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5.1. Model Requirements for Weather Data 

Crop growth, grain yield, fertilizer recovery, and the processes

affecting them vary greatly from year to year in any location as well

as from location to location. The overwhelming determinant of this

spatial and temporal variability is weather. In wheat-growing regions

temperature dictates the length of the growing season and the rate of

crop development, and hence, the type of wheat grown. Precipitation

and stored soil moisture are key parameters influencing agronomic

practices involved in dryland wheat cultivation and also determine

the length of the effective growing season. Solar radiation influences

rates of photosynthesis and evaporation and will thus influence

growth processes and water balance. The rates of nutrient trans-

formation occurring in the soil are influenced by soil moisture and

temperature.

To evaluate differing cropping and fertilizer strategies in any

location, it would be desirable to have experiments conducted over

many years to capture the variability due to weather which occurs. Long-

term data of this type are seldom available, but where long-term weather

records exist a model can be run to provide a more complete picture

of crop growth and fertilizer response variations over time.

Long-term weather data, particularly daily rainfall, temperature,

and radiation, are frequently required in modelling studies where

crop growth or response patterns are studied over a period of years.

Hydrology models such as CREAMS (Knisel, 1980) and the Representative

Basins Model (Body and Goodspeed, 1979) frequently require long runs

of weather data to be able to capture the effects of infrequent

events such as high intensity thunderstorms. The erosion-productivity
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model EPIC (Williams et al., 1983) also requires access to long-term

weather records to evaluate the long-term consequences of differing

tillage practices and crop rotation sequences on productivity.

Models designed to provide "best-bet" solutions for optimizing sowing

time of pastures (Dowling and Smith, 1976) or crops (Stapper, 1984)

also require long-term weather records.

Frequently, these long-term weather data are not available or

the records are incomplete. An alternative is to utilize stochastic

time-series modelling procedures to generate a sequence of weather

data with stastical properties indistinguishable from historical

sequences. To produce these sequences a short run of weather data is

used to determine some coefficients describing the data, and the

coefficients in turn are used to generate a longer sequence of data.

If such procedures can reliably be used to generate climatic data for

use with stochastic models, an added bonus is that a small file of

climatic parameters can be maintained to describe a site rather than

maintaining a large data base with daily observations, thus reducing

computer storage requirements and cost.

This chapter describes some attributes of the Australian climate

and reviews some of the various generation techniques available and

evaluates the procedures described by Richardson and Wright (1984) for

locations within the Australian wheat belt.

5.2. Nature of Australian Climates 

Australia is the driest continent on earth with one-third of the

continent receiving an average of 250 mm per annum or less. Rainfall,
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or the lack of it, is thus the most important single factor determining

land use and rural productivity. This dryness is largely a function

of latitude. Australia lies within an area of predominantly high

pressure between the regular paths of tropical rain-bearing influences

in the north and temperate rain-bearing influences in the south. A

more detailed discussion of the climatology may be found in Gentilli (1971).

The distribution of rainfall throughout the year thus varies

from the north to the south of the continent and from the eastern to

the western coasts. In all regions of the continent rainfall declines

with distance from the coast such that the 750 mm annual rainfall

isohyet seldom extends more than 250 km inland (Fitzpatrick and

Nix, 1970). Regions of winter rain occur in the south and the most

pronounced winter maxima occur in the southwest of Western Australia.

Tropical monsoons produce a marked summer maximum of rainfall in the

north. The middle latitudes of Australia, except on the east coast,

are dry or have erratic rainfall because they lie outside the paths

of these two rain-bearing influences.

Testing the rainfall component of any weather generator against

data from Australian wheat belt locations is a particularly challenging

exercise since the degree of variability of Australian rainfall

generally exceeds that for crop-growing regions in other areas of the

world (Leeper, 1973). Figure 5.1 illustrates the extent to which

annual rainfall deviates from long term mean annual rainfall on the

Australian continent. For most of the wheat-growing regions of

Australia, this variability is at least 10% greater than for corresponding

areas of the world at the same latitude. Only locations in the

southern fringe of the wheat belt (those with a Mediterranean-type
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Figure 5.1. Percentage Mean Variability From Annual Mean Rainfall for
Locations in Australia (redrawn from Leeper, 1973).
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climate) experience rainfall with equal or less variability than

other locations in the world receiving the same amount of annual

rainfall.

Modest relief and the insular nature of the landmass tend to

produce smaller extremes of temperature compared to areas of other

continents with similar latitudes. Isotherms for January maxima and

July minima and their ranges are plotted in Figure 5.2. In the far

north of the continent the hottest month is November, further south

toward the Tropic of Capricorn, December is the hottest month, and in

most of the subtropical area, January is the hottest month (Anon,

1983). Within the wheat belt (Figure 5.4) frosts are common in

winter but are never severe or prolonged, but late frosts periodically

cause damage to crops (Marcelles and Single, 1975).

Average daily solar radiation exceeds 25 MJ/m
2
 over most of the

continent in January (Fitzpatrick and Nix, 1970). Latitude greatly

influences solar radiation receipts in the winter months with daily

values declining as rainfall increases with increase in latitude.

5.3. General Structure and Review of Weather Generators 

5.3.1. Techniques for Generating Daily Rainfall Data 

Many models have been proposed for simulating daily precipitation.

Most techniques consist of two steps. The first is to determine the

sequence of wet and dry days and the second is to determine the

amount of precipitation on wet days.

Various methods exist for the simulation of wet and dry day

occurrences. One simple method is to consider wet and dry days as

independent events. However, Gabriel and Neuman (1962), using rainfall

data from Tel Aviv, Israel, found that daily rainfall events are not

independent but depend on the wet or dry status of the previous day.
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Consequently, models which ignore this dependence have often been

unsuccessful (for example, Smith and Schreiber, 1973; Cole and Sheriff,

1972; Buishand, 1978).

Thus, the probability of rain occurring on a day is conditioned

by the wet or dry status of the previous day. This type of model

based on conditional probabilities is referred to as a Markov chain

model. Since the work of Gabriel and Neumann this technique has

become the most widely adopted for predicting rainfall occurrences.

Table 5.1 indicates some of the diversity of rainfall environments

where the technique has been successfully employed.

Markov chain models may be described by their "order" and "state."

"Order" refers to the number of days preceding a day that affects the

weather on that day. For example, a first order Markov chain uses a

probability conditioned on the weather of the previous day and a

second order Markov chain uses a probability conditioned by the

events of the previous two days. The "state" of the chain refers to

the categories used to describe an event. For precipitation a two-state

chain uses the occurrence or nonoccurrence of rainfall as states.

Multistate models utilize various rainfall amounts as states. In

defining a wet day a small threshold amount of rainfall is usually

used. Richardson (1981) and Haan et al. (1976) use 0.25 mm as this

threshold, whereas Stern et al. (1981) use small but differing

threshold amounts for differing locations.

The simplest form of Markov chain employed is the first order

two-state chain with the states being "wet" or "dry." In most of the

studies cited previously (Table 5.1), this level of complexity proved

satisfactory to describe the rainfall sequence reliably. In some
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circumstances this has proven unsatisfactory and techniques to determine

the appropriate chain order length have been devised (Gates and

Tong, 1976).

Table 5.1. Studies Employing a Markov Chain Technique for Predicting 
Rainfall Occurrence

Author

Haan et al., 1976
Bruhn et al., 1980
Gates and Tong, 1976
Coe and Stern, 1982
Srikanthan and McMahon

(1983, 1984)
Chin (1977)
Buishand (1978)
Richardson (1981)
Dennett et al. (1984)
Stern (1980a)
Stern (1980b)
Smith and Schreiber (1973)
Weiss (1964)
Garbutt et al. (1980)
Jones et al. (1972)

Larsen and Pense (1982)

Location

Kentucky, United States
Geneva, New York, United States
Israel and United Kingdom
Jordan, Niger, Botswana, and Sri Lanka
Australia (various locations)

United States (various locations)
Netherlands, Indonesia, India
United States (various locations)
Syria
Nigeria
Nigeria, India
Arizona, United States
United States
Various locations in West Africa
State College, Mississippi,
United States

United States (various locations)

Lawler (1983) described a useful technique where rainfall data

can be coded with a 0 for a dry day and a 1 for a wet day. The

possible sequences of wet and dry days over a two-day period are:

0	 0	 dry day followed by a dry day

0	 1	 dry day followed by a wet day

1	 0	 wet day followed by a dry day

1	 1	 wet day followed by a wet day.
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The conditioned or transition probabilities for a two state

first order Markov chain may be calculated by (a) totalling the number

of occurrences of 00, 01, 10, 11 in the data; (b) summing the number

of occurrences of 00 and 01 to give TOTAL 1, and similarly for 10 and

11 to give TOTAL 2; (c) dividing the number of occurrences of 00 by

TOTAL 1 to give P00 ; dividing the number of occurrences of 10 by

TOTAL 2 to give P 10 ; dividing the number of occurrences of 11 by

TOTAL 2 to give P11.

These transition probabilities can be written in the form of a

matrix:

P00
	 P

01

P
10	

P
11

P
11 

+ P
01 

= 1 and P
10 

+ P
11 

= 1

This matrix is known as the transition probability matrix (TPM) and

is a convenient method of describing the probability of rainfall

occurrences. Further description of the theory of Markov chains can

be found in Haan (1977).

The appropriate chain order length may vary from location to

location and throughout the year (Chin, 1977; Bruhn et al., 1980;

Lawler, 1983). Use of a higher order chain and a multi-state chain

is necessary when modelling rainfall amount as distinct from rainfall

occurrence. Haan et al. (1976) have developed a stochastic model

using a first order seven state chain. The states employed were

various rainfall amounts.

Srikanthan and McMahon (1983) used the transition probability

matrix (TPM) method with up to seven states to describe daily rainfall

at 12 locations within Australia. The seven states employed ranged
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from zero or dry for the first state to rainfall amounts greater than

31 mm for the seventh state. To improve the model's ability to

predict isolated large rainfall events, Srikanthan and McMahon employed

a transformation procedure (Box and Cox, 1964) on rainfall amounts

falling within this last class which reduced the skewness of the

distribution. In order to accommodate all 12 stations, the number of

states for each station was systematically varied depending on the

maximum observed rainfall and the average number of wet days in a

particular month. The actual number of states employed varied from 2

to 7, depending on month and station.

A number of models have been proposed for the distribution of

precipitation amounts occurring on wet days. Plots of the frequency

of rainfall events against daily rainfall amount (Figure 5.3) indicate

that smaller amounts of rainfall occur more frequently than larger

amounts. Todorovic and Woolhiser (1975) and Richardson (1982b) have

used a 1-parameter exponential distribution to approximate this

curve. A 2-parameter gamma distribution has been used by Buishand

(1978), Stern (1980a, b), Dennett et al. (1984), Coe and Stern (1982),

Garbutt et al. (1980), Ison et al. (1971), Katz (1977), and Larsen

and Pense (1982). A 3-parameter mixed exponential distribution has

been used by Woolhiser and Pegram (1979), and a skew-normal dis-

tribution by Nicks (1974).

The 2-parameter gamma was found to be superior to the simple

exponential when applied across a range of sites (Richardson, 1982b).
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The general form of the density function of the gamma distribution

is:

f(P) = 

apu-1 e-4 , p>0

F (a)

where: (i) a is a shape parameter

(ii) p is a scale parameter

(iii) F (a) is a gamma function of a

(iv) p is an ordinate of the probability density function

Procedures for estimating a and p have been reported by Haan (1977),

Stern (1980b), Garbutt et al. (1981) and Richardson and Wright (1984).

A rainfall generator program can be constructed by using a

random number generator on a computer to produce a random variate.

This random variate is then used with the TPM to determine if a day

is wet or dry. If it is wet then another random variate can be used

with the probability distribution for rainfall amount to estimate the

amount of rain which falls.

Combining the models for rainfall occurrence and rainfall amount

yields a tool which can provide valuable information pertinent to the

agronomy of crops in certain areas. Stern et al. (1982b) and Stern

et al., (1981) have employed the technique to determine the mean

starting date for the rainy season and the variability of this start

in areas with a monsoonal climate. The probability of an n-day dry

spell after an initial rain can also be estimated which would assist
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in planting date and crop species selection decisions. Garbutt

et al. (1981) examined the rainfall climates of eleven sites in West

Africa along an approximate longitudinal transect using the Markov-gamma

model. The technique showed that most of the variation in rainfall

in the region could be explained by differences in the probability of

rain falling and not on the amount of rain per rainy day.

In their review of generation procedures Srikanthan and McMahon

(1983) found the TPM technique to be superior to the first order

2-state Markov-gamma procedure for Australian rainfall data but

concluded that all the procedures examined "reasonably reproduced"

mean annual and monthly rainfall.

5.3.2. Techniques for Generating Temperature and Solar Radiation Data 

Rainfall is usually regarded as the most basic of weather vari-

ables, and thus, most generation procedures for other weather variables

rely on some form of dependence on the rainfall status. Jones et al.

(1972) used a regression procedure to generate daily temperature data

from rainfall data and the time of the year. A separate relationship

for each of wet and dry days was used. The model generated sequences

of weather data from State College Mississippi reliably. This type

of model, however, cannot account for such sequences of weather data

as a string of consecutive hot days. These sequences, known as

persistence patterns, have been shown (Richardson, 1982a) to have

some degree of serial dependence. This means that today's temperature

is a function of yesterday's temperature and so on. Richardson

(1982a) has also demonstrated that weather variables tend to be cross

correlated as well as having these patterns of serial dependence.
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This means that today's maximum temperature is related to today's

solar radiation and today's minimum temperature may be related to

today's maximum temperature.

Several different approaches to incorporating these patterns of

serial correlation and cross correlation into weather generators have

been used. Bruhn et al. (1980) modified the Jones et al. (1972)

model to predict maximum temperature as a function of the month of

the year, the rainfall occurrence on the previous day, and the previous

day's maximum temperature. The functions for minimum temperature

also incorporated the rainfall status of the previous day. Minimum

temperature was found to be a function of the current day's maximum

temperature. Their functions may be expressed as:

Maximum temperature = f(M, Rt_i , TMAXt_ i , RN)

Minimum temperature = f(M, Rt _ i , TMAXt , RN)

Total solar radiation = f(M, Rt , RN)

where:

M = month being simulated

R
t-1 

= rainfall occurrence on the previous day

R
t
 = rainfall occurrence on the current day

TMAX	 = maximum temperature on the previous day
t-1

TMAX
t
 = maximum temperature on the current day

RN = random variable with a normal probability distribution

The model worked satisfactorily at both Geneva, New York and at Fort

Collins, Colorado.

Nicks and Harp (1980) developed a model for generating a sequence

of temperature and solar radiation data dependent on the sequence of

wet and dry days. For each variable (temperature or solar radiation),
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four equations corresponding to the four rain conditions: (1) a dry

day after a dry day, (2) a wet day after a wet day, (3) a dry day

after a wet day, and (4) a wet day after a wet day were developed.

The technique preserved the persistence pattern in temperature and

solar radiation appropriately conditioned for the wet or dry day

status of day and the previous day, but it did not consider the cross

correlation of the variables. Larsen and Pense (1982) developed a

weather generator which incorporated components describing serial

dependence within temperature data and solar radiation data.

Procedures were incorporated to describe cross correlations between

maximum and minimum temperatures, but no attempt to describe cross

correlation of temperature with solar radiation was made.

The performance of each of these generators will depend greatly

on the location where they are tested. The generators using regression

techniques (Bruhn et al., 1980; Jones et al., 1972) require a separate

series of regression equations for each month of the year and could

conceivably become unwieldy if used at a multitude of sites. The

cross correlations of temperature with solar radiation within generated

weather data will be important in crop simulation models. Deviations

from observed patterns of these variables may affect photosynthesis,

evapotranspiration, and growth processes differently.

The WGEN generator (Richardson and Wright, 1984) attempts to

preserve the dependence structure within generated weather data and

is readily adaptable to inclusion into crop or hydrology models.

WGEN is the subject of evaluation in this study. A brief description

of the method used for generating temperature and solar radiation

data follows.
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Maximum temperature, minimum temperature, and solar radiation

are generated depending on the wet or dry status of each day. Only

the current day wet/dry status is considered in the model (cf. Nicks

and Harp, 1980). The basic form of the generating function for each

of maximum temperature, minimum temperature, and solar radiation is:

yi (N) = X i (N) • 6i (N) + Yi(N)

where:

(N) = daily value of maximum temperature (N=1), minimum
Yi

temperature (N=2), or solar radiation (N=3)

a.(N) = standard deviation for day i

(N) = mean for day i
Yi

X.(N) = 3 x 1 matrix for day i of residuals

The means and standard deviations for each of wet and dry days for

each N=1, 2, or 3 are interpolated from a Fourier series describing

their seasonal variation. These Fourier coefficients are thus required

as inputs for the generator.

The matrix of residuals is derived from the serial coefficients

of each of maximum and minimum temperature and solar radiation and

cross correlation coefficients between each of the weather variables.

The cross correlation coefficients used to derive this matrix are

both lag zero (i.e., cross correlations between the variables on a

day) and lag one (i.e., cross correlations between a variable on one

day and another variable on the previous day). Further details of

this correlation matrix are given by Richardson and Wright (1984).

