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4. Laser perturbation of the discharge.

One of the drawbacks of the method of optical absorption is that it is impossible to

avoid perturbation of the excited state number densities by the light source. It is crucial to

determine the extent to which this occurs, for two reasons. Firstly, this affects the

relationship between the number density of these states and the amount of light absorbed.

The second reason arises because the optical 'pumping' causes the concentration of

metastables to decay at a rate which is greater than the free decay rate; the pumping rate

must therefore be known if the latter is to be determined accurately.

In this chapter the relationship between the light intensity and the pumping rate is

discussed. The analysis is broken into three parts. The energy level scheme of the argon

atom is discussed in section 4.1, with a particular emphasis upon the coupling between the

four is levels and the effect this has on the subsequent analysis. In section 4.2, the

relationship between the optical pumping rate and the laser intensity is examined.

Saturated absorption in an inhomogeneously broadened transition is discussed and a

general expression relating the absorption coefficient to the laser intensity is derived. In

section 4.2.2, this expression is modified to accommodate the highly localised nature of

the laser radiation used in the present study. It is shown that the onset of saturation of the

absorption coefficient is in each case given by an expression of the same form. The final

section addresses the increase in the rate of free decay of the concentration of metastables

due to the laser radiation. It is shown that the narrowness of the beam imposes a severe

limit upon the maximum perturbation of the decay rate.

4.1. Energy levels and collisional coupling in argon.

The purpose of this section is to demonstrate that collisional coupling between

closely spaced excited states of the argon atom can be neglected for the most part when

attempting to calculate the extent of the perturbation due to laser irradiation. This allows

the entire system of energy levels to be approximated by just three: the ground state and

the upper and lower states of the transition of interest.

A portion of the argon energy level diagram is displayed in figure 4.1. Paschen

notation has been used to label the states. The 1s 3 and 1s5 states are unable to decay to the

ground state by the emission of dipole radiation and are therefore metastable, with
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radiative lifetimes on the order of seconds (Small-Warren and Lue-Yung 1975). The other

two states are strongly coupled to the ground state and, at pressures of greater than about

1 Torr, their resonant radiation is significantly 'trapped' (Ellis and Twiddy 1969 and

Copley and Lee 1975). These two states might therefore be present in the discharge at

detectable concentrations. However, measurements of their concentrations have not been

attempted during the present study.

2p states

13 —

Energy
(eV)

kT

12 —

1s2

1s3

1s4
1s5

0-- Ground state 

Figure 4.1. The is and 2p levels of the argon atom.

From figure 4.1 it can be seen that the is states are separated by energies on the

order of three to four times kT at room temperature (k being Boltzmann's constant and T

the temperature in kelvin). The degree to which these states are coupled by collisions with

ground state atoms might therefore be expected to be small, but perhaps not negligible. It

is therefore desirable to examine the rates involved in more detail. This is done below for

three different situations: (i) the free decay in the absence of laser perturbation; (ii) the

steady-state discharge, again in the absence of laser perturbation; (iii) the steady-state

discharge, including the effects of laser perturbation.
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(4.1)

4.1.1. Free decay, no laser perturbation.

The metastable 1s 3 and 1s5 states obey the rate equations

aNi . D .v2N._ GiNi ± e i (0+ No I C jiN j , j = 2 to 5
at "	 jai

where Ni, Di, Gi and ei are respectively the concentration, diffusion coefficient, volume

quenching coefficient and rate of generation of state i, No is the concentration of ground

state atoms and NoCu is the rate at which atoms in state i are converted to state j by

collision with a ground state atom. Paschen's numbers for the is levels have been used for

the indices i and j. Equation (4.1) is identical to equation (2.14), except that the form of

the generating function Ei has been left implicit; some different symbols have also been

used, for reasons of internal consistency within the present chapter. The two resonant

states obey an equation similar to equation (4.1), except that the diffusion term must be

replaced by a term describing the quasi-diffusive escape of the resonance radiation.

Holstein (1947) showed that this relaxation mechanism could be modelled as a sum of

different decay modes. The decay rate vo of the dominant mode within an infinite parallel

plane geometry is given by
3

	

vo 	
2Tik(0)dVln[k(0)d]

where d is the separation of the planes and k(0) is the line-centre absorption coefficient.

The free decay of these levels will not be discussed further as their rates of decay are too

fast to measure with the equipment available.

The volume quenching coefficient Gi arises from a combination of a number of

processes (Phelps 1959, Ellis and Twiddy 1969) and may be expanded as

Gi = v imp + —
1

+ No 1 Cii + 4,Fi.ti jai

This equation is identical, apart from notation, to equation (3.43). The explanation of the

four terms is as follows:

(4.2)

(4.3)
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vinip	 - The rate of destruction by collision with impurity particles.

1/xi	- The rate of radiative decay to the ground state (by the electric quadrupole

or magnetic dipole mechanisms, in the case of metastable particles). These

rates are negligible (Small-Warren and Lue-Yung 1975).

NoCu	 - As in equation (4.1), this is the rate of conversion to state j by collision

with a single ground-state atom.

1N1,3Fi	- The rate of three-body reactions of the form

Ar* + Ar + Ar ---> Are + Ar + K. E.

The creation and decay channels of such dimers have been discussed by

many authors (eg. Boucique and Mortier 1970, Thonnard and Hurst 1972,

Wieme and Wieme-Lenaerts 1974, Birot et al 1975 and Wieme and

Lenaerts 1981). More recently Manzanares and Firestone (1983) have

shown that a decay mechanism involving a collisional-radiative cascade

down the vibrational levels of the excimer may be the source of first-order

term in equation (4.3), rather than an actual two-body collision.

Other mechanisms exist but they have been found to be of no importance within the

discharge regimes which were used in the present study.

The coefficients Chi and Cu can be related by use of the principle of detailed balance,

giving:

Chi gi	 - Ei
= —exp 	

Cif gi	kT

where gi and Ei are respectively the statistical weight and energy of the ith state. Values

(where known) of the Fi and Cif coefficients for the four I s states of argon are given in

tables 4.1 and 4.3; the ratios between the C1  coefficients are listed in table 4.2. These

tables can be found at the end of the chapter, on pages 94 and 95.

A detailed discussion of the influence of collisional coupling among the is levels

during the free decay can be found in Ellis and Twiddy (1969). These authors found that

the population and coefficient ratios in argon were such that the sum over CiiNi could be

neglected when state i is one of the two metastable states. Collisional transfer from the 1s4

and 1s2 states to the 1s5 or 1s3 states was found to be negligible because the

(4.4)
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concentrations of these states decreased rapidly to very small values during the free decay.

Ellis and Twiddy found the concentration N5 of the 1s5 state to be about 100 times larger

than N3 . Since the ratio between C53 and C35 is about 104, this implies that C53N5 — 10-2

C35N3 . The transfer from 1s5 to 1s 3 therefore has very little influence on the 1s3

concentration and can be neglected. The rate of transfer the other way is, of course, much

larger; it is, in fact, of the order of 12 atoms s- 1 at 1 Torr gas pressure. The minimum

possible value of v5 , the total rate of decay rate of the 1s 5 states, occurs in the present

apparatus at about this pressure and is about 90 atoms s- 1 . Therefore the transfer of atoms

from the 1s3 to the 1s5 state can be neglected, at least to first order, when calculating the

evolution of the latter.

4.1.2. Steady state, no laser perturbation.

This arrangement corresponds approximately to the experiment of Tachibana*

(1986). This author found that the ratio between the 1s 5 and 1s 3 states was approximately

the same as in the free decay case, but the concentrations of the 1s4 and 1s2 states were

much greater, although still an order of magnitude or two below the concentrations of the

metastable states. A consideration of the energy separations between the states and of

equation (4.4) indicates that significant transfer can occur at these concentrations only by

the pathways i52 -3 15 3 , i54 -3 1s5 , 15 3 -4 iS4 and 1s5 --> 1s4 . It is not possible to show

that the last two can be safely neglected, but a rigorous analysis of the expected steady-

state distributions of the 1s 2 and 1s4 states has not been attempted here in any case. The

other two processes would have manifested in Tachibana's experiment as a pressure-

dependence in the measured value of the reduced excitation coefficients a3/No and a5/No.

Tachibana measured both these coefficients over a pressure range of about 0.3 to 3 Torr

(while keeping the reduced electric field E/No constant), but found no detectable variation

within the experimental error of about 15%. Hence it can be concluded that the rates

NoC23N2 and NoC45N4 are insignificant in this regime as well.

* This author employed a laser absorption technique to measure the concentrations of excited states, but
the radiation was spread out spatially and therefore of much lower intensity than is the case in the present
study. Such weak irradiation perturbs the system very little and can, to a first approximation, be ignored.
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4.1.3. Laser perturbation of the steady-state discharge.

It has been shown above that the influence of the other ls levels upon the

concentrations of the metastable 1s3 and 1s5 states can be neglected in the absence of any

other effects, but the situation is a little different when a transition between a ls and a 2p

state is perturbed by intense laser radiation. The depletion of the lower level by optical

pumping is partially offset by radiative decay of the upper level; other is states can

complicate the picture if there is more than one significant pathway for the decay of the 2p

state. Such a situation is illustrated in figure 4.2.

Figure 4.2. Possible paths of transfer between levels and their symbols.

It was therefore necessary to show that indirect decay of the 2p atoms via other is states

could be neglected for the transitions of interest. This was done by calculating the

fractional excess 8283 in the rate of decay of the upper to the lower state due to such

'sideways' decay processes. This quantity may be approximated by the following product

of branching ratios:
A23 

X 
No C3 1 

5 2°3 — A2	 •
A3

(4.5)

The coefficient A i is here the total rate of decay (ie, radiative plus collisional) of state i.

The quantity 8283 is calculated below for each transition that was examined in the course
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of this study. Only 5 of the 30 allowed is - 2p transitions were studied.* Some of those for

which measurements were not attempted are too weak to yield a measurable absorption

signal; others are outside the tuning ranges of the available lasers.

