as

z ---> 0. Figure 3.2 shows qualitatively the expected shape of n true (z) near the surface. Note

that 13 has been defined in equation (3.7) so that the boundary condition on equation (3.4)

has the required form

nm (0) = p 
anrn

az z=0.
(3.23)

In order to derive an expression for 13, it is necessary to know how n true(z) varies

within the boundary layer and to make some estimates of the distribution of velocities at

the surface. The approximation

ntrue(z) --- k[z +p+ A, exp(— z/X,)]	 (3.24)

reproduces the asymptotic behaviour at z = 0 (ie, antrue /az —> 0) and z > z' (ie,

ntn,e --> nm ) and also the boundary layer thickness of---, X. Using this approximation to

evaluate the fluxes at z = z' and z = 0 described by equations (3.21) and (3.22), then

equating these fluxes, gives the result

13=-4 17
2 i7z (0) +1)

(3.25)

An approximate expression for vZ (0) can be found by considering the fraction R of

metastable particles that are 'reflected' from the wall without being quenched. Although no

data relevant to argon are known, measurements of R for helium metastables incident

upon a variety of surfaces have been published by Conrad et al (1982a, b). These authors

found that the fraction of metastables that were reflected was independent of the angle of

incidence. The reflection was found to be specular from clean crystalline palladium,

although some non-specular reflection was observed from gas-covered or polycrystalline

surfaces. In the absence of more detailed data, we will join with the authors referenced in



the first paragraph of the present section in assuming that R is independent of v. In this

case, the velocity distribution function P(vz ) of the metastables close to the surface will

be of the form

P(vz)= RP(–vz ), vz > O.	 (3.26)

It is convenient to define a normalised parent function r(vz ) so that

R2Pqv ) {, vz>0
P(v ).	 z x	 (3.27)Z
	 1+ R 	1, vz < 0.

If the parent distribution P' is assumed to be maxwellian, it can be shown that

_
v (0) = 

(R-1)-17
2(1+R)

(3.28)

where 7 is the maxwellian mean speed. Substituting equation (3.28) into equation (3.25)

gives the final result
2R

P 	 .x.
(1–R)

(3.29)

Table 3.1: Alternative expressions for the coefficient 0.

Reference: PA

Newton (1948) 2(1+03(1– R)

McCoubrey (1954),

Davidson (1959)

2/(1–R)

Lisitsyn et al (1970),

Sadeghi & Pebay-

Peyroula (1974)

(1+ R)A1– R)

Suzuki et al (1992) (1 + R)/I(1– R)

Present work 2RA1– R)

Expressions for p derived by several authors are listed in table 3.1 in terms of the

mean free path X. Where the original expression was couched in terms of the diffusion

coefficient, equation (3.20) has been applied with u= 1. It can be seen that the expression
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derived here is unique in that it gives a value for 13 equal to zero in the limit of small

reflectivity. It is interesting to note that this result is not sensitive to the particular form of

approximation to n true (z) that is used. For example, replacing equation (3.24) by the

hyperbolic approximation

ntrue (Z) ...--- k(13 + 1 I Z 2 ± X2 )	 (3.30)

leads to an identical result.

In the present section, a mean-free-path analysis has been presented which is perhaps

more careful than any previously published. For example, an attempt was made to model

the distribution of velocities among the metastable particles near to an absorbing boundary

in as realistic a manner as possible. The resulting formula implies that the value of 13 ought

to be close to zero in the case that the fraction of metastable particles which are reflected

from the wall is itself small. This is, however, not in accordance with two sets of

experimental findings. The first set comprises measurements of the diffusion of metastable

particles in the parent gas (eg Futch & Grant 1956, Sadeghi & Pebay-Peyroula 1974);

these experiments imply that f3 for many species is of a size that would argue for a

reflectivity of some tens of percent if formulae of the type listed in table 3.1 were accepted

as accurate. However, the second class of experiments, which were performed with beams

of metastable helium atoms incident upon a range of surface materials (Conrad et al

1982a, b) show that only a tiny fraction of these atoms are reflected from the surface

without being quenched. The conflict between these two sets of experiments suggests that

the problem has not yet been fully understood.

3.1.2. Solutions to the free decay equation.

In order to apply equation (3.29) to decay rate data, it is necessary to solve equation

(3.3), which describes the decay in the concentration of metastable particles in an

afterglow between infinite parallel planar electrodes. A trial solution of the form

nin (t,z)=T(t)Z(z) allows this equation to be separated into

T' = –v kT
	

(3.31)

and
DmZ" = (Gm – vk)Z.	 (3.32)

These have solutions
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Tk (t) = Ak exp(—vk t) 	 (3.33)

and
Zk(Z) = Bk cos(z/A k )+Ck sin(z/A k ).	 (3.34)

The general solution is therefore
00

n.(z,t) = I AkZk (z) exp(—v kt).	 (3.35)
k=1

The decay rates vk are related to the diffusion lengths Ak by

D,„ ,
V k = i- + um.

A k
(3.36)

Further discussion is restricted to the fundamental term in equation (3.35), because

this mode becomes dominant late in the afterglow. If the boundary conditions at the

cathode and anode are symmetrical, the spatial part of this mode may be expressed as

where A 1 = 7t/(d+2(3). Hence

Z1 (z) = sin [ z +1
Al

V1 = 
1t Dm Dm

)2 +Gm•
(d+213

(3.37)

(3.40)

The coefficients Dm, p and Gm are all functions of the gas number density N and of

temperature. Both Dm and p are inversely proportional to N. It is therefore convenient to

define new pressure-invariant quantities Dm and 13' such that

D:,„=NDm	 (3.41)

and

fy = Ni3.	 (3.42)

The dependence of Gm upon Nis more complicated. In chapter 4 it is shown that the

quadratic expression

Gm =-
1

+v,+Cm N + BmN2 	 (3.43)



provides a good description of the volume quenching of argon metastables. In this

equation ti is the natural radiative lifetime of the state, v i is the rate of quenching by

gaseous impurities and Cm and Bm are the two- and three-body collision coefficients

respectively. It should be noted that lit for both argon metastables is very small (Small-

Warren and Lue-Yung 1975) and can, to a first approximation, be ignored. It was also

found to be possible to compensate for the contribution from impurities to some extent

(see chapter 9, section 9.4.2).

