Bergmann, Allen and Birdsell:

Patterns of Ecogeographic Adaptation in Aboriginal Australians.

Patricia Lindsell

A thesis submitted for the degree of Doctor of Philosophy of the University of New England, August 2001

ABSTRACT

The major focus of this thesis is an assessment of the degree to which human body form has been shaped by adaptation to climate. In the 19th Century Bergmann (1847) and Allen (1877) observed regularities between ambient temperature and body size and shape. These regularities are thought to relate to thermoregulation and have become known as Bergmann's and Allen's rules. They are also termed "ecogeographic" rules.

The applicability of these ecogeographic rules to humans will be examined using anthropometric data of Aboriginal Australians collected by Joseph Birdsell in the 1930s and 1950s. Birdsell observed that the Australian Aborigines were not an homogeneous people and explained their variation as being due to three morphologically distinct waves of migrants. This thesis represents a reinterpretation of his data within an adaptive paradigm.

The analytical methodology used herein is based primarily on correlation. This course was adopted in order to make the results of this thesis comparable with those of previous research.

The results of this study have found evidence for Bergmann's and Allen's rules in Australian populations. Overall, it was found that Aboriginal people living in warmer climates were more linear, both in terms of body breadth and in the relative length of the distal limb segments, whilst those living in cooler climates were stockier, with shortened distal limb segments. Failures of these "rules" appear to be related to recent population movements within Australia.

Ecogeographic clines were also observed in cranio-facial morphology, however many were related to body size variation. The results support the hypothesis that nasal volume is increased where air temperatures are lower and there is a need for inspired air to be warmed and moistened. This study also supports the theory that a relatively broad nose may facilitate heat loss. The theory that relatively narrow noses are an adaptation to low atmospheric moisture, by itself, is not supported in this study.

There is evidence for consistent ecogeographic clines in body proportions in populations worldwide. This suggests that the identification of differences of body proportions, among and between hominid species, should be an indicator of the climate in which they, or their ancestors, evolved.

ACKNOWLEDGMENTS

This thesis was written with the help and support of many people and I wish to thank them all without reservation.

First and foremost to Peter Brown, my principal supervisor. Thank you for suggesting that the Birdsell collection may make a suitable basis for a thesis. I thank you also for your endless, generous support and technical advice, and for your monumental patience.

To Philip Jones of the South Australian Museum for allowing me access to the Birdsell collection and to Kate Alport and Margaret Amon for their assistance during the early stages of my research. Thanks also to the Birdsell Trust and the South Australian Museum for providing some financial support.

To my parents Ken and Joan for their love, interest and support. Also to my sister Frances for proofing some of the drafts – a feat above and beyond the call of familial duty.

To Röslein Birdsell for her interest and her hospitality.

Finally to Joseph Birdsell whose 60 years of scholarship and research made this thesis possible.

Table of Contents

	Page
ABSTRACT	i
ACKNOWLEDGMENTS	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	x
LIST OF FIGURES	xvi
SECTION 1: INTRODUCTION	1
CHAPTER 1: OBJECTIVES AND STRUCTURE	2
1.1 INTRODUCTION AND ASSESSMENT OF VALUE	2
1.2 THEORETICAL BASIS AND SOME DEFINITIONS	
1.3 AIMS OF THIS THESIS	
1.5 LIMITATIONS	
1.6 THESIS STRUCTURE	
SECTION II: CONTEXT	6
CHAPTER 2: HUMAN HISTORY AND ECOLOGY IN AUSTRALIA.	7
2.1 INTRODUCTION	7
2.2 THE AUSTRALIAN ENVIRONMENT	7
2.2.1 Present Geography and Climate	7
2.2.2 Flora and Fauna	
2.2.3 Climate Change in the Quaternary	
2.2.4 Human Ecology in Australia	
2.3 EARLY OCCUPATION HISTORY	
2.3.1 Introduction	
2.3.2 Indigenous History	
2.3.3 Theories on Aboriginal Origins	
2.3.3.1 Dating the occupation: Archaeological evidence	
2.3.3.2 Dating the occupation: Fossil evidence	
2.3.3.3 Aboriginal Affinities in Time and Space	
CHAPTER 3: LITERATURE REVIEW	
3.1 INTRODUCTION	
3.2 JOSEPH B. BIRDSELL	
3.2.1 Expeditions and Research	
3.2.2 Birdsell and Ecogeographic Rules	
3.3 CLIMATIC SELECTION: A REVIEW OF THE LITERATURE	
3.3.1 Historical Context	

3.3.2 Ecogeographic Rules	36
3.3.2.1 Bergmann's and Allen's Rules	37
3.3.2.2 How are the rules thought to operate?	38
3.3.3 Empirical and Experimental Studies on Non-Human animals	39
3.3.3.1 Introduction	39
3.3.3.2 Empirical studies	43
3.3.3.3 Experimental studies in non-human animals	43
3.3.3.1 Testing for Bergmann's Rule	44
3.3.3.2 Testing for Allen's rule	45
3.3.3.3 Testing for the cold-engineered face	46
3.3.4 Empirical and Experimental Studies on Humans	47
3.3.4.1 Introduction	47
3.3.4.2 Conceptual studies	47
3.3.4.3 Ecogeographic Studies: Whole Body	50
3.3.4.3.1 Clinal and Statistical Studies on Worldwide Population Sampl	es 50
3.3.4.3.2 Clinal and statistical studies on regional population samples	57
Americas	57
Sub-Saharan Africa	61
Europe and the Mediterranean	64
Asia	66
Australia	67
3.3.4.4 Ecogeographic Studies: Head and Face	69
3.3.4.4.1 Introduction	69
3.3.4.4.2 Ecogeographic studies of nasal and facial shape	69
Conceptual studies, and studies using worldwide samples	69
Regional Studies: the Americas	73
Africa	74
Europe and the Mediterranean	75
Australia	77
3.3.4.4.3 Ecogeographic studies of the cranial shape	82
3.3.4.5 Experimental Studies: Humans	87
3.3.4.5.1 Introduction	87
3.3.4.5.2 Experimental studies on temperature tolerance with reference	to
body composition and morphology.	87
Heat Stress	87
Cold Stress	90
Experimental studies on temperature adaptation in Australian Aborigin	es 94
3.3.4.5.3 Experimental studies on temperature tolerance with reference	to
the morphology of the head and face	95
3.3.5 Are Bergmann's and Allen's Rules Thermoregulatory in Nature?	96
3.3.6 The Ecogeographic Rules and Human Evolution	101
3.4 SUMMARY OF SECTION 2	109

iv

SECTION III: MATERIALS AND METHODS	112
CHAPTER 4: MATERIALS	113
4.1 INTRODUCTION	113
4.2 ENVIRONMENTAL DATA	113
4.2.1. Australian Climate Data	113
4.2.2 World Climate Data	113
4.2.3 Criteria for the Selection of Climate Variables.	114
4.2.4 Climate Variables	114
4.3 MORPHOMETRIC DATA	115
4.3.1 Anthropometry	115
4.3.1.1 Birdsell's Australians	115
Sampling	115
Tribal Names	118
4.3.1.2 Other Australian Anthropometric Data	125
Adelaide University Expeditions	125
Abbie	127
Warner	128
4.3.1.3 World Samples	128
Introduction	128
Europe and European Descendants	129
Sub-Saharan Africa	129
Asia	129
Oceania	129
Indo-Mediterranean	130
4.3.2 Osteometry	130
4.3.2.1 Introduction	130
4.3.2.2 Australia	130
Murray Valley	130
4.3.2.3 World	130
Asia: Recent Southern Chinese	130
Other	131
	100
CHAPTER 5: METHODOLOGY	132
	132
5.2 MEASUREMENT TECHNIQUES	132
5.2.1 Instruments	132
5.2.2 Technique	132
5.2.3 The Calculation of Indices	140
5.3 IEUNIQUES USED DI UINER UDSERVERS	142
3.3.1 Australia	1/12
Adeiaiae University	1/12
Marner	1/12
YY (111) (1	140

v

	vi
5.3.2 World	143
Hiernaux	143
Eveleth and Tanner	144
Edholm	144
Littlewood	144
Other	144
5.4 OSTEOMETRIC METHODS	144
5.4.1 Metrical Variables and Measurement Techniques	144
5.5 STATISTICAL AND GRAPHICAL PROCEDURES	145
5.5.1 Methodologies Used in Previous Studies.	145
Bivariate techniques	146
Multivariate techniques	146
5.5.2 Methods used in this analysis	147
5.5.2.1 Descriptive and Exploratory Statistics	147
5.5.2.2 Testing for differences between groups and between sexes	148
5.5.2.3 Bivariate Correlation and Regression	149
5.5.2.4 Partial Correlation	150
5.5.2.5 Multiple Correlation and Regression	150
5.5.2.6 Principal Components Analysis	151
PCA's application to biometric studies	152
Procedure for conducting a PCA	153
Missing Data	154
5.5.3 Sources of Error in the Data Set	155
5.5.3.1 Reliability Analysis	156
SECTION IV: ANALYSIS	159
CHAPTER 6: RESULTS PART 1 - EXPLORATORY AND DESCRIPTIVE	
STATISTICS	160
6.1 INTRODUCTION	160
6.2 EXPLORATORY STATISTICS	160
6.2.1 Screening of anthropometric measurements and ratios	160
6.2.2 Screening of climate variables	166
6.3 DESCRIPTIVE STATISTICS	166
6.4 EVIDENCE FOR SECULAR CHANGES	169
6.5 ANALYSIS OF VARIANCE	175
CHAPTER 7: RESULTS PART 2 - CORRELATION ANALYSIS	177
7.1 INTRODUCTION	177
7.2 RESULTS OF REGESSION AND CORRELATION PROCEDURES	179
7.2.1 Associations between climate variables	179
7.2.2 Associations between anthropometric variables	182
7.2.2.1 Age Correlations	182

7.2.3 Body size and climate in adult male and female Australian Aborigines 192
7.2.3.1 Weight
7.2.3.2 Stature
7.2.3.3 Humerus Length
7.2.3.4 Radius Length
7.2.3.5 Femur Length
7.2.3.6 Tibia Length
7.2.3.7 Biacromial Diameter
7.2.3.8 Bi-iliac Diameter
7.2.3.9 Sitting Height
7.2.3.10 Calf Circumference
7.2.3.11 Summary: Body Size
7.2.4 Body shape and climate in adult male and female Australian Aborigines. 205
7.2.4.1 Surface Area
7.2.4.2 Surface Area to Weight Ratio
7.2.4.3 Relative Pelvic Breadth
7.2.4.4 Relative Shoulder Breadth
7.2.4.5 Relative Sitting Height
7.2.4.6 Ponderal Index
7.2.4.7 Calf-Tibial Index
7.2.4.8 Radio-Humeral Index
7.2.4.9 Tibio-Femoral Index
7.2.4.10 Intermembral Index
7.2.4.11 Femur/Sitting Height Index
7.2.4.12 Tibia/Sitting Height Index
7.2.4.13 Humerus/Sitting Height Index
7.2.4.14 Radius/Sitting Height Index
7.2.4.15 Summary: Body Shape
7.2.5 Cranio-facial size and climate in adult male and female Australian
Aborigines
7.2.5.1 Head Length
7.2.5.2 Head Breadth
7.2.5.3 Head Height
7.2.5.4 Minimum Frontal Diameter
7.2.5.5 Bizygomatic Diameter
7.2.5.6 Bigonial Diameter
7.2.5.7 Total Facial Height
7.2.5.8 Upper Facial Height
7.2.5.9 Nose Height
7.2.5.10 Nose Breadth
7.2.5.11 Nose Depth
7.2.5.12 Mandibular Depth
7.2.5.13 Summary: Cranio-facial size

7.2.6 Cranio-facial shape and climate in adult male and female Australian	
Aborigines	260
7.2.6.1 Nasal Breadth Index	260
7.2.6.2 Nasal Depth Index	261
7.2.6.3 Cephalic Index	267
7.2.6.4 Cranial Module	268
7.2.6.5 Cephalo-Facial Index (Breadth).	269
7.2.6.6 Total Facial Index	271
7.2.6.7 Summary: Cranio-facial shape	273
CHAPTER 8: RESULTS PART 3 - PRINCIPAL COMPONENTS ANALYS	IS 275
8.1 INTRODUCTION	275
8.2 RESULTS OF THE PRINCIPAL COMPONENTS ANALYSES	277
8.2.1 Analysis 1: Male body size and shape	277
8.2.2 Analysis 2: Male body shape	280
8.2.3 Analysis 3: Male cranio-facial size and shape	283
8.2.4 Analysis 4: Male cranio-facial shape	287
8.2.5 Analysis 5: Female body size and shape	291
8.2.6 Analysis 6: Female body shape	294
8.2.7 Analysis 7: Female cranio-facial size and shape	297
8.2.8 Analysis 8: Female cranio-facial shape	301
8.3 SUMMARY OF RESULTS	305
CHAPTER 9: RESULTS PART 4 - WORLD COMPARISON	306
CHAPTER 9: RESULTS PART 4 - WORLD COMPARISON	 306 306
CHAPTER 9: RESULTS PART 4 - WORLD COMPARISON 9.1 INTRODUCTION 9.2 PROBLEMS WITH THE DATA	 306 306 306
CHAPTER 9: RESULTS PART 4 - WORLD COMPARISON 9.1 INTRODUCTION 9.2 PROBLEMS WITH THE DATA 9.3 COMPARISON OF BIRDSELL'S AUSTRALIANS WITH A WORLD	 306 306 306
 CHAPTER 9: RESULTS PART 4 - WORLD COMPARISON	 306 306 306 306
 CHAPTER 9: RESULTS PART 4 - WORLD COMPARISON	306 306 306 306 306
 CHAPTER 9: RESULTS PART 4 - WORLD COMPARISON	306 306 306 306 306 309
 CHAPTER 9: RESULTS PART 4 - WORLD COMPARISON	306 306 306 306 306 309 309
 CHAPTER 9: RESULTS PART 4 - WORLD COMPARISON	306 306 306 306 309 309 313
 CHAPTER 9: RESULTS PART 4 - WORLD COMPARISON	306 306 306 306 306 309 309 313 317
 CHAPTER 9: RESULTS PART 4 - WORLD COMPARISON	306 306 306 306 309 309 313 317 318
 CHAPTER 9: RESULTS PART 4 - WORLD COMPARISON. 9.1 INTRODUCTION 9.2 PROBLEMS WITH THE DATA. 9.3 COMPARISON OF BIRDSELL'S AUSTRALIANS WITH A WORLD SAMPLE 9.3.1 Comparison of Geo-ethnic Samples. 9.3.2 Ecogeographic Correlations. 9.3.2.1 Body size 9.3.2.2 Body shape 9.4 SUMMARY SECTION V: DISCUSSION AND CONCLUSION	306 306 306 306 306 309 309 313 317 318 319
 CHAPTER 9: RESULTS PART 4 - WORLD COMPARISON. 9.1 INTRODUCTION. 9.2 PROBLEMS WITH THE DATA. 9.3 COMPARISON OF BIRDSELL'S AUSTRALIANS WITH A WORLD SAMPLE 9.3.1 Comparison of Geo-ethnic Samples. 9.3.2 Ecogeographic Correlations. 9.3.2.1 Body size. 9.3.2.2 Body shape 9.4 SUMMARY	306 306 306 306 309 309 313 317 318 319 319
 CHAPTER 9: RESULTS PART 4 - WORLD COMPARISON	306 306 306 306 309 309 313 317 318 319 319
 CHAPTER 9: RESULTS PART 4 - WORLD COMPARISON	306 306 306 306 309 309 309 313 317 318 319 319
 CHAPTER 9: RESULTS PART 4 - WORLD COMPARISON	306 306 306 306 309 309 313 317 318 319 319 319 319 320
 CHAPTER 9: RESULTS PART 4 - WORLD COMPARISON	306 306 306 306 309 309 309 313 317 318 319 319 319 320 320
 CHAPTER 9: RESULTS PART 4 - WORLD COMPARISON	306 306 306 306 306 309 309 313 317 318 319 319 319 320 320 320 330