In the following discussion, the 2p radiative branching ratios have been taken from

Shumaker and Popenoe (1967), the is collisional coupling rates from Ellis and Twiddy

(1969), the 2p collisional coupling rates from Nguyen and Sadeghi (1978) and the

lifetimes of the resonant 1s2 and 1s4 states from Lawrence (1968).

lay - 2p9. 8115 A: 

The only dipole-allowed decay of the 2p9 state is to the 1s 5 state. However, decays

to other is states can take place via collisional transitions between 2p levels. As far as the

2p9 state is concerned, the most significant result of this collisional mixing is a slight

diversion of atoms into the 1s4 state. At one Torr, about 0.6% of the 2p9 atoms decay by

this path. The proportions going to the other two is states are an order of magnitude

lower. At the same pressure, the rate of collisional transfer between 1s 4 and 1s 5 has been

determined to be less than 1000 s- 1 , whereas the total decay rate of the 1s4 state is about 3

x 104 s- 1 . The fractional excess in A21 due to collisional mixing is therefore given by

equation (4.5) as 0.017%, far smaller than the uncertainty in A21.

1s4 - 2p5 7515 A:

The electric dipole selection rules impose similar restrictions upon this transition.

Collisional transitions among 2p states lead to 0.9% of 2p 5 atoms decaying to the 1s5 state

and 0.3% to the 1s 3 state at 1 Torr. Unfortunately the available data do not allow the ratio

NoC31/A 3 to be deduced for either is 5 or 1s 3. However, since the ratio cannot be greater

than unity, the total 5253 must in any case be less than 1.2% and is therefore negligible.

1s4 - 2p7. 8104 A: 

15% of the 2p7 atoms decay to the 1s5 state and 7.5% to the 1s 3 state. Although it

is, once again, not possible to quantify the branching ratios of the 1s 5 and 1s 3 decays, most

*Although only is5 - 2p9 measurements are reported in chapter 10, it is intended to investigate some of the
other four transitions in the near future.
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of these atoms probably end up in the 1s 4 state. This is the most energetically favourable

route for the two-body collisional transition of 1s 5 ; the next nearest state, the 1s 3, lies 3.8

kT further 'uphill'. The only other significant decay mechanism for the 1s5 is via collision

with two ground state atoms to produce the excimer Are . For the 1s5 state, the rate of this

process is smaller than the two-body rate at pressures below about 1.6 Tom Similar

considerations apply to the decay of the 1s 3 state. It seems, therefore, that the effects of

collisional coupling among ls states cannot be ignored for this transition, in the absence of

any other consideration. However, the absorption experiments described here employed a

narrow beam of laser radiation. At 1 TOIT, the total rate of transfer from 1s 5 to 1s4 is 33 s-

1 and the rate from 1s 3 to 1s4 must be less than 190 s- 1 ; since these rates are less than the

respective values of D/A2 for the states (A here is roughly equal to the beam diameter of

—1 mm), atoms in these states are likely to diffuse out of the beam before transferring to

the 1s4 state. Because of this, it is considered that, for present purposes at least, collisional

interactions can be neglected for this transition as well.

113 - 2p2,172AA:

44% of the 2P2 state decays to the 1s2, 5% to the 1s4 and 18% to the 1s5 . From the

values for A 3 and NoC31 listed in table 4.3, the total 8283 may be calculated to be less than

0.16%, a negligible value.

1a2 - 2p i 7505 A:

The 2p i state is strongly coupled to the 1s 2, only 0.5% decaying by the alternative

route to the 1s4 state. The analysis ought therefore to be similar to that for the 1s 5 - 2p9

transition, except that the effect is probably even smaller because transfers from the low to

high levels are less energetically favourable than vice versa.

The conclusion of these individual analyses is that all the transitions that were

studied can be modelled as three level systems for the purposes of calculation of the laser

perturbation (within a narrow beam, at least).
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4.2. The absorption coefficient, and new results concerning saturation of the

absorption under the present experimental conditions.

4.2.0. Introduction.

In order to deduce the number densities of excited argon atoms from the amount of

light they absorb from a beam of laser radiation, it is necessary to arrive at an expression

for the absorption coefficient. There are several features of the present experimental

arrangement which complicate this undertaking. These are discussed immediately below.

(i) The is - 2p transitions in argon at about 1 Torr and 300 K are inhomogeneously

broadened. The light source used by the author is a GaAIAs semiconductor junction laser;

the bandwidths of these devices are typically in the tens of MHz (Takakura et al 1980,

Okoshi et a1 1980 and Saito and Yamamoto 1981), several orders of magnitude below the

Doppler transition width of about 1 GHz. The narrow bandwidth of the laser means that

the laser radiation does not couple to all the atoms in the state of interest with the same

strength. To see this, suppose that the centre frequency fi., of the intensity envelope 1(f) of

the laser is tuned to coincide with the centre frequency fr of the transition. Atoms in the

lower state of the transition that are neither approaching or receding from the light source

will be strongly coupled to the radiation field. Atoms moving away from the light source

at a speed I', will, however, experience a radiation field with a Doppler-shifted central

frequency f' given by

f ' = .ft, (1 – vz /c) .	 (4.6)

If their velocity is such that If' – fr I > AfH , where AfH is the homogeneously broadened

linewidth, the coupling of these atoms to the radiation field will be much weaker. A simple

calculation shows that most argon atoms may be expected to have velocities outside this

range at room temperature. A rigorous calculation of the absorption coefficient must

therefore be performed by first calculating the effect of the laser on a subset of excited

atoms with components of velocity in the direction of propagation of the radiation which

fall within a narrow interval. The net perturbation may then be deduced by integration

over all the velocity subsets.

(ii) In order to resolve the spatial structure of the distribution of absorption by

excited states, a narrow beam of radiation has been used in the present study. This factor,

together with the narrow bandwidth of the laser, means that the intensity of the radiation
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per unit frequency interval is high (possibly as much as 100 liNV Hz- 1 m-2, corresponding

to an effective temperature of 200,000 K). Saturation of the transition cannot be neglected

under these conditions. This issue is addressed with some care in the present section.

(iii) The non-uniform illumination of the discharge introduces a spatial dependence

into the rate equations which describe the distribution of the states under the influence of

the radiation. The geometry which is most convenient from an experimental point of view,

namely a beam propagating in the x direction in a discharge which has a cylindrical

symmetry about the z axis, is resistant to simple mathematical attack. For this reason, the

absorption coefficient has been calculated in the present section for two simpler models:

an infinite steady-state discharge illuminated by a uniform intensity of radiation, and the

same discharge illuminated by a thin beam of circular cross-section. The resulting

expressions are found to be identical apart from a scaling factor in the onset of saturation.

This suggests that the variations that are imposed by an awkward geometry may be of a

similar nature and are perhaps best addressed empirically.

4.2.1. Steady state, uniform discharge perturbed by spatially uniform laser light.

An expression relating the absorption coefficient to the laser intensity is derived in

this section under the assumption that none of the discharge or laser parameters has any

spatial variation. As shown above, the system of energy levels of the argon atom can be

approximated by a three level system, the levels being labelled 0 to 2 for generality. In this

scheme state 0 represents the ground state, state 1 the ls level that is being measured and

state 2 the 2p state that is coupled to state 1 by the laser radiation. It is assumed that N2

and N1 are much smaller than No, which is assumed to be constant. This is a realistic

approximation within a weak discharge where level 1 is metastable.

As mentioned in the introduction to section 4.2, it is necessary to consider separately

the effect of the radiation upon atoms in different velocity classes. If the radiation

propagates in the z direction, the rate of increase in the population of atoms with a z-

component of velocity between vz and 1,, + dvz is given by

2an.
' dv = D . V2n . + e . r(v )— Eh..n. —[n• — 5 dv'a(v' ,v )n . (v111VoCi (vz ) dvz	(4.7)at	z	 i	 i	 1	 z .	ijj	 i	 z	 zziz

j=1
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where nidvz is the number density of atoms in this velocity class, NOC1 is the rate of elastic

collisions between an atom in state i and a ground-state atom and 15(v; ,v,)dv, is the

probability that an atom with velocity between v; and v; + dvz before such a collision will

have a velocity between vz and vz + dvz after the collision. The function r is the normalised

Doppler profile
2

r(vz )= 11
2ickT 

exp 
2kT

m	 mvz

In the above expression m is the atomic weight of argon, k is Boltzmann's constant and T

the temperature. The matrix of h values is

g2—w+Gi
g1

g2
--w w4-A2

g1

where g 1 and g2 are the statistical weights of levels 1 and 2, w(vz) is the optical pumping

rate for atoms in this velocity class, G 1 is the quenching rate of the metastable level, Aii is

the transition rate between the ith and the jth level and A 2 A +=' —20 A_21 is the total decay

rate of level 2.

For the remainder of this chapter the dvz will be omitted from similar rate equations.

Before an attempt is made to solve the coupled equations implicit in equation (4.7),

some general relationships will be derived, following the usual method. The rate at which

energy is lost from the incident radiation is given by the rate of absorption minus the rate

of stimulated emission. The decrease in the total intensity I in the direction of propagation

is therefore given by

= –hf f dv[ni (vz )– n2 (
az	 g1

g2	
vz) w(vz). (4.10)

(Note that h in this equation represents Planck's constant.) Because of the spread in

atomic velocities, w(vz), the pumping rate per unit velocity interval, is given by the

convolution

(4.8)

h
A–w– A21

(4.9)



71

w(vz )= fdf I(f)B21 L [f — fo(vz)]
	

(4.11)
-00

where B21 , the Einstein coefficient for stimulated emission, is given for the case of linearly

polarised radiation incident upon a population of unaligned atoms by (Siegmann 1986)

A21 k3
B21 =

8ichc

and L is the normalised Lorentzian lineshape

L(f) = 	 4fH 
2nif 2 + (ATH/2)2 1 .

The quantity

fo( vz) = fT(1+-v--2-c

(4.12)

(4.13)

(4.13a)

is the Doppler-shifted frequency of the transition centre for atoms moving away from the

light source at speed v z, as measured in the laboratory frame of reference. The

homogeneously broadened linewidth AfH is given by

4fH = ( A21 + 211)/27c,	 (4.14)

where ri is the pressure broadening coefficient. The integral in equation (4.11) may be

approximated if the laser linewidth AfL is much narrower than the homogeneous linewidth

AfH (a reasonable assumption in the present case) giving

W(1,,) - I B21 L[fL — fo( vz)]	 (4.15)

wherek is the centre frequency of the laser line.

It was necessary to modulate the wavelength of the laser as part of the feedback

mechanism for keeping the laser wavelength near to the centre of the atomic transition

(see chapter 7 for details). However, because the frequency of modulation is two to three

orders of magnitude slower than the natural decay rates of the 1s - 2p transitions, the laser
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output wavelength may be considered to be constant to a good approximation over the

natural time scale of the transition processes.