The magnitude of the serial correlation coefficients and the

cross correlation coefficients used to calculate the elements of this

matrix were found to be very consistent across 31 locations examined
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by Richardson (1982a). If we assume that this matrix is consistent

for all locations, the only parameters required to generate temperature

and solar radiation are the Fourier coefficients describing the annual

variation in temperature and solar radiation on wet and dry days.

5.3.3. Overview of Richardson Weather Generator Program WGEN

The program generates a sequence of daily rainfall data by using

four precipitation parameters:

(i) P(W/W) the probability of a wet day given the previous day was

wet

(ii) P(W/D) the probability of a wet day given the previous day was

dry

(iii) the shape coefficient of the gamma distribution

(iv) the scale parameter of the gamma distribution

These parameters depend on the month of the year. The program operates

by accessing a random number generator and, based on the value of the

random variate, the previous day's wet or dry status, and the first

two coefficients, determines whether this day is wet or dry. If it

is wet a second random variate is used with the third and fourth

parameters to determine the amount of rainfall.

Daily maximum and minimum temperatures and solar radiation are

determined based on a Fourier series describing the change in their

mean values and coefficient of variation throughout the year for each

of wet and dry days. The simulated values are thus conditioned on

the wet or dry status of the day and are adjusted according to an

assumed matrix of serial and cross correlation coefficients. This

matrix preserves patterns of temperature persistence and ensures that
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simulated daily values of temperatures and solar radiation are

appropriately correlated. This should minimize the possibilities of

simulating a very hot dry day but with low solar radiation.

5.4. Data and Programs Used to Evaluate the Richardson Weather 

Simulator

5.4.1. Weather Data 

Weather data of two forms were obtained from the Australian

Bureau of Meteorology. Daily rainfall data from 52 locations either

within or on the periphery of the wheat belt were used. These data

were screened to discard years with missing observations. The mean

annual rainfall calculated for each location and the number of years

of "clean" record are tabulated below (Table 5.2).

Secondly, Australian Meteorological Bureau daily surface

climate data which contain elements for rainfall, temperature, baro-

metric pressure, wind, rain, and sunshine hours and various phenomena

codes were used for calculation of temperature-related coefficients.

In contrast to the rainfall data described above, these data sets had

only a short period of record and often had many missing observations.

The data were screened to determine where gaps in the record existed

and to check that recorded temperatures fell within the bounds of

-20° to 50°C. Any year with more than five consecutive missing

observations was discarded. A Fourier series with three harmonics

relating long-term mean weekly maximum or minimum temperature to day

of the year was fitted for each location. The Fourier series has the

form:

3 it
X = a + 2	 p

i
(cos( fH)) + yi (sin(

it
))

271i = 1
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Table 5.2. Locations Used for Development of Rainfall Generator Parameters 
and Subsequent Testing 

Location State Latitude Longitude
Mean Annual
Precipitation

Number of
Years of Record

(°S) (°W) (mm)

Barraba NSW 30.22 150.36 689 100
Bathurst NSW 33.25 149.35 622 120
Bendigo VIC 36.46 144.17 548 111
Biloela QLD 24.24 150.35 700 59
Clare SA 33.25 143.55 633 117
Cobar NSW 31.30 145.49 347 81
Condobolin NSW 33.05 147.09 442 100
Coonabarabran NSW 31.16 149.17 724 102
Coonamble NSW 30.57 148.23 499 100
Cowra NSW 33.50 148.41 600 76
Dalby QLD 27.11 151.16 688 96
Dalwallinu WA 30.17 116.40 358 65
Dubbo NSW 32.15 148.36 581 97
Esperance WA 33.51 121.53 697 63
Euroka NSW 30.01 148.07 426 77
Forbes NSW 33.23 148.01 522 106
Geraldton WA 28.46 114.36 456 68
Gilgandra NSW 31.42 148.39 555 87
Griffith NSW 34.17 146.02 409 55
Hamilton VIC 37.45 142.02 695 100
Horsham VIC 36.43 142.13 446 102
Jondaryan QLD 27.2 151.3 647 84
Kadina SA 33.58 137.43 392 100
Kerang	 - VIC 35.44 143.55 368 99
Kybybolite SA 36.54 141.00 553 77
Lignum (Gunnedah) NSW 30.59 150.15 601 29
Loxton SA 34.27 140.35 274 72
Merbein VIC 34.11 142.04 282 64
Miles QLD 26.40 150.41 655 96
Moora WA 30.39 116.00 462 73
Moree NSW 29.28 149.51 575 87
Muresk WA 31.45 116.40 455 55
Nhill VIC 36.20 141.39 411 99
Northam WA 31.39 116.40 442 75
Nuriootpa SA 34.29 139.00 509 31
Orange NSW 33.17 149.06 867 95
Parkes NSW 33.08 148.11 584 42
Pittsworth QLD 27.43 151.38 698 94
Quirindi NSW 31.31 150.41 681 96
Rutherglen VIC 36.03 146.28 592 85
Springsure QLD 24.07 148.05 674 95
Temora NSW 34.26 147.32 518 69
Trangie NSW 32.02 147.59 496 82
Waite Institute SA 34.58 133.38 634 53
Walgett NSW 30.01 148.07 472 97
Walpeup VIC 35.08 142.02 347 46
Warialda NSW 29.32 150.34 687 105
Warooka SA 35.00 137.24 442 100
Wellington NSW 32.33 148.57 599 79
West Wyalong NSW 33.55 147.13 448 84
Wongan Hills WA 30.53 116.42 345 48
Young NSW 34.19 148.18 643 105
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where:

u = mean of maximum or minimum temperature

y.,p. = amplitude of the harmonics

t = day of the year measured from January 1

X = maximum or minimum temperature

Missing daily observations for periods up to 5 consecutive days were

interpolated from these curves. This technique would reduce the

observed variance in temperature for periods where data were missing,

but it was considered to be a more viable alternative than discarding

whole years and diminishing the length of record substantially. Many

of the missing observations arose because records were often not

taken on weekends or holidays. The resulting length of record varied

for each location (Table 5.3) but was at most 40 years with some

locations having as few as 6 years. Rainfall data from this data set

were utilized only to determine temperature relations for wet and dry

days. The length of record was considered too short for many of the

locations for reliable characterization of rainfall generator parameters.

In many instances, rainfall data were recorded as accumulated totals

for a period of several days together with the number of days of

accumulation. This would make accurate prediction of rainfall per

rain day very difficult.

Since the records for daily solar radiation or hours of sunshine

from which it may be calculated were so sparse, the weekly mean solar

radiation data estimated by Fitzpatrick and Nix (1970) were used as a

substitute. Fitzpatrick and Nix used an empirical procedure to

estimate solar radiation from the latitude, time of year, and mean
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Table 5.3. Locations Used for Calculation of Weather Generator Parameters for
Temperature and Solar Radiation 

Location State
Number
of Years

Temperature, °C
January
Minimum

January
Maximum

July
Minimum

July
Maximum

Bathurst NSW 17 12.7 27.5 0.0 11.3
Bendigo VIC 23 14.0 28.7 3.6 11.3
Cambooya QLD 14 16.3 30.0 2.3 18.6
Clare SA 23 13.8 30.2 3.0 12.4
Cobar NSW 20 21.1 34.3 4.9 15.5
Condobolin NSW 16 19.2 33.5 3.7 14.9
Coonabarabran NSW 24 11.6 31.2 0.5 15.5
Cowra NSW 18 16.1 30.9 3.5 12.8
Dalby QLD 23 19.3 32.6 5.1 19.3
Dalwallinu WA 26 17.7 34.7 6.0 16.2
Dubbo NSW 26 19.9 32.8 2.9 15.1
Esperance WA 18 14.4 28.4 6.0 15.4
Forbes NSW 23 17.1 32.5 2.7 14.0
Geraldton WA 40 18.6 31.8 8.5 18.9
Gilgandra NSW 6 16.1 31.4 2.7 16.1
Goondiwindi QLD 24 20.1 34.1 5.5 18.7
Hamilton VIC 18 10.0 25.8 3.7 9.9
Horsham VIC 22 13.5 29.9 3.7 14.1
Kadina SA 21 15.3 30.2 5.7 14.5
Kyabram VIC 18 14.0 30.5 2.3 11.8
Kybybolite SA 15 11.2 28.4 4.2 11.5
Loxton	 - SA 15 15.0 31.8 4.0 15.3
Manjimup WA 20 13.2 27.5 6.6 12.9
Merbein VIC 10 16.1 31.6 4.3 1L.	 (-
Merredin WA 12 17.0 33.8 4.9 15.4
Miles QLD 13 20.4 33.6 4.3 20.3
Moree NSW 18 20.3 34.1 4.3 18.3
Mudgee NSW 18 15.1 30.6 1.6 14.6
Muresk WA 15 15.8 33.7 4.1 14.9
Nhill VIC 24 13.2 30.5 3.4 12.4
Nuriootpa SA 20 12.8 28.7 4.0 12.3
Nyngan NSW 19 20.2 34.7 4.0 16.7
Orange NSW 7 12.4 26.4 1.1 8.2
Parkes NSW 23 17.8 31.7 4.8 14.2
Pittsworth QLD 6 17.7 30.4 5.7 18.6
Quirindi NSW 14 17.5 32.6 2.1 16.5
Rutherglen VIC 18 13.2 31.8 1.8 11.9
Tamworth NSW 26 18.3 32.0 3.5 15.6
Temora NSW 15 15.3 31.5 1.6 12.7
Trangie NSW 14 18.6 32.8 2.9 15.6
Wagga NSW 7 15.9 30.6 3.3 12.7
Waite Institute SA 14 17.4 29.2 8.3 13.6
Walgett NSW 24 20.7 35.5 4.7 18.9
Walpeup VIC 15 15.4 32.2 4.4 13.6
Warooka VIC 12 15.3 27.5 7.4 14.3
Warwick QLD 19 17.5 30.2 2.8 17.4
Wellington NSW 18 17.1 32.3 2.0 15.1
Wongan Hills WA 15 17.1 33.5 5.6 15.4
Young NSW 18 14.0 31.4 1.1 12.6
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monthly relative humidity. To enable calculation of weather generator

parameters, a Fourier series with three harmonics was fitted to these

weekly estimates of radiation and daily values interpolated from them

using the procedure described above for temperature. The location of

the data sets used for calculation of weather generator parameters is

shown in Figure 5.4.

5.4.2. Programs 

Calculation of Rainfall Generation Parameters 

A FORTRAN program (Appendix 5) was developed to read the daily

rainfall data and calculate the conditional probabilities P(W/W) and

P(W/D) used in the Markov chain component of the generator and the

coefficients (a, p) of the gamma distribution for rainfall amount for

each month of the year. The subroutine PCRAIN responsible for these

calculations was obtained from Richardson (pers. comm.). The program

also has options to calculate the coefficients required for two

alternative distributions for rainfall amount, the simple exponential

(Richardson, 1981), and a skewed distribution (Nicks, 1983). These

alternatives are provided in subroutine PPRAIN also obtained from

Richardson. The resultant values of P(W/W), P(W/D), a and p for each

of the stations are appended (Appendix 6).

The program also calculates several statistics to describe the

daily rainfall data and to provide a basis for comparison of observed

and generated data. Means and the four moments (standard deviation,

variance, skewness, and kurtosis) for each of the following were

calculated:
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Figure 5.4. Locations Within the Australian Wheat Belt Used for the
Development of the Weather Generator Parameters and
Subsequent Testing.	 Sites Listed are in Approximate
Latitudinal Sequence for Each State:

1 Springsure 28 Griffith
2 Biloela 29 Temora
3 Miles 30 Young
4 Dalby
5 Jondaryan 31 Merbein

32 Walpeup
6 Pittsworth 33 Kerang
7 Moree 34 Rutherglen
8 Warialda 35 Nhill
9 Walgett 36 Horsham

10 Euroka 37 Bendigo
11 Barraba 38 Hamilton
12 Lignum (Gunnedah)
13 Coonamble 40 Clare
14 Coonabarabran 41 Kadina
15 Quirindi 42 Loxton
16 Cobar 43 Nuriootpa
17 Gilgandra 44 Waite Institute
18 Trangie 45 Warooka
19 Dubbo 46 Kybybolite
20 Wellington
21 Orange 50 Geraldton
22 Parkes 51 Dulwullins
23 Condobolin 52 Moora
24 West Wyalong 53 Wongan Hills
25 Forbes 54 Northam
26 Bathurst 55 Muresk
27 Cowra 56 Esperance

Additional Sites Used for Temperature Generation Not
Located on the Map are Listed Below, Together With
the Nearest Rainfall Station Code.

	

6	 Cambooya

	

4,7	 Goondiwindi

	

34	 Kyabram

	

20,24	 Mudgee

	

18	 Nyngan

	

12	 Tamworth

	

29	 Wagga Wagga

	

6	 Warwick



1 9 9-a

1. Springsure 14. Coonabarabran 27. Cowra 41. Kadina
2.	 Biloela 15.	 Quirindi 28.	 Griffith 42. Loxton
3. Miles 16. Cobar 29. Temora 43. Nuriootpa
4.	 Dalby 17.	 Gilgandra 30. Young 44. Waite Institute
5. Jondaryan 18. Trangie 31. Merbein 45. Warooka
6.	 Pittsworth 19. Dubbo 32. Walpeup 46.	 Kybybolite
7. Moree 20. Wellington 33. Kerang 50.	 Geraldton
8. Warialda 21. Orange 34. Rutherglen 51.	 Dalwallinu
9. Walgett 22. Parkes 35.	 Nhill 52. Moora

10. Euroka 23. Condobolin 36. Horsham 53. Wongan Hills
11.	 Barraba 24. West Wyalong 37. Bendigo 54. Northam
12. Gunnedah 25. Forbes 38. Hamilton 55. Wagin
13. Coonamble 26.	 Bathurst 40.	 Clare 56. Esperance
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1. Monthly total rainfall.

2. Number of wet days per month.

3. Rainfall per rain day for each month.

4. Length of run of consecutive wet days for each month.

5. Number of daily rainfall events greater than 10 mm for each

month.

6. Number of daily rainfall events greater than 25 mm for each

month.

In addition to this, the means and moments for the total number

of dry spells per 3-month period and the length of dry spells in each

3-month period were calculated.

For each month, cumulative probability density functions (CPDF)

for monthly rainfall and rain per rain day using the procedure described

in Chapter 7 were estimated. Points representing each decile were

also interpolated from these CPDFs. Deciles for the length of the

longest dry spell on an annual basis were also determined as was the

length of the longest dry spell for the period of record. These

calculations for rainfall statistics are performed in subroutine

WSTATS and related subroutines called from within WSTATS. 	 A sample

output for one location is appended (Appendix 7).

Rainfall Generator 

The WGEN generator of Richardson and Wright (1984) was modified

to generate only rainfall using the monthly values of P(W/W) and

P(W/D), a and p as inputs. Details of the operations performed and a

listing of the programs are provided by Richardson and Wright. The

same routines developed to compute the statistics from the observed
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data were added to this program to calculate statistics from the

generated data. The generator was set to generate 99 years of daily

rainfall.

Rainfall Comparison Program

A FORTRAN program was developed to compare the observed and

generated rainfall parameters listed above. Monthly means were

compared with a Student's t distribution using the method of unequal

variances (p. 106, Steele and Torrie, 1980). Steele and Torrie note

that when t is computed using this method it is not strictly distributed

according to t but is a close approximation. Comparisons were made

at the 5% significance level.

Observed and generated monthly variances were compared using a

two-tailed F test (p. 117, Snedecor and Cochran, 1967). For this

test, the hypothesis is that the two samples are independent random

samples from a normal population with the same variance a
2 

(this is

reasonable since the simulated data are presented for the same area

and from the same sample data). In cases where zero values existed

for the variance (e.g., some months may have had no rainfall events

greater than 25 mm), variance ratios could not be computed and no

comparison was made.

Skewness of distributions was compared as below:

R '631 -V172-
hi hz
n i	n2
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where:

= skewness of observed population = m	 VrT1-)
3	 2 2

VT-= skewness of generated population = m /(m -5-)2	 3	 2

n
1
 = number of observed years

n
2
 = number of generated years.

-
m
2
 = second moment about the mean = 2(x-x)

2
 /n

m
3
 = third moment about the mean = I(x-x)

3
 /n

The ratio R will approximate at distribution as it is assumed

that m
2
 corresponds to the population variance for the two samples.

If the resulting R values were greater than 1.96 (the 5% level of

significance value), then the two populations were differently skewed.

Differences in kurtosis were not examined.

The mean number, and length of dry spells per 3-month period

were compared using the Student's t procedure described above.

It should be noted that for the above calculations to be legitimate

the assumption that observations were drawn from a normal population

has to be made. The distinction is made here between comparing

monthly values, drawn from a population of years; and daily values.

Daily rainfall amounts form a highly skewed distribution since there

is always a large number of small observations and a small number of

large observations. Since rainfall is accumulated over a longer

period, monthly rainfall amounts should not be so highly skewed and

the population should approach a normal distribution. In a preliminary

analysis of some sample locations using a Shapiro-Wilks procedure

(Anderson, 1983) the distribution of monthly rainfall totals was

found to be approximately normal.
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The program produces plots comparing the observed and generated

distributions of monthly rainfall amount and rain per rainday. The

9th and 1st deciles are plotted to compare the tails of the distributions

and the median is also plotted (see Figure 5.5). A sample output of

the statistical comparison is appended (Appendix 8).

