Monitoring the Health of Timber Bridge Beams

This thesis is submitted for the degree of Doctor of Philosophy in Civil Engineering at the University of New England, Armidale, NSW 2351

By

John Chisnall Moore

Principal Supervisor: Dr S S Mahini
Discipline of Civil Engineering

November 2012
PUBLICATIONS AS PART OF THIS RESEARCH

Journal publications

Conference Publications

ACKNOWLEDGEMENTS

The problem I have addressed was one that has in many ways been avoided for many years. Instead of timber bridges being maintained to a high standard, they have been replaced by alternative materials. However, it is possible to create new strategies to give many of these extant bridges a new lease of life. This project began at the suggestion of Rex Glencross-Grant and with initial direction from Professor Iain Young and Associate Professor Dr Richard Faulkner. Professor Young provided me with the guidance that I needed that enabled me to gain generous funding support from Forest and Wood Products Australia (FWPA). To enable me to realise these new strategies required the support of far sighted engineers and I thank my supervisors for their understanding and strength of purpose in supporting me. Dr S Saeed Mahini, my principal supervisor, directed my interest to Structural Health Monitoring and ensured that my fledgling understanding and interest was able to grow. He also ensured that I was able to apply my electrical instrumentation engineering experience into a Civil Engineering application; a task that required an understanding of the Civil Engineering aspects of timber-bridges. My co-supervisors provided extensive advice: Rex Glencross-Grant helped me better understand timber and the history of timber bridges in Australia; and Adjunct Associate Professor Dr Robert Patterson helped me in addition with field work and publication quality.

To determine the health of a timber bridge I needed to measure in-service bridges and I thank Armidale and Uralla Shire councils for their support. In particular the Shire engineers, David Steller and Robert Bell, saw the importance of these measurements. They ensured that there were both test bridges to measure and support staff available for field work. It was not possible to carry out destructive tests on a sufficient number of girders, but staff of The Roads and Traffic Authority interested in history managed to find test data that had been conducted two decades ago. This data when combined with other test data allowed a more complete picture to be created of timber girder performance that would have been otherwise impossible. Laboratory experimental work required support from University research support staff and they gave their time whenever needed. Finally of course, without very extensive support from my wife Rita I would not have been able to achieve this research and I thank her most of all. She managed to ensure that family life was not entirely forgotten while I pursued my research aim.
ABSTRACT

There are over 2000 timber-bridges in regional New South Wales (NSW) and many more are still in use throughout Australia. Many of these bridges are of unknown structural integrity. They were built in an era when structural components were expected to survive their lifetime without failure. Many of these bridges are now degraded and need to be monitored to determine their integrity. The aim of this research was to test the hypothesis that continuous deflection monitoring can be used to assess the probability of timber-bridge girder failure.

To achieve this aim, new Structural Health Monitoring (SHM) strategies were created together with new laser-based deflection measuring equipment and high speed camera recording techniques. Bridge performance was evaluated by firstly determining Modulus of Elasticity (MoE), Modulus of Rupture (MoR) and percentage loading from load-v-deflection measurements. Then the probability of girder failure and a safety index were calculated. Bridge performance benchmarks were set and structural integrity ensured by checking that limit state safety indices were not exceeded.

The testing of timber-bridges, by measuring girder deflection, has historically been restricted to non-linear static proof-load testing. Strength testing with lighter, in-service loads has not been developed because of the lack of a relationship between girder deflection and girder strength. More recently, dynamic techniques have been utilised. Strain sensors have been applied to the surface of timber girders to determine the peak stress levels. This approach is limited for long term use. As the surface of the girder degrades, sensors cease to accurately measure the peak stress, unless it is continually recalibrated throughout the monitoring period. In another approach, the vibration of a complete structure is analysed. This technique works well for rigid structures, but is too complex for long term use with timber-bridges that have loosely connected girders and deck planks.

In the first part of the project, data representing over 300 timber-bridge girders removed from service, were statistically analysed in a manner performed by previous investigators. A relationship was identified that utilised MoE and girder assessable condition state as predictors of girder MoR. An unexplained variation of 42% to a confidence level of 95% was achieved by just using MoE, but this was reduced to 14% by including girder condition state. It was also identified that girder MoE and MoR do not act independently, but that a combined MoE-v-MoR vector could be predicted to remain within statistically defined bands.
In the second part, measurement techniques were developed to record in-service static and
temporal dynamic load-v-deflection data without interfering with traffic flow. SHM strategies
were developed to show how these deflection measurements and statistically defined prediction
bands can be used to identify and predict the structural health of timber-bridge girders within
specific strength and limit state failure criteria. As part of these strategies, in-service traffic
loading distributions were compared with material parameter distributions using well known
Monte Carlo techniques by using scripts written for the purpose in both Matlab® and R
programming languages.

In the third and final part, these new SHM strategies were used to examine the structural health
of two in-service timber-bridges: one single span and one multi-span. These case studies were
monitored by measuring mid-span deflection using the newly developed equipment. Light test
vehicles were used that had equivalent point loads of less than 35% of the maximum legal
loading to ensure that the girders deflected linearly with load. Deflection measurements and long
term recordings were made at both low and high vehicle speeds. Measured traffic loading
distributions and girder MoE data distributions were used to determine the probability of limit
state failure. Two limit states were considered: a span to deflection limit state and a girder
structural failure limit state.