Equations (3.39) to (3.43) can be used to transform equation (3.36) into a form

where the dependence on N is explicit, giving
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TC
2
D 

ul =	 m 2 + Cm N+BmN2.
N(d+ 213'/N)

At large values of N, this yields

vl BmN2.,

in the opposite limit,
ic 2D 

2m N .
4P'

In practice, there is often an intermediate range of pressures where

213' << d

N

while at the same time
2n Dm 

»BmN2 .
d'N

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

Within this regime,
n2D,

v 1	 2	 m Cm N.	 (3.49)
d N

Because the coefficients of the various powers of N often differ by many orders of

magnitude, a graph of ln(v i ) against ln(N) can often be approximated by a series of

straight lines with slopes equal to the different powers of N (see, for example, Ellis and
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Twiddy 1969). A graph of this type can thus be used to determine the values of the

coefficients Dm' , B., Cm and [3' .

An alternative technique for extracting the parameters D.' and G. is to change the

electrode spacing d while keeping the pressure constant (eg Molnar 1951b). It can easily

be seen from equation (3.44) that, at moderate to high values of N (ie where (3 is

negligible), a graph of v 1 against it2M2 should yield a straight line with a slope equal to D.

and an intercept equal to Gm. The value of 13 can also be deduced in this way. Taking

another look at equation (3.44), we can see that

i 1 __,( d+ 2 	 I N 

11 v 1	N )li 7r 2 Dm
(3.50)

becomes a valid approximation at low pressures. A plot of v -1 1/2 against d at constant N

should therefore give a straight line with an intercept proportional to 13'.

In many ways, it is preferable to extract these parameters by changing the spacing

rather than the pressure. Changing the pressure requires that one keep track of the

temperature as well, in order to evaluate the gas number density after each change.

Changing d is also, on the present apparatus at least, somewhat easier than changing the

pressure.

3.2. The Molnar experiment.

Consider a pre-breakdown discharge in which the source of primary current is

suddenly switched on. In other words, let 10(0,t), the primary electron current at the

cathode, have the form

4(0,0 = 411(1- — ton )	 (3.51)

where H is the Heaviside function. The total electron current that subsequently leaves the

cathode, I(0,t), may be divided into three components, representing contributions

respectively from the primary source and the ion- and metastable-induced secondary

currents:
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/0,0= /01/(t–t„)+e[yieli(0,t)+7.(Dni(0,0].	 (3.52)

(The remaining quantities in this equation were defined in chapter 2, section 2.2.3.) Ions

and electrons are known to drift much faster than the speed of diffusion of neutral gas

particles. The rise in I(d,t) after the primary source is activated will therefore be observed

to occur over two very different time scales. The first increase will last for several

microseconds, until the distribution of electrons and ions attains a quasi equilibrium state.

At this time, nearly all the electrons leaving the cathode have come either from the primary

source or from the impact of ions on the cathode; there has not been sufficient time for

significant numbers of metastable particles to diffuse back to the cathode. The subsequent

rise in current due to metastable-induced secondaries is typically slower by several orders

of magnitude. Since only the distribution of metastable particles is of immediate interest,

the flux Cli(0,t) of ions onto the cathode may be approximated for this purpose by

(1)i(0,t) 
i(O't) 

dz a i (z)exp[fo dS (S)].
e 0

(3.53)

Substitution of this into equation (3.52) gives

1(d,t)= /fast (d ,t)+ /slow (d, t)	 (3.54)

where

/fast (d, = I0S(d)H(t – ton ) exp[foddz a; (z)],	 (3.55)

1 10w (d,t)= ey mcm (0, t)S(d)exp[f dz a i (z)]	 (3.56)o 

and

S(d) =11-7 fo dz a i (z)expLCds oc i (s)}	 (3.57)

Here the relationship between electron currents at the cathode and anode,

I(d,t)= I(0,t)exp[f
d
dza i ( z)1, 	 (3.58)0



/slow

/fast

Lamp on
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has been used. Note also that the amplitudes /slow and /fast of the time-varying currents

I sk,,,,,(d,t) and Ifast(d,t) are a measure of the relative contributions of the two processes in

the steady-state discharge.

A
1(t)

/fast

t
Lamp off

Figure 3.4. The slow and fast components of the rise and decay of current in the Molnar
experiment.

A schematic of a typical experimental record of the rise in total current is given in

figure 3.4. As this diagram indicates, it is easy to separate the sharp initial rise due to the

primary and ion secondary currents from the subsequent slow increase due to the

metastable particles. Engstrom and Huxford (1940) were the first to use this technique to

examine the contribution made by metastable particles.

Note that, for t > ton , equation (3.55) is identical to equation (2.3), which describes

the steady-state current in the absence of any metastable contribution. It can therefore be

seen that the Folkard-Haydon-Gosseries analysis, described in chapter 2, can still be used

in the presence of metastable-induced secondary current by substitution of the amplitude

of the fast current rise for the total current in equation (2.3) et seq. It is shown in section

3.2.2 that the fall of current after the source of primary current is removed (provided that

this has been active for an infinite time beforehand) follows the same form as the rise in

current after the source is activated; the size of the fast component can therefore be

determined by recording either the rise or decay of the discharge current.