Having arrived at an expression for the optical pumping rate for atoms with velocity

component between v z and vz + dvz, the form of the absorption coefficient k can be

deduced. Substitution of equation (4.15) into equation (4.10) gives

al 
= -kI(z)	 (4.16)

az

where

k - hfBn f dv,[.-
g2

- - ni (v z ) - n2(vz)illi
g1

- fo(vz )].	 (4.17)

4.2.1.0. The weak-field limit.

An expression for k0, the absorption coefficient in the weak radiation limit, can be

derived as follows. If the laser perturbation is small, the concentrations n 1 and n2 of states

1 and 2 per unit velocity interval may be approximated by their values when the

perturbation is zero. These values are given by

no ( vi) = Ni3O 1-(vz )	 (4.18)

where No is the total concentration of the state i in the absence of laser perturbation. If

the homogeneous linewidth AfH is significantly smaller than the Doppler linewidth AM,

then the concentrations n 1 and n2 in equation (4.17) will be slowly varying functions of v z

over the interval where the lineshape L is significant; this is the case within the ranges of

pressure and temperature used in the present experiments. Equation (4.17) may therefore

be approximated in the small-signal limit by

where

ko – hB21c ANor(v,,o)

AN . -
g2

 N1 - N2
gl

(4.19)

(4.20)

and
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= fc(t, —1) .vz,0	 (4.21)

The optical cross-section a = k/ ON provides a measure of the strength of the absorption

which is independent of the concentration of states 1 or 2. Small-signal values of a for the

lines of interest are listed in table 4.4 on page 95.

As mentioned in the introduction to section 4.2, saturation of the transition is likely

to be of importance under the present experimental conditions because of the narrowness

of the laser radiation in both spatial dimension and frequency (1.6 mm diameter and 10

MHz respectively). Many authors have discussed saturation of gain or absorption in an

inhomogeneously broadened transition in the context of laser resonators (eg Bennett 1961,

SzOke and Javan 1963, Lamb 1964, Gyorffy et al 1968, Cordover and Bonczyk 1969,

Greenstein 1972 and Shirley 1973). The physical situation inside a laser resonator is,

however, somewhat more complicated than is the case in the simple absorption experiment

described here. This is because, in a laser resonator, both the radiation and the population

of emitting and absorbing atoms are inside a (nearly) closed feedback loop and must

therefore arrive at a mutual equilibrium. A workable theory of saturation of gain in a laser

resonator must, for example, treat the variation in refractive index of the gas that is

induced by the radiation field as well as the induced changes in the absorption coefficient,

together with the effects these parameters have upon the radiation field. The theoretical

treatments of the above authors are thus very complete, but unnecessarily complicated for

use in the present case. On the other hand, most textbooks on spectroscopy contain an

elementary discussion of saturated absorption in an inhomogeneously broadened

transition. A typical discussion of the saturation relation at this level is reproduced in

section 4.2.1.1. These 'textbook' treatments tend to suffer from the opposite problem,

being a little too simple to be useable in a broad range of situations. In particular, few

textbooks mention the effect of collisional redistribution of atoms among velocity classes

(also known as 'cross-relaxation'), which may not be negligible at the pressures used in the

experiments described here. Because the available theory seems to fall between two stools,

as it were, an attempt has been made in section 4.2.1.2 to extend the simple 'textbook'

theory to the case where the effects of collisional redistribution are not negligible.



4.2.1.1. Saturation of absorption in the absence of cross-relaxation.

In this limit, the C, in equation (4.7) can be set to zero. In a steady state, uniform

discharge, the time and space derivatives are zero as well. The result can be expressed in

matrix form as
2I ki n./ = e iF, i= 1, 2.	 (4.22)

j=1

The remainder of the analysis of this limiting case follows Yariv (1976) fairly closely. The

population inversion parameter An can be found by solving equation (4.22), giving

where

and 5 is the branching ratio

An = 
AN

°
F 

(4.23)
1+w1-2/A21

C2=8[1+
g2 A201 (4.24)
gi Gi

8._ A21	 (4.25)
A2

Insertion of equations (4.23), (4.12) and (4.13) into equation (4.17) gives

k . ANoA2.14Aiii 1 	 F(v)dv, 
167E2	+ x 2T (  l idA 1-1  ) 2	 •+  CA5T/Affi 

-- ( vz — vz,0)2	 2	 16n2hc

(4.26)

If, as has already been assumed, the Doppler width AfD is much larger than the

homogeneous linewidth AfH, the Gaussian function F is slowly varying compared to the

remainder of the integrand and may therefore be moved outside the integral without

significant error in the result. The integral that remains is of the form

where a is a constant. The solution to this integral is given in standard tables as it/a. The

final result is therefore

74



where

is the saturation intensity.

ko 
k = 

-‘11+ ///sat

/sa = 
4m2hcAffi 

t	 ta3T
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(4.27)

(4.28)

4.2.1.2. Saturation of absorption in the case of significant cross-relaxation.

Consider now the case in which the cross-relaxation of atoms between velocity

classes is not negligible. It is difficult to judge the quantitative effects of cross-relaxation.

On the one hand, a consideration of the differential scattering cross-sections for elastic

collisions between metastable excited atoms and their ground states (eg Brutschy and

Haberland 1979, Beyer and Haberland 1984 and Feron et al 1989) seems to indicate that

the probability density sa(vz ,v;) in equation (4.7) has a form that is sharply peaked about

vZ = vi' . On the other hand, the results of measurements of Doppler-free lineshapes in a

number of gases (eg Smith and Hansch 1971, Keil et al 1973, Brechignac et al 1977 and

1978 and Otieno 1978) indicate that such lineshapes can be modelled quite well by a sum

of a narrow Lorentzian and a broad, low Gaussian background. The Gaussian component

is attributed to 'strong' or thermalising collisions, in other words, those in which the impact

parameter is small. The natural rate of decay contributes to the width of the Lorentzian

component, but this is broadened both by 'phase-interruption' effects as well as by 'weak'

velocity-changing collisions. The contribution from the latter can be distinguished by

mixed-gas experiments.

An exact treatment of the argon is - 2p lineshapes will not be attempted here.

Instead, the limiting case in which o' is much wider than the 'hole' in n i (vz) will be

examined.

Let the half width at half maximum of szy(vz) be denoted by Avz,c = cAfc1 h . The

assumption that Afc << AfH is implicit in the analysis of the preceding sub-section. In the

opposite limit, Afc >> AfH, with the effect that the integrand in equation (4.7) is

approximately constant over the range of vz in which atoms are significantly perturbed by

the laser radiation. A further simplification may be made if, at the same time, Afc <<

If this is the case, the approximation
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Ci f dv; G(v;,vz ) ni (v;) – Cini,o(vz )	 (4.29)

may be used without significant error. Figure 4.3 shows qualitatively how a and n 1 might

appear if the above assumptions were true.

1,, (arbitrary units).

Figure 4.3. A diagram showing, schematically, the relationship between the unperturbed,
thermally-broadened distribution of atoms N 101-(v) (dotted line), the laser-perturbed
distribution n i (v) (solid line) and the collisional redistribution cross-section a(v) which
is assumed in section 4.2.1.2 (chained line). The width of the 'hole' in n i (vz) is
approximately equal to clh times the homogeneous linewidth 61H , provided the laser
linewidth Afi, is much smaller than Afll . The respective half-widths at half-maximum of
the unperturbed profile, the cross-section and the hole are here in the (arbitrarily chosen)
ratio 20:5:1.

The rate equations in this case can be written as

2

Ilin • =E•1- + NoCi (no –n;).
Y J	 i

j=1

(4.30)

This can be inverted and solved for An, giving



Avon
An =

1+ wf2c/A21

g2 A20 ± NOC2 

f2C = 5C[ 1 +

A21 
5C = 

A2
	 r, •2 I V 0 2

where

and
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(4.31)

(4.32)

(4.33)

g1 Gi + NoCi

The remainder of the analysis is the same as that described above for the limit of negligible

collisional redistribution. The final expression for the absorption coefficient is identical to

equation (4.27), except that the saturation intensity is found by replacing c in equation

(4.28) by flc.

In the light of the above result, it seems likely that the effect of a slight collisional

redistribution among states is merely to alter the value of the parameter / sat, while the

functional dependence between k and I remains unchanged. The correct value for /sat can

then be found by fitting a function of the form (1 + ///sat )-Y2 to experimental data. The

variation in /sat due to cross-relaxation may not be small. This is because the collision rate

NoCi is likely to be of significant size at working pressures of around 1 Torr. An estimate

of its value can be obtained from the approximation

-172
NoCi - 

Xi
(4.34)

where Xi here is the mean free path between elastic collisions and 7 is the maxwellian

mean speed (equation 3.12). By use of equation (3.20), equation (4.34) can be written

V
2

NoC, - 2D1 (4.35)

For the 1s5 state at 1 Toff, NoC i works out to be about 1.6 x 10 7 s- 1 , which is of similar

size to the strongest of the 1s-2p transition rates. Values of NoC 2 are likely to be of similar

size.
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4.2.2. Steady-state, uniform discharge perturbed by a narrow beam.

In this section, the onset of saturation of the absorption coefficient will be examined

for the case of a uniform field of metastable atoms which is perturbed by a narrow beam of

laser radiation. The beam will be assumed to be circular in cross-section and of uniform

intensity within the beam radius Rb (this is a good approximation to the actual intensity

distribution - see section 7.2.2.1). In this case, the contribution of diffusion can no longer

be neglected. If the beam is circular as described above, and provided the rate of decrease

in the beam intensity in the direction of propagation is small, then cylindrical symmetry

about the beam axis can be assumed. The spatial dependence of all quantities may then be

expressed in terms of a radial coordinate r measured from beam centre. The equation

describing the steady-state concentrations of states 1 and 2 per unit velocity interval can

be obtained as a special case of equation (4.7):

2Di a ( r ani ) + eir I kin./ 0.

r ar	 arj=i
(4.36)

The Laplacian in the diffusion term DiV2ni has here been expressed in cylindrical polar

coordinates, with the z and 4) derivatives set to zero.