Based on the research outcomes, it was demonstrated that in-service mid-span deflection is a
valid determinant of girder MoE, which in turn is used to predict girder MoR. By application of
the developed strategies in this research, it was shown that the probability of limit state failure of
timber-bridge girders in regional Australia can be determined from deflection data by utilising
the developed low cost and effective laser-based technique. It was also demonstrated in a
practical manner, that temporal deflection data can be used to predict structural safety, thereby
achieving the original aim.
Contents

1 Introduction .. 1

1.1 Background ... 1

1.2 Aim .. 3

1.3 Thesis Outline ... 4

2 Literature Review of Theoretical and Historical Background .. 6

2.1 Introduction ... 6

2.2 Theoretical Background: technical terms .. 8

2.2.1 Clears ... 8

2.2.2 Condition State... 8

2.2.3 Component lifetime ... 9

2.2.4 Dynamic deflection .. 10

2.2.5 Axle load regulations ... 11

2.2.6 Design perspective of timber beam girders ... 12

2.2.7 Maintenance perspective .. 13

2.2.8 Prediction band .. 14

2.2.9 Proof Test ... 15

2.2.10 Proof Load ... 15

2.2.11 S2 limit state .. 16

2.2.12 Ultimate strength .. 16

2.2.13 Vector trajectory .. 16

2.3 Historical Background of the use of Timber for Bridge Girders 17

2.4 Historical loading concerns affecting timber-bridges .. 23

2.4.1 Failure under load .. 23

2.4.2 The effect of piping .. 23

2.4.3 Non-central load distribution ... 24
2.4.4 Multiple span bridges and the effect of corbels ... 25
2.4.5 Traffic loading ... 26
2.4.6 Summary of historical use of timber for bridges .. 27

2.5 Variation of timber girder MoE and MoR .. 28
2.5.1 Tasmanian girders ... 28
2.5.2 NSW electrical poles dataset .. 30
2.5.3 NSW girder datasets ... 31
2.5.4 Queensland girder dataset .. 38
2.5.5 Australian reference data: Relationship between MoR and MoE 39
2.5.6 North American timber power poles ... 43
2.5.7 Summary of research into timber variation ... 43

2.6 Structural Health Monitoring ... 44
2.6.1 Background .. 44
2.6.2 Probability of failure (p_f) ... 46
2.6.3 Safety Index, β ... 47
2.6.4 Monte Carlo analysis ... 49
2.6.5 Application: Evaluation of timber power poles ... 49
2.6.6 Measurement techniques for timber-bridges ... 51
2.6.7 Summary ... 57

2.7 The measurement of MoE and MoR ... 58
2.7.1 Determination of MoE from load and deflection measurements 58
2.7.2 Parameters affecting the Determination MoE and MoR 60
2.7.3 Effect of moisture content on MoE and MoR .. 62
2.7.4 Measurement accuracy ... 65
2.7.5 Density .. 66
2.7.6 Summary .. 68
2.8 Conclusion...68

3 Theoretical analysis: Prediction of Girder Strength from Historical DataSets71

3.1 Introduction...71

3.2 DS-1: Tasmanian girders..72

3.3 DS-2: NSW RTA N150-GRT girders...74

3.3.1 DS-2 MoE and MoR values...74

3.3.2 DS-2 girder diameters ..78

3.3.3 DS-2 MoE and MoR with girder age...80

3.4 DS-3 and DS-5: NSW RTA N150/06 girders and clears ..84

3.5 DS-4: QDMR girders ..87

3.5.1 DS-4 MoE and MoR values all species...87

3.5.2 DS-4 MoE and MoR values for Ironbark ..90

3.5.3 Comparison of DS-4-6 (Ironbark) with DS-4-1 (all species)93

3.6 DS-6: CSIRO evaluation of 174 Australian Timbers...95

3.7 Summary of MoR Regression Models ...97

3.8 Pooled Data sets ..98

3.8.1 Determination 1: The effect of MC on in-service girder MoR-v-MoE vector ..99

3.8.2 Determination 2: Range of in-service girder MoR prediction bands102

3.8.3 Determination 3: Prediction of in-service girder MoR from standardised data106

3.8.4 Determination 4: The range of in-service girder MoE.................................109

3.8.5 Determination 5: The MoR-v-MoE vector path of in-service Ironbark girder 111

3.8.6 Proposed design approaches ..113

3.8.7 Summary ..114

4 Measuring girder performance and characteristics..116

4.1 Introduction ..116
5.2.2 Method ... 157
5.2.3 Measured results .. 159
5.2.4 Calculated results ... 161
5.3 SHM Determination 2: Bridge load limit ... 165
5.3.1 Aim .. 165
5.3.2 Method ... 165
5.3.3 Calculated results ... 167
5.4 SHM Application 1: Probability of failure of the Span to Deflection Limit state .. 171
5.4.1 Experiment aim .. 171
5.4.2 Experiment method ... 171
5.4.3 Probability of Failure of the Span to Deflection limit state 172
5.5 SHM Application 2: Probability of Girder Structural Failure 175
5.5.1 Experiment aim .. 175
5.5.2 Experiment method ... 175
5.5.3 Probability of girder structural failure ... 177
5.6 SHM Application 3: Calculation of temporal safety index variation caused by surface erosion ... 185
5.6.1 Experiment aim .. 185
5.6.2 Experiment method ... 185
5.6.3 Calculation of temporal safety index variation caused by surface erosion 186
5.7 SHM Application 4: Calculation of Condition Alarm from Traffic Flow 192
5.7.1 Experiment aim .. 193
5.7.2 Experiment method ... 193
5.7.3 Results: Calculation of simple Condition Alarm .. 194
5.8 Summary ... 197
6.2.1 Determination 1: The effect of MC on girder MoR-v-MoE vector 201
Table of Figures