Calculation of Temperature and Solar Radiation Parameters 

A FORTRAN program was developed to extract the "clean" data from

the data sets listed above and to compute generator parameters for

temperature and solar radiation using the procedures described by

(Richardson and Wright, 1984). This program calculates parameters

describing the rainfall, maximum and minimum temperature, and solar

radiation, which can later be used as inputs to the weather generator

program.

For consistency and subsequent ease of use; in later studies

(Chapters 6 and 7) the daily mean interpolated values for solar

radiation were used to calculate the solar radiation coefficients.

It should be noted that this will lead to erroneous values for these

parameters since the same mean interpolated value is used for dry

days and wet days occurring on the same day of the year. The resultant

error for crop simulation purposes will probably be small (Richardson,

1985).

Richardson (1982) describes the seasonal change in the mean and

coefficient of variation for temperature and solar radiation with a

function:
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-	 2n
u.=u + C

cos 365 
(i - T), i = 1,3651

where

u. = the value of the mean or coefficient of variation on day i.

u = the mean of u..1
C = amplitude of the harmonic.

T = position of the harmonic in days from January 1.

The program calculates the values of u and C for the mean and

coefficient of variation for each of maximum temperature, minimum

temperature, and solar radiation for both wet and dry days.

Richardson (1981) found that for locations in the contiguous United

States, T was close to the 200th day of the year for temperature for

all locations and near the 172nd day of the year for solar radiation.

These values are obviously incorrect for the southern hemisphere and

procedures were developed to estimate T. A Fourier series was fitted

to the observed data for maximum temperature and minimum temperature

on each of wet days, dry days, and wet and dry days combined and the

T values were determined as the day on which these functions reached

a maximum. The values obtained are tabulated (Table 5.4) and the

means obtained from all locations were used in the program. Due to

the nature of the solar radiation data the calculation was considered

inappropriate and a value of T = 355 days assumed (172 + 365/2).
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Table 5.4. Values of "T" for Maximum and Minimum Temperatures on Wet and Dry
Days 

Tl = T for maximum temperature on dry days.
T2 = T for maximum temperature on wet days.
T3 = T for minimum temperature on dry days.
T4 = T for minimum temperature on wet days.

Station	 Tl	 T2 T3 T4

Bathurst 24 27 27 35
Bendigo 26 26 31 36
Cambooya 19 19 28 27
Clare 27 29 28 34
Cobar 23 24 25 34
Condobolin 25 26 26 32
Condobolin 23 23 25 32
Coonabarrabran 21 19 24 29
Cowra 25 25 25 26
Cowra 25 29 29 36
Dalby 17 12 25 29
Dalwallinu 25 26 32 31
Dubbo 21 23 26 31
Esperance 30 26 39 34
Forbes 24 26 26 31
Geraldton 42 36 38 38
Gilgandra 21 19 27 33
Goondiwindi 21 18 26 31
Hamilton - 34 39- 41 44
Horsham 28 29 30 37
Kadina 29 28 31 32
Kyabram 26 25 33 38
Kybybolite 31 33 38 41
Loxton 25 25 27 33
Manjimup 28 30 36 34
Merbean 27 28 31 31
Merredin 22 22 29 31
Miles 17 5 24 24
Moree 22 19 26 29
Mudgee 23 25 29 32
Muresk 22 24 31 34
Nhill 27 27 31 36
Nuriootpa 26 29 30 35
Nyngan 20 22 24 32
Orange 25 24 29 28
Parkes 23 26 27 32
Pittsworth 19 25 29 25
Quirindi 23 26 25 32
Rutherglen 26 28 33 37
Tamworth 21 23 25 33
Temora 24 26 30 36
Walpeup 25 24 32 36
Trangie 19 19 27 27

(Continued)
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Table 5.4. Values of "T" for Maximum and Minimum Temperatures on Wet and Dry
Days (Continued)

Station T1 T2 T3 T4

Wagga Wagga 25 26 32 37
Waite Institute 30 37 38 41

Walgett 18 11 23 26

Warooka 31 27 42 39

Warwick 16 20 30 28

Wellington 22 23 28 31

Wellington 23 21 26 29

Wongan Hills 23 23 33 31

Young 26 29 32 38

Mean 24.4 24.7 29.5 32.9

Std. Deviation 4.5 5.8 4.6 4.2



207

The WGEN PAR program calculated the following for each of the

locations:

TXMD = annual mean of maximum temperature (TMAX) on dry days.

ATX = amplitude of TMAX on wet or dry days.

CVTX = mean coefficient of variation of TMAX on wet or dry days.

ACVTX = amplitude of coefficient of variation of TMAX on wet or

dry days.

TXMW = annual mean of TMAX on wet days.

TN = annual mean of minimum temperature (THIN) on wet days.

ATN = amplitude of THIN on wet or day days.

CVTN = mean of coefficient of variation of THIN on wet or dry

days.

ACVTN = amplitude of coefficient of variation of THIN on wet or

dry days.

RMD = annual mean solar radiation on dry days.

AR = amplitude of solar radiation on dry days.

RMW = annual mean solar radiation on wet days.

The resulting values for each location which are used as inputs

to the generator are appended (Appendix 9).

The program also calculates several statistics to describe the

temperature data and to enable comparisons with generated temperature

data. Means and moments for each of the following are calculated.

1. Monthly average minimum temperature.

2. Monthly average maximum temperature.

3. Number of days per month with maximum temperatures exceeding 40°.

4. Number of days per month with maximum temperatures exceeding 35°.
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5. Number of days per month with minimum temperatures less than 5°.

6. Number of days per month with minimum temperature less than 0°.

7. Monthly average maximum temperature on dry days.

8. Monthly average maximum temperature on wet days.

9. Monthly average minimum temperature on dry days.

10. Monthly average minimum temperature on wet days.

The Weather Generator Program 

Additions to the WGEN program were made to accommodate the "T"

values described previously and to compute the summary statistics

noted above. The program is attached (Appendix 10).

Temperature Comparison Program 

A program to compare the means and moments above was developed

using similar test criteria to those outlined for the rainfall gener-

ator program. The program also plots the simulated and observed mean

maximum and minimum temperatures on wet and dry days.

5.5. Evaluation of the Simulator 

5.5.1. Rainfall 

In almost all instances the rainfall generator faithfully reproduced

sequences of rainfall data with the same mean monthly values of:

total rainfall, number of wet days, rainfall per rain day, and the

length of run of consecutive wet days. At 13 sites the simulated

annual rainfall significantly differed (p � 0.05) from the observed

annual rainfall. These 13 sites were: Cobar, Dubbo, Kerang, Lignum,

Loxton, Moree, Northam, Pittsworth, Trangie, Waite Institute, Walgett,
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Walpeup, and Wellington. While these differences may have been

statistically significant they represented at most a 3.13% departure

from the mean annual rainfall. At these sites and all others

simulated mean monthly rainfall did not differ significantly from

observed monthly mean rainfall.

Further indications of the performance of the simulator at

predicting monthly rainfall totals can be gleaned by comparison of

median (5th decile) monthly rainfall amounts from the simulated and

observed data (Fig. 5.5). The generator predicts median monthly

rainfall equally well in the summer dominant rainfall areas (Fig. 5.5A)

as in the winter dominant rainfall areas (Fig. 5.5D and 5.5E) and

those with a more even distribution (Fig. 5.5B and 5.5C). Upon more

close examination of Fig. 5.5 it can be seen that generally the 1st

and 9th deciles for simulated monthly rainfall amount lie within

those for observed rainfall amounts. This is particularly evident in

individual months in some cases at some locations (e.g., Pittsworth

month 6 [Fig. 5.5A3], Walgett month 2 [Fig. 5.5A5]) and for more

lengthy periods in some of the Victorian locations (e.g., Hamilton

[Fig. 5.5C1], Rutherglen [Fig. 5.5C3], and Walpeup [Fig. 5.5C4]).

These differences indicate that the range of predicted monthly

rainfall is less than that observed. This implies that the generator

is adequate over most of the range of possible monthly rainfall

totals but does not predict extreme rainfall amounts of both the high

and low tails of the distribution with sufficient frequency. Further

evidence of this shortcoming is provided by the fact that the variance

of simulated monthly rainfall totals is, in almost all instances

(months and locations), significantly less than that calculated from
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Figure 5.5. Comparison of Observed and Simulated Monthly Rainfall (mm) For:

Al. Biloela	 QLD
A2. Miles	 QLD
A3. Pittsworth	 QLD
A4. Jondaryan	 QLD
A5. Walgett	 NSW
A6. Quirindi	 NSW

Bl. Coonabarabran	 NSW
B2. Barraba	 NSW
B3. Dubbo	 NSW
B4. Cobar	 NSW
B5. Bathurst	 NSW
B6. Orange	 NSW
B7. Forbes	 NSW
B8. Temora	 NSW

Cl. Hamilton	 VIC
C2. Horsham	 VIC
C3. Rutherglen	 VIC
C4. Walpeup	 VIC
C5. Kerang	 VIC
C6. Griffith	 NSW

Dl. Clare	 SA
D2. Waite Institute SA
D3. Kybybolite	 SA
D4. Warooka	 SA
D5. Kadina	 SA
D6. Loxton	 SA

El. Geraldton	 WA
E2. Esperance	 WA
E3. Wongan Hills	 WA
E4. Northam	 WA
E5. Muresk	 WA
E6. Moora	 WA

Lines marked (+) indicate deciles calculated from observed data, lines
marked (*) indicate deciles calculated from simulated data. Upper
lines are ninth decile rainfall amount, middle lines fifth decile, and
lowest lines first decile rainfall amount.
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the observed data. No consistent annual pattern is evident from the

standard deviation of monthly rainfall amounts tabulated (Tables 5.5

to 5.11). When the coefficients of variation for rainfall amount are

plotted (Fig. 5.6) it becomes more apparent that the generator is

unable to mimic the extremes of variability that occur during the dry

season (April to September in Biloela and November to April in Geraldton).

During these dry periods the coefficient of variation rises markedly,

presumably due to isolated storm events in occasional years and

during the wetter months the coefficient is markedly lower. It is

during these periods of lesser variability that the generator produces

a sequence of rainfall data with variability more closely matching

that from observed data. It should be noted, however, particularly

in the areas with a Mediterranean-type climate (e.g., Geraldton)

that, while these differences in coefficient of variation are large

during the dry months, the mean monthly rainfall is quite small (see

Fig. 5.5A1 and 5.5E1) and the absolute value of the error is very

small.

For further evaluation of generator performance in predicting

monthly rainfall amounts it is appropriate to examine both the number

of wet days/month and the rainfall per rain event. This provides

insights as to the generator's capability of predicting rainfall

occurrence as well as event size. In all data sets studied the

generated values for these two parameters were not significantly

different from the observed. In the more southern locations (winter

dominant rainfall) increasing monthly rainfall can be attributed to a

large increase in the number of wet days/month and a smaller increase

in the amount of rain per rain day (see Tables 5.7, 5.9, and 5.12).



Table 5.5. Comparison of Observed and Simulated Rainfall Parameters for Bathurst

Monthly Rainfall
January February March April May June July August September October November December Year

Observed means 65.8 59.9 52.1 43.0 45.5 45.7 44.5 45.3 46.9 60.2 55.5 57.7 622.1

Generated means 61.7 58.9 56.3 40.0 43.4 44.1 45.8 44.9 43.9 60.0 56.7 57.5 613.0

Observed S.D. 44.7 49.6 45.1 31.3 32.2 32.5 28.4 28.2 26.8 35.3 39.0 44.4

Generated S.D. 38.6 38.6 33.4 28.6 28.3 23.1 24.6 25.6 23.0 31.5 33.8 32.8

Number of Wet Days/Month

Observed means 6.5 6.0 6.0 5.9 7.3 8.7 8.9 8.7 8.3 8.2 6.9 6.4

Generated means 6.3 5.8 6.4 5.7 7.2 8.6 9.2 8.4 8.0 8.1 7.0 7.1

Observed S.D. 3.2 3.2 3.4 3.4 3.4 3.9 3.7 3.8 3.2 3.5 3.1 3.3

Generated S.D. 2.8 2.5 2.6 2.8 3.5 3.2 3.2 3.1 2.8 3.0 3.0 2.8

Rain Per Rain Day

Observed means 10.0 9.0 7.8 7.1 6.2 5.2 5.1 5.3 5.8 7.1 7.7 8.5

Generated means 9.5 10.1 8.7 6.6 5.9 5.0 4.8 5.3 5.6 7.3 8.0 8.4

Observed S.D. 5.7 5.1 4.9 4.3 4.0 2.6 2.6 2.9 2.7 3.6 3.7 4.7

Generated S.D. 4.5 5.4 3.6 3.9 2.8 2.0 1.8 2.3 2.5 3.0 3.5 4.5

Number of Consecutive Wet Days

Observed means
Generated means

4.1
4.0

3.7,
3.7

3.6
3.9

3.4
3.3

4.0
4.1

4.6
4.7

4.8
4.9

4.9
4.8

4.9
4.9

4.8
4.6

4.2
4.2

4.1
4.4

Observed S.D. 1.6 1.7 1.6 1.7 1.5 1.6 1.6 1.6 1.7 1.7 1.5 1.8

Generated S.D. 1.7 1.4 1.5 1.4 1.6 1.6 1.4 1.5 1.6 1.5 1.6 1.6

Number of Falls > 10 mm

Observed means 2.3 2.1 1.6 1.5 1.4 1.4 1.3 1.3 1.5 2.0 1.9 1.9 20.1
Generated means 2.1 2.0 2.0 1.3 1.5 1.2 1.3 1.3 1.3 2.1 2.0 2.1 20.2
Observed S.D. 1.7 2.0 1.5 1.2 1.3 1.4 1.2 1.1 1.2 1.5 1.5 1.6

Generated S.D. 1.4 1.4 1.5 1.4 1.4 1.1 1.3 1.2 1.1 1.4 1.4 1.5

Number of Falls > 25 mm

Observed means 0.7 0.6 0.5 0.3 0.3 0.2 0.2 0.2 0.2 0.4 0.4 0.6 4.4
Generated means 0.6 0.6 0.4 0.2 0.2 0.1 0.1 0.1 0.1 0.3 0.4 0.4 3.6
Observed S.D. 0.8 0.9 0.8 0.6 0.6 0.4 0.4 0.5 0.4 0.7 0.6 0.8
Generated S.D. 0.7 0.8 0.6 0.5 0.4 0.3 0.2 0.4 0.4 0.6 0.6 0.6



Table 5.6.	 Comparison of Observed and Simulated Rainfall Parameters for Biloela

July August September October November December Year

Monthly Rainfall
January February March April May June

Observed means 106.6 110.7 65.7 39.6 46.0 33.8 27.8 22.1 22.8 51.6 79.0 94.6 700.3

Generated means 104.9 122.1 66.5 40.1 47.0 35.8 31.6 22.6 22.2 50.4 77.7 87.3 708.3

Observed S.D. 64.1 81.3 51.3 48.3 48.1 29.0 32.5 20.9 25.3 38.4 47.4 62.8

Generated S.D. 63.3 63.3 45.5 33.7 38.8 29.0 28.9 19.6 18.4 38.6 40.3 46.0

Number of Wet Days/Month

Observed means 9.8 8.9 7.0 4.5 4.8 4.5 4.2 3.9 3.6 6.2 7.4 8.5

Generated means 9.6 9.6 6.9 4.2 5.1 4.6 4.4 3.9 3.6 6.4 7.3 8.0

Observed S.D. 3.6 4.4 3.9 2.5 3.3 2.6 3.2 2.5 2.3 2.8 3.2 3.5

Generated S.D. 3.6 3.5 3.4 2.4 2.9 2.5 2.6 2.4 2.4 3.2 2.8 3.2

Rain Per Rain Day

Observed means 10.7 12.2 9.2 8.1 8.6 7.4 6.1 4.8 5.0 8.2 10.2 11.2 N)
Generated means 10.4 12.8 9.4 8.4 9.0 7.4 6.6 5.5 5.8 7.4 11.3 11.3 H
Observed S.D. 6.2 7.6 6.9 7.8 6.7 7.3 6.8 3.5 4.5 5.8 5.6 6.3

LO

Generated S.D. 4.4 4.8 5.5 6.0 5.3 5.1 4.6 4.3 5.0 4.0 7.1 5.4

Number of Consecutive Wet Days

Observed means 4.8 4.3 4.0 2.7 2.8 2.5 2.5 2.6 2.3 3.6 4.4 4.6
Generated means 4.7 4.4 3.9 2.6 2.9 2.5 2.7 2.6 2.3 3.7 4.3 4.6
Observed S.D. 1.2 1.5 1.6 1.2 1.5 1.2 1.4 1.5  1.4 1.2 1.8 1.6
Generated S.D. 1.5 1.3 1.5 1.4 1.3 1.2 1.2 1.2 1.4 1.5 1.4 1.4

Number of Falls > 10 mm

Observed means 3.2 3.0 2.0 1.1 1.3 1.1 0.9 0.8 0.7 1.7 2.5 2.8 21.0
Generated means 3.5 3.9 2.2 1.4 1.6 1.2 1.0 0.6 0.7 1.8 2.7 2.9 23.6
Observed S.D. 1.9 2.2 1.6 1.4 1.3 1.0 1.1 0.9 0.9 1.6 1.7 1.7
Generated S.D. 2.3 2.0 1.5 1.2 1.6 1.1 1.1 0.8 1.0 1.7 1.6 1.7

