1	
2	
3	
4	
5	
6	THE FORM AND AVAILABILITY OF SLOWLY
7	AVAILABLE PHOSPHORUS IN DEPLETED
8	VERTOSOLS
9	
10	
11	
12	
13	
14	
15	Submitted by
16	TIMOTHY IAN MCLAREN
17	Bachelor of Rural Science (Honours)
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	In fulfilment of the requirements for the degree of
28	Doctor of Philosophy
29	
30	School of Environmental and Rural Science
31	The University of New England
32	New South Wales
33	Australia
34	
35	July 2013

47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	I dedicate this thesis to my grandparents, Ronald
65	and Helen McLaren, and Jim and Olive Nelson.
66	

67 Acknowledgements

68

This thesis could not have been achieved if it wasn't for the encouragement, generosity, patience and wisdom of several people and organisations for which I will be forever grateful. In particular I want to thank my principal supervisor Dr Chris Guppy who continually sought to expand my understanding of soil science. I would also like to thank Dr Matt Tighe, Dr Mike Bell and Dr Ian Rochester for their guidance and teaching. You all encouraged me to reach beyond that to which I thought was not possible.

I also would like to thank the scientific input and advice from Dr Graeme Blair, Dr Cassandra Schefe, Dr Bruce Cowie, Dr John Bennett and Dr Phil Moody on various aspects of this project. I also want to thank the technical support of Mrs Leanne Lisle, Mr Michael Faint, Mr Jim Hunt, Mr Garry Cluley, Ms Gabriel Ray, Mr David Lester, Mr Laurie Smith, Mr Dereck Schneider and Dr Bruce Kaiser. I have greatly appreciated your help and guidance in experimental design, management and analysis.

I want to acknowledge the Cotton Co-operative Research Centre for providing the funds for this project. I am also grateful for additional financial and technical support from the Grains Research and Development Corporation, the Commonwealth Scientific and Industrial Research Organisation, and the School of Environmental and Rural Science at the University of New England. I am thankful for the financial support for travel provided by the Soil Science Society Australia (NSW branch), Australian Soil and Plant Analysis Council, and the School of Environmental and Rural Science at the University of New England.

I acknowledge the Australian Institute of Nuclear Science and Engineering (AINSE Ltd.,
Award ALNGRA11108) for providing infrastructure support at the Lucas Heights nuclear reactor.
I also acknowledge the infrastructure support at the Australian Synchrotron for providing access to
the Soft X-ray beamline at the Australian Synchrotron, Victoria, Australia (Award no.
AS111/SXR/3469a and AS111/SXRFI/3469b).

I want to thank all the staff and students at the Department of Agronomy and Soil Science at the University of New England for their friendship and support throughout this project. In particular, Mr Richard Flavel who has been a good friend throughout both our undergraduate and postgraduate studies. I have really appreciated your friendship and support throughout this project.

Finally, I am exceedingly grateful for the love and understanding of my wife Isobel, who
has stuck by me through the good times and the bad times. I know it hasn't been easy, but I'm glad
you were there alongside me all the way.

102

101

Conference presentations

102			
103	McLaren, T.I., Guppy, C.N., Tighe, M. (2012). Using Colwell and BSES extractable phosphorus		
104	to predict Faba bean (Vicia faba L.) response. Grains Research and Development Corporation		
105	Research Update (Northern), Goondiwindi, Qld		
106			
107	McLaren, T.I., Guppy, C.N., Tighe, M. (2012). Shining synchrotron light on phosphorus (P)		
108	minerals in the dark: P forms in Vertosols. Cotton Science Forum, Narrabri, NSW		
109			
110	McLaren, T.I., Guppy, C.N., Tighe, M. (2011). Rapid, non-destructive total element analysis		
111	using portable X-ray fluorescence (PXRF) on cotton leaf tissue and soybean grain, 12^{th}		
112	International Symposium on Soil and Plant Analysis Conference, Chania, Greece		
113			
114	McLaren, T.I., Guppy, C.N., Tighe, M., Forster, N., Grave, P. (2010). Non-destructive element		
115	analysis using portable X-ray fluorescence (PXRF) on Vertosol soils in the northern grains region.		
116	Australasian Soil and Plant Analysis Council Conference, Canberra, ACT		
117			
118	McLaren, T.I., Guppy, C.N., Tighe, M. (2010). Non-destructive soil and plant analysis using		
119	PXRF in cotton systems, Cotton Science Forum, Narrabri, NSW		