Figure 2-1: Schematic of multiple span timber beam bridge (RTA, 2007: Sketch No. 11) ..6

Figure 2-2: Gwydir River Bridge, Bundarra, NSW. This is a low-level timber beam bridge, but typical of many throughout NSW on local roads ... 6

Figure 2-3: Component failure rate-v-time, .. 10

Figure 2-4: Mid-span girder deflections under a moving load, adapted from (Bakht & Pinjarkar, 1989: Figure 1) .. 11

Figure 2-5: Sample linear regression with prediction confidence bands, adapted from Dalgaard (2008, p. 121) ... 15

Figure 2-6: Tensile strength-v-glass fiber thickness (Gordon, 1991, p. 75) ... 16

Figure 2-7: Plans for Camden Bridge, ca. 1901 (Dare, 1903) .. 18

Figure 2-8: 19th Century traction engine towing a wagon load of wool bales (Coltheart & Fraser, 1987, 51) .. 18

Figure 2-9: Single span timber-bridge (Powers Creek Bridge, 1930 – 2011) .. 19

Figure 2-10: Longitudinal view of Powers Creek Bridge .. 20

Figure 2-11: The former low-level Leslie’s Bridge, over Little Manning River, Bretti, NSW .. 20

Figure 2-12: The replacement high Level composite steel/timber/concrete bridge (Leslie’s bridge) .. 21

Figure 2-13: Effect of piping on deflection while under constant loading conditions (Moore et al., 2009, Figure 1) ... 23

Figure 2-14: Example of structural overload on a timber beam bridge, with catastrophic failure of a kerb girder, c. 1975 (Photo: R. Glencross-Grant) ... 25

Figure 2-15: Munsie Bridge, Gostwyck - an example of a multiple span bridge .. 25

Figure 2-16: Munsie Bridge, uneven timber decking .. 26

Figure 2-17: MoR-v-MoE data for Tasmanian timber-bridge girder, adapted from Yttrup & Nolan (1996, Figure 4) .. 30

Figure 2-18: MoR-v-MoE for round timber poles, ... 30
Figure 2-19: RTA portable girder test rig showing three point loading of full-size specimens, c.1990 (RTA photo, unknown source) ..32

Figure 2-20: Normalised MoR-v-Age, ..32

Figure 2-21: Cross-section of a typical sawn hardwood log; scale units 100 mm (Photo courtesy R. Patterson) ..34

Figure 2-22: A simplification of the combination of a check and a pipe, adapted from Yttrup, Law, & Subramaniam (1991, Figure 9) ..36

Figure 2-23: Cross-section of timber with checks joined by an internal pipe (Photo courtesy R. Patterson) ..36

Figure 2-24: Diagrammatic simplification of girder and position of samples, adapted from RTA Report N150/06 (Law et al., 1992b, Table 3.1) ..38

Figure 2-25: MoR-v-MoE scatter plot, Source Wilkinson (2008, Figure 4.7) ..39

Figure 2-26: MoR-v-Condition status, Source Wilkinson (2008, Figure 4.9) ..39

Figure 2-27: Schematic of typical demand and capacity distributions ..47

Figure 2-28: Reliability assessment procedure to evaluate timber poles (Bodig, 1985)50

Figure 2-29: Strain gauge and LVDT in experimental use on a timber-bridge girder (Heywood et al., 2003) ..51

Figure 2-30: Crack sensor on masonry vault arch of Brooklyn Bridge, New York, adapted from Talebinejad et al. (2010) ..52

Figure 2-31: Typical installation of laser source and logger under a timber beam bridge (Moore, 2009) ..54

Figure 2-32: Detector mounted at girder mid-span (Moore, 2009) ..54

Figure 2-33: Layout of monitoring systems in Taylor Bridge, Provincial Road No. 334, Manitoba, Canada (Mufti, 2001: Section 6.6.1) ..57

Figure 2-34: Load-v-deflection response for girder #4, adapted from Wilkinson (2008, Figure 4.6) ..59

Figure 2-35: Load-v-deflection response for a DS-2 sample girder, adapted from Law et al. (1992a) ..59
Figure 2-36: Cross-section of a power pole showing extensive piping and checking (Crews, 2005) .. 62

Figure 2-37: Typical MC of timber-bridge components (Tannert et al., 2011) 63

Figure 2-38: Morning relative humidity at selected Australian weather stations (courtesy R. Patterson, pers. comm.) .. 64

Figure 2-39: Afternoon relative humidity at selected Australian weather stations (courtesy R. Patterson, pers. comm.) .. 64

Figure 2-40: Daily humidity range for Armidale weather station (courtesy R Patterson, pers. comm.) .. 65

Figure 3-1: Scatter plot axes ... 72

Figure 3-2: MoR-v-MoE for Tasmanian girders (DS-1), adapted from Figure 2-17 73

Figure 3-3: Comparison of DS-1 MoE distribution with a normal distribution 73

Figure 3-4: Comparison of DS-1 MoR distribution with a normal distribution 74

Figure 3-5: MoE box plot summaries; DS-2-1 (All MoE) and DS-2-3 (MoE<30GPa) 76

Figure 3-6: DS-2-1 MoE distribution compared to a normal distribution 76

Figure 3-7: DS-2-3 MoE distribution (< 30GPa) compared to a normal distribution 76