The slow part of the discharge current is, under most circumstances, well described

by an infinite series of exponential terms. (Exceptions to this rule will be discussed in sub-

section 3.2.2.) The first term is observed to dominate in all but exceptional situations. The
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first time constant T1 is longer than the fundamental-mode free-decay time, being extended

by the positive feedback implicit in the generation of secondary electrons by metastables.

As electrical breakdown is approached, metastable-induced secondaries form an

increasingly large fraction of the total cathode current; modulation of the primary current

in this situation amounts to a smaller and smaller perturbation of the system, which

becomes correspondingly slower in response. T1 therefore increases to infinity at

breakdown.

The purpose of the remainder of this section is to develop a method of deducing the

fundamental free-decay rate v 1 from measurements of the time constants T of the decay of

current. Once the free-decay rate is known, the graphical methods described in section 3.1

can be used to evaluate the constants Dm, Gm and 11 Two ways to approach the problem

of analysis are described below. Both involve the solution of the metastable diffusion

equation (equation 2.16), but by use of different methods. In both cases only the rather

simple scenario of one active metastable species in an infinite parallel plane geometry will

be considered. Although gases with a single metastable state are rare, the approximation

remains valid in a number of cases. This is because the population and therefore influence

of one state is often greater than that of all the others. This is the case in (unperturbed)

neon, argon and probably nitrogen also. Recently, Molnar's theory has been extended to

describe those cases in which many metastable states have a significant influence on the

discharge (Ernest et al 1992). This theory has been applied to an optogalvanic experiment

in which the 1s 5 state of neon is depleted by tuned laser radiation (Ernest et al 1992,

1994). In this experiment, the concentration of the neon 1s 5 state was reduced to a level

comparable to that of the 1s 3 state.

The Molnar analysis may require the measurement of several of the amplitudes and

time constants of a series of exponential decays, in the presence of experimental noise.

This is known to be an ill-conditioned problem (see, eg, Smith et al 1976 and references

within). Some techniques of analysis of this type of data are described in section 7.2.3.

3.2.1. Molnar's analysis.

Molnar's approach was to convert the diffusion equation for metastable particles,

equation (2.16), into an integral form (Molnar 1951a). To do this, he considered the



Nm (z, =1 Ak	 lacz
sin(—)exp[—v k (t - 0], t > t',

k=1

00

(3.60)
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generation of metastable particles by an impulse of charge leaving the cathode at time

t = t'. This may be modelled by inserting a source term in equation (2.21) of the form

/0,0 =50-1	 (3.59)

The subsequent free decay of the metastable distribution is a solution of the homogeneous

equation (3.3) and therefore is given by an exponential series

where the decay rates v k are related to the diffusion and quenching coefficients by

equation (3.36). (Note that the boundary parameter (3 has here been assumed to be

negligible.) The flux of metastable particles into the cathode in response to this impulse is

therefore given by

impuise (0 , t — t') = H(t —	 Pk exp[—vk (t — t')]	 (3.61)
k

where
n A kit

Pk -=	 — . (3.62)

The total flux of metastable particles into the cathode 0,40,0 in response to a general

cathode current I(0,t) can therefore be written

cro m (0,t) = .i. de/(0,00 impuise (0,t—e).	 (3.63)
e

-00

The response to a primary current 10(0 that is turned on at time t = 0 can be deduced by

breaking the cathode current /0 (0,0 in equation (3.63) into its fast and slow components,

as specified by equations (3.58) and (3.54) to (3.57); the result is then inserted into

equation (3.56). This gives the following integral equation in the slow current:

I slow (0, = m S(d) f de[I0S(d)+ Islow (0, tlE Pk exp[—vk (t t')].	 (3.64)
0
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This equation can be shown to have the solution

00

Isl. ( 0 , t) = 4,0 —Iisj exp(—t/Ti).	 (3.65)
j=1

Insertion of this equation into equation (3.64) gives three sets of equations:

7 m [10S(d)+ IsAS(d)EPk = I s 0;	 (3.66)
k V k	

Is ,o

 Pk	 =1	 (3.67)
k V k -1/T j

for all j;

10S(d) + Is,o	 I •
I Is,
	 = 0

v,	 j v„—yi;

for all k. Also, from the physics of the situation, one can write

0.3

4,0 =I 4,j •
j=1

(3.68)

(3.69)

The time constants Ti can be approximated, provided the Pk, V k etc are known, by

truncating the infinite series in equation (3.67) at a convenient place and then finding the

roots of the resulting polynomial. Once these values are known, it is straightforward to

obtain the amplitudes Is,/ from a similarly truncated approximation to equation (3.68).

Molnar argued that the amplitudes of terms higher than the second are generally

very small. (An exception to this rule will be discussed in the next sub-section.) This

comes about mainly because the values of the Fourier coefficients A k in equation (3.60)

decrease rapidly with k, this rapid convergence being a result of the 'smoothness' of the

steady-state distribution of metastable particles across the discharge gap. The series of

equations (3.66) to (3.69) may therefore be truncated after j = k = 2 without significant

error. By truncating at this point, and using the approximation T2 -- 1/v2, Molnar obtained

the relation



/0S(d)+ is + 4 2 p/(p –1) 
vi	

Ti VoS(d) Is ,2PAP 1)] •
(3.70)
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Here p = v2/v i . At low pressures, diffusion predominates over volume destruction; under

these circumstances p is approximately equal to 4. However, if the amplitude of the

second component Is,2 is small compared to the fast component /0S(d), the cruder

approximation
IoS(d) + 4,0

viii ~ 
ioS(d)

(3.71)

may be adequate. Note that the value of p approaches unity in the high pressure limit. In

this case the following equation may be more useful:

viii –1– 
4,1 

1– 
1

's,2	 P
(3.72)

In both the high and low pressure cases a more accurate value of p could be obtained by

use of an iterative procedure.