10.2.2.2 The Face	
10.2.3 A Discussion of Results Within The Context of Huma	n Thermoregulatory
Adaptation	
10.2.3.1 Cranio-facial adaptations	
10.2.3.2 Temperature or Moisture?	
10.2.3.3 Conclusions	
10.2.4 Aboriginal Origins and Occupation History	
10.2.5 An Examination of The Results Within the Context of	Human Evolution354
CHAPTER 11: CONCLUSION	
11.1 INTRODUCTION	
11.2 ARE ABORIGINAL AUSTRALIANS HOMOGENEOUS	OR
HETEROGENEOUS?	
11.3 EVIDENCE FOR ECOGEOGRAPHIC VARIATION IN A	AUSTRALIAN
ABORIGINAL POPULATIONS	
11.4 ABORIGINAL ORIGINS AND MICRO-EVOLUTION	
11.5 ECOGEOGRAPHIC RULES AND HUMAN EVOLUTIO	N 360
11.6 POSSIBILITIES FOR FUTURE RESEARCH	
11.7 CONCLUSION	
APPENDIX 1	
APPENDIX 2	
BIBLIOGRAPHY	

ix

List of Tables

Chapter 2	
Table 2.1: Earliest dates for archaeological sites in Australia (adapted from Table 2 in O'Connell and Allen 1998: 141)	19
Table 2.2: Securely dated human remains in Australia prior to 10,000 BP (radiocarbon dates are uncalibrated).	22
Chapter 3	
Table 3.1: Environmental variables in four test regions, after Birdsell, 1993: 450, Table F-6.	34
Table 3. 2: Biological variables in four test regions, after Birdsell, 1993: 451, Table F-7.	34
Table 3.3: Empirical studies finding evidence for ecogeographic rules in non-human animals.	41
Table 3.4: Summary of correlations between average annual temperature and basal metabolism and metrical variables of body size and shape in a worldwide population sample of males and females	,
adapted from Roberts, 1973.	52
Table 3.5: Summary of correlations between body size and shape variables and temperature and altitude in a worldwide sample of males, adapted from Walter, 1976: 244-245.	55
Table 3.6: Summary of correlations between body size and shape variables and climate zone in a worldwide sample of males, adapted from Beals, 1984: 308, Table 6.	55
Table 3.7: Summary of correlations between body size and shape variables and mean annual temperatur in a worldwide sample of males and females, adapted from Katzmarzyk and Leonard, 1998: 485,	e
Table 3.	56
Table 3.8: Summary of Kendall's Tau statistics between metrical variables of body size and shape, and location and climate variables in South American males and females, adapted from Stinson, 1990:	: 50
Table 3.0. Summary of correlations between metrical variables of body size and shape and temperature	39
variables in American white males, adapted from Newman and Munro, 1955: 7.	60
1 able 3.10: Summary of correlations between anthropometric measurements of the body, and location and climate variables in sub-Saharan African males, adapted from Hiernaux, 1968 and Hiernaux and Froment, 1976.	62
Table 3.11: Summary of correlations between anthronometric measurements and climate variables in	02
European Middle Eastern and North African males, adapted from Crognier, 1981b; 102	64
Table 3 12: Results of a multiple stepwise regression analysis between anthropometric measurements an	nd
climate variables in European, Middle Eastern and North African males, adapted from Crognier,	65
Table 2.13: Summary of correlations between anthronometric measurements and climate variables in	05
European Middle Eastern and North African females adapted from Crognier 1981a: 613	65
Table 3.14: Results of a multiple stepwise regression analysis between anthropometric measurements and climate variables in Australian Aboriginal males, adapted from Macho and Freedman, 1987: 44,	nd
Table 10.	68
Table 3.15: Results of a multiple stepwise regression analysis between anthropometric measurements anclimate variables in Australian Aboriginal females, adapted from Macho and Freedman, 1987: 45	nd ,
Table 11.	68
Table 3.16: Summary of multiple correlations between nasal index (living) and summer temperature and relative humidity, adapted from Davies, 1932.	d 70
Table 3.17: Summary of the correlations* between absolute and relative measures of nasal protrusion(skeletal) and climatic and geographic variables, adapted from Carey and Steegmann, 1981: 316,	
Table 1.	72
Table 3.18: Summary of correlations between anthropometric measurements of the face, and location ar climate variables in sub-Saharan African males, adapted from Hiernaux, 1968, and Hiernaux and	nd
Froment, 1976.	75

Table 3.19: Summary of correlations between facial and climate variables in European, Middle Eastern	
and North African males, adapted from Crognier, 1981b: 102.	76
Table 3.20: Summary of correlations between facial and climate variables in European, Middle Eastern	
and North African females, adapted from Crognier, 1981a: 613.	76
Table 3.21: Results of a multiple stepwise regression analysis between facial and climate variables in	
European, Middle Eastern and North African males, adapted from Crognier, 1981b: 104.	76
Table 3.22: Summary of correlations between facial and mandibular variables, and location and climate	;
variables, adapted from van Holst Pellekaan (1990): 37	78
Table 3.23: Summary of correlations between unrotated principal components of the male head, face an	ıd
mandible with location and climate variables adapted from van Holst Pellekaan, 1990.	79
Table 3.24: Results of a multiple stepwise regression analysis between facial and climate variables in	
Australian Aboriginal males, adapted from Macho and Freedman, 1987; 44, Table 10.	80
Table 3.25: Results of a multiple stepwise regression analysis between facial and climate variables in	00
Australian Aboriginal females, adapted from Macho and Freedman, 1987: 45, Table 11	80
Table 3.26: Descriptive statistics of Cenhalic Index for 339 nonulations of mixed sex divided on the bas	oo eie
of climatic zone adapted from Beals 1972: 88	,13 87
Table 3.27: Summary of correlations between Cenhalic Index and climate variables, adapted from Real	02 °
et al. 1083: /31	s 02
Table 3 28: Summary of correlations between cranial measurements of sub Sabaran African males and	03
Table 5.26. Summary of contributions between cramar measurements of sub-Sanaran Arrican males and	<u> </u>
761. Table 1)U- 05
701, Table 1. Table 2 20. Summary of completions between enough measurements of European. Middle Eastern and	83
Table 5.29. Summary of contrations between cramar measurements of European, Middle Eastern and	05
North African males and climate variables adapted from Crogner, 1981a: 612.	85
Table 3.30: Results of Multiple Stepwise regression analysis of cranial measurements of European,	
Middle Eastern and North African males and climate variables, adapted from Crognier 1981b: 10	4.
	85
Table 3.31: Summary of correlations between cranial measurements of European, Middle Eastern and	~ ~
North African females and climate variables adapted from Crognier, 1981a: 613.	85
Table 3.32: Results of a Stepwise Multiple Regression Analysis on Australian Aboriginal males includi	ng
cranial measurements and climate variables, adapted from Macho and Freedman, 1987: 44, Table	
	86
Table 3.33: Results of a Stepwise Multiple Regression Analysis on Australian Aboriginal females	
including cranial measurements and climate variables, adapted from Macho and Freedman, 1987:	
45, Table 11.	86
Table 3.34: Summary of correlations between cranial measurements of Australian Aboriginal males and	1
location and climate variables, adapted from van Holst Pellekaan, 1990: 37.	86
Table 3.35: Summary of correlations between mean finger temperature at 40 to 70 minutes exposure to	
moving 0°C air and other variables, adapted Steegmann, 1974: 627, Table 2.	92
Table 3.36: Summary of correlations between facial skin temperature after 70 minutes of exposure to	
moving 0°C air and other cranio-facial measurements, adapted from Steegmann, 1972: 200-212.	96
Table 3.37: Empirical studies questioning the existence and/or adaptive significance of ecogeographic	
rules in non-human animals.	98
Table 3.38: Correlations of limb indices of Mesolithic human fossils with winter temperature, adapted	
from Jacobs, 1985b.	103
Chapter 4	
Table 4 1: Birdsell's Australians	100
Table 4.2 · Adelaide University Expeditions	122
Table 4.3: Adelaide University Groups	127
THE HEAT AND THE COMPONENT OF THE COMPONENT. THE COMPONENT OF THE COMPONENT OF THE COMPONENT OF THE COMPONENT OF THE COMPONENT. THE COMPONENT OF THE COMPONENT OF THE COMPONENT. THE COMPONENT OF THE COMPONENT. THE COMPONENT OF THE COMPONENT OF THE COMPONENT. THE COMPONENT OF THE COMPONENT. THE COMPONENT OF THE COMPONENT. THE COMPONENT OF THE COM	

Table 4.4: Abbie's sample groups

Table 4.5: Warner's Groups

xi

127

128

Table 5.1: Definitions of anthropometric points	133
Table 5.2: Definitions of anthropometric measurements	137
Table 5.3: Calculated indices of the body, head and face	139
Table 5.4: Estimates of body surface area for Birdsell's Australians using the three different formulae.	141
Table 5.5: Comparison of Birdsell, Abbie and Adelaide University Measurements for the Warlpiri	143
Table 5.6: Definitions of osteometric measurements	145
Table 5.7 Analysis of the reliability of anthropometric measurements and indices	158

Chapter 6

Table 6.1: Distribution tests and significance levels for body measurements in male and female data s	ets.
	161
Table 6.2: Distribution tests and significance levels for body indices in male and female samples.	163
Table 6.3: Distribution tests and significance levels for head and face measurements in male and fema	ale
data sets	164
Table 6.4: Distribution tests and significance levels for head and face ratios in male and female data s	ets.
	166
Table 6.5: Distribution tests and significance levels for the mean values of climate variables sampled	in
the 57 male and 45 female group areas	166
Table 6.6: Descriptive statistics of body measurements for all individuals: males compared with fema	les
and including Student's t-tests.	167
Table 6.7: Descriptive statistics of body indices for all individuals: males compared with females and	
including Student's t-tests.	168
Table 6.8: Descriptive statistics of cranio-facial measurements for all individuals: males compared wi	th
females and including Student's t-tests.	168
Table 6.9: Descriptive statistics of cranio-facial indices for all individuals: males compared with fema	ıles
and including Student's t-tests.	169
Table 6.10: Student's t-test on anthropometric variables of tribes measured in 1930s and 1950s: body	
measurements.	171
Table 6.11: Student's t-test on anthropometric variables of tribes measured in 1930s and 1950s: body	
indices.	171
Table 6.12: Student's t-test on anthropometric variables of tribes measured in 1930s and 1950s: head	and
face measurements.	172
Table 6.13: Student's t-test on anthropometric variables of tribes measured in 1930s and 1950s: head	and
face indices.	172
Table 6.14: One Way ANOVA between sample group means for body measurement (and including a	ge)
of male and female data sets.	175
Table 6.15: One Way ANOVA between sample group means for body indices of male and female dat	a
sets.	176
Table 6.16: One Way ANOVA between sample group means for head and face measurements of male	e
and female data sets.	176
Table 6.17: One Way ANOVA between sample group means for body indices of male and female dat	a
sets.	176

Chapter 7

Table 7.1: Correlations between climatic variables of sample areas	181
Table 7.2: Correlations between measurements of the body and face and age	182
Table 7.3: Matrix of correlations between male mean body variables	183
Table 7.4: Matrix of correlations between female mean body variables	183
Table 7.5: Matrix of correlations between male mean cranio-facial variables.	185
Table 7.6: Matrix of correlations between female mean cranio-facial variables.	185