Figure 3-8: MoR box plot summaries of DS-2-6 (All MoR) and DS-2-7 (< 120 MPa) 77

Figure 3-9: DS-2-6 MoR distribution compared to a normal distribution 77

Figure 3-10: DS-2-7 MoR distribution (< 120MPa) compared to a normal distribution 77

Figure 3-11: Girder diameter (both width and depth) versus girder number for DS-2; DS-2-5 girders highlighted .. 79

Figure 3-12: Ratio of DS-2 depth diameter: width diameter versus girder number; DS-2-5 highlighted .. 79

Figure 3-13: DS-2-4 MoE-v-Age (MoE > 30 GPa, all ages) ... 80

Figure 3-14: DS-2-3 regression of MoE-v-Age (MoE < 30 GPa) together with DS-2-4 outliers (green) and girder #32 (black point); ... 81

Figure 3-15: DS-2-7 regression of MoR-v-Age; also girder #32 (black point) and S2 limit (dotted black line) .. 82
Figure 3-16: DS-2-8 regression of MoR-v-MoE ... 83
Figure 3-17: Box plot summaries of DS-3 AND DS-5 MoE ... 84
Figure 3-18: Box plot summaries of DS-3 and DS-5 MoR .. 84
Figure 3-19: MoE-v-Girder number for all sample regions, DS-3 and DS-5 85
Figure 3-20: MoR-v-Girder number for all sample regions, DS-3 and DS-5 85
Figure 3-21: DS-3 and mean DS-5 MoR-v-MoE scatter plot.. 86
Figure 3-22: DS-3 and DS-5 MoR-v-MoE for girder #14 .. 87
Figure 3-23: DS-4-1 to DS-4-5 MoE Box plot summary statistics 88
Figure 3-24: DS-4-1 to DS-4-5 MoR Box plot summary statistics 89
Figure 3-25: Box plot summaries of DS-4 MoE as ranked by condition state CS-1 to CS-4 . 89
Figure 3-26: Box plots summaries of DS-4 MoR as ranked by condition state CS-1 TO CS-4 ... 90
Figure 3-27: DS-4-1 MoR-V-MoE data .. 90
Figure 3-28: MoR-v-MoE values for the Ironbark girder sub-sets DS-4-7 to DS-4-11 91
Figure 3-29: DS-4-6 Ironbark degradation vector path (points 1-5, refer Table 3-12) 92
Figure 3-30: DS-4-6 Ironbark mean MoR-v-mean MoE .. 93
Figure 3-31: DS-4-1 MoR-V-MoE data and regression model overlaid with DS-4-6 data and regression model ... 94
Figure 3-32: DS-4-1 overlaid with data as Figure 3-30 ... 94
Figure 3-33: MoR-v-MoE regression analysis of DS-6 ... 95
Figure 3-34: DS-A regression and prediction limits .. 96
Figure 3-35: MoR-v-MoE scatter plot for Ironbark clears and Ironbark girders 99
Figure 3-36: MoR-v-MoE scatter plot for Ironbark clears (12%) and Ironbark girders (25%) together with Ironbark girders at 12% MC 100
Figure 3-37: MoR-v-MoE scatter plot for Ironbark clears and Ironbark girders together with Ironbark girders of MoR x 2 and Ironbark species mean 101
Figure 3-38: MoR-v-MoE scatter plots for girder #14 .. 102
Figure 3-39: DS-1 to DS-6 complete set of MoR-v-MoE data .. 103
Figure 3-40: DS-5 MoR-v-MoE comparison to DS-6 ... 103
Figure 3-41: DS-5 and DS-6 combined MoR-v-MoE (excised clears) 103
Figure 3-42: DS-1 MoR-v-MoE comparison to DS-2 ... 104
Figure 3-43: DS-3 MoR-v-MoE comparison to DS-2 .. 104
Figure 3-44: DS-4 MoR-v-MoE comparison to DS-2 ... 105
Figure 3-45: DS-1 to DS-4 combined MoR-v-MoE (girders) ... 105
Figure 3-46: MoR-v-MoE in-service prediction bands ... 105
Figure 3-47: Girder #14 DS-3 and DS-5 overlaid on MoR-v-MoE in-service prediction bands .. 106
Figure 3-48: Hardwood species (refer Table 2.2 and Table 2.3) cp MoR-v-MoE in-service prediction bands .. 107
Figure 3-49: AS/NZS 2878 compared with MoR-v-MoE in-service prediction bands........ 107
Figure 3-50: AS 1720.1:2000 Table H2.1 compared with MoR-v-MoE in-service prediction bands .. 107
Figure 3-51: DS-2-2 range of MoE for girders aged less than two years, 13 GPa to 38 GPa (No MoR data available for these girders) ... 108
Figure 3-52: Range of characterised MoR and MoE for individual excised samples of Ironbark (E. drepanophylla) .. 109
Figure 3-53: MoR-v-MoE trajectories for DS-3 girders with MoE > 14 GPa....................... 110
Figure 3-54: MoR-v-MoE trajectories for MoE final > MoE initial 110
Figure 3-55: Degradation vector path overlaid on MoR-v-MoE regressions for DS-1 to DS-4 and DS-5 & DS-6 ... 112
Figure 3-56: Example of using MoE to predict MoR .. 114
Figure 4-1: Elevation of Powers Creek Bridge .. 120
Figure 4-2: End section of Powers Creek Bridge .. 120
Figure 4-3: Laser and camera mounted on tripod with graduated scale mounted on girder at mid-span... 121
Figure 4-4: Graduated scale attached to mid-span of girder .. 121
Figure 4-5: Powers Creek Bridge loaded with vehicle of approximately 4.4.tonne GVM 122
Figure 4-6: Munsie Bridge, Gostwyck, spans G-4 and G-6 .. 122
Figure 4-7: Elevation of span G-6, Munsie Bridge .. 123
Figure 4-8: Elevation of span G-4, Munsie Bridge .. 123
Figure 4-9: End view of spans G-4 and G-6, Munsie Bridge .. 123
Figure 4-10: Vernier and graduated scale measuring system used at Munsie Bridge 124
Figure 4-11: Detailed view of vernier and scale ... 125
Figure 4-12: Munsie Bridge loaded with test vehicle ... 125
Figure 4-13: Powers Creek Bridge, road view to north .. 126