3.2.2 New results obtained using the method of separation of variables.

Molnar's analysis of the form of the slow portion of the total discharge current is

discussed in the previous sub-section. In the present sub-section, an alternative approach is

explored, using the technique of separation of variables (SOV). This approach is similar to

that of Newton (1948) (except that Newton did not take into account the volume

quenching of metastable particles) and Ernest (1995a). The separation method is discussed

here because it serves to complement Molnar's integral equation approach. Each method

has its respective advantages and disadvantages. Whereas Molnar's method provides

approximate values of the current-decay time constants 	 the separation method permits

the calculation of accurate values. The SOV approach requires the use of numerical

methods to evaluate the time constants, because these are related to the solutions of a

transcendental equation. This is unnecessary within the Molnar formulation, provided that

the slowly-varying part of the current (equation 3.65) is approximated by less than five

exponentials, because the Ti are then the roots of a polynomial (equation 3.67) of order

less than 5. The retention of more terms of equation (3.65) presents problems, however.
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The zeros of equation (3.67) can be found numerically, but calculations involving a

polynomial of high order can become intractable at large values of the independent

variable. Nor is it easy to discern, from equation (3.67), the general trend of the zeros as j

grows large. However, this information arises in a natural manner during the SOV

analysis. On the other hand, Molnar was able to derive an approximate inversion formula

(equation 3.70), which permits the fundamental free-decay rate v 1 to be determined. No

such simple formula can be obtained from the SOV analysis; the ratio between the free-

decay rate and the rate of decay of the slow current must be obtained on a case-by-case

basis by use of a fairly complicated numerical procedure.

Ernest (1995a) appears to have been the first to recognise that there are

circumstances in which some of the decay rates in equation (3.65) may be complex-

valued. Neither Molnar or Newton (1948) mentioned the possibility, although nothing in

their analyses formally precludes the existence of complex-valued rates of decay. For

example, there is nothing to prevent the occurrence of complex roots in the polynomial

equation (3.67) (Molnar's equation 18), when terms of order greater than 1 are retained.

The two earlier authors may have discounted the possibility on the grounds that such

solutions were non-physical. As is shown below, and also by Ernest, that turns out not to

be the case.

3.2.2.1. Equivalence of the rise and fall signals.

Molnar discussed the rise in slow current after the initiation of the primary current

10; in the SOV analysis it is more convenient to treat the decay of slow current after the

primary source is extinguished. However, the decay of slow current in a real experiment is

observed to have the same shape as the slow current rise after the primary source is turned

on. It is here shown formally that the shapes of the current rise and fall are identical.

Consider first the situation after the primary current source (which is assumed to have

been on for an infinite past time) is extinguished. In this case, equation (2.18a) reduces to

_ Dm a2Nm GmNm	 Dmamims(d)exp[f z ds	 (srm
z=0.

(3.73)
az2

a t
az

aNn.,

at

On the other hand, the concentration of metastables, after the primary source is turned on,

obeys the equation



43

aNnin2 Ai	
Io n vaNm . Dm u iv2m GmNm + am e + —rn i "I azat	 az z=0 j

S(d)exp[foz ds oc i (s)]. (3.74)

However, once equilibrium conditions have been reached, the equilibrium concentration

Nequ (z) is a solution of

0=D a2N2equ GmNequ + am (1° + Dm .ym aNequDm
 Dz	 e	 az z=0 J

S(d) exp[fozds oc i (s)]. (3.75)

Subtraction of (3.74) from (3.75) yields

am	 a2m
—a7 

—Dm 
az2 Gm M + Dmamy mS(d) exp[f z ds ai(s)am

0	 az
z=0

(3.76)

where M(z,t) is defined to be Nequ (z) - Nm(z,t). This is identical to equation (3.73).

Having settled this point, a solution of equation (3.73) can be attempted.

3.2.2.2. General solution of the time-dependent diffusion equation after the primary

current is extinguished.

Substitution of Nm(z,t) = Z(z)O(t) into equation (3.73) allows its separation into

cy(t)=-0(0/T	 (3.77)

and

Z"(z) + am (z)ymS(d)exp[f() dsa i (s)1Z'(0)= co 2Z(z),	 (3.78)

where T is the variable of separation,

(02 =..2 — it11 V k Dm T (3.79)

and 1.1.2 = Gm /Dm as in section 2.2.3. Equation (3.77) has the solution
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OW = 0(0)exp(– t IT).	 (3.80)

Equation (3.78) is an eigenvalue equation which, when solved, may be expected to yield a

spectrum of decay time constants T k. The general solution Nm(z,t) will therefore be of the

form
00

N m (z,t) = I Z j (z)0 j(t)
j=1

....E B .Z •(z)expkiTi)
1

j=1

(3.81)

where the B = 0 . (0) are constants. By use of equations (2.12) (2.13) and (2.28), theJ	 J

form of the 'slow' current can be shown to be

CX)

/slow (d, t) = E15,1 (d)exp(—t/Tj )	 (3.82)
j=1

where
d

I ,j (d) = S(d) exp[io ds oc i (s)ley m D m B iZ'i (0) .	 (3.83)

The amplitudes I ,j(d) can be evaluated either from equation (3.68) or by expanding the

steady-state concentration of metastables N1(z) in the eigenfunctions Zi.