The first step in the solution of these coupled differential equations is to convert

them to a homogeneous form. This can be done by the introduction of auxiliary functions

mi. Outside the beam, where the optical pumping rate w is equal to zero, these are defined

such that
mi(r,vz) = N or( yz )– ni (r,vz ).	 (4.37)

The quantities N1,0 and N2,0 are the concentrations of states 1 and 2 in the absence of laser

perturbation, and are given by

and

Ni 0 = 61 A21e2

G1 A2 —1

N2,0 = 62 / A2 •

(4.38)

(4.39)

Use of equation (4.37) allows equation (4.36) to be expressed in the homogeneous form



1 a ( arn•	 2
—(r— 1 )= y, kut,iimi

r ar	 ar j=1

(4.40)
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where
[G1 /D1 	- A2i/Dil

hoot =	 •
0	 A2 /D2

(4.41)

The equations in m 1 and m2 can be uncoupled by use of an eigenvalue method. Let a

matrix Q be chosen such that
Q-ihoutQ = A

where A is a diagonal matrix of the eigenvalues X i and A2 of h'out . Substitution of

y = Q im into equation (4.40) allows it to be transformed to the uncoupled form

-
1 2- (r---y ) = Ay .
r ar ar

Equation (4.43) has solutions

(4.42)

(4.43)

yi (r)= bil0 (rj.7)+ci K0(rA	 (4.44)

where bi and ci are constants and In(x) and 1C(x) are the hyperbolic Bessel functions of

order n. However, 10(x) is unbounded as x increases; the value of bi must therefore be zero

for the solution to be physically reasonable. The eigenvalues are easily shown to be

and

2 Gi
X 1 = li i = Di

2 A2
X2 = 112 = n •

.2

(4.45)

(4.46)

The matrix of eigenvectors Q is therefore

- 

[1	 W2 /Dl
Q 

	 1,

[0	 -1
(4.47)

where 8 is the branching ratio defined in equation (4.25). The solutions are thus found to

be



g2
w)/Di —(A21 + w)/Di

gl

(A2 + w)/D2
hin =

g2w

g1 D2

(4.56)
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n1 (r,vz)= Nor — ciKo (pqr) — 8D2C2	 K0 (12r)
	 (4.48)

and
n2 (r,v) = N2 0r c2 Ko0120 •

	 (4.49)

A similar approach may be pursued within the beam of radiation. Here the auxiliary

functions m i have the somewhat more complicated form

ml (r , = Mi,or/A— n1(r , vz)	 (4.50)

m2 (I. z) M2,ori0 —n2 ( r, z)	 (4.51)

where
M1,0 = (A2 + W)Ei +(A21 W)E2	 (4.52)

g	 g2M2,0 '2 
we1 (1	 (4.53)

gl	 gl

2
A = GI (A2 + w) + A20 — w.	 (4.54)

gl

Equation (4.36) can be expressed in terms of these quantities as

where h'in is

1a ( am
r—)= n• m

r Dr Dr
(4.55)

and

The remainder of the analysis in the domain r < Rb is similar to that used above to

solve the equations in the region r > Rb . The expressions for the eigenvalues of Win are

complicated and there appears to be little to be gained by reproducing them in full.

However, in the limit that the optical pumping rate w << A 2, the eigenvalues may be

approximated by



and

,	 2 Gi + g2 w0- – 8)/g1 
Aq = 11 3 ~	 Di

2 A2
A 2 1"-- 11 4 ~ n •

.2,
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(4.57)

(4.58)

The matrix of eigenvectors Q becomes, in this approximation,

—1
Q	

g2 w
g1 A2_

Hence the solutions are found to be

mni (r,v,)—  l '°r + c310(113r)+c4-
8D
D12 /0 (g4r)A 

and

n2(r,v,)— m2,0r g2 W
+ -- c3/0 (µ3r)– C4/0 (t4r).

A	 gl A2

OD2

Di

1
(4.59)

(4.60)

(4.61)

Boundary conditions are necessary in order to evaluate the four constants cn . One

can derive two of the boundary equations by equating the values of n i(Rb,v,) found by use

of equations (4.60) and (4.61) to the values given by equations (4.48) and (4.49); the

remaining conditions can be obtained by performing a similar exercise with the derivatives

andar . The inversion of these four equations to obtain c„ is straightforward in principle,

but the equations are ill conditioned and it is therefore difficult in practice to invert them

with accuracy. The cause of this problem is the extreme values of Io(p 4Rb) and Ko(NRb)•

For large arguments (Abramowitz and Stegun 1972),

and

exp(x)
In(x)—

NifiTy

Kn (x) – exp(-4. 
n

11-2-T .

(4.62)

(4.63)

Since the values of .t2Rb and 1.t4Rb may be expected to be of the order of 100 times larger

than 1.1 1Rb and µ3R6, it can be seen that the 2nd and 3rd terms on the right hand side of



d1--- ci,

d2 = c2 exp(-11 2 Rb ) 	 TC
211,2Rb

d3 = C3

exp(–.t4Rb) d4 = -- C4 
27C1.14Rb

and

(4.65)

(4.66)

(4.67)

(4.68)
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equations (4.60) and (4.61) differ by a factor of about 10 5°. Similar considerations apply

to equations (4.48) and (4.49). A better way to proceed is to define new constants d o such

that

Equations (4.48), (4.49), (4.60) and (4.61) can be expressed in these terms as

Nor – diKo (	
OD2	 r

I-lir) – d2	 exP[112(Rb -- r)b 
R.,

r
u

\

Di
ni (r,v,) –	 (4.69)

and

M10F 
muA

	 OD
	  3, 0 6.1 30+ u4 ---

2
expk14 (r –RAIRb

A	 Di	 "	 r
r < Rb 

\ 1 Rb
N20r + d2 exP[1-2( Rb — r4 ,r

m2,or g2 w	 I \ 	 Rb

A 
+—

gi A2
d3/0 u.t 3r) – d4 exp[4 4 (r – Rb )j\I

r  

n2(r,v,)–
r> Rb

r < Rb.

(4.70)

The resulting boundary equations are much better conditioned.

The relationship between the absorption coefficient and the laser intensity can now

be derived. Because the experiment measures the decrease in intensity of the whole beam

of radiation, it is desirable to calculate the average absorption coefficient. The first step in

this derivation is to integrate all the quantities in equation (4.36) across the beam profile

and then divide the result by icR i ; . The resulting equation is

2Di ani

r=Rb

2

+ e iF – E hin ,ii ni = 0
j=1

(4.71)
Rb ar

r> Rb



Rb
2

ni =—T dr r ni(v,,r)
Rb 0

(4.72)

diP11(10-1110 + E i r - I hin,1 j ni = 0
Rb j=1

2D1	
2

(4.73)

where
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is the average number density per unit vz interval of state i within the beam. The spatial

derivatives in equation (4.71) are a little awkward to deal with because of the relatively

large contribution by the d2 and d4 terms in equations (4.69) and (4.70). These terms arise

because of the short lifetime of the state 2 atoms. As these emerge from within the beam

where their population is maintained at an inflated level, they decay quickly to states 0 and

1. The large outward gradient in the concentration of state 2 at the beam boundary is

therefore reflected in the large inward gradient of state 1. These flows of atoms are

essentially circular in nature and can be shown to, in effect, cancel each other out.

However, their presence complicates the derivation and it is better to dispense with them

from the start. This can be done very simply by extending the limit of integration to a

radius R I; which is slightly larger than Rb . Because of the rapidly varying exponential

terms in equations (4.69) and (4.70), the d2 and d4 contributions to the spatial derivatives

in equation (4.71) become negligible, although the other terms are altered by only a very

small amount. In this approximation, the average concentrations n 1 and n2 are solutions

of the equations

and
2E 2r -	hin,2j n i =0.	 (4.74)

j=1

These equations can be inverted in a similar fashion to the treatment of section 4.2.1,

since d1 can be obtained by the method discussed in the first part of the present sub-

section. Examples of the distribution n 1 (r) calculated using this method are shown as the

solid lines on figure 4.4 on the following page. However, a much neater result is obtained

if a further approximation is made. Note firstly that n i (r) is described to an excellent

approximation, for r> , by

ni ( r , = NoF	 (4.75)



Nor
1 (4.76)

Ko(p.iRb)

nl kr, vz )=
—

KoOliRb) 
K06114N1,0F  

r < Rb

r > Rb.
(4.77)
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0	 Rb	 Radius r from beam centre.

Figure 4.4. The distribution of argon 1s 5 atoms, at 1 Torr total gas pressure, under the
influence of a beam of radiation of radius R b = 1 mm (this is about 30% larger than the
size of beam which was actually used). The laser radiation is tuned to the 1s 5 -
transition. The concentrations are plotted for two different values of the optical pumping
rates w, namely Iv/An = 0.2% and wl	 = 2%. The solid lines represent n 1 , the actual
concentration per unit interval of the z component of atomic velocity; the chained lines
represent the approximation n1 discussed in the text..

If the value of n 1 which is obtained from this equation at r = Rb is equated to the average

value n1 within the beam, then the following approximate expression for d1 may be

obtained:

This approximation is equivalent to the replacement of n i (r,v,) by

Two examples of the approximation nf are compared with n 1 in figure 4.4. Equation

(4.73) becomes, in this approximation,
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g2 )— /	 ,

PiNi,or + El l' — p i +Gi +—w ni +021 + w)n2 = 0,(

	

	 (4.78)
gi.

where
2D1xiK1(tiRb)

=	 (4.79)Pt RbK0 ([t i Rb ) •

The inversion of equations (4.74) and (4.78) gives

— g2 — — 	 Ano
An =—nt —n2 =	 (4.80)

gi.	 1+ wf2b/A21

where
g2  A2  ).

il b 41+	 (4.81)
g i Gt +P1

Clearly, the absorption coefficient in this case is once again given by a relation of the form

of equation (4.27), but with /sat now obtained by the substitution of C2b for C2 in equation

(4.28). Because Qb is smaller than CI, the result in qualitative terms is that, all other things

being equal, the onset of saturation is delayed when the radiation is restricted to a thin

beam. This makes physical sense, because there is a large reservoir of unperturbed atoms

outside the beam, some of which diffuse into the beam, which partially counteracts the

depletion by laser radiation of the atoms in state 1.

4.3. Modifications to the free-decay theory.

In this section, a relationship is derived between the average optical pumping rate

W , given by

1-
' 

dv, {g2 Ti (V, Vg i — T2, (VAW(V,
W=

g21\71 igl — A72
(4.82)

and the rate of free decay of the metastable population after the discharge is extinguished.