121 **Publications**

122

123	McLaren, T.I., Bell, M., Rochester, I.J., Guppy, C.N., Tighe, M., Flavel, R.J. (2012). Growth and
124	P uptake of faba bean and cotton are related to Colwell-P concentrations in the subsoil of
125	Vertosols. Crop and Pasture Science (under review)

126

McLaren, T.I., Guppy, C.N., Tighe, M., Moody, P., Bell, M. (2012). Dilute acid extraction is a
 useful indicator of the supply of slowly available phosphorus in Vertosols. *Soil Science Society of America Journal* (under review)

130 McLaren, T.I., Guppy, C.N., Tighe, M., Schefe, C.R., Flavel, R.J., Cowie, B., Tadich, A. (2012).

131 Soil phosphate removal by a two-step sequential fractionation procedure and a dilute acid

- 132 extractant in a Vertosol soil using XANES. Soil Science Society of America Journal (submission
- 133 imminent)
- 134 McLaren, T.I., Guppy, C.N., Tighe, M., Forster, N., Grave, P., Lisle, L., Bennett, J. (2012).
- 135 Rapid, non-destructive total elemental analysis of Vertosol soils using portable X-ray fluorescence.
- 136 Soil Science Society of America Journal, **76**(4), 1136-45
- 137
- 138 McLaren, T.I., Guppy, C.N., Tighe, M. (2012). A rapid and non-destructive plant nutrient analysis
- 139 using portable X-ray fluorescence. Soil Science Society of America Journal, 76(4), 1146-53
- 140
- 141

142 Abstract

143

144 Vertosols are an important soil type used for cotton production in the northern grains region (NGR) 145 of eastern Australia. Historically, cotton has received minimal phosphorus (P) input due to the high 146 fertility of Vertosols. Over the past 30 years, P fertiliser use in the cotton industry has increased 147 six-fold, due to the perceived decline in soil fertility in the NGR. However, when P is applied to 148 cotton systems, the amount of P fertiliser recovered by the crop (PUE) has been low and 149 unpredictable (0 - 67 %), and few studies have investigated why this is so. The unpredictability of 150 PUE in cotton systems refers to the lack of cotton response when P fertiliser has been applied in 151 some soils, which was based on recommendations from the commonly used Colwell soil P test. 152 Long-term field trials suggest the quantity of readily available P measured using the Colwell 153 extractant is being replenished by other soil phosphates not measured by the Colwell extractant. 154 This may be due to the large amounts of Ca phosphates typically found in Vertosols, which may 155 supply or replenish labile soil P pools in the 0 - 10 cm and 10 - 30 cm layers. Recent studies have 156 used a dilute acid test (colloquially referred to as the BSES extractant) to measure Ca phosphates in 157 Vertosols, however, little is known about the P pools removed by this extractant. The aim of this 158 project was to understand the ability of Ca phosphates to supply or replenish plant available P in 159 the cotton systems of the NGR.

160 In Chapter 2, the response of faba bean and cotton to subsoil P when moisture was limiting 161 in the topsoil was investigated in glasshouse studies. The growth and P uptake of faba bean and 162 cotton was related to Colwell-P concentrations in the subsoil, demonstrating the potential 163 importance of subsoil P pools in crop P uptake under dry topsoil conditions. This study confirms 164 the Colwell soil P test is a good indicator of plant available P in Vertosols of the NGR. The 165 quantity of BSES-P was not related to faba bean and cotton P uptake over one crop cycle, although 166 this was unsurprising give the majority of these soils contained BSES-Ca/P ratios above 74:1 167 (Chapter 3).