It is not easy to find closed-form solutions to equation (3.78) if the functions ai(z)

and am(z) have a non-trivial form. The equation can, however, be converted to an integral

form, from which the eigenvalues (of can be extracted by numerical methods. This is done

as follows. Firstly, the Green's function g(z, z') for equation (3.78) is

1 	 sinh(o)z)sinh(cod– coz'), z < z'
g(z,z') =	 x

w sinh(cod)	 sinh(coz') sinh(cod – coz), z > z'.
(3.84)

By Green's theorem,

d
z'

Z(z) = Z'(0)7 mS(d)f dz' g(z, z')oc m (z') exp[fo ds a i (s)].
0

(3.85)



By differentiating with respect to z and then setting z = 0, the final result

z'
sinh(cod) = inS(d)f dz' sinh(cod – coz')oc m (z')exp[fo dsa i (s)]	 (3.86)

is obtained. In the general case that co is complex-valued, this integral will also be

complex. Note that, if co is a solution, then so is -±(0*.

3.2.2.3. An approximate case.

Useful, if approximate, information about the behaviour of the eigenvalues cod of

equation (3.78) can be obtained by considering simple approximations to ai (z) and am(z).

Although equation (3.78) can be solved in closed form if the usual step-function

approximations are made, for the time being the simplest possible form will be used, which

is obtained by setting equal to zero the value of do which occurs in equations (2.4) and

(2.20). Equation (3.78) then has the solution

Z(z) = exp(y) + P cosh(coz) + Qsinh(coz) , 	 (3.87)

provided that 0) 2 # a? . If co t = a?, the solution becomes

Z(z) = {1+[exp(-2a i d)	 -z–11— }exp(a i z)–exp(–a jz).	 (3.88)d 

This special case is not further discussed here.

The coefficients P and Q in equation (3.87) may be evaluated by application of the

appropriate boundary conditions. Again, for the sake of simplicity, it is assumed that 13 in

equation (3.23) is equal to zero; in other words, it is assumed that the boundary conditions

may be approximated by Z(0) = Z(d) = 0. In that case, P = -1 and

cosh(cod) – exp(aid) 
Q =

sinh(cod)
(3.89)
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aniymS(d)=
ai + [1.[cosh(1.1d) - eaid]/sinh(µd)

012 anislow
(3.91)
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Substitution of equation (3.87) into equation (3.78) gives an alternative expression for Q:

2	 2

o [ 

 CO — ai
Q= 

amymS(d)
(3.90)

By analysis of the steady-state discharge, it can be shown that

where the total current I = 'fast fast + 'slow ('fast and /slow being the amplitudes respectively of

the fast and slow portions of the current decay).

If the parameter co is allowed to vary continuously, equations (3.89) and (3.90)

describe two different functions. To avoid confusion, let us call these Q 1 , as defined by

equation (3.89), and Q2, defined by (3.90). The allowed values or eigenvalues of co are

therefore those for which Q1 = Q2 . Alternatively, these eigenvalues can be expressed as

zeros of various functions, for example coQ i - coQ2, or 1/Q 1 - 1/Q2, depending upon

convenience. Figures 3.5 and 3.6 on the next page show, in three dimensions, the variation

across the complex plane of the function 911(co) =1/Q1 (co)-1/Q2 (co). These two figures

show, respectively, the real and imaginary parts of X. At the base of each figure is a two-

dimensional plot of the values of co for which Reg) or Img) is equal to zero. The

eigenvalues (of are those values of co at which these two sets of lines cross (see figure 4 in

Ernest 1995a).

The parameters which were used to calculate these curves are appropriate to a

discharge in argon at a reduced electric field E/N of 6.0 x10 -15 V cm2, a gas number

density N of 3.2 x 1016 cm-3 (equivalent to about 1 Torr at 300 K) and an electrode

spacing of 1 cm. Appropriate values of Dm, Gm and ai were taken from Ellis & Twiddy

(1969) and Kruithof (1940). The breakdown parameter x = /siow// has here been given the

value of 0.4. Clearly, at this value of x, all the eigenvalues cod are imaginary. From

equation (3.79), it can be seen that these correspond to real values of T. (Because T is a

function of the square of co, the eigenvalues are degenerate with respect to sign.) The

absence of other eigenvalues farther out on the complex plane can be confirmed by

examining the asymptotic forms of the real and imaginary parts ofjlf.
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Figure 3.5. The real part of the function X(co) = 1/Q 1 - 1/Q2. The dotted lines give the

values of co for which Re(!) = 0. The value of the breakdown parameter x = 'slow" is 0.4.

0

Figure 3.6. The imaginary part of the function jtf(o) = 1/Q 1 - 1/Q2, at the same value of x.

The dotted lines give the values of o for which TWA) = 0.
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An alternative way to examine the eigenvalues in this discharge regime is illustrated

in figure 3.7. Here the imaginary parts of both 1/Q 1 and 1/Q2 are plotted as functions of

Im(co) for Re(co) = 0. These functions are given by 

sin(coid) 
Im[l/Qi (0)J = 

cos (w i d) exP(ocid)
coR =0 (3.92)

(3.93)

and

Im[l/Q2((o)]= 	
a i +(cof +an/amyr„S(d)

co R =0,

where the more compact notation cop co R has been used in place of Im(co) etc. (Note that

both Re(1/Q 1 ) and Re(1/Q1 ) are equal to zero where Re(co) = 0.) The eigenvalues cod

occur where these two curves cross in figure 3.7. Clearly the number of solutions is

infinite; in the limit of large j the eigenvalues are approximated by

fir- I	 .
d

(3.94)

This implies that the decay rates of the higher order terms in equation (3.82) approach the

natural or free decay rates discussed in section 3.1.