	X111
Table 7.7: Pearson's and Spearman's correlation coefficients between mean body measurements and	
climate: males.	186
Table 7.8: Pearson's and Spearman's correlation coefficients between mean body measurements and climate: females	187
Table 7.9: Pearson's correlation coefficients between mean body measurements and climate and location	107 m·
male eastern and western sub-samples (F: $n = 16$: W: $n = 41$, except bi ilias $n = 12$)	199
Table 7.10: Deerson's correlation coefficients between mean body measurements and elimeter eastern a	100 nd
Table 7.10. Fearson's correlation coefficients between mean body measurements and chinate, eastern a wastern female sub-semples. (Feature $n = 2$) Wester $n = 27$, except bi-ilies $n = 0$)	100
western remain sub-samples. (East: $n = 8$, west: $n = 57$, except bi-mac $n = 9$). Table 7.11. Multiple stemptice regression analysis on male body measurements.	100
Table 7.11. Multiple stepwise regression analysis on male body measurements.	189
Table 7.12: Multiple stepwise regression analysis on remain body measurements.	189
Table 7.13: Complete and partial correlations between mean body measurements and climate: males.	190
Table 7.14: Complete and partial correlations between mean body measurements and climate: females.	191
Table 7.15: Pearson's and Spearman's correlation coefficients between mean body indices and climate: males	207
Table 7.16: Pearson's and Spearman's correlation coefficients between mean body indices and climate:	207
females	208
Table 7 17: Pearson's correlation coefficients between mean body indices and climate: male eastern and	1
western sub-samples (F: $n = 16$: W: $n = 41$, except relative highlight breadth: $n = 12$)	209
Table 7 18: Pearson's correlation coefficients between mean body indices and climate: female eastern a	nd
Table 7.10. Fearbolt's correlation confidences between mean body indices and chinate, remare easiering a western sub-samples ($F: n = 8$; $W: n = 37$, except relative bi-iliac breadth: $n = 0$)	210
Table 7 10: Multiple stepwise regression analysis on male body indices	210
Table 7.19. Multiple stepwise regression analysis on famale body indices.	211
Table 7.21: Complete and partial correlations between mean body indices and elimeter males	212
Table 7.21: Complete and partial correlations between mean body indices and climate: males.	213
Table 7.22. Complete and partial contentions between mean body indices and crimate, remaines.	214
and elimeter meles	as
The T24 Decrease's and Concerners's consolution coefficients between more in facial managements	237
Table 7.24: Pearson's and Spearman's correlation coefficients between mean cranio-facial measuremen	
and climate: remains.	238
Table 7.25: Pearson's correlation coefficients between mean cranio-racial measurements and climate:	
male eastern and western sub-samples. (E: $n = 16$; W: $n = 41$).	239
Table 7.26: Pearson's correlation coefficients between mean cranio-facial measurements and climate:	• • •
female eastern and western sub-samples. (E: $n = 8$; W: $n = 37$)	240
Table 7.27: Multiple stepwise regression analysis on male cranio-facial measurements.	241
Table 7.28: Multiple stepwise regression analysis on female cranio-facial measurements.	241
Table 7.29: Complete and partial correlations between mean cranio-facial measurements and climate:	
males.	242
Table 7.30: Complete and partial correlations between mean cranio-facial measurements and climate:	
females.	243
Table 7.31: Pearson's and Spearman's correlation coefficients between mean cranio-facial indices and	
climate: males.	262
Table 7.32: Pearson's and Spearman's correlation coefficients between mean cranio-facial indices and	
climate: females.	262
Table 7.33: Pearson's correlation coefficients between mean cranio-facial indices and climate: male	
eastern and western sub-samples. (E: $n = 16$; W: $n = 41$).	263
Table 7.34: Pearson's correlation coefficients between mean cranio-facial indices and climate: female	
eastern and western sub-samples. (E: $n = 8$; W: $n = 37$).	263
Table 7.35: Multiple stepwise regression analysis on male cranio-facial indices.	264
Table 7.36: Multiple stepwise regression analysis on female cranio-facial indices.	
	264
Table 7.37: Complete and partial correlations between mean cranio-facial indices and climate: males.	264 265