The free decay experiment yields useful results only by virtue of the fact that the

time dependence of the decay is experimentally observed to be approximated quite well by

a single exponential. Models of the process reproduce this feature only if the model
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discharge is confined within a cavity. The concentration of metastable particles in the

model can then be expanded in a series of spatial eigenmodes of the cavity which decay

exponentially at different rates, with the fundamental mode having the longest time

constant and therefore soon coming to dominance. An unbounded discharge model such

as is described in section 4.2 will not reproduce these features. For this reason, the free

decay experiment was analysed in section 3.1.2 in the context of a discharge confined

between two infinite parallel planes, which is, in effect, a one-dimensional cavity. When

attempting to calculate the change in the rate of free decay of the concentration of

metastable particles due to the laser, the spatial non-uniformity of the beam poses

problems. The one-dimensional approximation is no longer appropriate. A cylindrical

cavity might be used, with the beam of laser radiation crossing the cavity in a direction

parallel to its flat faces, but the eigenmodes of such a cavity may be difficult to express in a

closed form. For this reason, the analysis in the present section is performed within a

model in which the discharge is confined to a cylindrical cavity (of radius R E) which is

traversed by a circular beam (of radius R b) along the axis of symmetry. This model

reproduces (somewhat crudely) the geometry of the actual discharge chamber while

remaining reasonably easy to analyse. It is hoped that the qualitative results at least will

translate to the actual discharge geometry.

Outside the beam, the number density N1 obeys the following equation:

	 =
at

(4.83)

Here it is assumed that the contribution from the N2 state falls to a negligible value shortly

after the termination of the discharge. (This is a questionable assumption for the region

just outside the beam boundary, but this issue is addressed below.) This equation can be

solved in a closed cavity by the method of separation of variables, the particular solution

being of the form
00

N1 (r, t) = I anSn (r) exp(–vnt)
	

(4.84)
n=1

where vn is the variable of separation and the functions Sn are eigenfunctions of the spatial

equation

D1V2Sn = ( G1 – Vn ) Sn •
	 (4.85)
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Formally, equation (4.84) should be expressed as a double sum over separate z- and

r-direction indices. (There is no 0 dependence because the geometry has full rotational

symmetry about the z-axis.) However, because the fundamental eigenmode persists

longest in the afterglow and is therefore of most interest for the present discussion, the

single index n has, for simplicity, been used to number both types of modes.

In a cavity of cylindrical symmetry, equation (4.85) can be separated again into the

following pair of ordinary differential equations:

and

d2Z 	 n7c)2,
= - 	 L

dz 2	d

_1 d X(
(r-=-- )+ k 2X =0

r dr dr	 n

(4.86)

(4.87)

where d is the electrode separation and

2 Vn — Gi ( nn) 2
k n =

D1	d ) .
(4.88)

The general solution to equation (4.83) is therefore

m (r, t) = Ian exp(—vnt) sin( i-Y---1[Jo(knr) + bnY0 (knr)1	 (4.89)
n=1	 d

where Jo(x) and Y0(x) are the Bessel functions of order zero. If the gas pressure is such

that the factor p in equation (3.5) can be neglected, the concentration N1 (r,z,t) is zero at

the physical boundaries of the cavity. The conditions N1 (r, 0, t) = Ail (r, d, t) = 0 have

already been used to reduce the Z n functions from the general form

Z = acos(niczld)+csin(nnzld)	 (4.90)

to the pure sine terms in equation (4.89). Two further constraints are needed to evaluate

the constants bn and kn. One of these is supplied by the radial boundary condition
Ni (RE ,z,t)= 0, giving
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bn = – Jo (Icn RE )/Y0 (knRE );	 (4.91)

the other must be found at the edge of the beam.

Within the beam of radiation, the concentration of state 2 cannot be neglected, since

it is kept at a significant level by optical pumping. The relevant rate equations are

and

= DiV2Ni 4—g2 W + N + (W + A2ON 2
gi

aN2

at =D2v2N2+LwN 
(w + A )hr

gl	 1	 • —2v2.

(4.92)

(4.93)

These coupled partial differential equations can be resolved into a set of coupled ordinary

DEs if it is assumed that the dependence of N1 and N2 upon t and z is the same; in other

words, that

N1(r, z, t) = X i (r)Z(z)T (t)	 (4.94)

and

N2 (r, z, t) = X2 (r)Z(z)T (t).	 (4.95)

Substitution of these expressions into equations (4.92) and (4.93) allows these to be

separated into

—
dT 

= –v T
dt	 n

d2 Z _ I nit)2 z
dz 2	d)

(Di d r dXi _ 2g- W – Di k 2 X i +(w + A21 )X2 = 0r dr	 dr	 gi

(4.96)

(4.97)

(4.98)

and
D2 d dX2 ) g2[

147– + A2 — v, + D2 (n7t/d) 2 ]X2 = .	 (4.99)r dr r dr	 gl

The mean values
2 Rb

Xi = --2-	 dr r X i (r)	 (4.100)
Rb °



obey the equations

and

2D1 	 ( g2 
D Xi kRb )—	 W —Dikn Yi + (TV + A2 j3C2 = 0
Rb 	 gl

2D2	 g2 -- [—
Rb X2' (Rb ) -I- gl wx i — w+ A2 — V n i-D2 (n7c/d)72 = 0.

Once again, the rapid turnover of state 2 atoms in the vicinity of the beam edge can be

neglected by the expedient of extending the range of the integration in equation (4.100) a

little beyond the beam boundary. This allows us to neglect the spatial derivative in

equation (4.102) and also resolves the concern expressed earlier about the validity of

equation (4.89) near the beam boundary. In the limit that the mean optical pumping rate

W is much less than either A2 or A 21 , equations (4.101) and (4.102) therefore become
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and

2D1
D XARb) — 25-2-"W — Dik2 Y1 ± A213(2 =0
Rb	 gl

g2 rjv A 3(
rr ill = 2.,k 2,

gl

(4.103)

(4.104)

where X1 is now clearly identified with the slope of equation (4.89) at r = Rb. From these

equations, it is easy to deduce the final boundary condition

= Rb [ g
2

	 _ 5) _ Di kn liv i .	 (4.105)
2D1 gl

In the previous section, an approximate expression for the mean absorption

coefficient was derived by equating the value of n i (Rb) obtained from a formula valid

outside the beam to the mean value of n 1 within the beam. In terms of the quantities in the

present section, this is equivalent to the assumption that N l (Rb) as given by equation

(4.89) is equal to N i . If this approximation is retained, it can be shown by the use of

equations (4.89) and (4.91) that kn is a solution of the transcendental equation

aNi

ar 
r--=Rb

2D1k„	 .10(knRb)Yo(knRE)—Jo(knRE)Yo(knRb)
. (4.106)

Rb [g2 W(1 — 8)/gi — Dik,i ] Jo (knRE ) 171 (knRb ) — Ji (knRb )Yo(knRE )



Once kn has been approximated, the decay constants v n can be found by the inversion of

equation (4.88).

Limiting values of kn can be obtained as follows. In the absence of optical pumping,

the whole discharge volume is described by equation (4.89); the bn must therefore equal

zero to avoid a singularity at r= 0. It is easily seen that k„,,, in, the minimum value of k,„

must be equal to QR b, where C„ is the nth zero of the Bessel function J0(x). In the

opposite limit, W --> oc, and therefore N1 —> g 1 N2 /g2 inside the beam. Since N2 is always

much less than N1,0 because of the rapid decay of state 2, a good approximation to this

condition is N1 ---> 0. In this case the equation in kn becomes

JO (kn,maxRb ) YO (kn,max RE ) = JO (kn,max RE ) YO ( kn,max Rb ) •
	 (4.107)

In figure 4.5, ki ikLmin is shown as a function of laser intensity I. It can be seen that,

whereas the perturbation saturates for quite small values of I, the maximum perturbation is

less than 25%.

The mean optical pumping rate W is related to the mean absorption coefficient k by

— 1aXW =  T 

hcAN

From equation (4.80), AN is given by

— Ilv, ) dv,
AN = AN° f 	 z	 .

1+ wf2b/i121

(4.108)

(4.109)

This may be re-arranged into the form

90

AN = AN0 1— a
—

F(vz) dv,
(4.110) 

\ 2
— 1,, ,0 ) + a+b



k1

kl,min.
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Figure 4.5. The increase in the parameter k with laser intensity. The dashed line indicates
the asymptotic value. The transition parameters used to calculate the solid curve are those
of the argon 1s5 - 2p9 transition at pressure of 1 Torr. The beam radius Rb and the
electrode radius Re were taken to be 0.1 cm and 3 cm respectively. A value of 100 s -1 was
assumed for G 1 , the quenching rate of the metastable level; the diffusion coefficients D of
both states were assigned the same value of 50 cm 2 s- 1 . These discharge parameters are
also appropriate for argon at 1 TOM

where

a= Qb'TAfH 
167c2hc

(4.111)

and

b=(
k Affi  )2T

2
(4.112)

Once again the Lorentzian part of the integrand is a much more rapidly varying function

than the Gaussian F under the present range of experimental conditions; equation (4.110)

may therefore be approximated by moving F outside the integral sign. The remaining

integral is the same one that was discussed in section 4.2.1.1. The solution is therefore

AN = AN° [1
obi kTr(vz ,o ) 

111 + ///„t
(4.113)
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where Ise is obtained, once again, by replacing Q in equation (4.28) by Qb. Note that, by

use of the appropriate value of Q, this expression, like that for k, can be used in any of the

three absorption situations which have been discussed in section 4.2.

4.4. Conclusion.

The basic purpose of this chapter has been to evaluate the effect of resonant laser

radiation upon the discharge and to calculate the relationship between the amount of light

absorbed and the number densities of absorbing atoms. Several factors complicate the

analysis, including the relatively close spacing of both the ls and 2p manifolds in argon,

the high intensity of the laser radiation and the narrow beam profile.

It was shown in section 4.1.1. that (unlike the case of neon) the collisional

interaction between the argon ls levels is too weak to have a significant effect upon the

free decay rates; each is state decays at its characteristic rate. However, the 2p levels are

much more closely spaced and interactions between these levels must be taken into

account when analysing the laser absorption experiment. This is particularly important for

those transitions, such as the 1s 5 - 2p9, in which the radiative branching ratio is very close

to 1. Collisional mixing of the upper level with other 2p states may then have a large

influence upon the onset of saturation.