Number of Falls > 25 mm

Observed means 1.2 1.4 0.7 0.4 0.5 0.3 0.2 0.1 0.2 0.5 0.9 1.1 7.6
Generated means 1.1 1.6 0.6 0.4 0.6 0.3 0.2 0.1 0.1 0.3 0.8 1.0 7.2
Observed S.D. 1.1 1.3 0.8 0.8 0.8 0.5 0.5 0.3 0.5 0.7 0.8 1.1
Generated S.D. 1.1 1.2 0.8 0.6 0.8 0.5 0.5 0.4 0.3 0.7 0.9 1.0



Table 5.7.	 Comparison of Observed and Simulated Rainfall Parameters for Clare

July August September October November December YearJanuary February March April May June
Monthly Rainfall

Observed means 25.5 25.6 26.5 49.8 74.9 79.1 81.4 78.7 71.4 56.7 35.7 27.9 633.1

Generated means 26.5 28.6 23.9 53.8 76.4 80.4 81.0 77.2 76.3 59.1 39.2 29.8 652.2

Observed S.D. 29.0 29.7 28.3 43.7 45.3 40.0 37.0 33.3 38.6 36.1 27.9 26.5

Generated S.D. 21.6 27.4 15.6 33.2 35.3 34.2 28.7 29.8 27.7 27.8 23.6 23.8

Number of Wet Days/Month

Observed means 4.3 4.0 5.0 8.2 11.9 13.8 15.1 14.5 12.4 10.3 7.1 5.1

Generated means 4.3 4.2 4.7 8.5 12.1 13.9 15.3 14.4 12.8 11.0 7.5 5.6

Observed S.D. 2.5 2.6 2.9 4.3 4.3 4.2 3.9 4.1 3.7 3.5 3.3 2.7 N)
Generated S.D. 2.7 3.0 2.4 4.1 4.0 4.3 4.0 4.2 3.3 3.4 3.5 3.2 I--,

.P-

Rain Per Rain Day

Observed means 5.3 5.2 4.7 6.2 6.1 5.5 5.3 5.4 5.6 5.3 4.8 5.2

Generated means 5.8 6.4 5.1 6.2 6.3 5.8 5.3 5.4 6.0 5.4 5.3 5.0

Observed S.D. 6.4 4.8 3.8 4.1 2.8 2.1 2.0 1.7 2.2 2.4 2.6 3.9

Generated S.D. 4.2 5.5 3.0 3.0 2.3 1.8 1.5 1.5 1.6 2.0 2.6 2.9

Number of Consecutive Wet Days

Observed means 2.7 2.4 3.0 3.8 4.6	 . 5.1 5.5 5.6 5.4 5.0 3.9 3.1
Generated means 2.8 2.3 3.0 3.9 4.5 5.1 5.6 5.3 5.4 5.3 4.2 3.3

Observed S.D. 1.4 1.3 1.5 1.5 1.5 1.6 1.3 1.5 1.4 1.5 1.5 1.3

Generated S.D. 1.4 1.1 1.2 1.4 1.3 1.3 1.4 1.4 '	 1.2 1.3 1.4 1.7

Number of Falls > 10 mm

Observed means 0.7 0.8 0.7 1.5 2.4 2.4 2.4 2.4 2.3 1.8 1.1 0.9 19.4
Generated means 0.8 1.0 0.7 1.8 2.7 2.5 2.3 2.4 2.7 1.8 1.1 0.9 20.5
Observed S.D. 0.9 1.0 1.0 1.5 1.9 1.8 1.7 1.6 1.7 1.4 1.2 1.0
Generated S.D. 0.9 1.1 0.8 1.5 1.7 1.7 1.6 1.5 1.6 1.3 1.0 1.1

Number of Falls > 25 mm

Observed means 0.2 0.2 0.2 0.3 0.5 0.3 0.3 0.3 0.3 0.3 0.1 0.2 3.1
Generated means 0.1 0.2 0.1 0.3 0.3 0.2 0.2 0.1 0.2 0.2 0.1 0.1 2.1
Observed S.D. 0.5 0.4 0.5 0.7 0.8 0.6 0.5 0.5 0.7 0.6 0.4 0.5
Generated S.D. 0.4 0.5 0.2 0.6 0.5 0.5 0.4 0.3 0.4 0.5 0.4 0.3



Table 5.8.	 Comparison of Observed and Simulated Rainfall Parameters for Cobar

July August September October November December Year
Monthly Rainfall

January February March April May June

Observed means 31.8 33.1 29.9 25.0 28.0 30.6 23.1 29.6 23.5 30.2 28.2 34.6 347.6
Generated means 31.4 35.7 26.1 28.0 27.3 30.0 23.7 31.6 25.2 25.8 25.9 28.4 339.0
Observed S.D. 40.1 37.2 43.3 31.8 23.4 25.1 18.6 23.7 20.5 27.3 30.2 33.1
Generated S.D. 25.1 32.6 26.1 23.2 19.3 22.7 16.9 23.7 21.0 20.4 22.4 23.1

Number of Wet Days7Month

Observed means 3.6 4.3 3.6 3.4 4.8 5.6 5.3 5.3 4.3 4.8 4.2 4.0
Generated means 3.5 4.2 3.5 3.6 4.8 5.2 5.5 5.3 4.2 4.5 4.1 3.8
Observed S.D. 2.7 3.1 3.0 2.4 3.3 3.1 3.0 3.2 2.4 2.9 2.7 2.6
Generated S.D. 2.1 2.7 2.7 2.5 2.9 2.7 3.0 2.6 2.6 2.7 2.5 2.4 N.)

F."
Rain Per Rain Day

J1

Observed means 7.8 6.6 6.5 6.1 5.9 5.2 4.1 5.3 5.1 6.2 5.8 7.8
Generated means 8.2 7.6 6.7 7.3 6.0 5.3 4.3 5.7 5.6 5.8 5.8 7.2
Observed S.D. 7.3 5.9 7.6 7.1 5.7 3.8 2.5 3.7 3.8 4.9 4.8 6.1
Generated S.D. 6.0 4.5 5.5 5.5 4.3 3.3 2.3 2.9 3.2 3.5 3.6 4.5

Number of Consecutive Wet Days

Observed means 2.3 2.5 2.2 2.2 2.8 3.3 3.3 3.3 3.0 3.0 2.8 2.6
Generated means 2.2 2.4 2.2 2.3 2.9 3.2 3.4 3.3 2.9 3.1 2.6 2.6
Observed S.D. 1.4 1.5 1.6 1.5 1.7 1.6 1.6 1.7 1.4 1.5 1.5 1.4
Generated S.D. 1.3 1.4 1.3 1.4 1.4 1.4 1.4 1.5 1.5 1.3 1.3 1.4

Number of Falls > 10 mm

Observed means 0.9 1.0 0.8 0.8 0.9 0.9 0.6 0.9 0.7 1.0 0.9 1.1 10.4
Generated means 1.1 1.2 0.9 1.0 0.8 0.9 0.6 1.0 0.8 0.8 0.9 1.0 11.2
Observed S.D. 1.2 1.1 1.4 1.2 1.0 1.2 0.7 1.0 1.0 1.1 1.1 1.2
Generated S.D. 1.0 1.2 1.1 1.0 0.9 1.0 0.9 1.2 1.0 1.0 1.1 1.0

Number of Falls > 25 mm

Observed means 0.4 0.3 0.3 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.3 0.3 2.7
Generated means 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.2 1.7
Observed S.D. 0.7 0.7 0.5 0.6 0.4 0.4 0.3 0.4 0.4 0.5 0.6 0.6
Generated S.D. 0.5 0.5 0.5 0.4 0.3 0.4 0.0 0.3 0.3 0.2 0.4 0.5



Table 5.9. Comparison of Observed and Simulated Rainfall Parameters for Geraldton

Monthly Rainfall

January February March April May June July August September October November December Year

Observed means 6.4 9.7 14.5 23.6 70.4 121.9 89.1 62.5 29.2 17.3 7.9 4.0 456.5

Generated means 6.7 10.9 12.2 26.6 72.1 122.3 93.3 58.6 28.6 19.0 8.3 4.1 462.8

Observed S.D. 13.9 20.8 26.8 24.3 53.6 60.5 40.1 37.6 19.4 14.5 9.2 6.0

Generated S.D. 9.2 14.0 13.5 21.2 35.4 51.7 37.2 25.3 14.4 12.8 6.6 5.4

Number of Wet Days/Month

Observed means 1.5 2.0 2.7 5.0 10.2 13.8 13.7 11.9 8.7 6.0 3.1 1.6
1■.)

Generated means
Observed S.D.

1.7
1.5

2.2
1.8

2.5
2.1

5.1
3.1

10.6
4.4

14.3
3.9

14.0
4.5

11.8
3.8

8.2
3.7

6.1
2.7

3.1
2.4

1.4
1.6

I-,
oN

Generated S.D. 1.5 1.9 1.9 3.3 4.1 4.0 4.1 4.0 3.0 2.7 1.8 1.5

Rain Per Rain Day

Observed means 3.0 2.7 3.8 4.1 6.7 8.7 6.5 5.3 3.3 2.7 2.3 1.9

Generated means 3.2 3.5 4.0 5.3 6.9 8.6 6.7 5.0 3.5 3.1 2.7 2.1

Observed S.D. 5.4 4.3 5.0 3.3 3.4 3.4 2.4 2.7 1.7 1.9 2.3 3.2

Generated S.D. 4.8 3.7 4.2 3.5 2.4 2.8 1.9 1.8 1.2 1.7 2.1 2.4

Number of Consecutive Wet Days

Observed means 1.2 1.4 1.8 2.7 4.4 5.2 5.2 5.2 4.7 3.9 2.2 1.3

Generated means 1.3 1.6 1.8 2.8 4.6 5.1 5.0 4.9 4.7 4.0 2.2 1.1

Observed S.D. 1.1 1.2 1.1 1.6 1.4 1.4 1.6 1.4 1.6 1.7 1.4 1.1

Generated S.D. 1.0 1.2 1.2 1.3 1.4 1.3 1.3 1.3 1.4 1.6 1.2 1.1

Number of Falls > 10 mm

Observed means 0.2 0.3 0.4 0.6 2.2 4.0 2.8 1.8 0.6 0.3 0.2 0.0 13.3

Generated means 0.2 0.3 0.4 0.8 2.4 4.5 3.0 1.6 0.4 0.2 0.1 0.0 13.9

Observed S.D. 0.5 0.7 0.9 0.8 2.0 2.3 1.7 1.5 0.8 0.5 0.5 0.2

Generated S.D. 0.4 0.7 0.7 1.1 1.4 2.4 1.7 1.3 0.6 0.4 0.3 0.2

Number of Falls > 25 mm

Observed means 0.0 0.1 0.2 0.1 0.5 1.1 0.6 0.2 0.1 0.0 0.0 0.0 2.9

Generated means 0.0 0.0 0.0 0.1 0.3 0.9 0.5 0.2 0.0 0.0 0.0 0.0 2.1

Observed S.D. 0.2 0.2 0.4 0.4 0.8 1.1 0.7 0.5 0.3 0.2 0.1 0.0

Generated S.D. 0.1 0.1 0.2 0.2 0.5 1.0 0.7 0.4 0.1 0.1 0.0 0.0



Table 5.10. Comparison of Observed and Simulated Rainfall Parameters for Temora 

January February March April May June July August September October November December Year

Monthly Rainfall

Observed means 44.0 32.8 41.3 42.0 44.4 49.3 45.6 46.1 42.4 50.6 41.8 38.0 518.4

Generated means 43.4 38.5 37.3 43.9 47.3 50.4 48.9 39.1 47.2 51.3 41.1 36.9 525.3

Observed S.D. 45.3 27.7 48.0 42.0 36.0 32.6 26.3 28.5 27.7 37.3 36.4 36.7

Generated S.D. 39.5 28.8 33.1 26.3 27.5 24.6 22.7 21.2 27.3 32.1 31.4 27.3

Number of Wet Days/Month

Observed means 4.0 3.6 3.8 5.0 5.9 8.3 8.8 8.4 6.7 6.6 4.7 4.0

Generated means 3.9 3.9 3.6 5.2 6.2 8.3 9.1 7.9 7.2 6.7 4.9 4.0

Observed S.D. 2.6 2.4 2.9 3.1 3.4 3.7 3.7 4.0 2.8 3.1 2.9 3.0

Generated S.D. 2.4 2.3 2.4 2.6 2.6 3.2 3.0 3.1 2.6 2.8 2.3 2.2

Rain Per Rain Day

Observed means 9.4 8.4 8.8 7.6 7.2 5.9 5.1 5.4 6.2 7.1 8.7 8.3

Generated means 10.6 9.8 9.7 8.8 8.1 6.0 5.5 5.0 6.5 7.9 8.0 9.2

Observed S.D. 6.7 6.3 6.8 5.5 4.1 2.9 2.7 2.4 3.3 3.7 6.8 6.2

Generated S.D. 7.7 6.9 7.6 5.1 5.0 2.3 2.1 2.1 3.0 3.8 4.7 6.9

Number of Consecutive Wet Days

Observed means 2.8 2.5 2.7 3.2 3.6 4.7 4.6 5.2  4.3 4.3 3.1 2.9

Generated means 2.7 2.7 2.5 3.3 3.7 4.6 4.7 4.8 4.6 4.3 3.3 2.8

Observed S.D. 1.5 1.3 1.6 1.7 1.7 1.6 1.8 1.9 1.6 1.9 1.6 1.8

Generated S.D. 1.5 1.4 1.4 1.4 1.3 1.5 1.4 1.6 1.4 1.6 1.3 1.4

Number of Falls > 10 mm

Observed means 1.4 1.3 1.4 1.3 1.4 1.5 1.4 1.3 1.3 1.5 1.3 1.1 16.3
Generated means 1.4 1.3 1.4 1.6 1.6 1.7 1.5 1.0 1.6 1.8 1.4 1.3 17.6
Observed S.D. 1.5 1.2 1.6 1.4 1.4 1.3 1.3 1.2 1.3 1.6 1.3 1.3
Generated S.D. 1.3 1.2 1.4 1.3 1.3 1.3 1.3 1.0 1.3 1.5 1.2 1.2

Number of Falls > 25 mm

Observed means 0.5 0.3 0.4 0.3 0.3 0.3 0.2 0.2 0.3 0.4 0.4 0.4 3.9
Generated means 0.5 0.4 0.4 0.3 0.2 0.2 0.1 0.1 0.2 0.3 0.3 0.3 3.4
Observed S.D. 0.8 0.5 0.8 0.6 0.7 0.6 0.4 0.4 0.5 0.6 0.6 0.6
Generated S.D. 0.8 0.6 0.6 0.6 0.5 0.4 0.3 0.2 0.5 0.5 0.6 0.6



Table 5.11. Comparison of Observed and Simulated Rainfall Parameters for Quirindi 

January February March April May June July August September October November December Year

Monthly Rainfall

Observed means 84.5 69.0 52.6 41.8 45.8 51.2 46.0 44.4 45.7 60.1 63.2 76.7 680.9

Generated means 87.2 66.7 54.9 42.3 44.6 56.9 48.7 41.0 50.0 57.4 61.3 74.1 685.0

Observed S.D. 57.0 58.4 50.2 36.0 35.6 37.8 34.1 30.5 32.9 38.0 38.8 48.9

Generated S.D. 47.9 43.1 41.4 31.3 32.1 33.4 28.5 24.3 32.8 28.9 37.7 46.6

Number of Wet Days/Month

Observed means 6.7 5.8 4.7 4.7 5.6 7.0 6.7 6.5 6.1 6.9 6.5 6.5

Generated means 7.0 5.7 4.8 4.8 5.8 7.2 6.8 6.6 6.3 6.4 6.3 6.7

Observed S.D. 2.9 3.2 2.9 2.7 3.2 3.7 3.1 3.0 2.9 3.3 2.9 2.8

Generated S.D. 2.8 3.0 2.6 2.6 3.3 3.0 2.9 2.9 3.1 2.7 2.8 2.7

Rain Per Rain Day Iv
t-.