0

0
	

87cld
Im(co)

Figure 3.7. The functions Im[l/Q i (co)] (solid line) and Im[1/Q 2(co)] (chained line) for
Re(w) = 0. Here the breakdown parameter x = 0.4.



Note that the apparent solution at w = 0 is a consequence of the fact that both Q1

and Q2 are proportional to 1/10.)1 at small values of lo.)1. A plot of the function

Re(o)Qi –0)Q2 ) which appears in figure 3.11 shows no such zero.

In the case of argon at this pressure and field, some of the eigenvalues become

complex-valued nearer to breakdown. This is illustrated in figures 3.8, 3.9 and 3.10. Here

the discharge parameters are identical to those used to calculate the previous three

diagrams, except that x has been raised to the value of 0.6. In an experiment this would

normally be achieved by changing either the electrode spacing, the pressure or the electric

field, but for simplicity it has been done here by increasing the nominal value of a mym. It

can be seen in figure 3.10 that the second minimum in Im(1/Q 1 ) along the imaginary axis

no longer intersects the other curve. The zero-value lines in figures 3.8 and 3.9 now cross

at points away from the imaginary axis. Eigenvalues (1) 2 and 0)3 have therefore ceased to

be purely imaginary and have become complex valued numbers which are symmetrically

disposed about the imaginary axis. From equation (3.79), this implies that T2 = T. Other

pairs of eigenvalues may suffer a similar fate as the breakdown parameter is further

increased, but only a finite number: this is because, even at breakdown, the trend of

equation (3.93) is toward zero for large values of Im(o)), whereas Im(1/Q 1 ) (equation

3.92) maintains a constant amplitude.

From equations (3.87) and (3.89), it can be seen that Z(w) = Z * (–co* ). Therefore,

in the event that 0) 3 = –o); as described above, equation (3.81) becomes

00

Nm (z ,t) = B1Z1 (z)exp(–t/70+ I B i Z j (z) exp(– t //T j)

j=4

-FB2Z2 (Z) exp(– ta2 ) + B3Z; (z) exp(– tin ) .	 (3.95)

It is clear that B3 must equal B2* for Nm to be real-valued. In this case, the expression for

Nm becomes
00

Nm (z ,t) = BIZ' (z) exp(–t/70+ I B iZ i (z) exp(–t/Ti)
j=4

49

+2 exp[–t Re(1/T2 )]{ Re[B2Z2 (r)] cost Im(1/T2 )] + Im[B2Z2 (r)} sink Im(1/T2 )J}. (3.96)
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Figure 3.8. Same as figure 3.5, except the breakdown parameter x = /slow" has here been

given the value of 0.6.

0

Figure 3.9. Same as figure 3.6, except that the breakdown parameter
x = /slow// has here been given the value of 0.6. A comparison with figures 3.5 and 3.6

shows that eigenvalues co t and (03 , which previously had values of about (0 + 2.25 i rcld)

and (0 + 2.75 i rcld) respectively, are now approximately equal to (±co R + 2.5 i irld).



0
	

87r/d

Im(co)

Figure 3.10. Same as figure 3.7, except that the breakdown parameter x has here been
given the value of 0.6. The second minimum of Im(1/Q 1 ) no longer dips below Im(1/Q2),
hence eigenvalues c 2 and (03 have become complex-valued, leading to an oscillatory term
in the expression for the decay of the 'slow' current.

Equation (3.96) is real-valued and therefore physically meaningful. If conditions are such

that more eigenvalues become complex, their imaginary-valued contributions to equation

(3.82) will cancel in the same way. This is because the symmetry of Imp  and Reg) with

respect to the imaginary axis means that complex eigenvalues always occur in pairs such
that co • = –co •j+l•

At the point where a particular pair of eigenvalues become degenerate, the time-

varying parts O of the corresponding two terms in equation (3.81) are both given by

0(t) = (A + Bt)exp[–t Re(1/T)],	 (3.97)

where A and B are constants. This corresponds to a critically damped, exponentially

decaying sinusoid. The amount of oscillation may be described by the value of the 'quality

factor' 4) (here given a script font to distinguish it from the quantity Q in equations 3.89

and 3.90), which is defined by

51

0
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– VRe2 (1/T) + Im2(1/T) 
 2 Re(1/T)

(3.98)

Clearly 0) is equal to 1/2 at the point of degeneracy. At greater values of the breakdown
parameter x, as the real part of co grows larger, the value of OP increases and the oscillatory
part of the decay becomes more evident. There is a limit to the size of Re(w), however.
The real and imaginary parts of 1/Q 1 are given by

and
Re (

-1) = sinh(co Rd){cosh(c) Rd)–eald cos(coid)}/A
Ql

(3.99)

Im1 = sin(cold)[cos(co id)– ea' d cosh(co RdTA,(	 (3.100)
Qi

where
A ={cosh((o Rd)cos(co id)– exp(a i d)12 +[sinh(() R d)sin(ohd)12 .	 (3.101)

The quantity 1/Q 1 therefore has singularities at co such that

cosh(co R d) = exp(a i d)	 (3.102)

and

co'	
nit,	

(3.103)

where n is an integer. Although a proof is not attempted here, it appears unlikely that
zeros in A' can occur at values of coR greater than the singular value, because both
Re(1/Q 1) and Im(1/Q 1) increase as some power of exp(coRd) at large coR. Similarly, the
imaginary part of the smallest complex zero cannot be smaller than 27c/d. The quality
factor, and therefore the amount of oscillation, will therefore have a maximum value for a

given value of the ionisation coefficient a i . A greater degree of oscillation in the 2nd and
3rd decays may therefore be expected at high pressures and fields, where ai is larger.