168 This study confirmed that cotton is well suited to low soil P environments. Cotton was less 169 responsive to increasing subsoil Colwell-P concentrations when compared to faba bean. It is possible that the concentration of P in the soil solution needed to trigger cotton root proliferation is 170 171 low in comparison to other crop species. This is also supported by the lack of cotton response to 172 increasing volumes of soil P enrichment in the subsoil. However, caution is needed applying these 173 results to cotton systems as the majority of cotton is irrigated and this would increase the amount 174 of P sourced from topsoils. We recommended that Colwell-P be measured in both the topsoil and 175 subsoil layers, and BSES-P used periodically (e.g., every ~ 10 years) to monitor soil P rundown in 176 Vertosols.

In Chapter 3, this study demonstrated the ability of BSES-P to supply Colwell-P in the Vertosol soils of the NGR. In approximately half the Vertosols tested Colwell-P was being replenished by BSES-P and this occurred when soils contained BSES-P concentrations greater than 61 mg P/kg. This experiment also found that BSES-P was more likely to supply Colwell-P when the ratio of Ca (mg/kg) to P (mg/kg) in the BSES extract was greater than 74, suggesting the presence of Ca phosphates of low solubility.

In Chapter 4, the soil phosphates removed by the 0.1 M NaOH and 1 M HCl extractants were investigated using P K-edge X-ray absorption near-edge structure (XANES). This study aimed to understand the difference between the soil phosphates removed by the 1 M HCl and BSES extractants (Chapter 4). An important aspect of this study was the application of P K-edge XANES for soil P studies in untreated soils, although the high method detection limit of the Soft X-ray beamline at the Australian Synchrotron made accurate identification of soil phosphates difficult.

190 There was supporting evidence that the 0.1 M NaOH and 1 M HCl extractants remove soil 191 phosphates according to the solubility of the P minerals that the reagent is likely to dissolve. 192 Calcium phosphates were the dominant soil P pool in Vertosols, and XANES spectra characteristic 193 to Ca phosphate reference materials were removed after 1 M HCl extraction. However, P K-edge 194 XANES spectra on the soil residue after 0.1 M NaOH and 1 M HCl extraction lacked pre- and post-195 edge features because of the high method detection limit of the Soft X-ray beamline, and it is 196 possible that other soil phosphates may have been removed in addition to Ca phosphates. This 197 study suggests that the method detection limit of the Soft X-ray beamline at the Australian 198 Synchrotron is ~ 2200 mg total P/kg, and further difficulties were found in attempting to identify 199 and quantify the soil phosphates removed by the BSES extractant.

A comparison of the solution extracts removed by the 1 M HCl and BSES extractants indicate approximately 80 % of the P removed by the 1 M HCl extractant is removed by the BSES extractant. The amount of Ca phosphates removed by the BSES extractant is likely to be lower when compared to those removed by the 1 M HCl extractant because the later reagent has a lower pH and could potentially dissolve more thermodynamically stable Ca phosphates. However, it was unclear from this study what soil phosphates constitute BSES-P and further research is needed to investigate this.

This project significantly advances our understanding of the slowly available P pool in Vertosols, and demonstrates the ability of the BSES extractant to predict the supply of Ca phosphates to supply or replenish plant available P in Vertosols of the NGR. Further research is needed to understand the form and availability of Ca phosphates at differing BSES-P concentrations and BSES-Ca/P ratios.