Observed means 12.4 11.3 10.5 8.5 8.0 7.4 6.4 6.8 7.2 8.7 9.6 11.4 co
Generated means 12.3 11.6 11.3 8.9 7.3 7.9 7.3 6.2 7.9 9.4 9.4 11.3

Observed S.D. 7.2 8.3 9.1 6.6 4.9 4.7 3.3 3.8 3.8 4.3 4.8 5.9

Generated S.D. 4.8 5.9 6.6 6.0 4.0 3.8 3.6 3.2 4.2 4.8 4.0 6.3

Number of Consecutive Wet Days

Observed means 4.0 3.5 3.1 2.8 3.3 3.9 4.2 4.1  3.8 4.4 4.1 4.3

Generated means 4.2 3.5 3.1 2.8 3.2 3.8 4.0 4.1 3.8 4.4 3.9 4.3

Observed S.D. 1.4 1.6 1.6 1.5 1.4	 . 1.7 1.8 1.7 1.6 1.6 1.6 1.6

Generated S.D. 1.5 1.4 1.4 1.3 1.4 1.4 1.4 1.6 1.5 1.4 1.4 1.6

Number of Falls > 10 mm

Observed means 2.5 2.1 1.7 1.4 1.5 1.7 1.5 1.4 i.5 2.1 2.3 2.6 22.3
Generated means 3.1 2.3 2.0 1.5 1.6 2.0 1.7 1.5 1.8 2.2 2.3 2.6 24.6
Observed S.D. 1.6 1.7 1.5 1.4 1.4 1.4 1.3 1.3 1.3 1.5 1.7 1.7
Generated S.D. 1.7 1.5 1.6 1.3 1.5 1.5 1.4 1.3 1.5 1.3 1.7 1.7

Number of Falls > 25 mm

Observed means 1.1 0.7 0.5 0.4 0.4 0.4 0.3 0.2 0.3 0.5 0.6 0.9 6.5
Generated means 1.0 0.7 0.6 0.3 0.2 0.4 0.3 0.2 0.3 0.4 0.5 0.7 5.7
Observed S.D. 1.1 1.0 0.8 0.7 0.6 0.7 0.6 0.5 0.6 0.7 0.8 0.9
Generated S.D. 1.0 0.8 0.8 0.6 0.5 0.6 0.5 0.4 0.6 0.6 0.7 0.9



Table 5.12. Comparison of Observed and Simulated Rainfall Parameters for Rutherglen

Monthly Rainfall
January February March April May June July August September October November December Year

Observed means 36.1 38.2 44.2 43.0 54.9 62.3 59.6 58.5 52.7 57.1 43.1 40.9 590.6

Generated means 35.1 36.2 45.9 40.9 57.6 55.8 60.2 61.7 50.3 60.8 39.8 43.3 587.6

Observed S.D. 36.8 47.9 43.4 35.6 37.7 35.4 33.7 29.3 27.9 35.2 35.8 39.8

Generated S.D. 26.8 31.5 35.7 27.0 29.5 27.2 26.3 23.8 22.2 30.1 24.6 28.2

Number of Wet Days/Month

Observed means 4.1 3.8 4.8 5.9 8.4 9.9 11.3 11.0 8.9 8.1 5.9 4.7

Generated means 4.1 3.4 4.6 5.7 8.5 9.3 11.6 11.4 8.6 8.2 5.5 5.0

Observed S.D. 2.6 2.5 3.1 3.6 3.9 3.8 3.6 3.7 2.8 3.6 2.8 2.7

Generated S.D. 2.4 2.1 3.0 2.8 3.2 2.9 3.9 3.5 2.8 3.2 2.5 2.5

Rain Per Rain Day

Observed means 7.6 8.1 7.9 6.9 6.2 6.4 5.2 5.2 5.9 6.9 6.6 7.7

Generated means 8.6 10.5 9.6 6.9 6.9 5.9 5.2 5.5 6.0 7.6 7.0 8.7

Observed S.D. 6.4 7.9 5.1 3.9 3.1 3.1 2.4 1.8 -2.5 3.4 4.4 5.6

Generated S.D. 5.5 8.2 6.4 3.7 2.9 2.1 1.6 2.0 2.2 3.3 3.4 5.7

Number of Consecutive Wet Days

Observed means 2.8 2.5 3.0 3.5 4.5 5.0 5.7 5.8 .	 5.3 4.9 4.0 3.4

Generated means 2.9 2.4 3.0 3.5 4.6 5.2 5.8 5.8 5.3 4.8 3.7 3.4

Observed S.D. 1.6 1.4 1.7 1.8 1.8 1.6 1.5 1.6 1.6 1.8 1.6 1.6

Generated S.D. 1.6 1.2 1.6 1.5 1.6 1.5 1.5 1.3 1.4 1.4 1.4 1.4

Number of Falls > 10 mm

Observed means 1.2 1.2 1.5 1.3 1.8 2.0 1.7 1.7 1.6 1.9 1.3 1.3 18.5

Generated means 1.3 1.1 1.7 1.4 2.0 1.8 1.8 1.7 1.6 2.3 1.4 1.6 19.6

Observed S.D. 1.4 1.3 1.7 1.3 1.6 1.6 1.5 1.3 1.3 1.4 1.3 1.3

Generated S.D. 1.2 1.1 1.5 1.1 1.3 1.3 1.2 1.3 1.1 1.6 1.1 1.3

Number of Falls > 25 mm

Observed means 0.3 0.4 0.3 0.3 0.3 0.4 0.3 0.2 0.3 0.4 0.3 0.4 3.8
Generated means 0.3 0.4 0.4 0.3 0.3 0.2 0.1 0.2 0.1 0.3 0.2 0.3 3.0
Observed S.D. 0.6 0.8 0.7 0.6 0.6 0.6 0.5 0.4 0.5 0.6 0.7 0.6

Generated S.D. 0.5 0.6 0.6 0.5 0.5 0.5 0.4 0.4 0.4 0.5 0.4 0.5
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In the more northern locations increasing monthly rainfall is more

due to an increase in rain per rain day than to an increase in the

frequency of rainfall (Table 5.6). Intermediate locations in the

wheat belt with more evenly distributed rainfall have higher relative

monthly rainfall totals associated with increases in both parameters.

The plotted rainfall event size data (Figure 5.7) and tabulated event

frequency data (Tables 5.5 to 5.12) illustrate that the generator is

appropriately mimicking these differences.

These changes in simulated rainfall occurrence throughout the

year are associated with increases in P(W/W) and P(W/D) during the

wet months (Appendix 6) for Esperance and due to large increases in

the scale parameter 0) of the gamma distribution which determines
rainfall amount at Biloela. The variance of rainfall per event and

number of wet days per month were in almost all instances significantly

less than those calculated from the observed data. This difference

in "spread" of the distribution for rainfall amount per event (Fig. 5.7)

is less obvious than for the monthly rainfall totals (Fig. 5.5).

The ability of the generator to capture the mean effects but to

miss some of the extremes is also exemplified by the frequency of

large rainfall events. At all sites tested except Barraba, Biloela,

Coonabarabran, Cowra, Jondaryan, Springsure, and Warialda in at least

1 month of the year the model significantly underpredicted the number

of daily rainfall events of over 25 mm. In 13 of the stations tested

the model significantly underpredicted the number of daily rainfall

events of greater than 10 mm in at least 1 month of the year. It

should be noted, however, that the inability of the generator to

simulate the extremes of rainfall distribution was by far the exception
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Figure 5.7. Comparison of Observed and Simulated Rainfall (mm) Per
Rainy Day for Eight Locations.

A. Biloela	 QLD
B. Quirindi NSW
C. Orange	 NSW
D. Young	 NSW
E. Clare	 SA
F. Geraldton WA
G. Bathurst NSW
H. Northam	 WA

Lines marked (+) indicate deciles calculated from observed data, lines
marked (*) indicate deciles calculated from simulated data. Upper
lines are ninth decile rainfall amount, middle lines fifth decile
rainfall amount, and lowest lines are first decile rainfall amounts.
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rather than the rule. Significant differences in the number of

rainfall events greater than 10 mm were observed in only 17 cases of

a total of 624 location month combinations.

Examining the length of dry spells (consecutive days without

rain) and wet spells (consecutive wet days) tests the model's ability

to predict persistence. In all locations studied the model reproduced

the mean monthly number of consecutive wet days in a manner not

significantly different from the data observed. One problem which

occurs in this type of analysis is that frequently wet spells cross

month boundaries and thus the wet spell length may not be a true wet

spell length, particularly in locations with many wet days per month.

The generator very closely simulated the number of periods without

rain as indicated by the number of dry spells per year (Table 5.13).

The simulator for most sites underpredicted the length of the longest

dry spell - by an average margin of 11.5 days and at worst (Condobolin,

Table 5.13), 82 days. The 9th decile lengths of dry spells for

simulated and observed were very similar, indicating that only in

extreme cases (less than 10% of cases) was the simulator unable to

reproduce sequences of dry days.

5.5.2. Temperature 

In most locations the simulator reliably reproduced temperature

sequences similar to those observed. Several months at some of the

locations (Table 5.14) had simulated temperatures significantly

different from the means calculated from the observed data. Consistent

underestimates of minimum temperature occurred at some locations

(e.g., Geraldton and Tamworth in Figure 5.8) but consistent patterns
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of inaccuracies in simulation were not discernable at most locations.

The generator performed equally on dry days as on wet days.

Table 5.13. Comparison of Observed and Simulated Dry Spells for Selected 
Locations

Mean Number of Dry	 Mean Length
Spells Per Year	 Longest Dry Spell	 of Dry Spells 

Station 	 Observed Simulated Observed Simulated Observed Simulated
(days)

Bathurst	 52.2	 52.3	 91.0	 56.0	 5.8	 5.6
Biloela	 42.7	 42.8	 70.0	 80.0	 8.0	 7.9
Cobar	 36.0	 35.7	 132.0	 87.0	 10.2	 9.8
Condobolin	 42.8	 43.2	 135.0	 53.0	 8.1	 7.7
Cowra	 47.4	 46.6	 71.0	 64.0	 6.8	 6.7
Dalby	 43.2	 42.6	 80.0	 69.0	 7.8	 7.6
Dubbo	 44.3	 44.0	 78.0	 64.0	 7.3	 7.0
Esperance	 58.7	 58.8	 50.0	 45.0	 4.6	 4.5
Geraldton	 40.5	 40.4	 111.0	 126.0	 10.1	 9.9
Griffith	 47.9	 48.7	 101.0	 78.0	 7.0	 6.5
Kadina	 50.7	 50.7	 110.0	 100.0	 6.7	 6.7
Kybybolite	 54.6	 54.7	 59.0	 . 61.0	 4.6	 4.6
Loxton	 45.9	 44.9	 75.0	 86.0	 8.0	 8.0
Muresk	 43.2	 41.9	 105.0	 102.0	 8.6	 9.0
Pittsworth	 48.4	 48.5	 62.0	 67.0	 6.7	 6.6
Quirindi	 47.1	 47.1	 58.0	 61.0	 6.8	 6.7
Rutherglen	 51.8	 51.6	 64.0	 88.0	 6.3	 6.3
Walgett	 36.1	 35.9	 102.0	 76.0	 9.6	 9.4
Wongan Hills	 41.8	 43.1	 103.0	 81.0	 10.0	 8.9
Young	 49.6	 49.1	 78.0	 58.0	 6.4	 6.2

The generator performed poorly in estimation of the frequency of

extreme temperatures in months where these are rare events. During

the summer months the generator did not simulate the occurrence of

cold days (minimum temperatures less than or equal to 5°C) suffi-

ciently frequently and tended to simulate too many cold days in the

winter months (Table 5.14). This phenomenon was particularly apparent

at the high altitude site Coonabarabran. This error in temperature

estimation during the summer months would have little impact on the

simulation of the wheat crop since this is outside the growth period.



Table 5.14. Comparison of Observed and Predicted

(i) Daily maximum temperatures for each month
(ii) Daily minimum temperatures for each month

(iii) Number of days per month with maximum temperatures exceeding 35°C
(iv) Number of days per month with minimum temperature less than or equal to 5°C

Parameter Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec.

A.	 Dalby

Daily minimum (°C)
Observed mean 18.75 18.09 15.59 11.44 7.19 5.16 4.94 6.60 10.18 14.10 15.62 18.18

Generated mean 19.35 18.39 16.29 12.35 9.19 6.11 4.97 6.03 8.63 12.39 15.87 18.22

Daily maximum (°C)
Observed mean
Generated mean

31.51
32.83

30.64
31.92

28.53
30.01

25.32
26.38

20.87
23.18*

18.86
20.39*

19.45
19.52

21.45
20.29

25.24
22.65*

28.18
26.13*

30.94
29.44

31.39
31.67

1,
N

Number of days > 35°C
Observed mean 5.32 3.18 0.32 0.09 0.00 0.00 0.00 0.00 0.14 1.36 4.64 4.82

Generated mean 7.71* 4.78* 2.06* 0.04 0.00 0.00 0.00 0.00 0.00 0.10 1.02 4.43
Number of days 5_ 5°C
Observed mean 0.00 0.00 0.00 1.41 11.14 16.14 17.23 12.73 3.18 0.14 0.00 0.00

Generated mean 0.00 0.00 0.00 1.41 5.65* 11.80* 15.69 12.41 6.43* 1.65* 0.08 0.00

B.	 Cobar

Daily minimum (°C)
Observed mean 20.63 19.22 15.73 11.61 7.55 5.34 5.18 7.04 10.20 13.68 16.81 19.24
Generated mean 20.25 19.40 16.59 12.78 8.43 6.13 4.97 6.17 8.68 12.39 16.09 18.96

Daily maximum (°C)
Observed mean 33.79 32.19 28.57 23.55 18.03 15.91 16.42 18.83 22.88 26.83 30.74 33.02
Generated mean 34.05 33.07 29.83 25.12 20.26* 17.25 16.03 17.18 20.36* 24.71 29.50 32.63

Number of days > 35°C
Observed mean 13.58 7.47 1.74 0.00 0.00 0.00 0.00 0.00 0.21 1.68 6.84 11.32
Generated mean 12.96 9.31 3.29* 0.24 0.00 0.00 0.00 0.00 0.00* 0.35* 2.90* 8.65*

Number of days	 5°C
Observed mean 0.00 0.00 0.00 1.32 7.11 14.74 16.11 9.16 2.95 0.11 0.00 0.00
Generated mean 0.00 0.00 0.06 0.82 5.71 10.43* 15.49 10.63 4.84* 1.06* 0.10 0.00

(Continued)



Table 5.14. Comparison of Observed and Predicted (Continued)

(i) Daily maximum temperatures for each month
(ii) Daily minimum temperatures for each month

(iii) Number of days per month with maximum temperatures exceeding 35°C
(iv) Number of days per month with minimum temperature less than or equal to 5°C

Parameter Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec.

C.	 Coonabarrabran

Daily minimum (°C)
Observed mean 15.90 14.23 10.81 6.17 2.92 1.11 0.57 2.60 5.42 9.41 12.17 14.79

Generated mean
Daily maximum (°C)

Observed mean

15.58

30.98

14.37

29.36

12.19

26.74

7.61

22.30

3.41

17.51

1.20

15.57

0.32

15.76

1.46

17.96

3.70

21.42

7.70

25.17

11.17

29.43

14.81

30.78

r,

a,

Generated mean 31.92 30.68 28.32 23.91 19.66* 16.60 15.54 16.63 19.43 23.28 27.50 30.40

Number of days > 35°C
Observed mean 5.65 1.26 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.70 3.13 5.74

Generated mean 5.45 3.29* 1.27* 0.02 0.00 0.00 0.00 0.00 0.00 0.02* 0.51* 2.96*

Number of days	 5°C
Observed mean 0.00 0.00 2.04 13.00 22.22 24.22 26.70 23.61 15.43 4.91 0.74 0.09

Generated mean 6.82* 4.47* 2.45 11.98 16.92* 22.29 30.39* 23.18 15.78 12.45* 4.02* 2.88*

D.	 Geraldton

Daily minimum (°C)
Observed mean 19.01 18.15 16.25 13.58 11.46 9.77 8.96 9.00 10.38 12.63 15.67 17.66

Generated mean 18.77 17.88 16.07 13.43 11.04 9.01 8.66 9.29 10.92 13.35 15.82 17.55
Daily maximum (°C)

Observed mean 31.87 31.29 28.55 24.88 21.56 19.78 19.59 21.22 23.73 25.70 29.01 30.76
Generated mean 32.08 31.24 28.72 25.67 22.38 19.68 19.30 20.39 22.40 25.78 28.56 30.60

Number of days > 35°C
Observed mean 9.00 7.31 3.23 0.49 0.00 0.00 0.00 0.00 0.67 1.62 5.28 7.44
Generated mean 8.96 6.92 3.12 0.39 0.00 0.00 0.00 0.00 0.00* 0.43* 2.51* 5.76*

Number of days	 5°C
Observed mean 0.00 0.00 0.00 0.00 0.59 1.72 3.10 2.26 0.77 0.15 0.00 0.00

Generated mean 0.00 0.00 0.00 0.16 0.71 2.24 2.43 1.80 0.57 0.04 0.00 0.00

(Continued)



Table 5.14. Comparison of Observed and Predicted (Continued)

(i) Daily maximum temperatures for each month
(ii) Daily minimum temperatures for each month

(iii) Number of days per month with maximum temperatures exceeding 35°C
(iv) Number of days per month with minimum temperature less than or equal to 5°C

Parameter Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec.

E.	 Esperance

Daily minimum (°C)
Observed mean 14.40 14.85 12.89 10.99 8.34 7.02 6.31 6.56 7.53 9.32 11.55 13.30

Generated mean
Daily maximum (°C)

14.27 13.69 12.54 10.29 8.15 6.91 5.93 6.61 7.96 10.20 12.04 13.51	 N.,
N
-,I

Observed mean 28.56 27.73 25.30 21.93 18.29 16.44 16.08 17.11 19.24 22.02 24.71 27.45

Generated mean 28.35 27.08 25.84 22.11 18.79 16.67 15.61 16.38 18.33 21.91 25.17 26.93

Number of days > 35°C
Observed mean 5.47 3.59 1.06 0.06 0.00 0.00 0.00 0.00 0.12 0.41 1.76 3.94

Generated mean 3.82* 2.04* 1.29 0.06 0.00 0.00 0.00 0.00 0.00* 0.02* 0.61* 2.04*

Number of days	 5°C
Observed mean 0.00 0.00 0.06 0.47 3.18 6.12 9.41 8.35 5.29 2.06 0.18 0.00

Generated mean 0.02 0.02 0.12 1.08 2.76 5.29 10.47 7.06 3.27 1.04* 0.14 0.02

F.	 Bathurst

Daily minimum (°C)
Observed mean 13.72 12.66 9.29 5.09 2.60 0.83 0.00 1.51 3.89 6.86 9.09 11.73

Generated mean 13.64 13.20 10.47 5.79 3.00 1.20 0.00 0.98 3.13 6.28 8.46 11.19

Daily maximum (°C)
Observed mean 27.58 25.91 23.32 19.21 13.92 11.52 11.68 13.23 16.89 20.05 24.16 26.33

Generated mean 27.54 26.66 23.62 19.87 15.90 12.36 11.22 12.01 14.95 18.74 23.51 25.74

Number of days > 35°C
Observed mean 1.19 0.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.63

Generated mean 0.55 0.49 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04* 0.22

Number of days -5 5°C
Observed mean 0.13 0.13 5.44 15.44 23.19 25.25 29.06 26.00 19.63 10.44 4.44 1.00

Generated mean 0.24 0.23 3.24 13.65 16.71* 25.55 31.00* 27.67* 17.69 9.48 4.02 0.92

* Generated mean significantly different from of ,'I-ved mean at 5% level.
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Figure 5.8. Comparison of Observed and Simulated Monthly Mean Maximum and
Minimum Temperatures on Dry Days at Six Locations.