xiii

Table 8.1: Correlation matrix of male body measurements: size and shape (n = 1424).277Table 8.3: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 1.277Table 8.4: Correlations between principal components of male body size and shape and variables of climate and location (n = 57).279Table 8.5: Correlation matrix of male body measurements: shape (n = 1424)280Table 8.6: Rotated component matrix based on size transformed body measurements. Analysis 2: male body shape.280Table 8.6: Rotated component matrix based on size transformed body measurements. Analysis 2: male body shape.280Table 8.6: Correlations between principal components of male body shape and variables of climate and location (n = 57).283Table 8.7: Correlation matrix of male cranio-facial measurements: size and shape (n = 1424).284Table 8.9: Correlations between principal components of male body shape and variables of climate and location (n = 57).283Table 8.10: Rotated component matrix based on raw individual cranio-facial size and shape.284Table 8.11: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 3: male cranio-facial measurements. Analysis 4: male cranio-facial size and shape and variables of climate and location (n = 57).287Table 8.13: Correlations between principal components of male cranio-facial size and shape and variables of climate and location (n = 57).287Table 8.14: Correlation matrix of male cranio-facial measurements. Analysis 4: male cranio-facial shape.288Table 8.15: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 4: male cranio-facial shape.292	Chapter 8	
Table 3.2: Rotated component matrix based on raw individual body measurements. Analysis 1: male body 277 Table 3.3: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 1. 277 Table 8.4: Correlations between principal components of male body size and shape and variables of climate and location (n = 57). 279 Table 8.5: Correlation matrix of male body measurements: shape (n = 1424) 280 Table 8.7: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 2. 280 Table 8.8: Correlation matrix of male body measurements: size and shape and variables of climate and location (n = 57). 283 Table 8.8: Correlations between principal components of male body shape and variables of climate and location (n = 57). 284 Table 8.11: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 3. 284 Table 8.11: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 3. 284 Table 8.12: Correlations between principal components of male cranio-facial measurements. Analysis 4: 287 Table 8.12: Correlation matrix of male component matrix is analysis 4: 286 Table 8.13: Correlation matrix of male components of male cranio-facial measurements. Analysis 4: 286 Table 8.14: Rotated component matrix based on size transformed cranio-facial measurements. Analysis 4: 288	Table 8 1: Correlation matrix of male body measurements: size and shape $(n = 1424)$.	277
size and shape. 277 Table 8.3: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 1. 277 Table 8.4: Correlations between principal components of male body size and shape and variables of climate and location (n = 57). 280 Table 8.5: Correlation matrix of male body measurements: shape (n = 1424) 280 Table 8.7: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 2. 283 Table 8.7: Correlation matrix of male cranio-facial measurements: size and shape (n = 1424). 283 Table 8.8: Correlation matrix of male cranio-facial measurements: size and shape (n = 1424). 284 Table 8.9: Correlation matrix of male cranio-facial measurements: size and shape (n = 1424). 284 Table 8.1: Correlation matrix of male cranio-facial measurements: size and shape (n = 1424). 284 Table 8.1: Correlation matrix of male cranio-facial measurements: shape (n = 1424). 284 Table 8.1: Scated component matrix based on size transformed cranio-facial measurements. Analysis 3. 284 Table 8.1: Scated component matrix based on size transformed cranio-facial measurements. Analysis 4: male cranio-facial size and shape. Table 8.1: Correlation matrix of male cranio-facial measurements: shape (n = 1424). 288 Table 8.1: Correlation matrix of male cranio-facial measurements: shape (n = 1424). 288	Table 8.2: Rotated component matrix based on raw individual body measurements. Analysis 1: male be	ody
Table 8.3: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 1. Table 8.4: Correlations between principal components of mate body size and shape and variables of climate and location (n = 57). 279 Table 8.5: Correlation matrix of made body measurements: shape (n = 1424) 280 Table 8.5: Correlation matrix of made body measurements: size and shape and variables of climate and location (n = 57) 280 Table 8.6: Rotated component matrix based on size transformed body shape and variables of climate and location (n = 57) 283 Table 8.9: Correlation matrix of male cranio-facial measurements: size and shape (n = 1424). 284 Table 8.10: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 3. 284 Table 8.11: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 3. 284 Table 8.12: Correlations between principal components of male cranio-facial size and shape and variables of climate and location (n = 57). 287 Table 8.13: Correlation matrix of male cranio-facial measurements: shape (n = 1424). 288 Table 8.15: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 4. 288 Table 8.16: Correlations between principal components of male cranio-facial size and shape and variables of climate and location (n = 57). 291 Table 8.19: Eigenvalues and percent of variance explained by the unrotated component	size and shape.	211
Table 8.4: Correlations between principal components of male body size and shape and variables of climate and location (n = 57). 279 Table 8.5: Correlation matrix of male body measurements: shape (n = 1424) 280 Table 8.6: Rotated component matrix based on size transformed body measurements. Analysis 2: male body shape. 280 Table 8.7: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 2. 280 Table 8.8: Correlations between principal components of male body shape and variables of climate and location (n = 57) 283 Table 8.10: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 3: male cranio-facial size and shape. 284 Table 8.11: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 3. 284 Table 8.12: Correlation matrix of male cranio-facial measurements: shape (n = 1424). 284 Table 8.13: Correlation matrix of male cranio-facial measurements: shape (n = 1424). 286 Table 8.13: Correlation matrix of male cranio-facial measurements: shape (n = 1424). 288 Table 8.14: Rotated component matrix based on size transformed cranio-facial measurements. Analysis 4. 288 Table 8.16: Correlations between principal components of male cranio-facial size and shape. 288 Table 8.16: Correlation matrix of famale body measurements: size and shape (n = 1424). 282 Table 8.16:	Table 8.3: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis	1. 277
climate and location (n = 57).279Table 8.5: Correlation matrix of male body measurements: shape (n = 1424)280Table 8.6: Rotated component matrix based on size transformed body measurements. Analysis 2: matebody shape.280Table 8.7: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 2: matebody shape.280Table 8.8: Correlations between principal components of male body shape and variables of climate and location (n = 57)283Table 8.10: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 3: male cranio-facial size and shape.284Table 8.10: Rotated component matrix based on raw individual cranio-facial size and shape and variables is 3. 	Table 8.4: Correlations between principal components of male body size and shape and variables of	
Table 8.5: Correlation matrix of male body measurements: shape (n = 1424) 280 Table 8.6: Rotated component matrix based on size transformed body measurements. Analysis 2: male 280 Table 8.7: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 2. 280 Table 8.7: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 2. 280 Table 8.9: Correlations between principal components of male body shape and variables of climate and location (n = 57) 283 Table 8.10: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 3: male cranio-facial size and shape. 284 Table 8.11: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 3. 284 Table 8.12: Correlations between principal components of male cranio-facial size and shape and variables of climate and location (n = 57). 287 Table 8.13: Correlation matrix of male cranio-facial measurements: shape (n = 1424). 288 Table 8.15: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 4. 288 Table 8.16: Correlation between principal components of male cranio-facial shape and variables of climate and location (n = 57). 291 Table 8.16: Correlations between principal components of male cranio-facial shape and variables of climate and location (n = 57). 291 Table 8.17: Correlation setween principal component	climate and location $(n = 57)$.	279
Table 8.6: Rotated component matrix based on size transformed body measurements. Analysis 2: male body shape. 280 Table 8.7: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 2. 280 Table 8.8: Correlations between principal components of male body shape and variables of climate and location (n = 57) 283 Table 8.9: Correlation matrix of male cranio-facial measurements: size and shape (n = 1424). 284 Table 8.10: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 3: male cranio-facial size and shape. 284 Table 8.11: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 3. 284 Table 8.12: Correlation matrix of male cranio-facial measurements: shape (n = 1424). 284 Table 8.12: Correlation matrix of male cranio-facial measurements: shape (n = 1424). 284 Table 8.13: Correlation matrix of male cranio-facial measurements: shape (n = 1424). 288 Table 8.14: Rotated component matrix based on size transformed cranio-facial measurements. Analysis 4: male cranio-facial shape. 288 Table 8.16: Correlations between principal components of male cranio-facial shape and variables of climate and location (n = 57). 291 Table 8.19: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 5. 292 Table 8.19: Correlations between principal components of female body size and shape and varia	Table 8.5: Correlation matrix of male body measurements: shape $(n = 1424)$	280
body shape.280Table 8.7: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 2.280Table 8.8: Correlations between principal components of male body shape and variables of climate and location (n = 57)283Table 8.10: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 3: male cranio-facial size and shape.284Table 8.10: Correlations between principal components of male cranio-facial size and shape and variables284Table 8.11: Eigenvalues and percent of variance explained by the unrotated component matrix analysis 3. 284284Table 8.12: Correlations between principal components of male cranio-facial size and shape and variables of climate and location (n = 57).287Table 8.13: Correlation matrix of male cranio-facial measurements: shape (n = 1424).288Table 8.14: Rotated component matrix based on size transformed cranio-facial measurements. Analysis 4. male cranio-facial shape.288Table 8.15: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 4. 288288Table 8.16: Correlations between principal components of male cranio-facial shape and variables of climate and location (n = 57).291Table 8.17: Correlation matrix of female body measurements: size and shape (n = 880).292Table 8.19: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 5. female body size and shape.292Table 8.19: Correlation matrix of female body measurements: shape (n = 880).292Table 8.20: Correlations between principal components of female body size and shape and variables of climate and	Table 8.6: Rotated component matrix based on size transformed body measurements. Analysis 2: male	
Table 8.7: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 2. 280 Table 8.8: Correlations between principal components of male body shape and variables of climate and location (n = 57) 283 Table 8.9: Correlation matrix of male cranio-facial measurements: size and shape (n = 1424). 284 Table 8.10: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 3: 284 Table 8.11: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 3. 284 Table 8.12: Correlation matrix of male cranio-facial measurements: shape (n = 1424). 288 Table 8.12: Correlations between principal components of male cranio-facial size and shape and variables of climate and location (n = 57). 287 Table 8.13: Correlation matrix of male cranio-facial measurements: shape (n = 1424). 288 Table 8.15: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 4. 288 Table 8.15: Correlation matrix of female body measurements: size and shape (n = 880). 291 Table 8.16: Correlations between principal components of male cranio-facial shape and variables of climate and location (n = 57). 291 Table 8.19: Correlation matrix of female body measurements: size and shape (n = 880). 292 Table 8.17: Correlation matrix of female body measurements: shape (n = 880). 292 Table 8.19:	body shape.	280
Table 8.8: Correlations between principal components of male body shape and variables of climate and location (n = 57) 283 Table 8.9: Correlation matrix of male cranio-facial measurements: size and shape (n = 1424), 284 Table 8.10: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 3: 284 Table 8.11: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 3. 284 Table 8.12: Correlation matrix of male cranio-facial measurements: shape (n = 1424), 288 Table 8.13: Correlation matrix of male cranio-facial measurements: shape (n = 1424), 288 Table 8.13: Correlation matrix of male cranio-facial measurements: shape (n = 1424), 288 Table 8.15: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 4: 288 Table 8.15: Correlation matrix of male cranio-facial measurements: shape (n = 1424), 288 Table 8.16: Correlations between principal components of male cranio-facial shape and variables of climate and location (n = 57). 291 Table 8.16: Correlation matrix of female body measurements: size and shape (n = 880). 292 Table 8.16: Correlations between principal components of female cranio-facial shape and variables of climate and location (n = 45). 292 Table 8.19: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 5: female body size and shape. 292	Table 8.7: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis	2.
Table 8.8: Correlations between principal components of male body shape and variables of climate and location (n = 57) 283 Table 8.0: Rotated component matrix based on raw individual cranio-facial measurements: size and shape (n = 1424). 284 Table 8.10: Rotated component matrix based on raw individual cranio-facial size and shape and variables of climate and location (n = 57). 287 Table 8.12: Correlations between principal components of male cranio-facial size and shape and variables of climate and location (n = 57). 287 Table 8.13: Correlation matrix of male cranio-facial measurements: shape (n = 1424). 288 Table 8.14: Rotated component matrix based on size transformed cranio-facial measurements. Analysis 4: male cranio-facial shape. 288 Table 8.15: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 4. 288 Table 8.16: Correlations between principal components of male cranio-facial shape and variables of climate and location (n = 57). 291 Table 8.16: Correlation matrix of female body measurements: size and shape (n = 880). 292 Table 8.17: Correlation matrix of female body measurements: size and shape and variables of climate and location (n = 45). 292 Table 8.20: Correlations between principal components of female body size and shape and variables of climate and location (n = 45). 292 Table 8.21: Correlation matrix of female body measurements: shape (n = 880). 292 T		280
location (n = 57)283Table 8.9: Correlation matrix of male cranio-facial measurements: size and shape (n = 1424).284Table 8.10: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 3: male cranio-facial size and shape.284Table 8.11: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 3. 284284Table 8.12: Correlations between principal components of male cranio-facial size and shape and variables of climate and location (n = 57).287Table 8.13: Correlation matrix of male cranio-facial measurements: shape (n = 1424).288Table 8.14: Rotated component matrix based on size transformed cranio-facial measurements. Analysis 4: male cranio-facial shape.288Table 8.15: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 4. climate and location (n = 57).291Table 8.16: Correlations between principal components of male cranio-facial shape and variables of climate and location (n = 57).292Table 8.16: Correlation matrix of female body measurements: size and shape (n = 880).292Table 8.19: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 5. gord292Table 8.20: Correlations between principal components of female body size and shape and variables of climate and location (n = 45).294Table 8.21: Correlations between principal components of female body size and shape and variables of climate and location (n = 45).292Table 8.21: Correlations between principal components of female body measurements. Analysis 6: female body size.295Table 8.23: Eigenvalues and percent	Table 8.8: Correlations between principal components of male body shape and variables of climate and	ł
Table 8.9: Correlation matrix of male cranio-facial measurements: size and shape (n = 1424). 284 Table 8.10: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 3: 284 Table 8.11: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 3. 284 Table 8.12: Correlations between principal components of male cranio-facial size and shape and variables of climate and location (n = 57). 287 Table 8.13: Correlation matrix of male cranio-facial measurements: shape (n = 1424). 288 Table 8.15: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 4: 288 Table 8.15: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 4: 288 Table 8.16: Correlations between principal components of male cranio-facial shape and variables of climate and location (n = 57). 291 Table 8.16: Correlations between principal components size and shape (n = 880). 292 Table 8.17: Correlation matrix of female body measurements: size and shape and variables of climate and location (n = 57). 291 Table 8.20: Correlations between principal components of female body size and shape and variables 5. female body size and shape. 292 Table 8.20: Correlations between principal components of female body measurements. Analysis 5. female body size and shape. 295 Table 8.21: Correlation matrix of female body measurements: s	location $(n = 57)$	283
Table 8.10: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 3: male cranio-facial size and shape.284Table 8.11: Eigenvalues and percent of variance explained by the unrotated component matrix: end location (n = 57).287Table 8.12: Correlations between principal components of male cranio-facial size and shape and variables of climate and location (n = 57).287Table 8.13: Correlation matrix of male cranio-facial measurements: shape (n = 1424).288Table 8.14: Rotated component matrix based on size transformed cranio-facial measurements. Analysis 4: male cranio-facial shape.288Table 8.16: Correlations between principal components of male cranio-facial shape and variables of climate and location (n = 57).291Table 8.16: Correlation matrix of female body measurements: size and shape (n = 880).292Table 8.17: Correlation matrix of of variance explained by the unrotated component matrix; analysis 5. 202292Table 8.19: Eigenvalues and percent of variance explained by the unrotated component matrix; analysis 5. 202292Table 8.19: Correlations between principal components of female body size and shape and variables of climate and location (n = 45).294Table 8.20: Correlations between principal components of female body size and shape and variables of climate and location (n = 45).295Table 8.21: Correlation matrix of female body measurements: shape (n = 880).292Table 8.22: Rotated component matrix based on size transformed body measurements. Analysis 6: fermale body shape.295Table 8.23: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 6. 292 <td>Table 8.9: Correlation matrix of male cranio-facial measurements: size and shape (n = 1424).</td> <td>284</td>	Table 8.9: Correlation matrix of male cranio-facial measurements: size and shape (n = 1424).	284
male cranio-facial size and shape.284Table 8.11: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis284Table 8.12: Correlations between principal components of male cranio-facial size and shape and variables of climate and location (n = 57).287Table 8.13: Correlation matrix of male cranio-facial measurements: shape (n = 1424).288Table 8.14: Rotated component matrix based on size transformed cranio-facial measurements. Analysis4.male cranio-facial shape.288Table 8.15: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 4.288Table 8.16: Correlations between principal components of male cranio-facial shape and variables of climate and location (n = 57).291Table 8.17: Correlation matrix of female body measurements: size and shape (n = 880).292Table 8.18: Rotated component matrix based on raw individual body measurements. Analysis 5: female body size and shape.292Table 8.19: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 5.292Table 8.20: Correlations between principal components of female body size and shape and variables of climate and location (n = 45).294Table 8.21: Correlation matrix of female body measurements: shape (n = 880).295Table 8.22: Rotated component matrix based on size transformed body measurements. Analysis 7: male cranio-facial size and shape.295Table 8.22: Correlation matrix of female body measurements: shape (n = 880).295Table 8.23: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 6. 222292 <td>Table 8.10: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 3</td> <td>3:</td>	Table 8.10: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 3	3:
Table 8.11: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 3.284Table 8.12: Correlations between principal components of male cranio-facial size and shape and variablesof climate and location (n = 57).287Table 8.13: Correlation matrix of male cranio-facial measurements: shape (n = 1424).288Table 8.15: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 4.288Table 8.16: Correlations between principal components of male cranio-facial shape.288Table 8.17: Correlation matrix of female body measurements: size and shape (n = 880).291Table 8.18: Rotated component matrix based on raw individual body measurements. Analysis 5: female body size and shape.292Table 8.19: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis292Table 8.20: Correlations between principal components of female body size and shape and variables of climate and location (n = 45).294Table 8.21: Correlations between principal components of female body size and shape and variables of climate and location matrix of female body measurements: shape (n = 880).295Table 8.22: Rotated component matrix based on size transformed body measurements. Analysis 6: female body shape.295Table 8.23: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 6: female body shape.295Table 8.24: Correlation matrix of female cranio-facial measurements. Analysis 7: female cranio-facial size and shape.296 <td>male cranio-facial size and shape.</td> <td>284</td>	male cranio-facial size and shape.	284
284 Table 8.12: Correlations between principal components of male cranio-facial size and shape and variables of climate and location (n = 57). 287 Table 8.13: Correlation matrix of male cranio-facial measurements: shape (n = 1424). 288 Table 8.14: Rotated component matrix based on size transformed cranio-facial measurements. Analysis 4: 288 Table 8.15: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 4. 288 Table 8.16: Correlations between principal components of male cranio-facial shape and variables of climate and location (n = 57). 291 Table 8.17: Correlation matrix of female body measurements: size and shape (n = 880). 292 Table 8.17: Correlations between principal components of female body size and shape and variables of climate and location (n = 57). 292 Table 8.19: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 5. 292 Table 8.20: Correlations between principal components of female body size and shape and variables of climate and location (n = 45). 294 Table 8.21: Correlation matrix of female body measurements: shape (n = 880). 295 Table 8.22: Rotated component matrix based on size transformed body measurements. Analysis 6: female body shape. 292 Table 8.22: Rotated component matrix based on size transformed body measurements. Analysis 6: female body shape. 295 Table 8.23: Eigenval	Table 8.11: Eigenvalues and percent of variance explained by the unrotated component matrix: analysi	s 3.
Table 8.12: Correlations between principal components of male cranio-facial size and shape and variables of climate and location (n = 57). 287 Table 8.13: Correlation matrix of male cranio-facial measurements: shape (n = 1424). 288 Table 8.14: Rotated component matrix based on size transformed cranio-facial measurements. Analysis 4: male cranio-facial shape. 288 Table 8.15: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 4. 288 Table 8.16: Correlations between principal components of male cranio-facial shape and variables of climate and location (n = 57). 291 Table 8.16: Correlations between principal components of male cranio-facial shape and variables of climate and location (n = 57). 291 Table 8.17: Correlation matrix of female body measurements: size and shape (n = 880). 292 Table 8.19: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 5. 292 Table 8.20: Correlations between principal components of female body size and shape and variables of climate and location (n = 45). 294 Table 8.21: Correlation matrix of female body measurements: shape (n = 880). 295 Table 8.22: Rotated component matrix based on size transformed body measurements. Analysis 6: female body shape. 295 Table 8.23: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 6: female body shape. 295 Table 8.24: Correlation		284
of climate and location (n = 57).287Table 8.13: Correlation matrix of male cranio-facial measurements: shape (n = 1424).288Table 8.14: Rotated component matrix based on size transformed cranio-facial measurements. Analysis 4: male cranio-facial shape.288Table 8.15: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 4. (288288Table 8.16: Correlations between principal components of male cranio-facial shape and variables of climate and location (n = 57).291Table 8.17: Correlation matrix of female body measurements: size and shape (n = 880).292Table 8.18: Rotated component matrix based on raw individual body measurements. Analysis 5: emale body size and shape.292Table 8.19: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 5. (292292Table 8.20: Correlations between principal components of female body size and shape and variables of climate and location (n = 45).294Table 8.21: Correlation matrix of female body measurements: shape (n = 880).295Table 8.23: Rotated component matrix based on size transformed body measurements. Analysis 6: female body shape.295Table 8.23: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 7. (294297Table 8.24: Correlation setween principal components of female body shape and variables of climate and location (n = 45).297Table 8.25: Correlations between principal components of female body shape and variables of climate and location (n = 45).297Table 8.25: Correlation matrix of female cranio-facial measurements: size and shape (n = 880).<	Table 8.12: Correlations between principal components of male cranio-facial size and shape and variab	oles
Table 8.13: Correlation matrix of male cranio-facial measurements: shape (n = 1424). 288 Table 8.14: Rotated component matrix based on size transformed cranio-facial measurements. Analysis 4: 288 Table 8.15: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 4. 288 Table 8.16: Correlations between principal components of male cranio-facial shape and variables of climate and location (n = 57). 291 Table 8.17: Correlation matrix of female body measurements: size and shape (n = 880). 292 Table 8.18: Rotated component matrix based on raw individual body measurements. Analysis 5: female body size and shape. 292 Table 8.19: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 5. 292 Table 8.20: Correlation matrix of female body measurements: shape (n = 880). 292 Table 8.21: Correlation matrix of female body measurements: shape (n = 880). 292 Table 8.21: Correlation matrix of female body measurements: shape (n = 880). 295 Table 8.22: Rotated component matrix based on size transformed body measurements. Analysis 6. 295 Table 8.23: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 6. 295 Table 8.24: Correlation matrix of female cranio-facial measurements: size and shape (n = 880). 297 Table 8.24: Correlations between principal components of female bod	of climate and location $(n = 57)$.	287
Table 8.14: Rotated component matrix based on size transformed cranio-facial measurements. Analysis 4: 288 Table 8.15: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 4. 288 Table 8.16: Correlations between principal components of male cranio-facial shape and variables of climate and location (n = 57). 291 Table 8.17: Correlation matrix of female body measurements: size and shape (n = 880). 292 Table 8.17: Correlation matrix of female body measurements: size and shape (n = 880). 292 Table 8.19: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 5. 292 Table 8.20: Correlations between principal components of female body size and shape and variables of climate and location (n = 45). 294 Table 8.21: Correlation matrix of female body measurements: shape (n = 880). 295 Table 8.22: Rotated component matrix based on size transformed body measurements. Analysis 6: female body shape. 295 Table 8.23: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 6. 295 Table 8.24: Correlations between principal components of female body measurements. Analysis 7: 297 Table 8.24: Correlations between principal components of female body shape and variables of climate and location (n = 45). 297 Table 8.25: Correlation matrix of female cranio-facial measurements. Analysis 7: 297	Table 8.13: Correlation matrix of male cranio-facial measurements: shape $(n = 1424)$.	288
male cranio-facial shape.288Table 8.15: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 4.288Table 8.16: Correlations between principal components of male cranio-facial shape and variables of climate and location (n = 57).291Table 8.17: Correlation matrix of female body measurements: size and shape (n = 880).292Table 8.18: Rotated component matrix based on raw individual body measurements. Analysis 5: female body size and shape.292Table 8.20: Correlations between principal components of female body size and shape and variables of climate and location (n = 45).294Table 8.21: Correlation matrix of female body measurements: shape (n = 880).295Table 8.22: Rotated component matrix based on size transformed body measurements. Analysis 6: female body shape.295Table 8.22: Rotated component matrix based on size transformed body shape and variables of climate and location (n = 45).297Table 8.24: Correlations between principal components of female body shape and variables of climate and location (n = 45).297Table 8.24: Correlations between principal components of female body shape and variables of climate and location (n = 45).297Table 8.25: Correlations between principal components of female body shape and variables of climate and location (n = 45).297Table 8.26: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 7: female cranio-facial size and shape.298Table 8.26: Correlations between principal components of female body shape and variables of climate and location (n = 45).298Table 8.27: Eigenvalues and percent of	Table 8.14: Rotated component matrix based on size transformed cranio-facial measurements. Analysis	s 4:
Table 8.15: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 4. 288 Table 8.16: Correlations between principal components of male cranio-facial shape and variables of climate and location (n = 57). 291 Table 8.17: Correlation matrix of female body measurements: size and shape (n = 880). 292 Table 8.18: Rotated component matrix based on raw individual body measurements. Analysis 5: female body size and shape. 292 Table 8.20: Correlations between principal components of female body size and shape and variables of climate and location (n = 45). 294 Table 8.21: Correlation matrix of female body measurements: shape (n = 880). 295 Table 8.22: Rotated component matrix based on size transformed body measurements. Analysis 6: female body shape. 295 Table 8.23: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 6. 295 Table 8.24: Correlation matrix of female body measurements: shape (n = 880). 295 Table 8.24: Correlations between principal components of female body shape and variables of climate and location (n = 45). 297 Table 8.25: Correlations between principal components of female body shape and variables of climate and location (n = 45). 297 Table 8.26: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 7: female cranio-facial size and shape. 298 Table 8.26: Correlation matrix of female cranio-fa	male cranio-facial shape.	288
288Table 8.16: Correlations between principal components of male cranio-facial shape and variables of climate and location (n = 57).291Table 8.17: Correlation matrix of female body measurements: size and shape (n = 880).292Table 8.18: Rotated component matrix based on raw individual body measurements. Analysis 5: female body size and shape.292Table 8.19: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 5. climate and location (n = 45).292Table 8.20: Correlations between principal components of female body size and shape and variables of climate and location (n = 45).294Table 8.21: Correlation matrix of female body measurements: shape (n = 880).295Table 8.22: Rotated component matrix based on size transformed body measurements. Analysis 6: female body shape.295Table 8.23: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 6. 295295Table 8.24: Correlations between principal components of female body shape and variables of climate and location (n = 45).297Table 8.25: Correlation between principal components of female body shape and variables of climate and location (n = 45).297Table 8.25: Correlation matrix of female cranio-facial measurements: size and shape (n = 880).298Table 8.26: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 7: female cranio-facial size and shape.298Table 8.27: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 7. 298298Table 8.26: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 7. <b< td=""><td>Table 8.15: Eigenvalues and percent of variance explained by the unrotated component matrix: analysi</td><td>s 4.</td></b<>	Table 8.15: Eigenvalues and percent of variance explained by the unrotated component matrix: analysi	s 4.
Table 8.16: Correlations between principal components of male cranio-facial shape and variables of climate and location (n = 57). 291 Table 8.17: Correlation matrix of female body measurements: size and shape (n = 880). 292 Table 8.18: Rotated component matrix based on raw individual body measurements. Analysis 5: female body size and shape. 292 Table 8.19: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 5. 292 Table 8.20: Correlations between principal components of female body size and shape and variables of climate and location (n = 45). 294 Table 8.21: Correlation matrix of female body measurements: shape (n = 880). 295 Table 8.22: Rotated component matrix based on size transformed body measurements. Analysis 6: female body shape. 295 Table 8.23: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 6. 295 Table 8.24: Correlations between principal components of female body shape and variables of climate and location (n = 45). 297 Table 8.25: Correlations between principal components of female body shape and variables of climate and location (n = 45). 297 Table 8.26: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 7: female cranio-facial size and shape. 298 Table 8.26: Rotated component matrix based on raw individual cranio-facial size and shape and variables of climate and location (n = 45). 298		288
climate and location (n = 57).291Table 8.17: Correlation matrix of female body measurements: size and shape (n = 880).292Table 8.18: Rotated component matrix based on raw individual body measurements. Analysis 5: female body size and shape.292Table 8.19: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 5. 292292Table 8.20: Correlations between principal components of female body size and shape and variables of climate and location (n = 45).294Table 8.21: Correlation matrix of female body measurements: shape (n = 880).295Table 8.22: Rotated component matrix based on size transformed body measurements. Analysis 6: female body shape.295Table 8.23: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 6. 295295Table 8.24: Correlations between principal components of female body shape and variables of climate and location (n = 45).297Table 8.24: Correlations between principal components of female body shape and variables of climate and location (n = 45).297Table 8.25: Correlation matrix of female cranio-facial measurements: size and shape (n = 880).298Table 8.26: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 7. female cranio-facial size and shape.298Table 8.27: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 7. 208298Table 8.28: Correlations between principal components of female cranio-facial size and shape and variables of climate and location (n = 45).298Table 8.28: Correlations between principal components of female cranio-facial	Table 8.16: Correlations between principal components of male cranio-facial shape and variables of	
Table 8.17: Correlation matrix of female body measurements: size and shape (n = 880).292Table 8.18: Rotated component matrix based on raw individual body measurements. Analysis 5: female body size and shape.292Table 8.19: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis climate and location (n = 45).294Table 8.20: Correlations between principal components of female body size and shape and variables of climate and location (n = 45).294Table 8.21: Correlation matrix of female body measurements: shape (n = 880).295Table 8.22: Rotated component matrix based on size transformed body measurements. Analysis 6: female body shape.295Table 8.23: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 6. 295295Table 8.24: Correlations between principal components of female body shape and variables of climate and location (n = 45).297Table 8.24: Correlations between principal components of female body shape and variables of climate and location (n = 45).297Table 8.25: Correlation matrix of female cranio-facial measurements: size and shape (n = 880).298Table 8.26: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 7. female cranio-facial size and shape.298Table 8.27: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 7. female cranio-facial size and percent of variance explained by the unrotated component matrix: analysis 7. female cranio-facial size and percent of variance explained by the unrotated component matrix: analysis 7. gene298Table 8.27: Eigenvalues and percent of variance explained by the	climate and location $(n = 57)$.	291
Table 8.18: Rotated component matrix based on raw individual body measurements. Analysis 5: female body size and shape.292Table 8.19: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 5. climate and location (n = 45).292Table 8.21: Correlations between principal components of female body size and shape and variables of climate and location (n = 45).294Table 8.21: Correlation matrix of female body measurements: shape (n = 880).295Table 8.22: Rotated component matrix based on size transformed body measurements. Analysis 6: female body shape.295Table 8.23: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 6. and location (n = 45).297Table 8.24: Correlations between principal components of female body shape and variables of climate and location (n = 45).297Table 8.25: Correlations between principal components of female body shape and variables of climate and location (n = 45).298Table 8.26: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 7: female cranio-facial size and shape.298Table 8.27: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 7. female cranio-facial size and shape.298Table 8.28: Correlations between principal components of female cranio-facial measurements. Analysis 7. female cranio-facial size and shape.298Table 8.28: Correlations between principal components of female cranio-facial size and shape and variables of climate and location (n = 45).301Table 8.29: Correlations between principal components of female cranio-facial size and shape and variables of climate an	Table 8.17: Correlation matrix of female body measurements: size and shape $(n = 880)$.	292
body size and shape.292Table 8.19: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 5.292Table 8.20: Correlations between principal components of female body size and shape and variables of climate and location (n = 45).294Table 8.21: Correlation matrix of female body measurements: shape (n = 880).295Table 8.22: Rotated component matrix based on size transformed body measurements. Analysis 6: female body shape.295Table 8.23: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 6. 295295Table 8.24: Correlations between principal components of female body shape and variables of climate and location (n = 45).297Table 8.25: Correlation matrix of female cranio-facial measurements: size and shape (n = 880).298Table 8.26: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 7: female cranio-facial size and shape.298Table 8.27: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 7. female cranio-facial size and shape.298Table 8.27: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 7. female cranio-facial size and shape.298Table 8.28: Correlations between principal components of female cranio-facial size and shape and variables of climate and location (n = 45).301Table 8.29: Correlations between principal components of female cranio-facial size and shape and variables of climate and location (n = 45).301Table 8.29: Correlation matrix of female cranio-facial measurements: shape (n = 880).301Table 8.29: Correlation	Table 8.18: Rotated component matrix based on raw individual body measurements. Analysis 5: femal	e
Table 8.19: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 5. 292 Table 8.20: Correlations between principal components of female body size and shape and variables of climate and location (n = 45). 294 Table 8.21: Correlation matrix of female body measurements: shape (n = 880). 295 Table 8.23: Rotated component matrix based on size transformed body measurements. Analysis 6: female body shape. 295 Table 8.24: Correlations between principal components of female body shape and variables of climate and location (n = 45). 297 Table 8.25: Correlations between principal components of female body shape and variables of climate and location (n = 45). 297 Table 8.26: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 7: female cranio-facial size and shape. 298 Table 8.27: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 7. 298 Table 8.26: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 7. 298 Table 8.27: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 7. 298 Table 8.28: Correlations between principal components of female cranio-facial measurements. Analysis 7. 298 Table 8.28: Correlations between principal components of female cranio-facial size and shape and variables of climate and location (n = 45). 301 Table 8.29:	body size and shape.	292
292Table 8.20: Correlations between principal components of female body size and shape and variables of climate and location (n = 45).294Table 8.21: Correlation matrix of female body measurements: shape (n = 880).295Table 8.22: Rotated component matrix based on size transformed body measurements. Analysis 6: female body shape.295Table 8.23: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 6. 295295Table 8.24: Correlations between principal components of female body shape and variables of climate and location (n = 45).297Table 8.25: Correlation matrix of female cranio-facial measurements: size and shape (n = 880).298Table 8.26: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 7. female cranio-facial size and shape.298Table 8.27: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 7. female cranio-facial size and shape.298Table 8.28: Correlations between principal components of female cranio-facial size and shape and variables of climate and location (n = 45).301Table 8.28: Correlations between principal components of female cranio-facial size and shape and variables of climate and location (n = 45).301Table 8.28: Correlations between principal components of female cranio-facial size and shape and variables of climate and location (n = 45).301Table 8.29: Correlation matrix of female cranio-facial measurements: shape (n = 880).301Table 8.29: Correlation matrix based on size transformed cranio-facial measurements. Analysis s: female cranio-facial shape.302	Table 8.19: Eigenvalues and percent of variance explained by the unrotated component matrix: analysi	s 5.
Table 8.20: Correlations between principal components of female body size and shape and variables of climate and location (n = 45).294Table 8.21: Correlation matrix of female body measurements: shape (n = 880).295Table 8.22: Rotated component matrix based on size transformed body measurements. Analysis 6: female body shape.295Table 8.23: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 6. 295295Table 8.24: Correlations between principal components of female body shape and variables of climate and location (n = 45).297Table 8.25: Correlation matrix of female cranio-facial measurements: size and shape (n = 880).298Table 8.26: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 7. female cranio-facial size and shape.298Table 8.27: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 7. female cranio-facial size and shape.298Table 8.28: Correlations between principal components of female cranio-facial size and shape and variables of climate and location (n = 45).301Table 8.28: Correlations between principal components of female cranio-facial size and shape and variables of climate and location (n = 45).301Table 8.29: Correlations between principal components of female cranio-facial size and shape and variables of climate and location (n = 45).301Table 8.29: Correlation matrix of female cranio-facial measurements: shape (n = 880).301Table 8.29: Correlation matrix of female cranio-facial measurements: shape (n = 880).301Table 8.29: Correlation matrix of female cranio-facial measurements: shape (n = 880). <td< td=""><td></td><td>292</td></td<>		292
climate and location (n = 45).294Table 8.21: Correlation matrix of female body measurements: shape (n = 880).295Table 8.22: Rotated component matrix based on size transformed body measurements. Analysis 6: female body shape.295Table 8.23: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 6. 295295Table 8.24: Correlations between principal components of female body shape and variables of climate and location (n = 45).297Table 8.25: Correlation matrix of female cranio-facial measurements: size and shape (n = 880).298Table 8.26: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 7: female cranio-facial size and shape.298Table 8.27: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 7. female cranio-facial size and shape.298Table 8.28: Correlations between principal components of female cranio-facial size and shape and variables of climate and location (n = 45).301Table 8.28: Correlations between principal components of female cranio-facial size and shape and variables of climate and location (n = 45).301Table 8.29: Correlations between principal components of female cranio-facial size and shape and variables of climate and location (n = 45).301Table 8.29: Correlation matrix of female cranio-facial measurements: shape (n = 880).301Table 8.30: Rotated component matrix based on size transformed cranio-facial measurements. Analysis 8: female cranio-facial shape.302	Table 8.20: Correlations between principal components of female body size and shape and variables of	•
Table 8.21: Correlation matrix of female body measurements: shape (n = 880).295Table 8.22: Rotated component matrix based on size transformed body measurements. Analysis 6: female body shape.295Table 8.23: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 6. 295295Table 8.24: Correlations between principal components of female body shape and variables of climate and location (n = 45).297Table 8.25: Correlation matrix of female cranio-facial measurements: size and shape (n = 880).298Table 8.26: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 7. female cranio-facial size and shape.298Table 8.27: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 7. 298298Table 8.28: Correlations between principal components of female cranio-facial size and shape.298Table 8.29: Correlations between principal components of female cranio-facial size and shape and variables of climate and location (n = 45).301Table 8.29: Correlations between principal components of female cranio-facial size and shape and variables of climate and location (n = 45).301Table 8.29: Correlation matrix of female cranio-facial measurements: shape (n = 880).301Table 8.30: Rotated component matrix based on size transformed cranio-facial measurements. Analysis 8: female cranio-facial shape.302	climate and location $(n = 45)$.	294
Table 8.22: Rotated component matrix based on size transformed body measurements. Analysis 6: female body shape.295Table 8.23: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 6. 295295Table 8.24: Correlations between principal components of female body shape and variables of climate and location (n = 45).297Table 8.25: Correlation matrix of female cranio-facial measurements: size and shape (n = 880).298Table 8.26: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 7: female cranio-facial size and shape.298Table 8.27: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 7. 298298Table 8.28: Correlations between principal components of female cranio-facial size and shape and variables of climate and location (n = 45).301Table 8.29: Correlations between principal components of female cranio-facial size and shape and variables of climate and location (n = 45).301Table 8.29: Correlations between principal components of female cranio-facial size and shape and variables of climate and location (n = 45).301Table 8.29: Correlation matrix of female cranio-facial measurements: shape (n = 880).301Table 8.30: Rotated component matrix based on size transformed cranio-facial measurements. Analysis3028: female cranio-facial shape.302	Table 8.21: Correlation matrix of female body measurements: shape $(n = 880)$.	295
body shape.295Table 8.23: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 6. 295295Table 8.24: Correlations between principal components of female body shape and variables of climate and location (n = 45).297Table 8.25: Correlation matrix of female cranio-facial measurements: size and shape (n = 880).298Table 8.26: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 7: female cranio-facial size and shape.298Table 8.27: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 7. 298298Table 8.28: Correlations between principal components of female cranio-facial size and shape and variables of climate and location (n = 45).301Table 8.29: Correlation matrix of female cranio-facial measurements: shape (n = 880).301Table 8.30: Rotated component matrix based on size transformed cranio-facial measurements. Analysis302	Table 8.22: Rotated component matrix based on size transformed body measurements. Analysis 6: fem	ale
Table 8.23: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 6. 295 Table 8.24: Correlations between principal components of female body shape and variables of climate and location (n = 45). 297 Table 8.25: Correlation matrix of female cranio-facial measurements: size and shape (n = 880). 298 Table 8.26: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 7: female cranio-facial size and shape. 298 Table 8.27: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 7. 298 Table 8.28: Correlations between principal components of female cranio-facial size and shape and variables of climate and location (n = 45). 301 Table 8.29: Correlation matrix of female cranio-facial measurements: shape (n = 880). 301 Table 8.29: Correlation matrix of female cranio-facial measurements: shape (n = 880). 301 Table 8.30: Rotated component matrix based on size transformed cranio-facial measurements. Analysis 302	body shape.	295
295Table 8.24: Correlations between principal components of female body shape and variables of climate and location (n = 45).297Table 8.25: Correlation matrix of female cranio-facial measurements: size and shape (n = 880).298Table 8.26: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 7: female cranio-facial size and shape.298Table 8.27: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 7. 298298Table 8.28: Correlations between principal components of female cranio-facial size and shape and variables of climate and location (n = 45).301Table 8.29: Correlation matrix of female cranio-facial measurements: shape (n = 880).301Table 8.30: Rotated component matrix based on size transformed cranio-facial measurements. Analysis 8: female cranio-facial shape.302	Table 8.23: Eigenvalues and percent of variance explained by the unrotated component matrix: analysi	s 6.
Table 8.24: Correlations between principal components of female body shape and variables of climate and location (n = 45).297Table 8.25: Correlation matrix of female cranio-facial measurements: size and shape (n = 880).298Table 8.26: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 7: female cranio-facial size and shape.298Table 8.27: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 7. 298298Table 8.28: Correlations between principal components of female cranio-facial size and shape and variables of climate and location (n = 45).301Table 8.29: Correlation matrix of female cranio-facial measurements: shape (n = 880).301Table 8.30: Rotated component matrix based on size transformed cranio-facial measurements. Analysis302		295
and location (n = 45).297Table 8.25: Correlation matrix of female cranio-facial measurements: size and shape (n = 880).298Table 8.26: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 7: female cranio-facial size and shape.298Table 8.27: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 7. 298298Table 8.28: Correlations between principal components of female cranio-facial size and shape and variables of climate and location (n = 45).301Table 8.29: Correlation matrix of female cranio-facial measurements: shape (n = 880).301Table 8.30: Rotated component matrix based on size transformed cranio-facial measurements. Analysis302	Table 8.24: Correlations between principal components of female body shape and variables of climate	
Table 8.25: Correlation matrix of female cranio-facial measurements: size and shape (n = 880).298Table 8.26: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 7: female cranio-facial size and shape.298Table 8.27: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 7. 298298Table 8.28: Correlations between principal components of female cranio-facial size and shape and variables of climate and location (n = 45).301Table 8.29: Correlation matrix of female cranio-facial measurements: shape (n = 880).301Table 8.30: Rotated component matrix based on size transformed cranio-facial measurements. Analysis 8: female cranio-facial shape.302	and location $(n = 45)$.	297
Table 8.26: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 7: female cranio-facial size and shape.298Table 8.27: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 7. 298298Table 8.28: Correlations between principal components of female cranio-facial size and shape and variables of climate and location (n = 45).301Table 8.29: Correlation matrix of female cranio-facial measurements: shape (n = 880).301Table 8.30: Rotated component matrix based on size transformed cranio-facial measurements. Analysis 8: female cranio-facial shape.302	Table 8.25: Correlation matrix of female cranio-facial measurements: size and shape ($n = 880$).	298
female cranio-facial size and shape.298Table 8.27: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 7. 298298Table 8.28: Correlations between principal components of female cranio-facial size and shape and variables of climate and location (n = 45).301Table 8.29: Correlation matrix of female cranio-facial measurements: shape (n = 880).301Table 8.30: Rotated component matrix based on size transformed cranio-facial measurements. Analysis8: female cranio-facial shape.8: female cranio-facial shape.302	Table 8.26: Rotated component matrix based on raw individual cranio-facial measurements. Analysis 7	7:
Table 8.27: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis 7. 298 Table 8.28: Correlations between principal components of female cranio-facial size and shape and variables of climate and location (n = 45). 301 Table 8.29: Correlation matrix of female cranio-facial measurements: shape (n = 880). 301 Table 8.30: Rotated component matrix based on size transformed cranio-facial measurements. Analysis 8: female cranio-facial shape. 302	female cranio-facial size and shape.	298
298Table 8.28: Correlations between principal components of female cranio-facial size and shape and variables of climate and location (n = 45).301Table 8.29: Correlation matrix of female cranio-facial measurements: shape (n = 880).301Table 8.30: Rotated component matrix based on size transformed cranio-facial measurements. Analysis8: female cranio-facial shape.302	Table 8.27: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis	s 7.
Table 8.28: Correlations between principal components of female cranio-facial size and shape and variables of climate and location (n = 45).301Table 8.29: Correlation matrix of female cranio-facial measurements: shape (n = 880).301Table 8.30: Rotated component matrix based on size transformed cranio-facial measurements. Analysis 8: female cranio-facial shape.302		298
variables of climate and location (n = 45).301Table 8.29: Correlation matrix of female cranio-facial measurements: shape (n = 880).301Table 8.30: Rotated component matrix based on size transformed cranio-facial measurements. Analysis3028: female cranio-facial shape.302	Table 8.28: Correlations between principal components of female cranio-facial size and shape and	
Table 8.29: Correlation matrix of female cranio-facial measurements: shape (n = 880).301Table 8.30: Rotated component matrix based on size transformed cranio-facial measurements. Analysis3028: female cranio-facial shape.302	variables of climate and location $(n = 45)$.	301
Table 8.30: Rotated component matrix based on size transformed cranio-facial measurements. Analysis8: female cranio-facial shape.302	Table 8.29: Correlation matrix of female cranio-facial measurements: shape ($n = 880$).	301
8: female cranio-facial shape. 302	Table 8.30: Rotated component matrix based on size transformed cranio-facial measurements. Analyst	is
	8: female cranio-facial shape.	302