Figure 4-14: Elevation view of Powers Creek Bridge showing loading configuration for light truck ... 127
Figure 4-15: Plan view of Powers Creek Bridge with light truck configuration 127
Figure 4-16: Powers Creek Bridge showing loading configuration for heavy truck 128
Figure 4-17: Plan of Powers Creek Bridge showing loading configuration for heavy truck 128
Figure 4-18: Static deflection curve for Powers Creek Bridge [Applied load is effective single point mid-span load] .. 129
Figure 4-19: Load-v-deflection response for girder #4, DS-4; adapted from Figure 2-27 ... 130
Figure 4-20: Measured deflection for Powers Creek Bridge compared with DS-4 girder #4 modified according to load share ... 132
Figure 4-21: Bridge Deflection Meter attached to downstream main girder of Powers Creek Bridge ... 133
Figure 4-22: BDM attached to centre girder of span G-6, Munsie Bridge 133
Figure 4-23: BDM attached to centre girder of span G-4 of Munsie Bridge 134
Figure 4-24: Number of vehicles crossing each test bridge span as a percentage of the total for each span-v-Threshold ... 135
Figure 4-25: Lognormal traffic loading distributions for test Bridge spans 136
Figure 4-26a: Lognormal traffic load (kN) distribution (blue) superimposed on measured traffic data (green) for Powers Creek Bridge .. 137
Figure 4-26b: Data as for Figure 4-26a but with log scale ordinate .. 137
Figure 4-27: Deflection-v-time for light truck traversing Powers Creek Bridge 138
Figure 4-28: Influence line loading schematic .. 139
Figure 4-29: Position of light truck on Powers Creek Bridge for influence line test 141
Figure 4-30: Progression of front axle across bridge .. 143
Figure 4-31: Measured influence line of light truck .. 143
Figure 4-32: Transient behaviour of Powers Creek Bridge with impact load of a heavy vehicle .. 144
Figure 4-33: Progression of front axle across bridge ... 145
Figure 4-34: Nominal influence line of heavy truck for Powers Creek Bridge 145
Figure 4-35: Impact factor-v-vehicle speed ... 146
Figure 4-36: Pine samples #1 to #6 .. 147
Figure 4-37: Bending frame showing sample under load .. 147
Figure 4-38: Sample showing yoke and dial gauge for recording deflection 147
Figure 4-39: Constant humidity chamber .. 148
Figure 4-40: Measured load-v-deflection curve for stainless steel and P. radiata sample #4 .. 148
Figure 4-41: MoE of constant MC #4 pine sample-v-time .. 150
Figure 4-42: Cypress pine sample during bending ... 150
Figure 4-43: four point loading diagram ... 151
Figure 4-44: Cypress pine sample at failure ... 152
Figure 4-45: Cypress pine load-v-deflection curve ... 152
Figure 4-46: Cypress pine measured data overlaid on prediction bands 153
Figure 5-1: Flow chart – Method to determine girder MoE and percentage girder loading .. 159
Figure 5-2: Powers Creek Bridge dimensional schematic .. 160
Figure 5-3: Munsie Bridge, Gostwyck Span G-4 dimensional schematic 160
Figure 5-4: Munsie Bridge, Gostwyck Span G-6 dimensional schematic 161
Figure 5-5: Finite element model outline for Powers Creek Bridge 162
Figure 5-6: Beam equation nomenclature .. 164
Figure 5-7: Girder maximum load limit flow chart ... 166
Figure 5-8: Evaluation of MoR from MoE via lowest bound of next prediction band to a confidence level of 95% ... 167
Figure 5-9: Girder maximum loading, 95% confidence level ... 169
Figure 5-10: Evidence of decay in the main upstream girder, Munsie Bridge Span 4, at mid-span .. 170
Figure 5-11: Girder maximum loading with modified value of MoE for G4-MU 170
Figure 5-12: Flow chart: Determine the probability of Span to Deflection limit state failure .. 172
Figure 5-13: Deflection distributions caused by traffic, Powers Creek Bridge 173
Figure 5-14: Deflection distributions caused by traffic, Munsie Bridge Gostwyck 173
Figure 5-15: Modified traffic deflection distribution, Munsie Bridge G6-MD 174
Figure 5-16: Expanded scale, modified traffic deflection distribution, Munsie Bridge G6-MD .. 175
Figure 5-17: Flow chart: Determination of the probability of structural girder failure 176
Figure 5-18: Evaluation of mean MoR from MoE via a regression model MoR-v-MoE relationship .. 177
Figure 5-19: Stress distributions for girder PC-MU when under normal traffic loading. 179
Figure 5-20: Stress distributions for girder PC-MU when under normal traffic loading (amplified ordinate scale) .. 179
Figure 5-21: Stress distributions for girder PC-MD when under normal traffic loading 180
Figure 5-22: Stress distributions for girder PC-MU when under normal traffic loading (amplified ordinate scale) .. 180
Figure 5-23: Stress distributions for girder G4-MU when under normal traffic loading 181
Figure 5-24: Stress distributions for girder PC-MU when under normal traffic loading (amplified ordinate scale) ... 181