213 Table of Contents

214				
215	Statement of Originality	i		
216	Acknowledgementsiii			
217	Conference presentations			
218	Publications	v		
210	A hstract	vi		
219	Table of Contents			
220		····· VIII		
221	List of Figures	XI		
222	List of Tables	xiii		
223	Abbreviations	xiv		
224	1. General Introduction	1		
225	1.1. Climate	1		
226	1.2. Soil	1		
227	1.3. Agronomy	1		
228	1.4. Phosphorus in cotton	2		
229	1.4.1. Cotton physiology and response to phosphorus	2		
230	1.4.2. Phosphorus translocation in cotton	3		
231	1.4.3. Critical phosphorus tissue concentrations	3		
232	1.5. Soil phosphorus	3		
233	1.5.1. Mineral phosphorus	4		
234	1.5.2. Sorbed phosphorus	5		
235	1.5.3. Organic phosphorus	6		
236	1.6. Soil phosphorus analysis	6		
237	1.6.1. Soil phosphates	6		
238	1.6.2. Plant available P	7		
239	Justification of the project	9		
240	1.7	9		
241	2. Growth and P uptake of faba bean and cotton are related to Coly	vell-P		
242	concentrations in the subsoil of Vertosols			
243	2.1. Abstract			
244	2.2. Introduction			
245	2.3. Materials and Methods	14		
246	2.3.1. Soil collection and sample preparation	14		
247	2.3.2. Experimental design			
248	2.3.3. Soil and plant analysis			
249	2.3.4. Statistical analysis			
250	2.4. Results			
251	2.4.1. Phosphorus response experiment			

252	2.4.2.	Phosphorus fertiliser placement experiment	23
253	2.5. Dis	scussion	
254	2.5.1.	Faba bean and cotton response to subsoil Colwell P	
255	2.5.2.	Phosphorus fertiliser placement	27
256	2.6. Co	nclusion	
257	3. Dilut	e acid extraction is a useful indicator of the supply of slowly a	vailable
258	phosphor	rus in Vertosols	32
259	3.1. Ab	stract	
260	3.2. Int	roduction	
261	3.3. Ma	aterials and Methods	
262	3.3.1.	Soil collection and sample preparation	
263	3.3.2.	Iron oxide sink	35
264	3.3.3.	Soil chemical methods	35
265	3.3.4.	Calcium/P ratios of the dilute acid (BSES) extract	
266	3.3.5.	Statistical analysis	
267	3.4. Re	sults	
268	3.4.1.	The supply of P to the soil solution	
269	3.4.2.	Calcium/P ratios of the dilute acid (BSES) extracts	
270	3.5. Dis	scussion	
271	3.5.1.	The supply of readily and slowly available P to the soil solution	40
272	3.5.2.	Calcium/P ratios of the dilute acid (BSES) extracts	
273	3.6. Co	nclusion	
274	4. Soil p	phosphate removal by a two-step sequential fractionation pro-	cedure
275	and a dil	ute acid extractant in a Vertosol soil using XANES	46
276	4.1. Ab	stract	
277	4.2. Int	roduction	47
278	4.3. Ma	aterials and Methods	
279	4.3.1.	Soil collection and classification	
280	4.3.2.	A two-step sequential fractionation procedure	
281	4.3.3.	Organic phosphorus determination	
282	4.3.4.	Dilute acid extraction	51
283	4.3.5.	Phosphorus K-edge XANES reference material selection and preparation	51
284	4.3.6.	X-ray absorption near-edge structure spectroscopy	
285	4.3.7.	Statistical analysis	53
286	4.4. Re	sults	54
287	4.4.1.	Soil chemical analysis	54
288	4.4.2.	Bulk P K-edge XANES	54
289	4.5. Dis	scussion	61
290	4.5.1.	0.1 M NaOH extractant	62
291	4.5.2.	1 M HCl extractant	63
292	4.5.3.	$0.005 \text{ M H}_2\text{SO}_4 \text{ extractant}$	64
293	4.5.4.	Method detection limit	64

294	4.6. Conclusion	64
295	5. General Discussion	68
296	5.1. Phosphorus fertiliser management	
297	5.2. The supply of slowly available P to the solution in Vertosols	71
298	5.2.1. Dissolution of slowly available phosphorus	71
299	5.2.2. Soil phosphorus speciation in Vertosols	72
300	5.3. Using PXRF	
301	6. Summary and Further Research	75
302	References	77
303	Appendix 1	
304	Appendix 2	
305	Supporting Information	
306		