Saturation of the absorption coefficient occurs when the incident light is intense

enough to deplete the population of lower-state atoms by a significant amount. Saturation

was investigated in section 4.2 and was shown to be significant at the intensities of

irradiation that were used in the present experiments. The reason for this is the

inhomogeneous broadening of the argon ls - 2p transitions at the pressures and

temperatures used in the experiment. The narrow-band laser radiation therefore interacts

only with those atoms within a small velocity subclass, these atoms being rapidly 'pumped'

to the higher level and thus bleaching the transition. Two factors offset this situation by

increasing the effective pool of atoms with which the laser radiation is able to interact. The

first is the effect of velocity-changing collisions, which ensure there is a constant exchange

of atoms between the velocity subclasses. The second factor is the diffusion of fresh is

atoms into the beam of radiation. A rigorous calculation of the absorption coefficient k as

a function of laser intensity I would necessarily include both these effects. Although such a

calculation was felt to be beyond the scope of the present study (calculation of the effects
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of velocity-changing collisions being particularly intractable), each factor was examined

separately and at a relatively unsophisticated level of approximation. The important result

of this investigation is that the functional form of the variation of k with I is the same in

each case; one might expect, therefore, that the true relation would preserve this form.

This was found experimentally to be the case (see figures 10.3 and 10.4 on pages 192 and

193). This result allows the absorption to be predicted at any laser intensity following a

preliminary measurement to establish the value of the saturation parameter /sat.

It is desirable to calculate the amount of perturbation by the laser of the rates of free

decay of the excited states. Although an exact solution could not be found for the

experimental geometry which was used by the author, an approximate analysis was

performed. This indicated that the maximum amount of perturbation was unlikely to be

large, being of the order of 20 s- 1 for 1s5 states in 1 Torr of argon within a cylindrical

discharge chamber of radius 3 cm and electrode separation 1 cm. This is of the order of

the contribution from impurities and can be compensated by similar means.

Tables are given on the following pages which list various quantities associated with

the argon is levels and also with some of the allowed is - 2p transitions.



1S3 1s4 1s5

State j

4.50 x 10-2 3.04 x 10-4 2.50 x 10-51S2

State i 1S3

1S4

1S5

8.80 x 10-3 2.74 x 10-4

3.24 x 10-2

Table 4.1. Characteristics of the argon 1s levels.

J E (eV) Natural

lifetime (sec) a

'Trapped life-

time ; (sec)c

F
(10-32 cm6 s-1)d

1s2 1 11.84 2.15 x 10-9 1.51 x 10-4 0.2

1s3 0 11.73 44.9b - 1.0

1s4 1 11.63 8.6 x 10-9 1.49 x 104 1.2

1s5 2 11.56 55.9b - 1.2

Notes: 
a: From Lawrence (1968), except where otherwise indicated.

b: From Small-Warren and Lue-Yung (1975).

c: Calculated at a pressure of 1 Torr, a temperature of 300K and an electrode separation of 1 cm
by use of equation (4.2).

d: These are rough averages of results compiled by Millet et al (1981).

Table 4.2. The ratios Cii/Cii (calculated by use of equation (4.4)).
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coioa

State j

1s2 is3

< 3700

Total

— 104?

1s4 1s5 FiNj, b littb

1s2 7 7 2 6700

< 167State i

is4

is3 < 167

7 < 1.47

< 167 10 < 177

990 12 6700 – 7700

< .0461s5 7 32 12 44

Table 4.3. Rates of destruction of the argon ls levels at 1 Torr, 300 K. Units are s-1.
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Notes: 
a: Taken from Ellis and Twiddy (1969). Note, however, that these first-order rates are much

larger at pressures over 100 Ton (Manzanares and Firestone 1983).

b: From table 4.1.

Table 4.4. Some characteristics of selected ls - 2p transitions in argon.

Transition: X (nm)

A21

(106 s-1)a 8b 7

2i

(MHz)c

a

(10-15 m2)
'sat (V M-2)

1s5 - 2p9 811.531 33.1 0.988 7/5 14 1.124 8.7 x 10-3

is4 - 2p5 751.465 40.2 0.982 1/3 27 1.084 6.3

154 - 2p7 810.369 25.0 0.715 1 27 0.845 0.13

1s3 - 2p2 772.421 11.7 0.332 3 15 0.343 9.1 x 104

1s2 - 2p 1 750.384 44.5 0.995 1/3 109 1.194 63

Notes: 
a: Taken from Wiese et al (1989).

b: The total decay rate used in the calculation of the branching ratios includes the effects of
collisional redistribution among 2p states. Rates of collisional distribution were calculated from
the data of Nguyen and Sadeghi (1978) using a pressure of 1 Ton.

c: Calculated at 1 Ton and 300 K. Values of 211/N o were taken from Tachibana et al (1982),
except for the 1s 2 value, for which was calculated from the data of Vallee et al (1976). These
widths should be taken to include the contribution due to 'weak' velocity-changing collisions.
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5. Theoretical background to optical measurements of electron transport properties

in a discharge with a non-point source of current.

In very pure argon, a significant proportion of the total ionisation is due to the

production of secondary electrons at the cathode by atoms in the metastable 1s3 and 1s5

states (Engstrom and Huxford 1940, Molnar 1951b). Two ways of viewing this

contribution were examined in chapter 3. On the one hand, the presence of metastable

atoms can be considered as something of a nuisance which interferes with measurements

of the primary and secondary ionisation coefficients ai and yi , however, because they

themselves make an important contribution to the discharge process, metastables are also

worthy of study in their own right. In the present chapter, a third aspect is discussed: the

possibility of using metastable excited states as a means to assay the number density and

average energy of the electrons in the discharge. The rate of increase in the concentration

of excited states at the commencement of the discharge can be shown to be approximately

proportional to the local density of electric current in the discharge (see section 5.5

below). Measurement of the variation of this rate throughout the discharge can therefore

be used as a way of determining some of the electron transport parameters. Because the

generation rate is also a function of the mean energy of the electrons, the possibility also

exists of using measurements of the rate to probe the extent of the electron non-

equilibrium region.

Electron transport parameters have been successfully determined by measuring the

light emitted by excited atoms or molecules in a pre-breakdown discharge (Blevin and

Fletcher 1992). Although it is, no doubt, possible to apply this method to the argon

discharge, it was decided to attempt the direct measurement of number densities of excited

particles by means of optical absorption. The two methods have complementary

advantages and disadvantages. Detection of light emission involves the direct

measurement of a signal against a minimal background, and does not itself perturb the

discharge; on the other hand, it is easier to obtain spatial resolution and state specificity

within the context of an absorption experiment. Also, it is easier to determine absolute

values of the concentrations of excited states, which are necessary to determine the state

excitation coefficient a m, by measuring the amount of light the atoms absorb.

In order to analyse either absorption or emission measurements, it is necessary to

know the relationship between the distribution of electrons and the electron transport

parameters. Previous authors (eg Lucas 1964 and 1965, Huxley 1972) calculated number
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density profiles of electrons in a variety of situations; for various reasons, none of these

treatments is applicable to the present experiment. The purpose of this chapter is to

provide this required theoretical background.

The theory given below represents a compromise between two conflicting aims: to

make the theory as complete as possible while retaining a degree of mathematical

simplicity. Many approximations have been made, for example, in the treatment of the

secondary current. This approach is justified in the final section, where it is shown that

useful information about the transport parameters can be gained from an analysis that is

independent of the distribution and size of the cathode current.

5.1. Properties of the Hankel transform.

The Hankel transform is used in this chapter to solve the electron continuity

equation. This transform is defined by

00

X[f(r) :r -->	 = f f(r)./0 (iir)r dr
	 (5.1)

0

where J„(x) is the Bessel function of order n. This transform is used because it possesses

the following advantages peculiar to the present experiment. Firstly, note that the total

amount x of light absorbed from a thin beam which is parallel to the x axis (see figure 3.1

on page 23 for the geometry) is related to the absorption coefficient k by

ic(y, z) = J dx k(x,y,z).	 (5.2)

If the concentration of excited states has cylindrical symmetry, k will be a function of r and

z alone. The total absorption lc can, in this case, be shown to be given by the Abel

transform of k(r,z) (Bracewell 1965):

x(y, z) = d[k(r , Z): -

(5.3)



However, the Hankel and Abel transforms are related as follows (Sneddon 1972):

Alf (r): r –> ri] = '1:{esaf[f(r): r .–> x] .. x –9 ii}	 (5.4)

where ,3°-- is the Fourier cosine transform. There are two ways in which experimental

results may be compared with theoretical expressions found by using the Hankel

transform. The Hankel-transformed solutions may be compared directly with experiment

by first performing a Fourier cosine inversion on these solutions; Alternatively, the

experimental values can be Fourier transformed (after interpolation if necessary) then

compared directly with theory. The use of the Hankel transform therefore allows one to

use the Fourier transform rather than an Abel inversion in the reduction of experimental

data. This is desirable on computational grounds.

Another advantage of the Hankel transform arises as follows. The number density of

electrons in the discharge can be described by the double convolution

n(x,y,z) = .1 dr f dx' n(x' ,y' ,O)p(x – x',y – y' ,z)	 (5.5)

where n is here (and in the rest of the chapter) the number density of electrons and p is the

point spread function. Because the point spread function carries all the information about

the electron transport parameters, it would be desirable to be able to deconvolve this

function from the cathode current, which may not be well determined. The Hankel

transform allows this to be done as follows. Note firstly that both n and p possess

cylindrical symmetry, and can therefore be expressed purely in terms of radial and axial

coordinates. In these terms, equation (5.5) becomes

n(x,y,z) = .1 dy' f dy ' n(r' ,O)p(r",z),	 (5.6)

where r'2 = x'2 + y'2 and r"2 = (x –42 + (y – y') 2 . The absorption experiment returns

information about the number density integrated in the x direction, which is given by

N(y,z) = .1 dr f dx'n(r', 0)5 dx p(r",z) .	 (5.7)
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This is equivalent to the single convolution
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N(y, z) = 5 dy' d[n(r' , z): r' ---> y]d[p(r" , z):r" --> y - y'].	 (5.8)

Application of the Fourier cosine transform to both sides gives

Yc-[N(y,z):y, 	 —> ii]= Z[n(r' , z): r' –> ii]X[p(r" , z): r" -> rib	 (5.9)

where equation (5.4) has also been used. A technique of data reduction that makes use of

this property is described in section 5.5 below.