A. Geraldton	 WA
B. Orange	 NSW
C. Wagga Wagga NSW
D. Tamworth	 NSW
E. Parkes	 NSW
F. Esperance	 WA

Lines marked (+) are values calculated for observed data, lines
marked (*) are values calculated from simulated data. Upper lines
are maximum temperatures and lower lines are minimum temperatures.
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Overestimating the frequency of cold days during winter months may

result in simulation of a wheat crop growth duration longer than is

appropriate. Late frosts occasionally cause crop failure in Australian

wheat crops. The simulator reliably predicted the frequency of days

with minimum temperatures less than zero degrees during the spring

months.

5.6. Examination of Length of Record Used 

A further investigation was undertaken to determine the appropriate

length of historical rainfall records to use for calculating rainfall

generator parameters. The analysis also examined whether differences

existed in choice of period of record used for the calculation of

parameters. In this analysis nine sets of the generator parameters

[P(W/W), P(W/D), a and [3] were calculated using the following historical

daily rainfall data:

(1) 50 years of data, where possible, spanning the years, 1930-1980

(2) 40 years of data, 1940-1980

(3) 30 years, 1950-1980

(4) 20 years, 1960-1980

(5) 10 years, 1930-1940

(6) 10 years, 1940-1950

(7) 10 years, 1950-1960

(8) 10 years, 1960-1970

(9) 10 years, 1970-1980

The analyses were performed for seven sites of approximately

equivalent annual rainfall but with differing rainfall patterns. The

sites examined were: (in decreasing order of latitude and therefore,
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in increasing order of summer dominance of rainfall) Esperance,

Hamilton, Young, Bathurst, Quirindi, Barraba, and Biloela. Due to

gaps in the more recent records the 50-year period 1920-1970 was used

for Hamilton and the period 1911-1960 was used for Esperance.

Comparisons were made between parameters calculated from long-term

observed data for the whole of the length of record (as in 5.5) and

parameters calculated from a 99-year sequence of rainfall generated

using the generator input coefficients calculated from the differing

sequences of historical record. The parameters studied in these

comparisons were identical to those listed for the whole of record

comparison (see 5.5.2).

In all cases as the length of record was shortened the ability

to predict the long-term monthly means was weakened. The generator

simulated monthly rainfall at Esperance well with only 30 years of

daily data used to determine the input parameters. The ability of

the generator to reproduce rainfall sequences at Esperance with a

shorter record for parameter characterization is possibly indicative

of the much lower rainfall variability (coefficient of variation for

annual rainfall 18%) at this site. The selection of different sequences

from within the period of length of record may yield different results.

At Biloela (Table 5.15), if the 50-year sequence (1931-1980) and the

30-year sequence (1951-1980) were used to characterize the generator

parameters, a reliable simulation of the whole of length of record

resulted. If, however, the 40-year period (1941-1980) was used,

significant differences in monthly rainfall totals were obtained in

2 months. Selection of the different decades produced highly variable

results. A noticeable trend of simulating on average wetter years

when more recent decades were chosen was apparent.
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by the Vertisol is higher and the drainage rate coefficient (SWCON)

is lower, the. nitrate redistribution within the Vertisol would be

expected to be lower. Thus fertilizer nitrogen is more likely to be

concentrated closer to the placement zone in the Vertisol than in the

Alfisol.

The range of outcomes for the upper placement depths was small

at the Waite Institute (Figures 6.10 and 6.11), particularly for the

Alfisol. Alston's (1980) data indicated no significant response to

fertilizer placement on an Alfisol at this location. The simulation

suggests that for placement depths to 60 cm this outcome would be the

most frequent.

Due to the nature of the seasonal differences in rainfall distri-

bution pattern, soil water relations at the two locations would

probably be very different at the time of fertilizer application. At

the Waite Institute there is a high probability of winter rainfall

and thus more frequent opportunities for fertilizer nitrate to be

redistributed within the profile from the placement zone. At Jondaryan

in some years dry periods would render surface-placed fertilizer

unavailable as the upper portion of the profile dried. It is in

these years that positive responses to deep placement are most apparent,

provided there is sufficient moisture initially to encourage root

growth toward the placement zone. There is, however, a low frequency

of large responses to deep placement (to 90 cm) on both soils at both

sites since, if there is insufficient water to move nitrate from the

upper layers, then there is generally insufficient water for crop

growth.
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From the analysis it is apparent that the longer the period of

record chosen to determine the parameters the more reliable is the

simulation of rainfall. Further evaluation of the appropriate length

of record to use is beyond the scope of this thesis.

5.7. Discussion and Conclusions 

How closely a stochastic weather simulation model needs to

represent the real system depends on the application. The WGEN

simulator produced simulated data which were statistically comparable

to the real world in various measures of central tendency (means and

5th deciles). Some small shortcomings were observed when comparisons

were made using measures of dispersion and distribution. The few

occurrences (extreme rainfall amounts or extremely long dry periods)

where the simulator did not perform well may have some consequences

for the simulation of wheat growth, but these were very infrequent.

The accurate simulation of monthly rainfall amount in almost all

instances was associated with the correct simulation of the number of

wet days per month and rainfall per rain event. 'This should ensure a

reliable simulation of soil water balance and should help to reduce

errors in simulation of soil moisture dependent nitrogen transformation

rates.

If the simulator was to be used in conjunction with an erosion

model where potentially erosive rainfall events are important, the

inability to simulate the infrequent extreme rainfall amounts may be

a problem. Modifications to the generator to accommodate these rare

events would come at the cost of increased complexity (Srikanthan and

McMahon, 1983). Larsen and Pense (1982) argued that there must be a
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balance between complexity and the foreseen use of the model, otherwise

the extra effort may be largely wasted or of academic interest only.

The EPIC model (Williams et al., 1983) which simulates erosion utilizes

the Nicks (1984) rainfall simulator. This differs from the Richardson

simulator in that a skew-normal distribution for rainfall amount

rather than a gamma distribution is used. The simulator uses the

same number of parameters as the Richardson generator and uses the

same Markov chain procedure for predicting rainfall occurrence. The

performance of the EPIC model at simulating erosion in a diversity of

environments has been excellent (Williams et al., 1983) and thus

suggests a simplified rainfall generator model may also be adequate

for this task.

Small modifications to WGEN parameter characterization program

which may yield slight improvements could be investigated. One of

these would involve varying threshold rainfall amounts. Increasing

the threshold would reduce the frequency of small rainfall amounts

and thus increase the "weight" of larger rainfall amounts. Further

analysis of the rainfall data would be required to choose a different

threshhold. Smoothing of data between months by fitting a Fourier

series to the monthly values of P(W/W), P(W/D), a and p may be a

worthwhile further refinement. Rather than using constant values of

the parameters for a month, a daily value could be interpolated from

the Fourier series. This could be particularly helpful in areas such

as Esperance with a marked start and end to the dry season which may

not necessarily coincide with month boundaries. Garbutt et al.

(1981), Stern (1980a), and Stern et al. (1981) used this technique to

predict the start and end of the wet season in seasonal rainfall
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locations. This would only require minor modifications to the code

and would also reduce the input parameters required by the generator.

For most of the locations examined the model reliably simulated

temperature. At some locations, however, prediction of minimum

temperature was consistently incorrect and the frequency of occurrence

of simulated temperature extremes was too low. One possible modification

to the temperature generating functions would be to adjust the "T"

value, the position of the harmonic (days) for the seasonal change in

the means and coefficient of variation of temperature. The generator

uses a fixed value of "T", but examination of the data reported in

Table 5.4 shows a latitudinal variation in "T". A minor modification

to the simulator to reflect this could incorporate the following

relationships as determined from these data:

Tl = 0.95 * LAT - 55.35 (r = 0.317)

T2 = 1.40 * LAT - 70.35 (r = 0.418)

T3 = 0.79 * LAT - 55.01 (r = 0.213)

T4 = 1.15 * LAT - 70.39 (r = 0.529)

where Tl, T2, T3, T4 = position of the harmonic (days) as defined

in Table 5.4. LAT = degrees S latitude. This modification would

enable a minor shift in the phase angle used in the generation of

temperature sequences and may yield a minor improvement in temperature

simulation for only a small cost in added complexity. This may not

greatly affect simulation of temperature extremes.

Another refinement which may improve temperature simulation

would be to compute the matrix of residuals used in the temperature

simulation for each location separately. To do this requires

determination of the serial and cross-correlation coefficients for

maximum and minimum temperature as described by Richardson (1981).
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When this was done (Appendix 11) some differences between the values

observed and those reported by Richardson were obtained. Further

investigation is required to determine whether recalculation of the

matrix of residual using either Australian mean correlation data or

data from individual locations would yield any improvement.

It should be noted that these possible areas for refinement may

yield only limited improvement. The generator in its existing form

generates sequences of daily temperature and rainfall data quite

adequate for the simulation of crop growth. Richardson (1985) was

able to demonstrate that the distribution of simulated wheat yields

generated by the CERES-WHEAT model was the same regardless of whether

simulations were performed using actual solar radiation data or

monthly mean solar radiation for Oklahoma City. This supports the

methodology for generating solar radiation data reported in this

chapter which should be satisfactory for crop simulation purposes.
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6.1 Introduction and Principles of Sensitivity Analysis 

Sensitivity analysis is a procedure carried out on a completed

and validated (at least partly) model (Dent and Blackie, 1979).

Since the technique involves exploring the operation and performance

of the model, it should become an integral part of model evaluation

and it may lead to further enhancement of the model. Dent and Blackie

(1979) describe the technique as:

In successive 'runs' of the model under identical environ-
mental conditions, the value of a parameter may be changed.
The resultant modification in model-output will be analyzed
to determine whether or not the changed parameter values are
of material consequence. A sensitive parameter is one which
causes a major change in model-output; the model is said to
be sensitive to such a parameter. A similar, though in
practice more complex, procedure can be envisaged to isolate
sensitive subsystems and relationships.

Whisler (1983a) evaluated the sensitivity of a multiple crop

rice based simulation model, IRRIMOD by independently changing various

crop and management variables up or down 20% and examining the effect

on simulated yield. A guide to the accuracy required in collection

of weather data was also obtained by Whisler (1983b) by performing

similar sensitivity analyses on model input weather variables.

Similarly, Stapper (1984) examined, with the SIMTAG model, the impact

of changing each of the climatic input parameters (daily rainfall,

temperature, and solar radiation) up or down 20% on simulated wheat

yields for various locations in Syria. Rainfall proved to be the

most sensitive parameter, but considerable variation across sites and

seasons was found. Singh (1985) has reported the sensitivity of the

CERES-MAIZE model to changes in solar radiation and temperature on

sites where water was not limiting.
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Maas and Arkin (1980a) performed a sensitivity analysis on key

variables in the SORGF sorghum model and reported sensitivities as

"S" values. "S" is defined as the change in system output per unit

change in system input. As well as the weather data, percent extractable

soil water, plant population density, row spacing, maximum leaf area,

and maximum leaf number were varied to determine their relative

sensitivity. France and Thornley (1984) describe the same procedure

for testing sensitivity.

Larsen (1981) has reported the results of an extensive sensitivity

analysis of two wheat models to climatic data inputs, soil water

inputs, and genetic parameters. The two models examined were an

early progenitor of CERES (1980 version) and TAMW (Texas A&M University

Wheat Model developed by Maas and Arkin, 1980b). The TAMW model is

structured along similar lines to the CERES model. Both models were

being evaluated as key elements in a large area yield forecasting

system employing real time weather data and space satellite acquired

data on crop area and development. In evaluating the forecasting

system, the researchers were required to know with what precision

starting estimates of soil water availability had to be made, as well

as the sensitivity to the real time climatic data which would be

applied to the models.

Larsen's method of examining sensitivity was to adjust the

various selected parameters sequentially up or down and to examine

the frequency and magnitude of responses in model output. The frequency

data were obtained by running the model with a 30-year sequence of

climatic data (i.e., simulating 30 crops). Sensitivity was reported

as a "probability sensitivity measure." These multiple-year analyses

were performed only at one location, Columbia, Missouri.
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Single-year sensitivity analyses were also examined for five other

locations in the midwest of the United States. To determine when a

particular parameter was sensitive, the analyses were performed

separately for each of the growth stages identified by the model.

The analyses yielded valuable information concerning several key

components of the soil water balance submodel and plant growth submodel.

The CERES model was found to be particularly sensitive to perturbation

of some of these soil water inputs while the TAMW model was very

sensitive to perturbation of the temperature data. Information

resulting from these analyses has greatly assisted model developers

and thus the current version of CERES has evolved with significant

changes from the 1980 version. Since the current CERES model has

global application, sensitivity analyses on the current version of

the model should be performed in a diversity of wheat-growing

environments.

Other examples of sensitivity analyses reported for crop growth

models may be found in Whisler (1983c) for various variables in the

rice crop simulation model RICEMOD, van Keulen et•al. (1981) for

ARIDCROP model, Iwaki (1977) for photosynthesis and light inter-

ception in a rice model, and Lambert and Reicosky (1977) for various

parameters describing water movement through maize plants in the

TROIKA model.

6.2 Examination of Key Coefficients 

6.2.1 Method 

Fertilizer efficiency, N uptake, grain yield, and the

processes affecting them are ultimately influenced by climate. Since

weather is the most variable of the environmental components affecting
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the soil-crop system, a full sensitivity analysis of parameters in

the model should be carried out across many years of climatic data.

For this exercise the CERES-WHEAT model, coupled with the WGEN

weather generator (described in Chapter 5), was used to simulate N

dynamics and crop growth in three diverse wheat-growing environments.

The three locations used, soil characteristics, and wheat varieties

used (Table 6.1) were selected to span the range of global wheat-growing

regions.

Table 6.1.	 Initial Conditions and Resultant Means Used in Sensitivity Analysis
Simulations.	 Where Indicated Standard Errors are Calculated From
20 Years of Simulation

Wichita	 RothamstedParameter Wongan Hills
Generated mean annual

rainfall__ (mm) 357 847 717
Latitude 30.5°S 37.7°N 51.7°N
Variety Condor Newton Maris Hobbit
Planting date May 20 October 2 October 2
Mean simulated growing

season length (days) 165 ± 5 251 ± 5 271 ± 9
Mean growing season

rainfall (mm) 278 ± 38 409.± 102 515 ± 54
Soil type Red-brown earth Silt loam Brown earth

(Rhodustalf) (Haplustoll) (Eutrochrept)
Extractable water (cm) 14.1 37.2 29.0
Mean simulated extractable

water at harvest (cm) 2.4 6.9 6.1
Mean simulated unfertilised

yield ± S.E. 1,384 ± 312 1,953 ± 965 3,920 ± 1,014
Mean simulated fertilised

yield ± S.E. 2,086 ± 795 2,222 ± 1,062 7,897 ± 1,711

The model utilized 20 years of generated daily climatic data

representative of each of the sites, and it commenced simulation in

each of these years with the same initial conditions of soil fertility,
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planting date, and management inputs. The extractable soil water

present at planting in each of the 20 years was that simulated with a

fallow period running from the end of the past crop to planting time.

In wetter locations and in wet years at dry locations, this will

approach the drained upper limit (DUL) throughout the profile. In

years with a dry period immediately before planting, however, initial

soil moisture may be less.

Reference simulations for each of the sites were obtained by

running the model with the 20 years of climatic data and with a

fertilizer input of 50 kg N/ha at Wongan Hills, 50 kg N/ha at Wichita,

and 100 kg N/ha at Rothamsted. A further set of reference simulations

was obtained by running the model with the 20 years of climatic data

for the three sites but with no fertilizer applied. Grain yield,

biomass, and N uptake from these reference simulations were compared

with those - produced when each of certain model parameters were varied.

Several problems can arise in this type of analysis. First, it

may be biologically or physically unreasonable to change one variable

without correspondingly changing some other variables. For example,

in many instances at one site it would be unlikely to envisage an

increase in solar radiation without a corresponding increase in

temperature. A second problem concerns the magnitude of the

perturbation used. For some variables which have a large reported

variability (e.g., root length to weight ratio) a perturbation of

only 20% will not adequately reflect the variability and a sizeable

impact on yield or N uptake may not be evident. For some other

variables which can either be determined more accurately or which

remain relatively constant, a 20% perturbation may be abnormally

high. A further problem concerns the integrity of the model.
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Perturbation of one variable alone may lead to an upset in a mass or

energy balance calculation which would never occur under normal

simulation and may lead to catastrophic consequences for model output.