	XV
Table 8.31: Eigenvalues and percent of variance explained by the unrotated component matrix: analysis	s 8. 302
Table 8.32: Correlations between principal components of female cranio-facial shape and variables of	
climate and location ($n = 45$).	305
Chapter 9	
Table 9.1: Average climatic measurements at approximate locations of world samples: ordered by	
average yearly temperature.	307
Table 9.2: Average body measurements of world sample (males)	307
Table 9.3: Average body measurements of world sample (females).	307
Table 9.4: Average body indices of world sample (males).	308
Table 9.5: Average body indices of world sample (females)*.	309
Table 9.6: Pearson's correlation coefficients between mean body measurements and climate: world vs	
Birdsell's Australians (males).	311
Table 9.7: Pearson's correlation coefficients between mean body measurements and climate: world vs	
Birdsell's Australians (females).	311
Table 9.8: Pearson's correlation coefficients between mean body indices and climate: world vs Birdsell	's
Australians (males).	313
Table 9.9: Pearson's correlation coefficients between mean body indices and climate: world vs Birdsell	's
Australians (females).	314
Appendices	
Table App 1.1: Weather stations for Australian population sample areas.	362
Table App 2.1: Variable names and numbers relating to sex	364
Table App 2.2: Variable names and numbers relating to descriptive statistics	364