5.2. Discharge geometry and processes.

The geometry of the discharge volume, depicted in figure 3.1, page 23, is the same

as that used to model the free decay of the concentration of metastables in chapter 3. In

the centre of one of the electrodes is a circular quartz window, of radius Rw, which is

coated with a semi-transparent layer of gold. The primary cathode current is generated

photoelectrically by an external source of ultraviolet light. This light passes through the

window, about half being absorbed by the gold film, the rest impinging upon the opposite

electrode. Either electrode can therefore be used as the cathode, depending on the polarity

of the potential difference between the electrodes. The masking effect of the window

ensures that the primary current j prin,(r) from either electrode is given to a good

approximation by the step-function form

{ iprim
/prim ( r) =

0,

r < R,

r> Rw .
(5.10)

Additional electrons are generated in the discharge by collision between drifting

electrons and gas atoms at a rate equal to wa i n , where w is the electron drift velocity and

a i is Townsend's primary ionization coefficient. Secondary electrons may also be ejected

from the cathode by the incidence of ions, excited atoms or resonant photons; however, as

discussed in chapter 2 section 2.2, the contribution made by excited states or photons can

be either subtracted or neglected.
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5.3. The electron diffusion equation; boundary conditions.

The Boltzmann equation for the density of electron states can be approximated in

the hydrodynamic regime by a second order continuity equation in the electron density

n(r) (eg Skullerud 1974, Kumar et al 1980):

D: VVn – w • V' n + woc i n = L
n

at
(5.11)

where D is the electron diffusion tensor. If the discharge has cylindrical symmetry, the

steady state form of equation (5.11) can be expressed in cylindrical polar coordinates as

Dal(a2n
+ t

 an	 a2n	 an
+DL —T –w—+ wain = 0

ar	 r ar	 az	 az
(5.12)

where the notation D =Dxx = Dyy and DL = Dz, has been used to conform with previous

work, and the off-diagonal elements of D are assumed to be zero (Huxley & Crompton

1974). The radial diffusion coefficient D has been distinguished from DL as it has been

well established that they are unequal (eg Wagner et al 1967).

Lowke et al. (1977) and Skullerud (1974) showed that the continuity equation

becomes a poor approximation to the motion of the electron swarm within boundary

layers which extend for a distance of about Dlw from the electrodes. It might therefore

seem that equation (5.12) is unusable under any circumstances because sensible boundary

conditions cannot be imposed. However, it has been found that solutions of equation

(5.12) conform closely in shape to experimentally determined electron distributions away

from the electrode boundary layers (see e.g. Blevin et a!. 1976a, 1976b, 1978). It

therefore seems likely that the main effect of these layers is to make it impossible to use

equation (5.12) to determine with accuracy the amplitude of the number density function.

The emphasis in this chapter has therefore been placed upon the determination of transport

parameters by the use of ratios in, rather than absolute values of, the electron number

density.

The next problem to address is the selection of physically reasonable boundary

conditions. The author will follow the practice of previous authors (Huxley 1972, Lucas

1965) in adopting, at the anode, the boundary condition n(d) = 0 (where d is the electrode
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separation). Whereas the anode might be expected to exert a purely local perturbation

upon the electron distribution, the effect of the cathode is more fundamental. This is

because the streaming of electrons from cathode to anode ensures that a large fraction of

the electrons making up the bulk of the discharge have come straight from the cathode.

The electron distribution throughout the entire discharge volume thus depends crucially on

the distribution of current leaving the cathode. These electrons are ejected from the

cathode surface with a highly non-thermal velocity distribution, their average energy being

generally lower than the equilibrium value (Haydon and Williams 1973b). The lower

energy of the electrons in the cathode layer results in a variation in the ionization rate ai

within this layer. A method of accounting for this variation is examined in section 5.4.2.

Another problem at the cathode is that the current at a small distance from this

electrode is less than the current of electrons actually ejected from its surface. This is

because some of the ejected electrons are immediately reflected by gas molecules back

into the surface. Now, the total current density j(r,z) in the equilibrium region far from the

electrodes is
j(r, z) = e[w n(r , z) – DV n]	 (5.13)

where e is the electronic charge; the z component of the current density is therefore given

by

jz(r,z) = e[w n(r , z) – 	 —
an

].
az

(5.14)

(Here it has been assumed that wz = w.) It is tempting to identify the backscattered

electrons with the diffusive part of h in equation (5.14), and therefore to equate the

ejected current density to the drift current density e w n(r, , 0). This was essentially the

approach adopted by Huxley (1972), who used a dipole source of electrons at the centre

of the cathode. This type of source ensured that n(r, , 0) = 0 for r > 0, which agrees with

the commonly accepted idea that n becomes zero at an absorbing surface. This approach

cannot be used if the current source is extended across the cathode, however, because

there may then be places on the cathode where an/azl z=0 is negative; equation (5.14) then

gives a value of h(r,O) which is larger than the ejected current density. To avoid this

impossibility, the cathode boundary condition adopted throughout the present work is

obtained by equating the value of h(r,O) given by equation (5.14) to some constant

fraction of the flux of electrons ejected from the cathode. In other words, let
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i z (r, 0) = q[jpfiin (r)+ ei i ch(r,0)+ ei,,O n, (r, 0)1	 (5.15)

where q is the constant of proportionality, jprim (r) is the density of the primary current

and the symbols 7 and 4 (r,0) represent, respectively, the electron ejection efficiency and

flux into the cathode of ions (subscript 'i') and metastable atoms (subscript 'm'). However,

in the present chapter, attention is directed at fast processes rather than those arising from

the diffusion of metastable particles. As is shown in section 5.5, the concentration of

metastable atoms is proportional to that of the electrons only within a timescale which is

too short for significant diffusion of neutral particles to occur. The contribution made by

metastable-ejected secondary electrons to the total current is therefore neglected in the

ensuing analysis.

The Hankel transform can only be applied to equation (5.12) if the discharge space

is unbounded in the radial direction. The results of the present chapter are therefore only

applicable to a real discharge between parallel planar electrodes if the concentration of

electrons falls to an insignificant value at the boundary of the electrodes. The conditions

under which this occurs are discussed further in chapter 6.

5.4. A new method of solving the diffusion equation with an extended source of

current.

5.4.1. General solution.

For discharge regimes where the electron number density at the electrode edges is

negligible, the discharge may be modelled by a space bounded by infinite plane electrodes,

but with the primary current restricted to a circularly symmetrical region concentric with

the origin of coordinates. Solutions using this model have been found for a point source of

primary current (Huxley 1972), but none have been proposed for an extended current

source. Such a solution is developed in this section.

In the above geometry, the zero-order Hankel transform defined by equation (5.1)

can be used to solve equation (5.12). Although it is generally difficult to back-transform

the solutions analytically to obtain closed-form expressions for n(r,z), this can be done

numerically if desired.



The transformed steady-state electron distribution N(ri, z) = X[n(r, ,z):r -3 11]

obeys the differential equation

where

and

a2N 2x aN [4. 2 u 2 (i)]N 0	 (5.16)
az2 	 az

X = w/2DL 	(5.17)

u2	 2‘,2 _ 22 a1 ri2D/DL	 (5.18)

There are two possibilities: either u 2 (0) > 0 or u2 (0) 0. The first case only will be

considered here, since X >> 2a 1 in most discharge regimes of interest. In this case the

general solution to equation (5.16) is

N(i, z) = A(T) exp[( X – u)z] + B(n) expR X + u)z]. 	 (5.19)

Application of the electrode boundary conditions described in Section 5.3 gives the

particular solution

where

and

z) =  r)Ll(i i '3(01))1  lexpRX — u)z] exp[(X + u) z – 2ud]}	 (5.20)e	 (5.

o) = x[h (r, 0): r --->	 (5.21)

13(T) = X + u – (X – u) exp(-2ud).	 (5.22)

The electron distribution can be found by back-transforming, ie

00

n(r, z) = f N(n, z) ( T1 r) T1 di	 (5.23)
0

In the pre-breakdown regime, most of the cathode current j z(r ,0) will be

concentrated within the window area of radius R w . This is because the current within this

area arises from both primary and secondary contributions, whereas the current density at

greater radius is due only to secondary sources. The function j z(r ,0) may therefore be
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expected to have a shape that is peaked at r = 0, decreasing asymptotically to zero as

r 00. The width of this function at half maximum will be of the order of R. Recall that

the space-bandwidth product, found by multiplying the respective half-maximum widths of

a function and its Fourier transform, is approximately equal to 27c. Because the Hankel-

transformed cathode current (ri, 0) represents a radial 'slice' through the two-dimensional

Fourier transform of h(r,O) (Sneddon 1972), one might therefore expect the amplitude of

C(rI, 0) to be negligible at values of rl much greater than 27c/R,, . A good approximation to

the solution n(r,z) may therefore be obtained by truncating the integral in equation (5.23)

at some value if > 270, . Equation (5.23) could then be integrated numerically using a

discrete Hankel transform.

An example of a solution is shown in figure 5.1, on the following page.

It is possible to further manipulate equation (5.20) so that it is only necessary to

have a priori knowledge of the distribution of primary current. The first step in this

procedure is to consider the flux of ions onto the cathode. This is easy to calculate if the

radial diffusion of the ions can be neglected. Consider a cloud of ions originating at a point

source on the anode. The radial spread of this cloud may be estimated by calculating the

mean radial displacement lil of the ions. McDaniel (1964b) gives, as the ratio between

and the electrode separation d,
— 0.172 

d NIT7
(5.25)

where V is the potential difference between the electrodes. Clearly the sideways diffusion

of ions can be neglected for values of V larger than about 5 volts. Hence we may write

013%(r1,0) = wa i f N(ti, z) dz

22t.agi, 0) {2u
e(k2 _ u2)	 exP[(X — u)d] —1 .

(5.26)

(5.27)

where (Di is here the transformed cathodic ion flux density. Equation (5.27), when inserted

into the Hankel transform of equation (5.15), allows the reformulation of equation (5.20)

as
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0	 Rw	 RE

Radius from centre of anode.

Figure 5.1. A comparison between exact (solid line) and approximate (dashed line)
distributions of current at the anode. The exact solution was obtained by a numerical
Hankel inversion of equation (5.20), using the algorithm of Siegman (1977); the gap in
the curve near the y axis is an artifact of this algorithm. The approximate solution is that
given by equation (5.51). (In both cases, electron concentrations were converted to current
densities by the use of equation (5.14).) For the sake of the example, secondary processes
were neglected and the primary current was taken to have the step-function form given in
equation (5.10). The transport parameters used are similar to those measured by Townsend
and Bailey (1922), Kruithof (1940) and Nakamura and Kurachi (1988) for a discharge in
argon at a reduced electric field E/N of 20 Td. (1 Td equals 10- 17 V cm2 .) An electrode
separation of 2.5 cm and a pressure of 10 Torr were assumed. The values used for R, and
RE were, respectively, 1 and 3 cm.

where

and

N(Thz) = qS ( 11)eppriiion( 11, 0) lexpRk —	 — exp{(k + u)z	 (5.28)u)z (5.

prim (fl, 0) = /-t'[ipr im (r): r --->	 (5.29)

1 	 {
1
 2qkaiyi  [2u 

expRk —u)d]-1]}.	 (5.30)
Sen)	 k2 — 2 p

If u(n) = 2 for any S(r) becomes, for that value of
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1

S(i) = {1 	 [(2X4+1)exp(-2X,d) –11} .
2X.