The coefficients Bi can be evaluated by Fourier expansion of the eigenfunctions Zi(z)
(Ernest 1995b). In these terms, the expression for Nm at t = 0 becomes
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Nm (z, 0) =	 BJCjk sin 
kitz	

(3.104)
k=1 j=1

However, Nm (z,0) can be independently expanded in a Fourier expansion (given by

equation 3.60 with t' = t). Equating the coefficients of the same sine functions gives

Ak = B .0ik
j=1

(3.105)

for each k. Approximate values of the B coefficients can be obtained by truncating this

sum and inverting the resulting matrix equation.

In the breakdown limit, the value of the first time constant T1 ought to increase

without bound. Equation (3.79) implies that coi should approach p 2 in this limit, which

means that the first eigenvalue co l must become real-valued at some point. In figures 3.5

to 3.10, co l remains imaginary in value. However, at greater values of the breakdown

parameter x, the changeover does take place. This is illustrated in figure 3.11.

0
	

(Xi

Re(co)

Figure 3.11. The function Re[wQ 1 (w) - oV2(w)] for Ina(co) = 0. Physical values of co are
restricted to the solid part of the curve.
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In this figure, the real part of coQ i - coQ2 is displayed as a function of Re(co), for Im(w) =

0. (Im(oki - wQ2) is equal to zero in this range of values of w.) The eigenvalues wk are

the zeros of this function. The same parameters were used to calculate these curves as

were used for figures 3.5 to 3.10, except x is here equal to 0.95. The first eigenvalue is

seen to be real valued under these circumstances. (Note that one of the zeros in this figure

is a 'fake' solution, corresponding to the case of w = (x i, where it has already been noted

that equation (3.87) is invalid.)

3.2.2.4. Complex components in Molnar's analysis.

It is of interest to see whether it is possible to extract complex time constants from

Molnar's analysis. Suppose the rise of slow current is approximated by keeping three terms

of equation (3.65). Equation (3.67), truncated at three terms, becomes a cubic equation,

3Ia i = 0,J
j=0

(3.106)

where the a3 	 constants. This must be solved to find the approximate values of the first
J

three time constants T1 _3 . It is well known that polynomials of order greater than one may

have complex zeros, but note also that, if T is a zero of equation (3.106), then so is T*;

complex zeros must therefore occur in conjugate pairs. Without going into details, then,

we can say that, for some values of the coefficients ai, equation (3.106) has one real-

valued zero and one conjugate pair of complex-valued zeros. Let this be the case, with

T2 = 7'; taken to be the conjugate pair. In order to evaluate the amplitudes ISM, we must

invert the system

where

b V ,,i = 
loS(d) + I so 

V k
j,k=lto3,.

\1bk;=(vk—ip-;) .

(3.107)

(3.108)

The identity T2 = 1'; implies that the column vector b k2 is the conjugate of b k3 . The matrix

of b coefficients can be made real-valued by performing some column operations. The

equation that results can be written as
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bkl

bk2 +42 = Re(bk2)

—i(bk2 —42 ) = Im(b,,)
-- 

Is,1

4,2 + 43

442 — 4,3)

10S(d) + 1,0 ._
Vk

(3.109)

Since it is clear from this that both 4,2 +4 ,3 and i(/, ,2 —43 ) must be real-valued, the

implication is that 4,2 = 43 . The expression for the rise of 'slow' current (equation 3.65)

therefore becomes

'slow (0, t) = 4 ,0 — Is,i exp(— t/TO — is,2 exP( — t/T2 ) — /s*,2 exp( — tiT;); (3.110)

once again, the imaginary parts of the complex terms cancel, leaving a real-valued

expression which includes an oscillatory term, similar to equation (3.96).

As mentioned in section 3.2.1, the amplitudes /, j in equation (3.65) generally

decrease rapidly with j. The exception to this rule occurs if a pair of eigenvalues COi and

Wj+1 are close to the point where they change from imaginary to complex values. At the

changeover point, the eigenvalues, and therefore the time constants Tj and Tj+i , become

degenerate. At this point the matrix of coefficients in equation (3.68) becomes singular. It

is reasonable to expect that the amplitudes i sj and isti+i might grow large (although of

opposite sign) in the approach to this point of degeneracy.

3.2.2.5. Discharge regimes in which complex zeros occur.

It is of interest to investigate the discharge regimes in which complex time constants

occur in the expression for the decay of current. This is, in general, a difficult task,

because equations (3.89) and (3.90), which the eigenvalues coj must jointly satisfy, are

complicated functions of many variables. The analysis is, however, much simpler in the

breakdown limit. As this limit is approached, the parameter amy,„Sd increases

monotonically; this trend causes the right-hand side of equation (3.93) to also increase for

any given value of Im(o)). The effect of this increase on the nature of the eigenvalues can

be seen in figures 3.7 and 3.10. It is clear, therefore, that complex eigenvalues will occur
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in the breakdown limit if they occur at all. At breakdown, the function G(co) = Q 1 - Q2 has

the form

(6(6)) = [o)
cosh(codba) –exP(aidba) +a. ( 2 _a?)kgsinh((odbd)

cosh(ldbd )– exp(ocidbd)

sinh(ldbd) 1
+ai (co2 –an. (3.111)

If Re(co) = 0, the real part of is also zero, and

cosh (co ldbd ) – exP(a idba)	 ( 2	 2)Im[G(co)] =	 + a i	– ai
sinh(ohdbd)

cosh(i.id) exp(aid) 
+ a; (0)? +an.+[p,

sinh(l.td)
(3.112)

Note that this equation can be couched purely in terms of the parameters will, ai/g and

(dbd being the electrode separation at breakdown). The values of the zeros of

equation (3.112) will therefore be functions of these parameters only. Now, the

parameters	 and [tdbd also offer a convenient way to display the important features of

a particular discharge environment. From equation (2.10), the breakdown separation d bd is

related to ai by

aidbd a ido +141+1/y1,	 (3.113)

where the generalised secondary coefficient y = (i(d)/oc i . The logarithm of y is a slowly

varying function of dbd; if do is relatively small, then, a plot of ai/g against liptdbd at

various values of the reduced electric field E/N should fall approximately along a straight

line for a given combination of gas and cathode material. The slope depends mainly upon

the value of (T)(d), which is closely related to the secondary coefficients y i and yni (see

equation 2.31). Hence, the greater the activity of the cathode material, the lower the slope

of the resulting line.