Figure 5-25: Stress distributions for girder G4-MD when under normal traffic loading 182

Figure 5-26: Stress distributions for girder PC-MU when under normal traffic loading (amplified ordinate scale) .. 182

Figure 5-27: Stress distributions for girder G6-MU when under normal traffic loading 183

Figure 5-28: Stress distributions for girder PC-MU when under normal traffic loading (amplified ordinate scale) .. 183

Figure 5-29: Stress distributions for girder G6-MD when under normal traffic loading 184

Figure 5-30: Stress distributions for girder PC-MU when under normal traffic loading (amplified ordinate scale) .. 184

Figure 5-31: Vehicle load distribution applied to hypothetical bridge 186

Figure 5-32: Girder checking, low incidence with occasional 3 mm checks 187

Figure 5-33: Girder checking, high incidence of 10 – 15 mm depth checks 187

Figure 5-34: Mid-span deflection distribution compared to limit state; girder diameter 500 (mm) ... 189

Figure 5-35: Safety Index β-v-elapsed time for a main girder as the girder loses surface material at 0.2 mm year$^{-1}$... 190

Figure 5-36: Mid-span deflection distribution compared to limit state; girder diameter 488 (mm) ... 190

Figure 5-37: Mid-span deflection distribution compared to limit state; girder diameter 480 (mm) ... 191

Figure 5-38: Mid-span deflection distribution compared to limit state; girder diameter 480 (mm) – with expanded axes .. 191

Figure 5-39: Flow chart: Determination of condition alarm from traffic flow 194

Figure 5-40: Percentage of vehicles registered in NSW in 2008-v-Vehicle weight 195

Figure 5-41: Randomised set of Vehicle weights crossing the model bridge per day for a bridge stiffness of 600 kg mm$^{-1}$... 196
Figure 5-42: SHM flow chart, example determination of a safety index 199
Table of Tables

Table 2-1: Condition state identified as part of visual inspection procedure .. 9
Table 2-2: Axle group definitions, source Commonwealth of Australia (1986) .. 11
Table 2-3: Axle load limits, source Commonwealth of Australia (1986) ... 12
Table 2-4: Names of timber species identified as the 'Royal Species' .. 21
Table 2-5: Some other possible species for use as timber-bridge girders (Boland et al., 1984) 22
Table 2-6: Number of vehicles in NSW distributed by the Ford Motor company of Australia and registered in 2008 (ABS, 2008) .. 27
Table 2-7: Percentage of light vehicles on NSW roads (ABS, 2008) .. 27
Table 2-8: Comparison of MoR for a population of new and ex-service electrical utility power poles (Horrigan et al., 2000, Table 1) .. 31
Table 2-9: Characteristic design values for MoR f_b' and MoE E by stress grades (Standards Australia, 2010: AS 1720.1, Table H2.1) .. 41
Table 2-10: Relationship between round timber strength groups and Stress grades (Standards Australia, 2010, AS 1720.1) .. 41
Table 2-11: Unseasoned timber classification values (Standards Australia, 2000, AS/NZS 2878, Table 2.1) .. 42
Table 2-12: Tabulated data of MoR and MoE (Bolza & Kloot, 1963, p. 54) ... 42
Table 2-13: Material strength variation (Bodig, 1985) .. 43
Table 2-14: Some example Fibre optic sensor advantages and disadvantages (pers. obs.) 52
Table 2-15: Pre-defined positions of measurement thresholds .. 55
Table 2-16: Change in MoE and MoR produced by change in moisture content 62
Table 2-17: Calculation of change in MoE and MoR for a 13% change in MC 65
Table 3-1: Statistical summary of DS-1 .. 73
Table 3-2: Summary statistics for DS-2 ... 75
Table 3-3: Summary statistics of girders #24, #96 and #32 .. 78
Table 4-6: Number of vehicles crossing each bridge span .. 134
Table 4-7: Ratio of number of vehicles exceeding Level 2 to number exceeding Level 1 135
Table 4-8: Lognormal traffic load distribution parameters test Bridge span........................... 135
Table 4-9: Deflection-v-time data for light truck traversing Powers Creek Bridge 138
Table 4-10: Girder parameters used to calculate influence line .. 142
Table 4-11: CoV for stainless steel and pine samples ... 149
Table 4-12: Load-v-deflection data, Cypress pine ... 151
Table 4-13: Cypress pine sample size details .. 151
Table 4-14: Characterisation data for Cypress .. 153
Table 5-1: Summary of girder dimensions .. 161
Table 5-2: Measured girder deflections .. 161
Table 5-3: Calculated MoE for bridge girders ... 163
Table 5-4: Measured deflection and estimated percentage loading, Powers Creek Bridge 164
Table 5-5: Measured deflection and estimated percentage loading, Gostwyck span G-4 164
Table 5-6: Measured deflection and estimated percentage loading, Gostwyck span G-6 164
Table 5-7: Calculated MoE and Percentage of load for bridge girders 165
Table 5-8: Calculated MoE, MoR and Percentage of load for bridge girders 168
Table 5-9: Bridge loading to cause girder MoR to be exceeded .. 168
Table 5-10: Span to deflection limit state maximum deflections for test case bridge spans .. 172
Table 5-11: Computed Safety Index, β, for the Span to Deflection limit state failure of the main bridge girders .. 173
Table 5-12: Safety Index for weakest main girder .. 178
Table 5-13: Summary of Failure data .. 178
Table 5-14: Span to deflection limit state deflections specified for hypothetical bridge 188
Table 5-15: Deflection limit state failure rates .. 189
Table 5-16: Effective static loading required to equal pre-defined measurement thresholds for bridge stiffness values of: 750 kg mm$^{-1}$; 600 kg mm$^{-1}$ and 400 kg mm$^{-1}$.. 196
Table 5-17: Number of vehicles per day exceeding thresholds 1 and 2 for particular bridge stiffness values in a model system