(5.31)

In the case that the primary current is generated by the backlighting of a circular

window, as described in section 5.2, jprim (r) will have the form given in equation (5.10).

The Hankel transform of this function is

prim (ii, 0) = .iprimRwJi ( T1Rw )/T1 .	(5.32)

Note that S as given by equation (5.30) is singular if

2qXoui  {2u r
expL(X – u)di– = 1.u2 p (5.33)

S can be shown to be non-singular for all r at electrode separations d less than some value

dbd; at this separation, the singularity occurs at = 0. No solution exists at this separation

because the inverse transform in equation (5.23) does not converge in this case. This

singularity corresponds to the electrical breakdown of the gas.

5.4.2. Effects of the variation of a i near the cathode.

As mentioned in section 5.3 above, the effective ionization coefficient may vary in

the cathode non-equilibrium layer. An analytical solution is possible if the step-function

approximation given in equation (2.4) is used, albeit at the expense of greater

mathematical complexity. The solution N then becomes

BNexp[(X, – u')z] + C(i) exp[(7. +	 z < do

N(T1, z) = A(n) x
	

(5.34)

exp[(X.– u)d–exp[(X,+ u)z – 	 z > do

where
(02 = + i2D/DL (5.35)
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The coefficients A, B and C can be evaluated by appropriate use of the boundary

conditions at z = 0, do and d. When secondary current is included, an expression with the

same general form as equation (5.28) is obtained. The parameter S' that has the same role

as the S in equation (5.28) is given by

where

and

S'(i) = [1 
2qXa  

W(n)
R(1)

13'0'0 = B(ii) (A.,+u1+ C(ii) (X– u')

(5.36)

(5.37)

W(1) = 2u exp[(A – u)d] –I(X + u) – (X –u) exp{-2u(d – do )j} exp[(X – Odd . (5.38)

In figure 5.2, three distributions of anode current are plotted. The transport

parameters used here are similar to those measured by Blevin et al (1976b and 1978) for a

discharge in hydrogen at 200 Td and 0.5 Torr. Hydrogen is used instead of argon in this

example because the cathode non-equilibrium layer is relatively large in hydrogen. Folkard

and Haydon (1971a, b) measured the true thickness d6 and the effective thickness do of

this layer to be about 1.6 cm and 0.6 cm respectively at the above values of electric field

and pressure. An electrode separation of 2.5 cm has been used in the present example, the

secondary ionization coefficient yi being arbitrarily set to one half of the value required to

produce electrical breakdown of the gas at this distance. Values of 1 and 3 cm were used

for R, and RE.

The solid line in figure 5.2 represents the distribution of anode current calculated by

using the step-function approximation for a i , with do given its correct value of 0.6 cm.

The dotted line is the solution obtained using the cruder approximation that do = 0. The

two curves have been normalised to the same total anode current, but are clearly different

in shape. However, most of this difference arises from the spread of the discharge across

the cathode as the proportion of secondary to primary current increases in the approach to

breakdown. In fact the error in the shape of the do = 0 solution can be largely corrected by

using an effective value of yi scaled so that the ratio between the total primary cathode

current and the total secondary cathode current is the same for the two cases. This can be

achieved by setting S(0) equal to S'(0). A fair approximation to this condition can be
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C.)

a

a)  

0
	

Rw	 RE

Radius from centre of anode.

Figure 5.2. A comparison between various models of the anode current distribution in a
hydrogen discharge at 200 Td and 0.5 Tom The solid line was calculated by assuming
that do in equation (2.4) is equal to 0.6 cm; the dashed line is the result obtained by use of
the simpler but cruder approximation do = 0. This approximation was retained when
calculating the dotted curve, but an effective value of the secondary coefficient was
obtained by using equation (5.39). All curves were normalised to the same total anode
current.

obtained by neglecting the influence of longitudinal diffusion, giving a value for the

effective coefficient	 of
exp(a i d—a i do)— 1

Yi = 71 	
exp(oc i d) —1	 •

(5.39)

A third solution was calculated, using the (simpler) do = 0 analysis, but with an effective

y fi calculated using equation (5.39). When the resulting current density is plotted,

normalised again to the same value of total anode current as the solution with do = 0.6 cm,

these two curves vary by less than 1%.
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Note that the parameters necessary to apply equation (5.39) can be independently

calculated by measurements of the total current passed by the discharge at varying d (see,

for example, Haydon and Williams 1976).

5.4.3. Approximate solutions.

Equation (5.18) can be rewritten as

N 	 112DU2	= 110 (1+  2
u0 DL

where the shorthand uo = u(0) has been used. Expanding u(l) in terms of 1 gives

11
2 D 

u(i) = uo +	 + 0014).
2u0DL

This series converges provided that

ii<uo 
IDL

D

(5.40)

(5.41)

(5.42)

The transformed number density N given by equation (5.20) may therefore be

approximated at small values of 1 by

where

z) Cerl, 0) Zo (z) exp
( Ti2Dz 

eDLI3o	 2u0DL

Zo(z)= expRA, —uo)d—exp[(k+uo)z —2u0d].

(5.43)

(5.44)

In section 5.4.1 it was shown that N becomes negligible at values of 1 greater than 2n/Rw.

Equation (5.43) can, therefore, be used in place of equation (5.20), provided that

27E	 11 DL
— <140
R,	 D

(5.45)

Use of the assumption made in section 5.4.1 that A, >> 2a i changes this condition to



110

wRw >	 (5.46)

This condition is satisfied by many monatomic and diatomic gases at values of Rw of

around 1 cm, if the pressure is greater than about 1 Torr.

The solution of equation (5.43) is obtained formally by a reverse transform:

11 

0

2Dz 
n(r,z) 4(z) C(n, 0) exp 	 (5.47)

eDLI3o 0	 2uDL 
)4 (110 11 di.

In the small signal limit,h(r,O) has the step function form described by equations (5.10)

and (5.24). The Hankel transform of this current distribution is given in equation (5.32). If

(11,0) has this form, the right hand side of equation (5.47) can be expressed in terms of a

tabulated function. The insertion of equation (5.32) into equation (5.47) and the use of the

replacements

u°DL R,„2,X2 = (5.48)
2zD

u
0DL 2

(r)
y2	

=	 (5.49)
2zD

and
zD	 2

t
2 

= (5.50)
2u0 DL

produces

qj
P 

rimZo (z)
n(r,z)— 

00

2xf exp(—t 2 )J0 [2y(r)t]/1 (2xt) dt .
0	

] (5.51)
eDLPO

The term in square brackets is the function x 2 -177F(x,y) described by Luke (1962b) and

references therein. It is tabulated as P(x15,y,5) in Masters (1955).

A plot of the anode current obtained using equation (5.51) is compared in figure 5.1

with the exact solution derived in section 5.4.1. The same transport parameters (ie, argon

at 20 Td, 10 Ton) were used. Even though the inequality (5.46) is only marginally obeyed

under these circumstances, the two curves can be seen to agree well, indicating that the

approximation given in equation (5.47) is a valid one.
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5.5. New techniques of data reduction.

The experiment uses a 'chopped' ultraviolet light source to generate bursts of

primary current. As mentioned in the introduction to this chapter, changes in the number

density of excited states were monitored by measuring the optical absorption integrated

along a path through the discharge. The number density n i of the jth excited state obeys a

diffusion equation of the form (see chapter 2.2.2)

and=	n •
 wa j (r ,t)n(r) + D •V 2 n • —

at	
J	 J	

'I •
(5.52)

where a . is the total rate of electronic excitation, D• is the diffusion coefficient and • the

lifetime of the state. The time dependence of the excitation rate arises from cascaded

contributions from states of higher energy (Fletcher and Reid 1980). Provided that the

maximum lifetime ti of these states is significantly shorter than 'I f, an intermediate time

scale < t < T i can be defined in which the rate of increase of n j is given approximately by

any
wa • (r) n(r)

at
(5.53)

Within this intermediate time scale, the rate of rise i(x,z) of the total optical absorption

along a line parallel to the y axis will therefore be given by

1 c/I
z) =	 = wa fai (r)n(r) dy

I dt
-00

(5.54)

where a is the absorption cross-section. In deriving this expression it has been assumed

that the absorber is optically thin and that the light is monochromatic and tuned to a

transition of the jth excited state. The value of ai depends on the mean energy of the

electrons. The conditions under which this is approximately spatially invariant have been

discussed in section 5.3. Where this invariance holds, it follows that

k(x , z) a 1n(r) dy.	 (5.55)



From the identity given in equation (5.4),

Yc [k(x,z):x —> Ti] a N(ri, z)	 (5.56)

The Hankel-transformed electron number density N can therefore be approximated by

sampling K at several values of x and then applying a discrete Fourier transform. Let the

function G be defined as

Yc[k(x,	 x	 71]	 N ( 11, zi) 
G(n) = 	 „

Y kc i(x,z2 ):x —>	 Nkr1,z2) •
(5.57)

Use of the approximation in equation (5.43) shows that

G(i) expX. — uo	 D12 j(z1 — z2 )1.	 (5.58)
2DLuo

The parameters A, - uo and DIDLuo can therefore be determined by evaluating G from

measurements of K at two values of z and then fitting a Gaussian to the result. These

parameters can be cast in a more familiar form by use of equation (5.18). This gives

X.—uo = X(141— 4a iDdw);	 (5.59)

for a iDL << w this reduces to

In the same limit,

Note that

—u0 oc i (i +	 /w).

D 	 2D (1+ 2ociDL 

DLuo w	 w )

(5.60)

(5.61)

00

K(0, z) = 2wa i af N(1, z) dn.	 (5.62)

The parameter /40 can therefore be estimated by fitting the integral in this equation to

samples of k taken near the anode.

112
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It can therefore be seen that the techniques described above permit the

determination of ai and the ratios w/D L and D/DL in a discharge in which the distribution

and size of the cathode current are unknown. However, it does not appear to be possible

to deduce the value of w using steady-state measurements.
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