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Abstract.

This work concerns the use of an optical absorption technique to measure

the concentration of metastable excited argon atoms within a 'chopped'

prebreakdown or Townsend discharge. A diode laser tuned to the argon 1s 5 - 2p9

transition at 811.5 nm was used as the light source. The absorption was measured

with a spatial resolution of less than 2 mm and a time resolution of as low as 0.1

ms. The reduced diffusion coefficient ND,„ of the 1s5 state was determined by

measurements of the decay of the discharge current in the afterglow. A value of

(1.57 ± 0.05) x 10- 18 cm- i s- 1 was returned, which is consistent with other

published values. An approximate value of the efficiency with which the 1s 5 atoms

eject secondary cathodic electrons was determined from spatially-resolved

measurements of the quasi-steady-state concentration of these atoms. The resulting

value of 85% is broadly consistent with published values. The primary ionisation

coefficient ai/N was determined at 454 Td of reduced electric field by spatially-

and time-resolved measurements of the 1s5 concentration in the first millisecond

after the discharge was switched on. The measured value of 6 x 10- 17 cm2 is about

25 % lower than the previously accepted value. Measurements were also made

from 36 to 82 Td, using just the current passed by the discharge: these values were

about 10% lower than the canonical values. The 1s5 excitation coefficient am/N

was measured at the same pressure and field using both the quasi-static technique

and the time-resolved technique, returning values of 8.0 and 7.3 x 10- 18 cm2

respectively. The only previously published data report a value of 27 x 10- 18 cm2

for this quantity.

In the accompanying theoretical sections, a boundary condition for the

metastable-particle diffusion equation is derived; the occurrence of complex

exponents in the Molnar analysis is investigated; a simple relation is derived which

describes the saturation of the absorption coefficient for a narrow-band light

source restricted to a thin beam; the electron diffusion equation is solved for the

case of a spatially extended source of cathode current, leading to useful techniques

for extracting electron transport coefficients from optical absorption

measurements; a spatially resolved model of the steady-state distribution of

metastable particles is developed; and techniques are described for the analysis of

data comprising multi-exponential decays plus noise.
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