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ERRATA

Page 10, line 24--Various loss processes.

Page 22--Equation dy/dx should read dY/dX.

Page 23--Equations should have X rather than x.

Page 28--Replace last sentence with:

"Since crop yield is an input to these models, they cannot be used
to describe response to fertilizer but they can be used to provide
a prescription for fertilizer amount."

Page 31--Last sentence, which is continued on page 32, replace with:

"Since these models are driven by daily weather data they should,
in principle, have the capacity to account for yield and response
variations from year to year."

Page 32--Equation:

Replace w with W on left hand side of equation and in sentence
above equation.

Page 32, line 22--.... as a ratio of an actual ....

Page 34--Delete second sentence.

Page 35, line 23--(Hanks and Ritchie, 1988).

Page 36, line 16--.... a function of soil nutrient ....

Page 42--Delete last sentence, paragraph 2.

Page 42, line 23--.... theory and/or solution of systems of simultaneous ....

Page 43, line 22--.... The minimum data set (MDS) for rice ....

Page 44, paragraph 1--Add the following sentences at end of the paragraph:

"Most of the models listed in Table 2.3 have been subjected to limited
testing while some have had no testing. Those which had limited testing
are indicated by an "L" under the testing heading and those with no
reported testing are indicated by "0"."

Page 45, table 2.4--Caption should read y = ax+b.

Page 45, line 2--Model with the simulated mass of nitrate for the upper
60 cm.
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Page 49, line 11--Insert reference as follows:

The original version of the model (Ritchie and Otter, 1985) had no
nitrogen component.

Page 51, paragraph 2--Should appear as paragraph 1, page 53 immediately prior
to section 3.2.

Page 56, figure 3.2c--Add an arrowhead coming into the WATBAL box from the
Water Balance decision diamond.

Page 88, paragraph 1--Add the following sentence at the end:

"For a more detailed description of the temperature model, the reader is
referred to Williams et al, (1984)."

Page 89, line 18--The original CERES-WHEAT model (Ritchie and Otter, 1985) 
was developed ....

Page 93--At the end of the first paragraph, add the following sentence:

"Critical N concentration refers to N concentration in the above-ground
vegetative parts of the plant."

Page 178, line 10--.... data with statistical properties 	

Page 235, line 11--.... by the CERES-WHEAT model without the nitrogen
components was the ....

Page 276--Delete the first paragraph.

Bibliography--Add Richardson, C. W., and Wright, D. A. (1984). WGEN: A
model for generating daily weather variables. U. S. Department of
Agriculture, Agricultural Research Service, ARS-8, 83 p.
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Abstract

Some 8 million tonnes of fertilizer N are applied annually

to the world's wheat crop. The efficiency with which this is used is

very variable but in general poor. Much of this variability in

fertilizer efficiency and hence crop response to N is due to differences

in climate. Soil physical and chemical properties, crop residues,

crop variety, and management practices also influence crop response

to fertilizer and efficiency. A tool which is able to reliably

predict crop response to N and determine the causes and magnitude of

poor fertilizer recovery could greatly assist crop and fertilizer

management. Various approaches to describing the response to N and

- their ability to capture the effects noted above are reviewed in the

thesis. The shortcomings of traditional response research are highlighted

and dynamic computer simulation modelling is advanced as an appropriate

methodology. A review of modelling methodologies and models of N

dynamics in cropping systems is presented. The review indicated that

one comprehensive model with a management or user focus and which is

able to accommodate the effects of the factors listed above is lacking.

This thesis describes the CERES-WHEAT model and the development

of an N component for it. This model utilizes a daily time step and

is designed to be able to simulate the growth, yield, and response to

N of a wheat crop grown anywhere in the world. The model requires

daily climatic data as well as data describing soil water storage

characteristics and data pertaining to soil factors which influence

vii



the supply of N to the crop. The model utilizes several genotype

specific coefficients to characterize a cultivar's response to environment.

Management data defining the time of planting, plant population,

fertilizer rate, source, and time of application are also required.

The CERES-WHEAT model describes the processes of evapotranspiration,

soil water balance, crop ontogeny as affected by temperature, photoperiod,

and vernalization, and the growth of leaves, stems, roots, ears, and

grain. The nitrogen component of the model adds to this the description

of mineralization and/or immobilization of N associated with the

decay of crop residues, mineralization of "stable" organic matter,

movement of nitrate in the profile, nitrification, denitrification,

uptake of N by the plant, plant N effects on growth processes, and

redistribution of N within the plant associated with grain filling.