Given that these problems can occur, the analysis is still valid in

order to identify the most sensitive parameters and indeed to test

the structural integrity of the model.

Each of 26 variables identified as having a possible impact on

model output was in turn perturbed up or down 5%, 10%, and 20%. The

model was then run with the 20 years of climatic data and the output

compared to the reference simulations. These procedures were adopted

for each of fertilized and unfertilized cases.

The first run was structured such that the first variable was

perturbed while the remaining variables maintained their input or

default values. The second run reset the first variable to its

original value, perturbed the second variable, and held the remaining

variables to their original values. For each site and for each of

the two fertilizer treatments (0 kg N/ha and the rate described

above), the analysis involves a total of:

20 years x 6 perturbation levels x 26 variables = 3,120 simulations

Three different classes of variables were identified as having a

potential impact on model output. First, variables which form part

of the input data set for the model were examined (Table 6.2a). The

variables chosen were those where it could be perceived that an error

in measurement could easily be made. One of the aims of this sensitivity

analysis is thus to examine the requirement for accuracy in describing

the input data. The variables considered are the four weather variables,

variables describing the water storage and drainage rate of the soil
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Table 6.2. Variables Examined in a Sensitivity Analysis of the CERES-
WHEAT Model 

a. Model Input Variables 

Variable
Name	 Subroutine
	

Function

Rain	 Main	 Daily rainfall amount (mm/day)
TEMPMX
TEMPMN	 Main	 Daily maximum and minimum temperatures (Degrees C)
SOLRAD	 Main	 Daily solar radiation (11J/m2)
BD(L)	 SOILNI	 Soil bulk density (g/cc)
LL(L)	 SOILRI	 Lower limit soil water content for soil layer L

(volume fraction)
DUL(L)	 SOILRI	 Drained upper limit soil water content for layer L

(volume fraction)
SAT(L)	 SOILRI	 Field saturated water content in layer L (volume

fraction)
SWCON	 SOILRI	 Coefficient for determining whole profile drainage

rate
INO3(L)	 SOILNI	 Initial extractable soil nitrate in layer L (ppm)
IOC(L)	 SOILNI	 Initial soil organic carbon in layer L (%)
SCN	 SOILNI	 Initial C:N ratio of added straw

profile, the initial amounts of nitrate present in the profile, and

two variables which may affect the supply of N from mineralization of

organic matter (IOC and SCN). Maximum and minimum temperatures were

varied simultaneously.

Secondly, variables (Table 6.2b) directly affecting the nitrogen

components of the model were also examined. These analyses are

intended to help answer questions such as: if the model under/over

predicts the rate of nitrification by x percent, what are the

consequences for the accuracy of simulated yield, N uptake, and

efficiency of N utilization?
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Table 6.2. Variables Examined in a Sensitivity Analysis of the CERES-
WHEAT Model (Continued)

b. Variables Pertaining to the Nitrogen Components of the Model 

Variable
Name	 Subroutine	 Function

Maximum rate of decomposition of organic matter
(1/day)

Calculated rate of nitrification of ammonium in
layer L per day (kg Ma/day)

Capacity for nitrification index (zero to unity
dimensionless factor)

Calculated denitrification rate (kg N/ha/day)
Calculated loss of nitrate from layer L (kg N/ha/day)
Unitless soil nitrate supply index used in N uptake

calculations
Maximum uptake of N per unit length of root

(mg N/cm/day)
Zero to unity factor describing mineral N

availability effect on root distribution
Zero to unity factor describing N status of the plant
Zero to unity N deficiency factor for photosynthetic

rate
Zero to unity N deficiency factor for expansion growth
Zero to unity N deficiency factor for tiller number
Zero to unity N deficiency factor for leaf senescence
N concentration in daily increment of grain growth

(g N/g grain dry matter)

DMOD*	 NTRANS

RNTRF(L) NTRANS

CNI(L)	 NTRANS

DNRATE(L) NTRANS
LEACH*	 NFLUX
FNO3	 NUPTAK

MAXUL*	 NUPTAK

RNFAC(L) WATBAL

NFAC
	

NFACTO
NDEF1
	

NFACTO

NDEF2	 .NFACTO
NDEF3
	

NFACTO
NDEF4
	

NFACTO
GNP
	

GROSUB

*Listed as a coefficient in the model without an associated variable name.

The variables chosen are the major rate variables involved with

each of the processes of mineralization, nitrification, denitri-

fication, leaching, and N uptake. The description of plant N dynamics

is also subjected to scrutiny by examination of the N deficiency

indices and GNP, the variable determining the concentration of N in

the grain.

As part of an additional study not reported here, a third class of

variables which affect the soil water balance, photosynthetic efficiency,

leaf area development, and assimilate partitioning were also examined.
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Comparisons with the reference simulations were made by determining

% change as below for each simulation.

YP,J_ YU
'
J 

x 100C =
J	 Y

U,J

where,

C = Percent change in yield in Year J.
J

Y	 = Yield for Year J when a variable is perturbed.
PJ

Y	 = Yield from reference simulation in Year J.
UJ

Thus for each variable perturbed, and for each perturbation level,

20 values of C were obtained. It should be noted that in some instances

an increase of 5% in the value of a variable may increase simulated

yields in some years and decrease simulated yields in other years.

These 20 elements of C (C(j), j=1,20) were ranked from smallest to largest

and the following elements extracted for graphical representation.

C(20) = largest effect of change.

C(18) = 9th decile outcome (i.e., change occurring in 90% of years

will be less than this amount).

C(10) = median change.

C(3) = 1st decile outcome (i.e., change occurring in 10% of years

will be less than this amount).

C(1) = smallest effect of change (may be largest negative

effect).

The difference between C(20) and C(1) reflects the maximum possible

range of outcomes and the difference C(18) to C(3) reflects the range
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of outcomes in 80% of years. In the strict sense 1st and 9th deciles

were calculated by fitting a linear segmented function to the frequency

distribution of outcomes and interpolating the 10% and 90% probability

points from these functions. This technique is described more fully

in Chapter 7 and will not be elaborated upon here. Using these five

values of C, a plot (Figure 6.1) can be developed which provides

information on both the frequency and magnitude of responses to

perturbation. Illustrative figures for each of the perturbation

levels, variables and locations were developed (Figure 6.2).

"S" values (Maas and Arkin, 1980a) across the range of perturba-

tions were obtained by fitting a simple linear regression for each of

the variables as below:

AY = S AV

where: AY .= Mean % change in yield from 20-year simulation caused by

perturbation of variable V

AV = % perturbation of variable V

The values were obtained for each of the three sites and for the

combination of the three sites (Table 6.3 and 6.4).

6.2.2 Results 

Figure Interpretation--In the following figure (Figure 6.2) the

relative sensitivity to perturbation of the variables can be gauged

by comparing column lengths. Using the case of input variables

perturbed +5% at Wongan Hills (Figure 6.2a), the variables DUL and

INO3 can be seen to have a greater range of sensitivity to perturbation

than IOC since their column lengths are greater. The IOC range (+2%

to -2%) can be seen to be particularly small since the upper portion
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	 ,Smallest effect of change
(occurs 1 year in 20)

-10 -

Figure 6.1. Figure Illustrating Hypothetical Range of Simulated Effects
on Yield When a Model Variable is Perturbed.
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Figures 6.2. Range and Frequency of Yield Outcomes as the Result of Perturbations
of Various Variables. Zero Indicates No Departure From the Yields
Generated in the Reference Simulation. The Column Lengths Indicate
the Magnitude of the Range of Outcomes With the Frequencies Indicated
as Described in Figure 6.1.
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Figure 6.2b. Perturbation of Input Variables at Wichita.
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Table 6.3. "S" Values for Yield Sensitivity Determined From Regression
of Mean Yield Response (% Deviation From Control) on
Perturbation Percentage for 26 Variables When Fertilizer
Was Applied

Variable Wongan Hills Wichita Rothamsted Combined

LL -1.074* -0.235* -0.342 -0.550*
DUL 0.964* -0.131* 0.930* 0.588*
SAT -0.054* -0.043 -0.359 -0.152*
1NO3 0.105 0.048* 0.175 0.109*
IOC 0.007 0.029 0.208* 0.082*
SCN -0.030 0.001 0.055 0.009
BD 0.019 0.029 0.360* 0.136*
RAIN 2.646* 2.441* 1.678* 2.255*
TEMP 1.345* -2.019* 0.197 -0.159
SOLRAD -2.542* -1.646* -1.776* -1.988*
SWCON 0.031 -0.001 -0.045 -0.005
PSE 0.657* 0.789* 0.056 0.500*
DMOD 0.002 0.002 0.004 0.000
RNTRF 0.049 -0.010 -0.038 -0.038
CNI 0.007 -0.006 -0.116 -0.031
DNRATE -0.008 -0.004 -0.080 0.043
LEACH 0.002 -0.028 0.155 0.002
FNO3 0.008 0.054* -0.055 0.006
MAXUL 0.019 0.054* -0.055 0.024
RNFAC 0.016 0.005 0.050 0.065
NFAC 0.092* 0.097* 0.008 0.059
NDEF1 0.133 0.104 -0.060 -0.063
NDEF2 0.011 0.026* -0.225 0.029*
NDEF3 0.012 0.027* 0.048 0.032
NDEF4 -0.016 0.061* 0.051 -0.027*
GNP 0.001 0.016 -0.067* 0.136*

* Indicates coefficient of determination for the regression
significant at the 5% level.
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Table 6.4.

Variable

"S" Values for Yield Sensitivity Determined From Regression
of Mean Yield Response (% Deviation From Control) on
Perturbation Percentage for 26 Variables When Fertilizer
Was Not Applied

•

Wichita Rothamsted CombinedWongan Hills

LL
DUL
SAT
1NO3
IOC
SCN
BD
RAIN
TEMP
SOLRAD
SWCON
DMOD
RNTRF
CNI
DNRATE
LEACH
FNO3
MAXUL
RNFAC
NFAC
NDEF1
NDEF2
NDEF3
NDEF4
GNP

-1.025*
1.453*

-0.068
0.796*
0.220*

-0.267
0.663*
1.264*
0.202

-0.916*
-0.194
0.143

-0.017
-0.049
-0.038
-0.049
0.100
0.100
0.038
0.133

-0.104
0.027
0.026

-0.019
-0.043

0.152
-1.015
-0.416
0.130*
0.038
0.009
0.168*
3.676*

-2.656*
-2.784*
-0.003
0.018
0.119*
0.035

-0.003
-0.010
0.057*
0.057*
0.003
0.022

-0.023
-0.166
-0.195
-0.079
-0.009*

-0.317*
0.607*

-0.135
1.003*
0.094*
-0.023
1.251*
0.031
0.772*

-0.482*
0.025
0.195*
0.137*
0.180*

-0.108*
0.004
0.098
0.098

-0.005
0.034

-0.314
-0.123*
0.033
0.403*
-0.132*

-0.397*
0.348

-0.206
0.643*
0.117*
-0.094
0.694*
1.657*

-0.561
-1.394*
-0.057
0.118*
0.080*
0.055

-0.050
-0.018
0.085
0.085
0.012
0.063*

-0.147*
-0.087
-0.045
0.102
-0.061*

* Indicates coefficient of determination for the regression
significant at the 5% level.
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of the column (+0.5% to +2%) indicates the 2% increase in yield only

occurred 1 year in 20. Thus in 80% of years, perturbation of IOC by

+5% will result in only a (+0.5% to -1.8%) range of effects on yield.

The median effect is zero. In the case of the variable INO3 most of

the range of outcomes (+6% to -18%) is dominated by "outliers." In

this case, in 80% of years yield changes will be in the range of -4%

to +3%, but 1 year in 20 5% perturbation of INO3 will cause simulated

yield to be reduced by 18%, and also 1 year in 20 simulated yield will

be increased by 6%. The median effect of perturbation of both INO3

and IOC is, however, approximately the same. Perturbation of the

variable RAIN causes a large range of possible yield outcomes and the

median effect (+11%) is larger than for most other variables. Column

heights and position of the within column boundaries thus display

both magnitude and frequency of response to perturbation.

Input Variables 

LL and DUL--These two variables determine the range of extract-

able soil water. An increase in LL or a decrease•in DUL would cause

a decrease in the amount of soil water available (ESW) to the crop.

At the driest site (Wongan Hills) S values for grain yield

(Tables 6.3 and 6.4) of approximately -1 were obtained for LL. This

implies that a 1% overestimation of LL will result in a 1% under-

estimation in yield. Similar values but of opposite sign were

obtained for DUL. The model was much less sensitive to perturbations

of LL and DUL at Wichita presumably because the ESW was much larger

due to both a greater profile depth and a wider range between LL and

DUL throughout the profile.
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Relative to other variables the range of possible outcomes is

large (Figure 6.2). In most years an increase in LL causes a decrease

in yield (Figures 6.2a,b,c), but in some years a 5% increase in LL

resulted in a small increase in yield. Similar increases in yield

with reductions in DUL were apparent. This apparent anomaly may

arise when increased water stress early in the growing season reduces

crop growth and thus conserves water for later in the season. Fischer

and Kohn (1966) have defined a period of moisture stress around

anthesis as being the most critical for yield determination. Thus

conservation of water until this period may have a beneficial effect

on yield.

The large range in possible outcomes and large (relative to

other variables) S values indicates that parameters determining soil

water storage are very sensitive and therefore input values must be

estimated with some precision. This sensitivity is apparent since

soil water status is used to modify the rates of various plant growth

processes directly as well as determining the rates of all the major

N transformations. The effects of increases in LL are not necessarily

paralleled by the effects of decreases in DUL because the magnitude

of DUL affects storage of water above DUL (i.e., toward saturation)

as well as ESW. This water between DUL and SAT (saturation) can

readily drain. Decreasing DUL can thus increase the proportion of

water in the profile which drains. In some years this could act as a

short-term extra buffer for water storage, but in other years decreases

in DUL may affect the rate of nitrate leaching.
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The effects of perturbation of LL and DUL on biomass (see

Table 6.5) were similar to those on grain yield. Perturbation of DUL

also had similar effects on N uptake as on biomass and grain yield,

but N uptake was not greatly affected by perturbation of LL when

fertilizer was applied.

Table 6.5. "S" Values for Biomass and N Uptake Sensitivity From
Regression of Response (% Deviation From Control) on
Perturbation Percentage for 26 Variables When Fertilizer
Was or Was Not Applied. The "S" Values Are From the
Combined Analysis of All Sites

Variable Biomass Biomass N Uptake N Uptake
(0 kg N/ha) (fertilised) (0 kg N/ha) (fertilised)

LL -0.326* -0.221* -0.231* -0.005
DUL 0.370 0.204 0.238 0.249
SAT -0.071 -0.047 -0.033 -0.081
INO3 0.610* 0.184* 0.523* 0.272*
IOC 0.091* 0.017* 0.069 0.094
SCN -0.081 -0.028* -0.091* -0.021
BD 0.586* 0.134* 0.557* 0.343*
RAIN 1.157* 1.419* 1.066* 0.863*
TEMP -0.031 -0.379 0.211 0.000
SOLRAD -0.854* -0.899* -0.989* -0.691*
SWCON -0.029 0.007 -0.017 0.021
DMOD 0.096* 0.023* 0.058	 • 0.063
RNTRF 0.033 0.001 0.073 0.051
CNI 0.012 -0.011* 0.054 0.188
DNRATE -0.032* -0.026* 0.001 -0.047
LEACH -0.007 -0.002 -0.026 0.038
FNO3 0.084* 0.058* 0.104* 0.939
MAXUL 0.084* 0.059* 0.104* 0.939
RNFAC 0.005 0.002 0.010 0.118*
NFAC 0.067* 0.085* 0.136* 0.025
NDEF1 0.015 0.167* -0.005 -0.189
NDEF2 0.021 0.044* 0.097* 0.096
NDEF3 0.009 0.002 0.067* -1.753
NDEF4 0.081* 0.083* 0.064 0.031
GNP -0.025* -0.006* 0.178* -0.018

* Indicates coefficient of determination for the regression
significant at the 5% level.
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Potential N uptake from a layer is calculated as a function of

the ESW as shown below:

SMDFR = SW/ESW

Potential N uptake = MAXUL * RLV * SMDFR * SMDFR * FNO3 * UCF

where: MAXUL = Maximum N uptake per cm of root.

RLV = Rooting density in the layer cm root/cm
3
 soil.

SMDFR = Soil moisture deficit factor.

FNO3 = Zero to unity nitrate supply index.

UCF = Unit conversion factor.

Increases in LL or decreases in DUL would appear to increase

potential N uptake since ESW would be reduced and hence SMDFR increased.

Decreases in water storage, however, would also tend to force SW to

the lower end of the ESW range thus reducing uptake. The resulting

sensitivity, or lack thereof, on N uptake is due to a counterbalancing

of these two opposing effects. A further confounding of this effect is

that when fertilizer is applied, increased plant growth would tend to

lower SW, which may contribute to the differing sensitivities when

fertilized or unfertilized.