List of Figures

Chapter 2

8
9
11
12
18
18

Chapter 3

Figure 3.1: Distribution of Birdsell's three founder groups. Unshaded areas represent populations	
descended from a mix of the founder groups, adapted from Birdsell, 1967:110.	31
Figure 3.2: Geometric principles of surface area to mass ratio, after Ruff, 1991.	10
Figure 3.3: The geometry of surface area to mass ratio of a cylinder, after Ruff, 1991.	40
Figure 3.4: Relationship of weight and mean annual temperature in male indigenous groups, after	
Roberts, 1953: 543.	53
Figure 3.5: Total regression of weight upon mean temperature, and some of its component intravarietal	
regressions, after Roberts, 1953: 548.	53
Figure 3.6: Correlation between Weight and Calories in populations from South America and Asia, after	
Newman, 1975: 241.	58
Figure 3.7: CI vs Climate zone, after Beals, 1972: 89.	33
Figure 3.8: Per cent body fat vs SA/W ratio in males and female, after McArdle et al. 1984: 1570.) 3
Figure 3.9: Minimum spanning tree, after Holliday 1997a: 254.)5
Figure 3.10: Minimum spanning tree, after Holliday 1997b: 440.10)5
Figure 3.11: Relative body linearity vs stature, reproduced from Ruff 1991: 89.10)8

Chapter 4

Figure 4.1: Map of areas sampled during Expedition N, adapted from Birdsell, 1993: 25	119
Figure 4.2: Map of areas sampled during Expedition R, adapted from Birdsell, 1993: 10	120
Figure 4.3: Map of sample areas used in this analysis.	121
Figure 4.4: Map indicating the locations of Australian Aboriginal populations samples as measured by	
Adelaide University (A1-A13), Warner (W1-W6) and Abbie (•)	126

Chapter 5

Figure 5.1: Anatomical points of the body as mentioned in the text.	135
Figure 5.2: Anatomical points of the head and face as mentioned in the text.	136
Figure 5.3: Multivariate outliers using Mahalanobis D ²	148

Chapter 6

Figure 6.1: SPPS output and Histogram, Boxplot and Q-Q Plot for male head length (n = 1423) showing	ng a
significant KS (Lilliefors) statistic, but reasonable degree of normality in the associated plots.	165
Figure 6.2: Mean weight with 95% confidence limits for age classes 2 to 8 in Njangamarda males.	170
Figure 6.3: Scatterplot of stature vs weight for group 36 (T11 and B5: Nyanganytatjara)	173

Chapter 7

Figure 7.1: Histograms of Annual Temperature Variance and Annual Rainfall	179
Figure 7.2: Bivariate scatterplot of Minimum Temperature of the Coldest Month vs Latitude	180
Figure 7.3: Bivariate scatterplot of Maximum Temperature of the Hottest Month vs Longitude	180

	xvii
Figure 7.4: Bivariate scatterplot of Male and Female Weight vs Maximum Temperature of the Hottest Month	192
Figure 7.5: Bivariate scatterplot of Male Weight vs Minimum Temperature of the Coldest Month: Est/West sub-samples	193
Figure 7.6: Bivariate Scatterplot of Male and Female Stature vs Maximum Temperature of the Hottest Month	195
Figure 7.7: Bivariate Scatterplot of Male Stature vs Minimum Temperature of the Coldest Month: East/West sub-samples	195
Figure 7.8: Bivariate scatterplot of Male Radius length vs Maximum Temperature of the Hottest Month East/West sub-samples	ı: 197
Figure 7.9: Bivariate Scatterplot of Male and Female Biacromial diameter vs Annual Relative Humidity Variance	y 199
Month: East/West sub-samples	st 199
Figure 7.11: Bivariate scatterplot of Male and Female Bi-iliac diameter vs Minimum Temperature of th Coldest Month	e 200
Figure 7.12: Bivariate scatterplot of Male Bi-iliac diameter vs Minimum Temperature of the Coldest Month: East/West sub-samples	201
Figure 7.13: Bivariate scatterplot of Male and Female Sitting Height vs Average Annual Temperature Figure 7.14: Bivariate scatterplot of Male Sitting Height vs Minimum Temperature of the Coldest Moni East/West sub-samples Figure 7.15: Bivariate scatterplot of Male Colf Circumference vs Minimum Temperature of the Coldest	202 th: 202
Month: East/West sub-samples	204
Figure 7.16: Bivariate scatterplot of Male and Female Surface Area vs Maximum Temperature of the Hottest Month	206
Figure 7.17: Bivariate scatterplot of Male Body Surface Area vs Minimum Temperature of the Coldest Month: East/West sub-samples	215
Figure 7.18: Bivariate scatterplot of Male and Female SA/Weight vs Average Annual Temperature Figure 7.19: Bivariate Scatterplot of Male SA/Weight vs Minimum Temperature of the Coldest Month:	216
East/West sub-samples Figure 7.20: Bivariate Scatterplot of Male and Female Relative Pelvic Breadth vs Average Annual	217
Figure 7.21: Bivariate Scatterplot of Male Relative Pelvic Breadth vs Average Annual Temperature: Fast/West sub-samples	210
Figure 7.22: Bivariate Scatterplot of Male and Female Relative Shoulder Breadth vs Average Annual Temperature	210
Figure 7.23: Bivariate Scatterplot of Male Relative Shoulder Breadth vs Average Annual Temperature: East/West sub-samples	220
Figure 2.24: Bivariate Scatterplot of Male and Female Relative Sitting Height vs Relative Humidity of Driest Month	the 221
Figure 7.25: Bivariate Scatterplot of Male Relative Sitting Height vs Maximum Temperature of the Hottest Month: East/West sub-samples	221
Figure 2.26: Bivariate Scatterplot of Male and Female Ponderal Index vs Latitude Figure 7.27: Bivariate Scatterplot of Male Ponderal Index vs Average Annual Temperature: East/West sub-samples	222 222
Figure 7.28: Bivariate Scatterplot of Male and Female Calf-Tibial Index vs Maximum Temperature of t Hottest Month	the 223
Figure 7.29: Bivariate Scatterplot of Male Calf-Tibial Index vs Average Annual Temperature: East/We sub-samples	st 223
Figure 7.30: Bivariate Scatterplot of Male and Female Radio-humeral Index vs Average Annual Temperature	224
Figure 7.31: Bivariate Scatterplot of Male Radio-humeral Index vs Average Annual Temperature: East/West sub-samples	225