<p>| Table 5-17: Number of vehicles per day exceeding thresholds 1 and 2 for particular bridge stiffness values in a model system | 196 |</p>
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>Australian Bureau of Statistics</td>
</tr>
<tr>
<td>BDM</td>
<td>Bridge Deflection Meter, a device for recording peak deflections caused by traffic.</td>
</tr>
<tr>
<td>Capwales</td>
<td>Horizontal timber component at the top of piles or posts providing bearing for superstructure.</td>
</tr>
<tr>
<td>Corbel</td>
<td>Longitudinal timber bearing members under girders providing support and some continuity between girders in adjacent spans. (RTA, 2008: Section 1, page 2)</td>
</tr>
<tr>
<td>Check</td>
<td>A separation of the wood fibre along and parallel to the grain. It is caused by surface stresses. A check does not extend from one surface to another (Bootle, 2004, p. 29)</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of variation</td>
</tr>
<tr>
<td>Coefficient of variation</td>
<td>Defined as: standard deviation / arithmetic mean x 100</td>
</tr>
<tr>
<td>Coefficient of determination</td>
<td>A summary measure of the quality of fit of the regression line to the experimental data. Defined as the ratio of the regression sum of squares to the total sum of squares. It is represented by the quantity (r^2).</td>
</tr>
<tr>
<td>cwt</td>
<td>One hundred weight or centum weight. A unit of mass of about 51 kg.</td>
</tr>
<tr>
<td>Design perspective</td>
<td>Structural design from a design engineers perspective (Refer Section 2.2.4).</td>
</tr>
<tr>
<td>Distributed load</td>
<td>A force distributed over a length of beam.</td>
</tr>
<tr>
<td>DS</td>
<td>DataSet, DS-1 through to DS-8.</td>
</tr>
<tr>
<td>Explained variation</td>
<td>The percentage of the variation of a dependent variable that is directly related to the variable used to predict the independent variable. It is the value of (r^2) expressed as a percentage.</td>
</tr>
<tr>
<td>Factor of Safety (FoS)</td>
<td>The arbitrary ratio of the actual strength to the required strength.</td>
</tr>
<tr>
<td>Failure rate</td>
<td>Number of tests / number of failures. One example of the probability of failure is 4 in (10^6), the failure rate for this probability is then 0.000004.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>Girder</td>
<td>Large round timber component used as a structural load bearing beam in a timber bridge.</td>
</tr>
<tr>
<td>G-4</td>
<td>Span four of Munsie bridge, Gostwyck, NSW.</td>
</tr>
<tr>
<td>G-6</td>
<td>Span six of Munsie Bridge, Gostwyck, NSW.</td>
</tr>
<tr>
<td>Green timber</td>
<td>Timber not dried to 12% MC but in its original moisture content as newly harvested.</td>
</tr>
<tr>
<td>GVM</td>
<td>Gross vehicle mass</td>
</tr>
<tr>
<td>Headstock</td>
<td>Horizontal timber component at the top of piles or posts providing bearing for superstructure.</td>
</tr>
<tr>
<td>In-service</td>
<td>The description of a component or structure that is part of the road network and in normal use by traffic. The component or structure will be stressed by being subjected to vehicular loading.</td>
</tr>
<tr>
<td>Kerb girder</td>
<td>One of the outside girders of a timber beam bridge supporting the kerb of the bridge.</td>
</tr>
<tr>
<td>KD</td>
<td>Downstream kerb girder.</td>
</tr>
<tr>
<td>KU</td>
<td>Upstream kerb girder.</td>
</tr>
<tr>
<td>Limit state</td>
<td>The allowed performance of a designed structure, which should be: serviceable; safe; and stable. That is it should not crack or sag, not break and not fall over. If performance by any of these criteria is unsatisfactory, a ‘limit state’ has been exceeded (Boughton & Crews, 1998: Section 2.3). An example limit state is: “the deflection for serviceability limit state under live load...shall not be greater than 1/600 of the span” (Standards Australia, 2004c: AS 5100.2, Section 6.11).</td>
</tr>
<tr>
<td>Light Load</td>
<td>A vehicle of about three tonne GVM, refer Section 2.4.4</td>
</tr>
<tr>
<td>Live load</td>
<td>Load applied to a structure.</td>
</tr>
<tr>
<td>Main girder</td>
<td>One of the central girders of a timber beam bridge. There are commonly four, or five, girders the middle two, or three, are the main girders.</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Structural design from a maintenance perspective</td>
</tr>
<tr>
<td>Perspective</td>
<td>(Refer Section 2.2.5).</td>
</tr>
<tr>
<td>MatLab®</td>
<td>MatLab® is an analysis program that allows complex equations to be solved and provides a wide range of graphs and diagrams to be created. The software allows analysis of data and algorithm development more quickly than would occur with a high level language where all the code has to be created (MathWorks, 2011).</td>
</tr>
</tbody>
</table>
MC Moisture content.