307 List of Figures

309	Figure 1.1: The soil phosphorus cycle (taken from Frossard et al. (2011))
310	Figure 1.2: A conceptual diagram of the soil phosphates removed by the Colwell extractant (taken
311	from Moody <i>et al.</i> (2012))
312	Figure 1.3: A conceptual diagram of the soil phosphates removed by the BSES extractant (taken
313	from Moody <i>et al.</i> (2012))
314	Figure 2.1: An illustration of the irrigation system, and P fertiliser placement used in the second
315	glasshouse study. The 'control' and '100 % Subsoil P' diagrams represent the fertiliser
316	placement in the first glasshouse study17
317	Figure 2.2: A scatter plot using a Michaelis-Menten non-linear regression to describe the
318	relationship between initial Colwell-P (mg/kg) versus faba bean DM (g/pot) or tissue P
319	concentration (%). Standard error bars are displayed for each soil. The identified (open
320	circles) outliers in Figure 2.2a is also displayed in Figure 2.2b
321	Figure 2.3: A scatter plot using a simple linear regression between initial Colwell-P (mg/kg) and
322	cotton DM (g/pot) or tissue P concentration (%). Standard error bars are displayed for each
323	soil. The identified (open circles) outliers in Figure 2.3a is also displayed in Figure 2.3b22
324	Figure 2.4: A linear regression between the relative P uptake for faba bean and cotton ($P < 0.05$).
325	Relative P uptake was calculated by dividing the mean P uptake from nil P treatments by the
326	mean P uptake from added P treatments, and converting to a percentage (Equation 2.2) 23
327	Figure 2.5: Faba bean and cotton P uptake at four different soil P enrichment levels and three
328	different Colwell-P concentrations. Phosphorus uptake was calculated by multiplying crop
329	DM by tissue P concentrations. Fertiliser treatments are; 1) Banded – average of the single
330	and dual band treatments; 2) Layered – average of the single and dual layer treatments; 3)
331	Mixed – mixed treatment; and 4) a Control. See Figure 2.1 for placement diagram. Standard
332	error bars are displayed for each soil25
333	Figure 3.1: (a) Linear regression between FeOt-P and Colwell-P ($P < 0.05$), and (b) a scatter plot
334	between FeOt-P and BSES-P. The identified (open circles) outliers in Figure 3.1a are
335	displayed in Figure 3.1b, and were not included in the linear regression between FeOt-P and
336	Colwell-P
337	Figure 3.2: A Michaelis-Menten non-linear regression between the ratio of FeOt-P to Colwell-P
338	and BSES-P. The dashed line represents the BSES-P soil concentration (61 mg P/kg) when
339	the ratio of FeOt-P to Colwell-P was equal to one
340	Figure 3.3: (a) A plot for the ratio of BSES-Ca to BSES-P versus FeOt-P, using a generalised
341	additive model, and (b) an asymptotic exponential non linear regression plot for the ratio of
342	BSES-Ca to BSES-P ratio versus the ratio of FeOt-P to Colwell-P. The dashed line

343	represents the BSES-Ca to BSES-P ratio of 74:1 when the ratio of FeOt-P to Colwell-P
344	equals one40
345	Figure 4.1: Total fluorescence yield (TFY) obtained by bulk P K-edge XANES on the pure phase P
346	compounds (brushite, rock phosphate, Fe (III) phosphate tetra hydrate, phytate and variscite)
347	and adsorbed P (Mn hydroxide adsorbed P) reference materials used in LCF. Spectra are
348	background and baseline corrected, and the photon energy corrected using the $Na_4P_2O_7$
349	concurrent standard
350	Figure 4.2: Averaged total fluorescence yield (TFY) obtained by bulk P K-edge XANES on the
351	untreated Vertosol, 0.1 M NaOH residue, and 0.1 M NaOH + 1 M HCl residue. Spectra are
352	background and baseline corrected, and the photon energy corrected using the $Na_4P_2O_7$
353	concurrent standard
354	Figure 4.3: Averaged total fluorescence yield (TFY) obtained by bulk P K-edge XANES on the
355	untreated Vertosol (as taken from Figure 4.2), and the $0.005 \text{ M H}_2\text{SO}_4$ soil residue. Spectra
356	are background and baseline corrected, and the photon energy corrected using the $Na_4P_2O_7$
357	concurrent standard60
358	Figure 4.4: An Vertosol soil containing ~ 2200 mg total P/kg demonstrating the approximate
359	method detection limit of the Soft X-ray beamline at the Australian Synchrotron using P K-
360	edge XANES. Spectra are background and baseline corrected, and the photon energy
361	corrected using the Na ₄ P ₂ O ₇ concurrent standard61
362	