xviii

Figure 7.32: Bivariate Scatterplot of Male Radio-humeral Index vs Maximum Temperature of the Hotte	st
Eigure 7.22: Diveriete Sectornlet of Mele and Eemele Tibie femeral Index vs Average Annual	223
Temperature	226
Figure 7.34: Bivariate Scatterplot of Male and Female Tibio-femoral Index vs Relative Humidity of the	
Driest Month	227
Figure 7.35: Bivariate Scatterplot of Male Tibio-femoral Index vs Maximum Temperature of the Hottes	st
Month: East/West sub-samples	227
Figure 7.36: Bivariate Scatterplot of Male and Female Intermembral Index vs Latitude	228
Figure 7.37: Bivariate Scatterplot of Male Intermembral Index vs Average Annual Temperature:	
East/West sub-samples	229
Figure 7.38: Bivariate Scatterplot of Male and Female Femur-Sitting Height Index vs Relative Humidit	у
of the Driest Month	230
Figure 7.39: Bivariate Scatterplot of Male and Female Tibia-Sitting Height Index vs Maximum	
Temperature of the Hottest Month	231
Figure 7.40: Bivariate Scatterplot of Male Tibia-Sitting Height Index vs Maximum Temperature of the	
Hottest Month: East/West sub-samples	231
Figure 7.41: Bivariate Scatterplot of Male and Female Humerus-Sitting Height Index vs Relative	
Humidity of the Driest Month	232
Figure 7.42: Bivariate Scatterplot of Male and Female Radius-Sitting Height Index vs Maximum	
Temperature of the Hottest Month	233
Figure 7.43: Bivariate Scatterplot of Male Radius-Sitting Height Index vs Maximum Temperature of the	e
Hottest Month: East/West sub-samples	234
Figure 7.44: Bivariate Scatterplot of Male and Female Head Length vs Relative Humidity of the Driest	
Month	236
Figure 7.45: Bivariate Scatterplot of Male Head Length vs Average Annual Temperature: East/West sul	_000
samples	211
	244
Figure 7.46: Bivariate Scatterplot of Male Head Breadth vs Minimum Temperature of the Coldest Mon	244 th:
Figure 7.46: Bivariate Scatterplot of Male Head Breadth vs Minimum Temperature of the Coldest Mon East/West sub-samples	244 th: 245
 Figure 7.46: Bivariate Scatterplot of Male Head Breadth vs Minimum Temperature of the Coldest Mont East/West sub-samples Figure 7.47: Bivariate Scatterplot of Male and Female Head Height vs Relative Humidity of the Wettes 	244 th: 245 t
 Figure 7.46: Bivariate Scatterplot of Male Head Breadth vs Minimum Temperature of the Coldest Mont East/West sub-samples Figure 7.47: Bivariate Scatterplot of Male and Female Head Height vs Relative Humidity of the Wettes Month 	244 th: 245 t 246
 Figure 7.46: Bivariate Scatterplot of Male Head Breadth vs Minimum Temperature of the Coldest Mont East/West sub-samples Figure 7.47: Bivariate Scatterplot of Male and Female Head Height vs Relative Humidity of the Wettes Month Figure 7.48: Bivariate Scatterplot of Male Head Height vs Average Annual Temperature: East/West sub- 	244 th: 245 t 246
 Figure 7.46: Bivariate Scatterplot of Male Head Breadth vs Minimum Temperature of the Coldest Mont East/West sub-samples Figure 7.47: Bivariate Scatterplot of Male and Female Head Height vs Relative Humidity of the Wettes Month Figure 7.48: Bivariate Scatterplot of Male Head Height vs Average Annual Temperature: East/West sub- samples 	244 th: 245 t 246 o- 247
 Figure 7.46: Bivariate Scatterplot of Male Head Breadth vs Minimum Temperature of the Coldest Mont East/West sub-samples Figure 7.47: Bivariate Scatterplot of Male and Female Head Height vs Relative Humidity of the Wettes Month Figure 7.48: Bivariate Scatterplot of Male Head Height vs Average Annual Temperature: East/West sub samples Figure 7.49: Bivariate Scatterplot of Male and Female Minimum Frontal Diameter vs Maximum 	244 th: 245 t 246 2- 247
 Figure 7.46: Bivariate Scatterplot of Male Head Breadth vs Minimum Temperature of the Coldest Mont East/West sub-samples Figure 7.47: Bivariate Scatterplot of Male and Female Head Height vs Relative Humidity of the Wettes Month Figure 7.48: Bivariate Scatterplot of Male Head Height vs Average Annual Temperature: East/West sub samples Figure 7.49: Bivariate Scatterplot of Male and Female Minimum Frontal Diameter vs Maximum Temperature of the Hottest Month 	244 th: 245 t 246 247 247
 Figure 7.46: Bivariate Scatterplot of Male Head Breadth vs Minimum Temperature of the Coldest Mont East/West sub-samples Figure 7.47: Bivariate Scatterplot of Male and Female Head Height vs Relative Humidity of the Wettes Month Figure 7.48: Bivariate Scatterplot of Male Head Height vs Average Annual Temperature: East/West sub samples Figure 7.49: Bivariate Scatterplot of Male and Female Minimum Frontal Diameter vs Maximum Temperature of the Hottest Month Figure 7.50: Bivariate Scatterplot of Male and Female Bizygomatic Diameter vs Relative Humidity of t 	244 th: 245 t 246 247 247 247 he
 Figure 7.46: Bivariate Scatterplot of Male Head Breadth vs Minimum Temperature of the Coldest Mont East/West sub-samples Figure 7.47: Bivariate Scatterplot of Male and Female Head Height vs Relative Humidity of the Wettes Month Figure 7.48: Bivariate Scatterplot of Male Head Height vs Average Annual Temperature: East/West sub samples Figure 7.49: Bivariate Scatterplot of Male and Female Minimum Frontal Diameter vs Maximum Temperature of the Hottest Month Figure 7.50: Bivariate Scatterplot of Male and Female Bizygomatic Diameter vs Relative Humidity of t Driest Month 	244 th: 245 t 246 247 247 247 he 248
 Figure 7.46: Bivariate Scatterplot of Male Head Breadth vs Minimum Temperature of the Coldest Mont East/West sub-samples Figure 7.47: Bivariate Scatterplot of Male and Female Head Height vs Relative Humidity of the Wettes Month Figure 7.48: Bivariate Scatterplot of Male Head Height vs Average Annual Temperature: East/West sub samples Figure 7.49: Bivariate Scatterplot of Male and Female Minimum Frontal Diameter vs Maximum Temperature of the Hottest Month Figure 7.50: Bivariate Scatterplot of Male and Female Bizygomatic Diameter vs Relative Humidity of t Driest Month Figure 7.51: Bivariate Scatterplot of Male Bizygomatic Diameter vs Minimum Temperature of the 	244 th: 245 t 246 247 247 247 he 248
 Figure 7.46: Bivariate Scatterplot of Male Head Breadth vs Minimum Temperature of the Coldest Mont East/West sub-samples Figure 7.47: Bivariate Scatterplot of Male and Female Head Height vs Relative Humidity of the Wettes Month Figure 7.48: Bivariate Scatterplot of Male Head Height vs Average Annual Temperature: East/West sub samples Figure 7.49: Bivariate Scatterplot of Male and Female Minimum Frontal Diameter vs Maximum Temperature of the Hottest Month Figure 7.50: Bivariate Scatterplot of Male and Female Bizygomatic Diameter vs Relative Humidity of t Driest Month Figure 7.51: Bivariate Scatterplot of Male Bizygomatic Diameter vs Minimum Temperature of the Coldest Month: East/West sub-samples 	244 th: 245 t 246 247 247 he 247 he 248 249
 Figure 7.46: Bivariate Scatterplot of Male Head Breadth vs Minimum Temperature of the Coldest Mont East/West sub-samples Figure 7.47: Bivariate Scatterplot of Male and Female Head Height vs Relative Humidity of the Wettes Month Figure 7.48: Bivariate Scatterplot of Male Head Height vs Average Annual Temperature: East/West sub- samples Figure 7.49: Bivariate Scatterplot of Male and Female Minimum Frontal Diameter vs Maximum Temperature of the Hottest Month Figure 7.50: Bivariate Scatterplot of Male and Female Bizygomatic Diameter vs Relative Humidity of t Driest Month Figure 7.51: Bivariate Scatterplot of Male Bizygomatic Diameter vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.52: Bivariate Scatterplot of Male and Female Bigonial Diameter vs Maximum Temperature of 	244 th: 245 t 246 247 247 247 he 248 248
 Figure 7.46: Bivariate Scatterplot of Male Head Breadth vs Minimum Temperature of the Coldest Mont East/West sub-samples Figure 7.47: Bivariate Scatterplot of Male and Female Head Height vs Relative Humidity of the Wettes Month Figure 7.48: Bivariate Scatterplot of Male Head Height vs Average Annual Temperature: East/West sub- samples Figure 7.49: Bivariate Scatterplot of Male and Female Minimum Frontal Diameter vs Maximum Temperature of the Hottest Month Figure 7.50: Bivariate Scatterplot of Male and Female Bizygomatic Diameter vs Relative Humidity of t Driest Month Figure 7.51: Bivariate Scatterplot of Male Bizygomatic Diameter vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.52: Bivariate Scatterplot of Male and Female Bigonial Diameter vs Maximum Temperature of the Hottest Month 	244 th: 245 t 246 247 247 247 247 247 247 247 247 247 248 249 250
 Figure 7.46: Bivariate Scatterplot of Male Head Breadth vs Minimum Temperature of the Coldest Mont East/West sub-samples Figure 7.47: Bivariate Scatterplot of Male and Female Head Height vs Relative Humidity of the Wettes Month Figure 7.48: Bivariate Scatterplot of Male Head Height vs Average Annual Temperature: East/West sub- samples Figure 7.49: Bivariate Scatterplot of Male and Female Minimum Frontal Diameter vs Maximum Temperature of the Hottest Month Figure 7.50: Bivariate Scatterplot of Male and Female Bizygomatic Diameter vs Relative Humidity of t Driest Month Figure 7.51: Bivariate Scatterplot of Male Bizygomatic Diameter vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.52: Bivariate Scatterplot of Male and Female Bigonial Diameter vs Maximum Temperature of the Hottest Month 	244 th: 245 t 246 2- 247 he 247 he 248 249 250
 Figure 7.46: Bivariate Scatterplot of Male Head Breadth vs Minimum Temperature of the Coldest Mont East/West sub-samples Figure 7.47: Bivariate Scatterplot of Male and Female Head Height vs Relative Humidity of the Wettes Month Figure 7.48: Bivariate Scatterplot of Male Head Height vs Average Annual Temperature: East/West sub samples Figure 7.49: Bivariate Scatterplot of Male and Female Minimum Frontal Diameter vs Maximum Temperature of the Hottest Month Figure 7.50: Bivariate Scatterplot of Male and Female Bizygomatic Diameter vs Relative Humidity of t Driest Month Figure 7.51: Bivariate Scatterplot of Male Bizygomatic Diameter vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.52: Bivariate Scatterplot of Male and Female Bigonial Diameter vs Maximum Temperature of the Hottest Month Figure 7.53: Bivariate Scatterplot of Male Bigonial Diameter vs Minimum Temperature of the Hottest Month 	244 th: 245 t 247 247 247 247 247 he 248 249 250 251
 Figure 7.46: Bivariate Scatterplot of Male Head Breadth vs Minimum Temperature of the Coldest Mont East/West sub-samples Figure 7.47: Bivariate Scatterplot of Male and Female Head Height vs Relative Humidity of the Wettes Month Figure 7.48: Bivariate Scatterplot of Male Head Height vs Average Annual Temperature: East/West sub- samples Figure 7.49: Bivariate Scatterplot of Male and Female Minimum Frontal Diameter vs Maximum Temperature of the Hottest Month Figure 7.50: Bivariate Scatterplot of Male and Female Bizygomatic Diameter vs Relative Humidity of t Driest Month Figure 7.51: Bivariate Scatterplot of Male Bizygomatic Diameter vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.52: Bivariate Scatterplot of Male and Female Bigonial Diameter vs Maximum Temperature of the Hottest Month Figure 7.53: Bivariate Scatterplot of Male Bigonial Diameter vs Minimum Temperature of the Coldest Month Figure 7.54: Bivariate Scatterplot of Male Total Facial Height vs Minimum Temperature of the Coldest 	244 th: 245 t 247 247 247 247 247 247 247 247 247 249 250 251
 Figure 7.46: Bivariate Scatterplot of Male Head Breadth vs Minimum Temperature of the Coldest Mont East/West sub-samples Figure 7.47: Bivariate Scatterplot of Male and Female Head Height vs Relative Humidity of the Wettes Month Figure 7.48: Bivariate Scatterplot of Male Head Height vs Average Annual Temperature: East/West sub- samples Figure 7.49: Bivariate Scatterplot of Male and Female Minimum Frontal Diameter vs Maximum Temperature of the Hottest Month Figure 7.50: Bivariate Scatterplot of Male and Female Bizygomatic Diameter vs Relative Humidity of t Driest Month Figure 7.51: Bivariate Scatterplot of Male Bizygomatic Diameter vs Minimum Temperature of the Coldest Month Figure 7.52: Bivariate Scatterplot of Male and Female Bigonial Diameter vs Maximum Temperature of the Hottest Month Figure 7.53: Bivariate Scatterplot of Male and Female Bigonial Diameter vs Maximum Temperature of the Hottest Month Figure 7.53: Bivariate Scatterplot of Male Bigonial Diameter vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.53: Bivariate Scatterplot of Male Bigonial Diameter vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.54: Bivariate Scatterplot of Male Total Facial Height vs Minimum Temperature of the Coldest Month: East/West sub-samples 	244 th: 245 t 247 247 247 247 he 248 249 250 251 252
 Figure 7.46: Bivariate Scatterplot of Male Head Breadth vs Minimum Temperature of the Coldest Mont East/West sub-samples Figure 7.47: Bivariate Scatterplot of Male and Female Head Height vs Relative Humidity of the Wettes Month Figure 7.48: Bivariate Scatterplot of Male Head Height vs Average Annual Temperature: East/West sub- samples Figure 7.49: Bivariate Scatterplot of Male and Female Minimum Frontal Diameter vs Maximum Temperature of the Hottest Month Figure 7.50: Bivariate Scatterplot of Male and Female Bizygomatic Diameter vs Relative Humidity of the Driest Month Figure 7.51: Bivariate Scatterplot of Male Bizygomatic Diameter vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.52: Bivariate Scatterplot of Male and Female Bigonial Diameter vs Maximum Temperature of the Hottest Month Figure 7.53: Bivariate Scatterplot of Male Bigonial Diameter vs Maximum Temperature of the Hottest Month Figure 7.54: Bivariate Scatterplot of Male Bigonial Diameter vs Maximum Temperature of the Coldest Month: East/West sub-samples Figure 7.53: Bivariate Scatterplot of Male Bigonial Diameter vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.54: Bivariate Scatterplot of Male Total Facial Height vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.55: Bivariate Scatterplot of Male Total Facial Height vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.55: Bivariate Scatterplot of Male and Female Upper Facial Height vs Average Annual 	244 th: 245 t 247 247 247 247 247 247 247 248 249 250 251 252
 Figure 7.46: Bivariate Scatterplot of Male Head Breadth vs Minimum Temperature of the Coldest Moni East/West sub-samples Figure 7.47: Bivariate Scatterplot of Male and Female Head Height vs Relative Humidity of the Wettes Month Figure 7.48: Bivariate Scatterplot of Male Head Height vs Average Annual Temperature: East/West sub samples Figure 7.49: Bivariate Scatterplot of Male and Female Minimum Frontal Diameter vs Maximum Temperature of the Hottest Month Figure 7.50: Bivariate Scatterplot of Male and Female Bizygomatic Diameter vs Relative Humidity of the Driest Month Figure 7.51: Bivariate Scatterplot of Male Bizygomatic Diameter vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.52: Bivariate Scatterplot of Male and Female Bigonial Diameter vs Maximum Temperature of the Hottest sub-samples Figure 7.53: Bivariate Scatterplot of Male Bigonial Diameter vs Minimum Temperature of the Coldest Month Figure 7.54: Bivariate Scatterplot of Male Bigonial Diameter vs Minimum Temperature of the Coldest Month Figure 7.54: Bivariate Scatterplot of Male Bigonial Diameter vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.55: Bivariate Scatterplot of Male Total Facial Height vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.55: Bivariate Scatterplot of Male and Female Upper Facial Height vs Average Annual Temperature 	244 th: 245 t 247 247 247 247 247 247 247 247 247 247
 Figure 7.46: Bivariate Scatterplot of Male Head Breadth vs Minimum Temperature of the Coldest Mont East/West sub-samples Figure 7.47: Bivariate Scatterplot of Male and Female Head Height vs Relative Humidity of the Wettes Month Figure 7.48: Bivariate Scatterplot of Male Head Height vs Average Annual Temperature: East/West sub-samples Figure 7.49: Bivariate Scatterplot of Male and Female Minimum Frontal Diameter vs Maximum Temperature of the Hottest Month Figure 7.50: Bivariate Scatterplot of Male and Female Bizygomatic Diameter vs Relative Humidity of the Driest Month Figure 7.51: Bivariate Scatterplot of Male Bizygomatic Diameter vs Maximum Temperature of the Coldest sub-samples Figure 7.52: Bivariate Scatterplot of Male and Female Bigonial Diameter vs Maximum Temperature of the Hottest sub-samples Figure 7.53: Bivariate Scatterplot of Male Bigonial Diameter vs Maximum Temperature of the Coldest Month: East/West sub-samples Figure 7.54: Bivariate Scatterplot of Male Bigonial Diameter vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.54: Bivariate Scatterplot of Male Bigonial Diameter vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.55: Bivariate Scatterplot of Male Total Facial Height vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.55: Bivariate Scatterplot of Male and Female Upper Facial Height vs Average Annual Temperature Figure 7.56: Bivariate Scatterplot of Male and Female Upper Facial Height vs Minimum Temperature of the Coldest Month: East/West sub-samples 	244 th: 245 t 247 247 247 247 247 247 247 248 249 250 251 252 253 st
 Figure 7.46: Bivariate Scatterplot of Male Head Breadth vs Minimum Temperature of the Coldest Moni East/West sub-samples Figure 7.47: Bivariate Scatterplot of Male and Female Head Height vs Relative Humidity of the Wettes Month Figure 7.48: Bivariate Scatterplot of Male Head Height vs Average Annual Temperature: East/West sub samples Figure 7.49: Bivariate Scatterplot of Male and Female Minimum Frontal Diameter vs Maximum Temperature of the Hottest Month Figure 7.50: Bivariate Scatterplot of Male and Female Bizygomatic Diameter vs Relative Humidity of the Driest Month Figure 7.51: Bivariate Scatterplot of Male Bizygomatic Diameter vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.52: Bivariate Scatterplot of Male and Female Bigonial Diameter vs Maximum Temperature of the Hottest Month Figure 7.53: Bivariate Scatterplot of Male Bigonial Diameter vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.54: Bivariate Scatterplot of Male Total Facial Height vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.55: Bivariate Scatterplot of Male and Female Upper Facial Height vs Average Annual Temperature Figure 7.56: Bivariate Scatterplot of Male and Female Upper Facial Height vs Average Annual Temperature Figure 7.56: Bivariate Scatterplot of Male Upper Facial Height vs Minimum Temperature of the Coldest Month: East/West sub-samples 	244 th: 245 t 247 247 247 247 247 247 247 247 247 247
 Figure 7.46: Bivariate Scatterplot of Male Head Breadth vs Minimum Temperature of the Coldest Moni East/West sub-samples Figure 7.47: Bivariate Scatterplot of Male and Female Head Height vs Relative Humidity of the Wettes Month Figure 7.48: Bivariate Scatterplot of Male Head Height vs Average Annual Temperature: East/West sub samples Figure 7.49: Bivariate Scatterplot of Male and Female Minimum Frontal Diameter vs Maximum Temperature of the Hottest Month Figure 7.50: Bivariate Scatterplot of Male and Female Bizygomatic Diameter vs Relative Humidity of t Driest Month Figure 7.51: Bivariate Scatterplot of Male Bizygomatic Diameter vs Melative Humidity of the Coldest Month: East/West sub-samples Figure 7.52: Bivariate Scatterplot of Male and Female Bigonial Diameter vs Maximum Temperature of the Hottest Month Figure 7.53: Bivariate Scatterplot of Male Bigonial Diameter vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.54: Bivariate Scatterplot of Male Bigonial Diameter vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.55: Bivariate Scatterplot of Male Total Facial Height vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.55: Bivariate Scatterplot of Male and Female Upper Facial Height vs Average Annual Temperature Figure 7.56: Bivariate Scatterplot of Male Upper Facial Height vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.56: Bivariate Scatterplot of Male Nose Height vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.56: Bivariate Scatterplot of Male Nose Height vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.57: Bivariate Scatterplot of Male Nose Height vs Minimum Temperature of the Coldest Month: East/West sub-samples 	244 th: 245 t 247 247 247 247 247 247 247 247 247 247
 Figure 7.46: Bivariate Scatterplot of Male Head Breadth vs Minimum Temperature of the Coldest Moni East/West sub-samples Figure 7.47: Bivariate Scatterplot of Male and Female Head Height vs Relative Humidity of the Wettes Month Figure 7.48: Bivariate Scatterplot of Male Head Height vs Average Annual Temperature: East/West sub- samples Figure 7.49: Bivariate Scatterplot of Male and Female Minimum Frontal Diameter vs Maximum Temperature of the Hottest Month Figure 7.50: Bivariate Scatterplot of Male and Female Bizygomatic Diameter vs Relative Humidity of the Driest Month Figure 7.51: Bivariate Scatterplot of Male Bizygomatic Diameter vs Maximum Temperature of the Coldest Month: East/West sub-samples Figure 7.52: Bivariate Scatterplot of Male and Female Bigonial Diameter vs Maximum Temperature of the Hottest Month Figure 7.53: Bivariate Scatterplot of Male Bigonial Diameter vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.54: Bivariate Scatterplot of Male Total Facial Height vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.55: Bivariate Scatterplot of Male and Female Upper Facial Height vs Average Annual Temperature Figure 7.56: Bivariate Scatterplot of Male and Female Upper Facial Height vs Average Annual Temperature Figure 7.56: Bivariate Scatterplot of Male Male Memale Upper Facial Height vs Average Annual Temperature Figure 7.56: Bivariate Scatterplot of Male Upper Facial Height vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.57: Bivariate Scatterplot of Male Nose Height vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.57: Bivariate Scatterplot of Male Nose Height vs Minimum Temperature of the Coldest Month East/West sub-samples 	244 th: 245 t 247 247 247 247 247 247 247 248 249 250 251 252 253 st 253 st 253 n: 254
 Figure 7.46: Bivariate Scatterplot of Male Head Breadth vs Minimum Temperature of the Coldest Monineast/West sub-samples Figure 7.47: Bivariate Scatterplot of Male and Female Head Height vs Relative Humidity of the Wettes Month Figure 7.48: Bivariate Scatterplot of Male Head Height vs Average Annual Temperature: East/West sub-samples Figure 7.49: Bivariate Scatterplot of Male and Female Minimum Frontal Diameter vs Maximum Temperature of the Hottest Month Figure 7.50: Bivariate Scatterplot of Male and Female Bizygomatic Diameter vs Relative Humidity of the Driest Month Figure 7.51: Bivariate Scatterplot of Male Bizygomatic Diameter vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.52: Bivariate Scatterplot of Male and Female Bigonial Diameter vs Maximum Temperature of the Hottest Month Figure 7.53: Bivariate Scatterplot of Male Bigonial Diameter vs Maximum Temperature of the Coldest Month: East/West sub-samples Figure 7.54: Bivariate Scatterplot of Male Bigonial Diameter vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.54: Bivariate Scatterplot of Male Total Facial Height vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.55: Bivariate Scatterplot of Male and Female Upper Facial Height vs Average Annual Temperature of the Coldest Month: East/West sub-samples Figure 7.56: Bivariate Scatterplot of Male Upper Facial Height vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.57: Bivariate Scatterplot of Male Nose Height vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.57: Bivariate Scatterplot of Male Nose Height vs Minimum Temperature of the Coldest Month: East/West sub-samples Figure 7.57: Bivariate Scatterplot of Male Nose Height vs Minimum Temperature of the Coldest Month East/West sub-samples Figure 7.57: Bivariate Scatterplot of Male Nose Hei	244 th: 245 t 247 247 247 247 247 247 247 247 247 247