Plots of aih.t. against 14tdbd at different E/N are displayed in figure 3.12. Equation

(3.112) has also been analysed to determine the values of ai/I.t andlidbd at which the



x
xx

x
x

57

100.	

x

Ne(P&A) 0
Ne (B) +

Ar(P&A) 0
N2(H&W) X
Ar(J&L) A

x

xo
o

O

x O O

0	 0 +

0

O
-o

0.01
0.01

I	 I	 1111f

1
	

10

1 /p.dbd

Figure 3.12. This diagram illustrates the occurrence of oscillatory terms in the series that
describes the decay of 'slow' current. The area above and to the left of the dotted line
indicates the region where such terms occur in the breakdown limit. The plotted points
represent the electrode separation at breakdown (d bd) of a gas at a given value of ionisation
coefficient a i and diffusion parameter The parenthetised letters in the legend refer to
the source of the cltd data for that particular gas: 'P & A' stands for Penning and Addink
(1934); 'B', for Brunker (1984); 'H & W', for Haydon and Williams (1976); and 'J & L', for
Jacobs and Larocque (1946). The a 1 and ix values were obtained from the following:
Kruithof and Penning (1937) and Dielis et al (1979) (neon); Kruithof (1940) and Ellis and
Twiddy (1969) (argon); Haydon and Williams (1976) and Levron and Phelps (1978) (N2).

second and third decay time constants change from real to complex values at breakdown.

The dotted line marks the boundary between the 'real' and 'complex' regions of the graph.

Both the neon and the argon data of Penning and Addink (1934) were measured in a

chamber with an iron cathode; Haydon and Williams (1976) used a gold cathode, whereas

Brunker (1984) used one made of copper. The final data set, taken from Jacobs and

LaRocque (1946), was measured in a discharge against a barium cathode. These authors

measured the variation in breakdown voltage Vbd with pd in an argon discharge using

three different cathode materials: aluminium, magnesium and barium. Barium produced

the smallest value of Vbd at the Paschen minimum, so was presumably the material which
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had the largest secondary emission coefficients. It can be seen that only these last data lie

in the region of the graph where all the decay constants are real-valued. (This does not

necessarily imply that the results of Haydon and Williams (1976) and Brunker (1984),

both of whom used the Molnar analysis to reduce their data, are in error. The situation

even a small way from breakdown may be very different.)

3.3. Conclusion.

Two types of time-resolved experiment have been discussed in this chapter. The first

of these is the 'free decay' experiment, in which the concentrations of excited states are

allowed to decay without regeneration. Because the modelling of these decays is a

straightforward diffusion problem which has been understood for some time, only a brief

recapitulation has been presented here. However, conditions at the boundary, particularly

in the low-pressure limit, are not so well understood. In section 3.1.1 of the present

chapter, an expression was derived relating the coefficient p in the boundary condition to

the fraction R of metastable particles reflected from a boundary without quenching. This

analysis employed a more detailed model of the velocity distribution among the metastable

particles near the wall than has been incorporated in any previously published treatment.

However, the resulting expression is at odds with experiment, since it predicts that R

should be on the order of some tens of percent, whereas experimental values of this

quantity are orders of magnitude smaller (Conrad et al 1982a, b). Clearly more work, both

experimental and theoretical, needs to be done on distributions of metastables near an

absorbing boundary.

In the second type of time-resolved experiment, there is a partial regeneration of the

concentrations of excited states, which is achieved by the maintenance of a potential

difference between the electrodes after the cessation of the source of primary current. This

potential difference allows a weighted sum of the concentrations of all excited states to be

determined by measuring the current passed by the decaying discharge afterglow.

Unfortunately, the regeneration term complicates the analysis of this experiment. Molnar

(1951a) has described a treatment in which the diffusion equation was transformed to an

integral form. This author concluded that the slow decay in discharge current could be

described by an infinite sum of exponentials. A brief recapitulation of Molnar's theory was

presented in section 3.2.1. In the section following this, an alternative analysis involving

the separation of variables technique was described. Ernest has presented a similar



discussion (Ernest 1995a), in which he raised the possibility that some of the decay time

constants may become complex-valued under some discharge conditions.

It can therefore be seen that Molnar's analysis is incomplete. In particular, some of

the decay rates may become complex-valued near to breakdown, leading to the

appearance of exponentially damped sinusoidal terms in the slow decay of the discharge

current. Figure 3.12 indicates that this is likely to occur if the cathode material is not very

amenable to the ejection of secondary electrons. Some experimental results are presented

in chapter 9 that are, broadly speaking, consistent with this prediction. However, the

match is not perfect: in particular, the predicted value for the decay rate of the second

term in the sum in equation (3.65) is very different from the experimentally measured

value (see figure 9.10). The theory as described in section 3.2.2 is also mathematically

quite complicated. It is not yet clear which terms in these equations are most important.

Further work should examine whether any approximations can be made to the theory

which would allow the articulation of the physics in a simpler mathematical form.
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