363 List of Tables

365	Table 2.1: Chemical and physical properties of the Vertosols used in this study. 15		
366	Table 2.2: Cotton dry matter (DM) and tissue P concentration (P conc.) at five different subsoil		
367	fertiliser P placement strategies		
368	Table 3.1: Chemical and physical parameters of the soils used in this study		
369	Table 4.1: Some chemical and physical properties of the high P Vertosol used in this study		
370	Table 4.2: Total element concentrations in the solution extracts of 0.1 M NaOH and 1 M HCl		
371	extractants in an untreated Vertosol54		
372	Table 4.3: Amount of P sorbed onto soil constituents. 55		
373	Table 4.4: Linear combination fitting conducted on the P K-edge bulk XANES spectra showing the		
374	relative proportion of P compounds (%) in soil samples extracted by 0.005 M H_2SO_4 , and		
375	sequentially with 0.1 M NaOH, and 1 M HCl58		

377 Abbreviations

378		
379	Al	Aluminium
380	AMF	Arbuscular mycorrhizae fungi
381	ANOVA	Analysis of variance
382	AR	Aqua regia
383	As	Arsenic
384	ASPAC	Australasian Soil and Plant analysis Council
385	Ca	Calcium
386	$CaCl_2$	Calcium chloride
387	CaCO ₃	Calcite
388	CCRMP	Canadian Certified Reference Materials Project
389	CO_2	Carbon dioxide
390	Cr	Chromium
391	Cu	Copper
392	DCP	Dicalcium phosphate
393	DCPD	Dicalcium phosphate dihydrate
394	DL	Definitive level
395	DM	Dry matter
396	ECEC	Effective cation exchange capacity
397	FA	Fluorapatite
398	Fe	Iron
399	FeO	Iron oxide
400	H_2O	Water
401	H_2O_2	Hydrogen peroxide
402	H_2SO_4	Sulfuric acid
403	HA	Hydroxyapatite
404	HCl	Hydrochloric acid
405	HClO ₄	Perchloric acid
406	Не	Helium
407	HF	Hydrofluoric acid
408	HNO ₃	Nitric acid
409	ICP-OES	Inductively couple plasma optical emission spectroscopy
410	IRMM	Institute for Reference Materials and Measurements
411	Κ	Potassium
412	KH ₂ PO ₄	Potassium dihydrogen orthophosphate

413	LCF	Linear combination fitting
414	LXRF	Laboratory X-ray fluorescence
415	MDL	Method detection limit
416	Mg	Magnesium
417	Mn	Manganese
418	Mo	Molybdenum
419	NAA	Neutron activation analysis
420	$Na_4P_2O_7$	Sodium pyrophosphate
421	NaHCO ₃	Sodium bicarbonate
422	NaOH	Sodium hydroxide
423	NGR	Northern grains region
424	NHHF	HNO ₃ , H ₂ O ₂ , and HF acid digest
425	Ni	Nickel
426	NIST	National Institute of Standards Technology
427	OCP	Octocalcium phosphate
428	OVD	Open vessel digest
429	Р	Phosphorus
430	Pb	Lead
431	PUE	Phosphorus use efficiency
432	PXRF	Portable X-ray fluorescence
433	Qual	Qualitative screening
434	Quant	Quantitative screening
435	Rec	Elemental recovery
436	Rh	Rhodium
437	RSD	Relative standard deviation
438	S	Sulfur
439	SCD	Sealed chamber digest
440	Si	Silica
441	SiO ₂	Silica dioxide
442	TCP	β-Tricalcium phosphate
443	TFY	Total fluorescence yield
444	Ti	Titanium
445	USEPA	United States Environmental Protection Agency
446	XANES	X-ray absorption near-edge structure
447	XRF	X-ray fluorescence
448	Zn	Zinc
449		