SAT and SWCON--SAT determines the amount of water above the DUL

which the profile can hold. Increases in SAT will cause potential

increases in the amount of water moving through the profile with

drainage. Increases in SAT will thus result in increases in nitrate

leaching if there is sufficient rainfall to frequently cause drainage

events. When fertilizer was applied the greatest sensititivity was

evident at the wettest site (Rothamsted) (Figure 6.2c). When no

fertilizer was applied the largest sensitivity was observed at Wichita

(Figure 6.2b), the site with the largest ESW. Since SAT determines the
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maximum amount of water the soil can hold, increases in SAT may

result in improved water relations in the dry periods between profile

recharge events. Thus at the drier sites (Wongan Hills and Wichita)

there is a higher frequency of positive effects on yield associated

with increases in SAT than at Rothamsted (Figures 6.2a,b). Very

little sensitivity to SAT on N uptake or biomass was evident (Table 6.5).

SWCON proved to be a fairly insensitive parameter. Increases in

SWCON on the average produced small increases in yield at Wongan

Hills when fertilizer was applied (Figure 6.2a) and small decreases

when no fertilizer was applied (Table 6.4). Increases in yield

associated with increases in SWCON could be the result of increased

water flux to deeper layers in dry years leading to improved water

relations. Decreases in yield associated with increases in SWCON may

be associated with increases in leaching caused by the increased

water flux through the profile. Very little sensitivity to SWCON on

N uptake or biomass was evident (Table 6.5).

INO3--When no fertilizer was applied (Table 6.4) the sensitivity

to INO3 was high (overall S = 0.643). When fertilizer was applied

sensitivity to INO3 was very much lower, but some sensitivity was

still apparent (Figures 6.2a,b,c). The sensitivity to INO3 for

simulation of biomass and N uptake was similar to that for grain

yield. In most cases increases in INO3 were associated with increases

in yield. In some years increases in INO3 caused decreases in yield.

This is possible when an increased growth early in the season resulted

in an early exhaustion of the water supply with a consequent reduction

in grain filling rate. Such water/nitrogen interactions have been

reported by Storrier (1965) and Fischer and Kohn (1966). The analysis



256

suggests that under conditions of low N supply, the amounts of nitrate

(and by analogy ammonium) that are supplied as input data to the model

must be estimated with some precision.

IOC--The initial supply of "stable" soil organic N is estimated

in the model by assuming a C:N ratio of 10 in bulk soil. Thus an

increase in IOC would imply an increase in potentially mineralizable

N. There was little sensitivity to IOC at Wongan Hills and Wichita

when fertilizer was applied. At both these sites frequent low soil

moisture availability in the upper layers would result in a low

mineralization rate and hence reduce sensitivity. When fertilizer

was not applied IOC was a much more sensitive parameter at both sites

suggesting that under low N supply the N supplied from mineralization

of "stable" organic N is important. The analysis suggests that

estimates of IOC provided to the model must be made with some precision

when N supply is limited. N uptake was not sensitive to perturbation

of IOC.

SCN--The model was found to be fairly insensitive to the C:N

ratio of the added crop residue. Each of the simulations was run with

an added crop residue of 1,500 kg of straw dry matter/ha with a C:N

ratio of 60. If all the N contained in this residue were to mineralize

during the growing season the contribution to the mineral N supply

would be 10 kg N/ha. If errors were made in the estimation of the

C:N ratio of + or - 20% this contribution would become 8.3 or 12.5 kg

N/ha, respectively. When fertilizer is applied these small differences

in N supply, particularly when spread over a growing season, would be

masked. Similar calculations reveal a minor importance of errors in

estimation of SCN as they would affect the rate of N immobilization
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when fertilizer is applied. Some sensitivity was found at Wongan

Hills (S = 0.267) when no N was applied. This site had the lowest

initial N supply and the shortest growing season over which to

mineralize any previously immobilized N. These factors may have

contributed to this sensitivity. Some increased sensitivity may be

expected at higher rates of straw application and with materials with

a higher C:N ratio. In most instances where N supply is not very

limiting the sensitivity is low.

BD--Bulk density is used in the calculation converting soil N

input data from a concentration basis (ppm) to a mass basis (kg

N/ha). It is also used in the calculation of porosity which is

subsequently used to calculate saturation moisture content. Thus

increases in BD will cause increases in INO3 and INH4 (initial KC1

extractable ammonium) and will cause a decrease in SAT. Reflecting

the changes in initial N supply, there was a large sensitivity to BD

when fertilizer was not applied. When fertilizer was applied little

sensitivity was apparent at the two dry sites but some was apparent

at Rothamsted. The sensitivity was equivalent (though of opposite

sign) to that for SAT at Rothamsted, suggesting that the sensitivity

to BD may be as a result of changing porosity. When fertilizer was

not applied the sensitivity to BD approximated that of INO3, indicating

that modification of the initial N supply is the probable cause of

the sensitivity.

The analysis suggests that estimates of BD supplied to the model

must have reasonable precision at low rates of N supply.

RAIN--The perturbation performed was to the size of generated

daily rainfall events in a multiplicative manner. This means the
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frequency of rainfall events remained unchanged but the magnitude of

each event was changed. This proved to be the most sensitive of all

parameters tested. The magnitude of the sensitivity to RAIN is

indicated by the large range of possible outcomes (Figure 6.2) in

yield. The effects on biomass and N uptake were equally large. The

sensitivity was much greater at the drier sites than at Rothamsted.

The relative sensitivity to RAIN at the three sites differed markedly

with fertilizer treatments. Figure 6.2 indicates a 5% increase in

RAIN may cause more than a 30% increase in yield in more than 10%

of years at Wongan Hills and Wichita and in 5% of years at Rothamsted.

Increases in RAIN infrequently were associated with decreases in

yield at Wongan Hills, due possibly to either leaching or to early

growth of a large biomass which may prematurely exhaust the water

supply later in the season. Decreases in yield with increases in

RAIN were more frequent at Wichita and Rothamsted. Thus the accuracy

of simulations of crop growth, nitrogen dynamics, and yield will be

greatly prejudiced by the accuracy of supplied rainfall data.

TEMP--Temperature was a highly sensitive parameter at Wongan

Hills and at Wichita but not at Rothamsted when fertilizer was applied.

When no fertilizer was applied there was less sensitivity at Wongan

Hills and more at Rothamsted. Increases in temperature at Wongan

Hills were associated with increases in yield (positive mean S)

whereas increases in temperature were associated with decreases in

yield at Wichita. The large range of possible outcomes (Figure 6.2)

masks some of the mean effect. At Wongan Hills, with a marked winter

dominant rainfall, soil moisture is usually in short supply during

the late spring and early summer period when grain filling is occurring.
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Increases in mean temperature will speed the development of the crop

and it may thus avoid the periods of moisture stress. Increased

temperature will of course increase rates of evaporation which in

some years may lead to additional moisture stress. This effect of

increased temperature on speeding the development rate was more

marked at Wongan Hills than at the other two sites (Table 6.6) because

the mean temperatures experienced during the crop growth period are

higher than those at the other two sites. The small amount of

vernalization required by the spring wheat variety Condor used in the

simulation is obviously still satisfied despite the rises in temperature.

The reduction in yield with increased temperature at Wichita is most

probably associated with increases in evaporation leading to moisture

stress. In several years at Wichita increased perturbation of temperature

would lead to increased rates of defoliation and plant death due to

winter killing. This occurs since the perturbation is multiplicative

and not additive and so a low negative temperature is made lower when

the perturbation factor is increased. Mid-winter temperatures at

this location are sufficiently low to cause some winter kill in many

years but not at the other two locations. The effects of perturbation

of temperature were less apparent on simulated biomass and N uptake.

Since temperature is a major driving variable in many crop growth

processes and nitrogen transformations, its perturbation can cause

many interacting effects. Among these effects are effects on crop

duration, evaporation, severity of winter killing, and effects on

nitrogen supply processes.
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Table 6.6.	 Effect of Temperature Perturbation on the Simulated
Mean Duration of Crop Growth (days)

RothamstedPerturbation Wongan Hills Wichita
(%)

0 165 251 270
+5 161 249 265

+10 156 246 261
+20 148 242 253
-5 171 254 275

-10 177 257 282
-20 190 264 298

SOLRAD--In the model solar radiation is used to predict the

potential evaporation and, together with leaf area, the potential rate

of crop photosynthesis. The model partitions the potential evaporation

between soil and crop components and uses the two stage method described

by Ritchie (1972) to predict actual evaporation from this potential.

The effect of SOLRAD on evaporation is more powerful than the effect

on photosynthesis since simulated net photosynthesis rate is also

dependent upon prevailing temperature, water and nitrogen stresses,

and on the size of the crop biomass (respiration requirement). Thus

the primary impact of SOLRAD on crop yield will be via the effect on

evaporation rather than on photosynthesis. In every year simulated

when SOLRAD was increased, yield reductions occurred, except during

1 year at Rothamsted when SOLRAD was increased 20%. When SOLRAD was

decreased occasional years showed a decrease in yield but most years

showed an increase in yield. The analysis suggests the primary

impact is via evaporation and the large sensitivity implies that

solar radiation used as input to the model must be reliably estimated.
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In a separate study, perturbation of the coefficient determining

the efficiency of conversion of solar radiation into biomass indicated

a high degree of sensitivity. This would suggest that sensitivity to

solar radiation in the photosynthesis component of the model exists and

this is overridden by larger effects of solar radiation on evapotranspi-

ration.

N-Component Variables 

DMOD--Biomass and N uptake were very little affected by perturbation

of the mineralization rate when fertilizer was applied and the sensitivity

for grain yield was the lowest obtained for all parameters (S = 0.000).

When fertilizer was not applied and the N supply more severely limited

plant growth, increased sensitivity to mineralization rate perturbation

was apparent (S = 0.118). The sensitivity was lowest at Wichita.

This soil had the largest amount of organic N present. The greater

sensitivity at the other two sites reflects the lower availability of

N for plant growth. Small errors in the estimation of the mineralization

rate of crop residue as distinct from "stable organic matter" will

have little influence on predicted yields, biomass, or N uptake due

to the small contributions residues make to the N supply in these

simulations as discussed earlier (see SCN). Had a larger mass of

residue with a more favorable composition (lower C:N ratio) for

decomposition been used in the simulations, greater sensitivity to

this coefficient may have been apparent. Similarly, if a large mass

of material with a large C:N ratio had been added, leading to substantial

immobilization, greater sensitivity may have also been apparent.

Thus, small errors in the mineralization/immobilization components of
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the model are unlikely to influence predicted yields greatly unless

the soil N supply is very limited.

RNTRF and CNI--These two variables influence the rate of nitrifi-

cation. When fertilizer was applied at Rothamsted and Wichita upward

or downward perturbation of these variables always caused only small

changes in yield (Figure 6.2d,e,f). Larger changes were apparent in

some years at Wongan Hills. Sensitivity was higher when fertilizer

was not applied, but sensitivity overall was not high. Restriction

of the nitrification rate would maintain a greater proportion of the

soil mineral N in the ammonium form rather than the nitrate form.

Since nitrification is generally a rapid process, the 20% downward

perturbation of RNTRF may have only slowed the conversion a few days,

thus exhibiting little sensitivity over a whole growing season.

Perturbation of CNI may extend this period of reduced nitrification a

little longer, since this variable is concerned with determining the

buildup in nitrification capacity once conditions for nitrification

become favourable. Thus, in some instances higher sensitivity to CNI

may be exhibited. Sensitivity to nitrification is further discussed

in Section 6.6. In most instances small errors in simulation of the

nitrification rate will not be detectable in grain yield, biomass, or

N uptake.

DNRATE--Overall, little sensitivity to DNRATE was observed.

Denitrification was expected to be an infrequent phenomenon at Wongan

Hills since prolonged periods of saturation in the upper part of the

profile are rare events. Figure 6.2d indicates that the range of

effects on yields of perturbing DNRATE is very small, perhaps indica-

tive of either the low frequency of denitrification events or their
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small size when they do occur. Reductions in DNRATE of 10% and 20%

resulted in a 20% yield increase in 1 or 2 of the 20 years simulated.

At Rothamsted denitrification would be a more frequent phenomenon due

to the prevailing moisture regime. In almost all years simulated at

Rothamsted (Figure 6.2f) upwards perturbations of DNRATE resulted in

reductions in yield (albeit small). The converse, where DNRATE was

perturbed downward, did not lead to frequent yield increases. The S

values obtained over all sites indicate that small errors in denitri-

fication rate will rarely affect the simulated yields, biomass, or N

uptake.

LEACH--In this case the variable affecting the rate of nitrate

movement from every layer was perturbed. The model was insensitive

to changes in the rate of leaching of nitrate under low N supply and

at the drier sites (Wongan Hills and Wichita). At the dry sites many

years occur when there is insufficient moisture to substantially

redistribute nitrate within the profile. In these years there is

high probability there is also insufficient moisture for crop growth.

The greatest sensitivity to perturbation of this variable was experienced

at the wettest site (Rothamsted) (S = 0.155) when fertilizer was

applied. In this case, increasing the leaching rate led on average to

increases in yield. Figure 6.2f, however, indicates that there are

as many years when yields were decreased by upwards perturbation of

LEACH as there were years when yields were increased. Since perturbation

was to the nitrate movement from all layers, this may be more indicative

of redistribution of nitrate within the profile than losses from the

root zone. A more appropriate means of testing sensitivity to leaching

would have been to perturb only the LEACH from the bottom layer. In
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some instances, if nitrate is relocated to layers where there is a

greater likelihood of water being present, short-term nutritional

droughts may be avoided.

Since large leaching losses have been recorded at Rothamsted

(Whitmore and Addiscott, 1986), further investigation of the nature

of the sensitivity of the model to leaching is required. This is

addressed to some extent in Section 6.3.

FNO3 and MAXUL--Both these variables potentially affect the

daily rate of N uptake. Potential N uptake is calculated as a func-

tion of the supply index (FNO3), a moisture index (SMDFR), the root

length density, and the maximum uptake of N per unit length of root

(MAXUL). When fertilizer was applied very little sensitivity was

seen in grain yield response at any of the sites. Slightly more

sensitivity was displayed when fertilizer was not applied, but the

sensitivity remained very low. Similar responses in sensitivity were

recorded for biomass. N uptake was found to be highly sensitive to

both variables when fertilizer was applied. Since MAXUL and FNO3 are

multiplied together in the potential uptake equation their sensitiv-

ities for N uptake are identical. The greater sensitivity for N

uptake compared to grain yield or biomass suggests that on many

occasions N uptake was affected in the simulations with little effect

on the growth processes. This can occur when there are relatively

high concentrations of N within the plant, as may occur with high

rates of fertilizer addition.

The high sensitivity to perturbation of these two variables for

N uptake when fertilizer is applied is somewhat surprising since an

overestimation of N uptake on one day will lead to a diminished
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supply, thereby causing a reduction in FNO3 the following day thus

lowering uptake. The high sensitivity does indicate that the func-

tions in the model concerned with calculation of uptake rate need to

be reliably estimated for the simulation of N uptake but not neces-

sarily for yield.

RNFAC--Root distribution in the model is simulated by using a

rooting preference function WR (supplied as input) as the primary

driving variable. The distribution of new root growth is modified

according to the prevailing moisture and N availability conditions.

Very little sensitivity to perturbation of RNFAC was exhibited by

grain yield, biomass accumulation, or N uptake at any of the sites.

NFAC, NDEF1, NDEF2, NDEF3, NDEF4, and GNP--Together these variables

control the mechanisms by which the plant adjusts to changes in

tissue N concentration. NDEF1, NDEF2, NDEF3, and NDEF4 are all

calculated from NFAC. NFAC is calculated from the tissue concentra-

tions as below:

NFAC = 1.0 - (TANC-TMNC)/(TCNP-TMNC)

Where TANC = Actual vegetative shoot N concentration.

TMINC = Minimum vegetative shoot N concentration.

TCNP = Critical vegetative shoot N concentration.

As the plant ages, TMNC and TCNP fall. Thus, if TANC is maintained

at a constant level, as the plant ages the crop will change from a

period of deficiency to a period of sufficiency.

When deficiency occurs a low value of NFAC causes a reduction in

growth via its effect on growth processes (by way of the four N

deficiency factors). With reduced growth, N concentration will tend

to remain constant since less dilution is occurring. Thus, as the
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plant ages it tends to grow out of deficiency. In practice, however,

if the soil N supply remains limited, reduced uptake will compensate

for the reduction in growth and may cause NFAC to also remain low.

This very dynamic nature of the feedback mechanisms involved within

the model may mask some of the effects of perturbation of the deficiency

indices and NFAC. Had the perturbation been growth stage dependent

as in the case of Larsen's (1981) perturbation of environmental

variables, some greater sensitivity may have been evident.

Given that these compensating effects can occur, sensitivity to

the deficiency indices can occasionally be very marked. Figures 6.2d,e

indicate that when fertilizer is applied there are some years when a

10% or 20% reduction in these indices will substantially affect grain

yields at Wongan Hills and Wichita. Overall high sensitivity to

NDEF1 and NDEF4 for grain yields was evident at Rothamsted when

fertilizer was not applied. GNP rarely influenced yields. Very high

sensitivity to NDEF3 for N uptake was found when fertilizer was not

applied.

The difficulty in obtaining a precise indication as to the

sensitivity of these indices indicates that further work on the model

is warranted in more clearly defining the concentration/growth process

relationships. Further sensitivity analyses with the model running

in a deterministic mode, together with comparisons with observed

concentration and growth data, may help clarify responses to N deficiency.

6.3 Sensitivity to Fertilizer Rate and Timing 

The sensitivity of the model to various fertilizer management

strategies is evident from some of the validation studies outlined in


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103