	xix
Figure 7.59: Bivariate Scatterplot of Male Nose Breadth vs Average Annual Temperature: East/West su	ıb-
samples	256
Figure 7.60: Bivariate Scatterplot of Male Nasal Depth vs Minimum Temperature of the Coldest Month	1:
East/West sub-samples	257
Figure 7.61: Bivariate Scatterplot of Male Mandibular Depth vs Annual Rainfall: East/West sub-sample	es258
Figure 7.62: Bivariate Scatterplot of Male and Female Nasal Breadth Index vs Relative Humidity of the	;
Wettest Month	260
Figure 7.63: Bivariate Scatterplot of Male Nasal Breadth Index vs Relative Humidity of the Driest Mon	th:
East/West sub-samples	261
Figure 7.64: Bivariate Scatterplot of Male and Female Nasal Depth Index vs Average Annual	
Temperature	266
Figure 7.65: Bivariate Scatterplot of Male Nasal Depth Index vs Average Annual Temperature: East/W	est
sub-samples	266
Figure 7.66: Bivariate Scatterplot of Male and Female Cephalic Index vs Relative Humidity of the	
Wettest Month	268
Figure 7.67: Bivariate Scatterplot of Male Cephalic Index vs Relative Humidity of the Driest Month:	
East/West sub-samples	268
Figure 7.68: Bivariate Scatterplot of Male Cranial Module vs Minimum Temperature of the Coldest	
Month: East/West sub-samples	269
Figure 7.69: Bivariate Scatterplot of Male and Female Cephalo-facial Index vs Maximum Temperature	of
the Hottest Month	270
Figure 7.70: Bivariate Scatterplot of Male Cephalo-facial Index vs Minimum Temperature of the Colde	st
Month: East/West sub-samples	270
Figure 7.71: Bivariate Scatterplot of Male Cephalo-facial Index vs Relative Humidity of the Driest	
Month: East/West sub-samples	271
Figure 7.72: Bivariate Scatterplot of Male and Female Total Facial Index vs Relative Humidity of the	
Driest Month	272
Figure 7.73: Bivariate Scatterplot of Male Total Facial Index vs Average Annual Temperature: East/We	est
sub-samples	272

Chapter 8

Figure 8.1: Rotated factor-loading plot of components 1 and 2: analysis 1.	278
Figure 8.2: Rotated factor-loading plot of components 1 and 2: analysis 2.	281
Figure 8.3: Rotated factor-loading plot of components 1 and 2: analysis 3.	285
Figure 8.4: Rotated factor-loading plot of components 1 and 3: analysis 3.	285
Figure 8.5: Rotated factor-loading plot of components 1 and 2: analysis 4.	290
Figure 8.6: Rotated factor-loading plot of components 2 and 3: analysis 4.	290
Figure 8.7: Rotated factor-loading plot of components 1 and 2: analysis 5.	293
Figure 8.8: Rotated factor-loading plot of components 1 and 2: analysis 6.	296
Figure 8.9: Rotated factor-loading plot of components 1 and 2: analysis 7.	299
Figure 8.10: Rotated factor-loading plot of components 2 and 3: analysis 7.	299
Figure 8.11: Rotated factor-loading plot of components 1 and 2: analysis 8.	303
Figure 8.12: Rotated factor-loading plot of components 2 and 3: analysis 8.	303

Chapter 9

Figure 9.1: Scatterplot of Male Weight on Coldest Month (World Sample).	310
Figure 9.2: Scatterplot of Male Stature on Least Humid Month (World Sample).	310
Figure 9.3: Scatterplot of Male Bi-iliac Breadth on Coldest Month (World Sample).	312
Figure 9.4: Scatterplot of Female Bi-iliac Breadth on Coldest Month (World Sample)	312
Figure 9.5: Scatterplot of Male Sitting Height on Annual Temperature (World Sample).	313
Figure 9.6: Scatterplot of Male Relative Pelvic Breadth on Annual Temperature (World Sample).	314
Figure 9.7: Scatterplot of Female Relative Pelvic Breadth on Annual Temperature (World Sample).	315
Figure 9.8: Scatterplot of Male SA/Weight on Annual Temperature (World Sample)	315

Figure 9.9: Scatterplot of Male Radio-Humeral Index on Annual Temperature (World Sample) Figure 9.10: Scatterplot of Male Radio-humeral Index on Annual Temperature (based on osteometric	316
measurements of modern human populations).	317
Figure 9.11: Scatterplot of Male Tibio-femoral Index on Annual Temperature (based on osteometric	
measurements of modern human populations).	317

XX