The derivation of the functions for each of these processes and their

relationship to published information is described.

To validate the model, data sets from field experiments on

wheat from various locations in the world were assembled. These data

sets encompassed a broad range of climatic environments, crop cultivars,

soil conditions, fertilizer rates, and management practices. Simulated

yield, biomass, total N uptake, grain N uptake, and N balance compared

favorably with observations. The statistical techniques available for

simulation model validation were reviewed and validations compared

using various techniques.

Weather simulation techniques were reviewed and as a prelude

to long-term simulations the WGEN stochastic weather simulator program

viii



was evaluated. Long-term daily rainfall and temperature data for

many sites in the Australian wheat belt were assembled and used to

calculate coefficients for the WGEN weather simulator. Long sequences

of daily weather data for each location were synthesized using these

coefficients and the WGEN simulator. Rainfall synthesis performance

aspects of WGEN were assessed by comparing predicted and observed

values of several parameters. These parameters were daily and monthly

rainfall amount, rainfall frequency, wet spell length, dry spell

length, and the frequency of large rainfall events. Similarly the

validity of synthesized temperature data were examined by comparing

predicted and observed mean maximum and minimum temperatures, temperatures

on wet and dry days, and the occurrence of temperature extremes.

WGEN was able to produce sequences of daily weather data statistically

similar to observed sequences at most locations. Exceptions to this

occurred when the length of run used to characterize the parameters

was short.

Several sensitivity analyses of the CERES-WHEAT model were

performed. The first of these involved running the model coupled to

WGEN at Rothamsted (UK), Wichita (Kansas, U.S.A.), and Wongan Hills

(W.A., Australia). In this analysis key variables were perturbed up

and down 5%, 10% or 20% and the model run with 20 years of simulated

climatic data. Results from a run with a variable perturbed were

compared to a standard run with no variables perturbed. Runs were

made both with a moderate fertilizer rate and with no fertilizer

applied. Differences in simulated grain yields, biomass, and N uptake

ix



were used as indices of sensitivity. The analysis showed daily

rainfall to be the most sensitive parameter. Other sensitive parameters

were temperature, solar radiation, variables affecting soil moisture

availability, and when no fertilizer was applied certain variables

which affect the supply of N to the crop were sensitive. Sensitivity

varied among the three sites. Other sensitivity analyses were

conducted to examine the model's sensitivity to fertilizer rate,

timing, placement, and to nitrification inhibition. To examine

sensitivity to fertilizer rate and timing, data from a fertilizer

timing experiment on a coarse sand in Western Australia were used as

the basis for a reference simulation. Combinations of fertilizer

rates, split-application patterns, and times of application illustrated

sensitivity to these management options and enabled identification of

treatments where losses were minimized and grain yields were maximized.

Sensitivity to depth of placement was investigated using 20 years of

simulated climatic data for Jondaryan (QLD, Australia) and Waite

Institute (SA, Australia). The range of responses in simulated grain

yield to deep placement of fertilizer compared to surface incorporation

of fertilizer was much greater at Jondaryan than at the Waite Institute.

The nature and magnitude of the response to simulated deep placement

was very seasonally dependent. Sensitivity to nitrification inhibition

was examined using a sequence of simulated weather data for Rothamsted

and comparing a simulation run with nitrification blocked for 30 days

following a fertilizer application with a control run with nitrification

not inhibited. In most years the simulated inhibition reduced simulated



leaching and denitrification losses but the resulting savings contributed

only slightly to improved fertilizer recovery and had little impact

on grain yield.

The simulated growth of wheat crops and the response to

various fertilizer strategies was examined in three locations forming

a north-south transect and three locations forming an east-west

transect of the eastern Australian wheat belt. Each fertilizer

strategy was compared to a reference simulation using 50 years of

simulated daily weather data. Risk analysis procedures incorporating

the principles of stochastic dominance were used to evaluate the

strategies. Simulated losses at each location were usually small and

the response to N determined by the availability of water. With the

given initial conditions, the analysis determined appropriate N rates

and also suggested that possibilities for improving N fertilizer

efficiency in these locations via changes in fertilizer management

were usually limited.
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