MU Upstream main girder.

MD Downstream girder.

MoE Modulus of Elasticity. The rate of change if stress for changes in strain.

In practical engineering materials strains lie in the range of ±1% either side of the neutral, unstressed, position. Within this small range the relationship is linear and the material can be stressed and unstressed many millions of times with no change in performance. At larger strains, between 5% and 10%, stress is not linearly proportional to strain. (Gordon, 1991, p. 37)

MoR The Modulus of Rupture is the stress at which a material will fail as it is increasingly stressed.

NORMSINV(failure rate) The spreadsheet function NORMSINV(failure rate) calculates the inverse of the normal cumulative distribution function. As an example if the probability of failure is 4 in 10^6 then the failure rate is 0.000004 and NORMSINV(0.000004) = −4.5 and which is the Safety Index, \(\beta \).

NAASRA National Association of Australian State Road Authorities.

NDE Non destructive evaluation.

Neutral axis The line of zero stress in a girder undergoing bending.

NSW New South Wales, Australia.

PC Powers Creek bridge span.

Piles Round timber poles driven into the ground to provide support for a structure.

Pipe, piping A longitudinal cylindrical or tubular hole through a beam or pile.

Point load A load applied at a single point.

Probability of failure The probability of failure is an indication of the number of times a limit state is exceeded when a system is tested a large number of times. As an example, it is expressed as 1 in 10^6.

Proof load The load that causes identifiable non-elastic behaviour.
R

R is a programming language. It is an, open source, interpreted language written primarily in C and widely used for statistical computing and graphics generation. Although new functions can be written in C to suit any special need, only standard functions are used for the purposes of this research. Scripts are prepared that enable the creation of graphs that statistically represent source data (Crawley, 2007; Dalgaard, 2008).

RMS

Roads and Maritime Services of New South Wales. This organisation was titled RTA prior to the year 2012.

Royal Species

A vague term used to describe some of the eucalypt species that were used for bridge girders. Still in commercial use but no clear definition found as to its origin.

RTA

Roads and Traffic Authority of New South Wales.

Safe Load limit

The load that can be applied to a bridge and not cause structural failure. Normally equivalent to the maximum load limit that is legally specified (refer Section 2.2.5).

Safety index, β

An indicator of the probability of failure. It is the number of standard deviations below the mean value of the limit state function.

SAP2000®

SAP2000® (CSI, 2010) is a finite element software package. It allows the calculation of the response of complex structures to complex loads. The specific software used was the SAP2000® Education edition V15 which is limited to about 300 equations and 100 joints. The SAP2000® model equations incorporate Timoshenko beam theory which accounts for the effects of shear in the calculation of mid-span bending of large beams.

Six sigma limit

The range that includes all values of a statistic within ± 3 standard deviations from the mean value. It includes 99.7% of the values.

S2

Strength group classification value for unseasoned timber. Mean bending strength of 86 MPa and mean MoE of 14 200 MPa (14.2GPa). It is used in this thesis as a limit state. An in-service girder should be above both limits. (Standards Australia, 1986: AS/NZS 2878 Table 2.1)

SMA

Second moment of area.

Substructure

Typically a combination of round timber piles and a pair of capwales that supports the superstructure.

Superstructure

Typically round timber girders mounted on corbels, transverse timber decking and optional longitudinal timber sheeting supported by the substructure.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Split</td>
<td>A split is a grain separation that extends from one surface to another.</td>
</tr>
<tr>
<td>Temporal change</td>
<td>A change that occurs from one moment in time to another.</td>
</tr>
<tr>
<td>Temporal MoE factor, k_E</td>
<td>The factor that represents temporal change in MoE. MoE is the material parameter as measured at one moment in time. The temporal factor provides an indication of how MoE temporally varies.</td>
</tr>
<tr>
<td>Temporal SMA factor, k_I</td>
<td>The factor that represents temporal change in SMA. SMA is the material parameter as measured at one moment in time. The temporal factor provides an indication of how SMA temporally varies.</td>
</tr>
<tr>
<td>Timoshenko beam theory</td>
<td>The beam theory embodied in the SAP2000® software (CSI, 2010)</td>
</tr>
<tr>
<td>ton</td>
<td>Imperial unit of mass, 2240 lbs, 1016 kg, 20 cwt (non SI unit).</td>
</tr>
<tr>
<td>tonne</td>
<td>Unit of mass, 1000 kg (SI unit).</td>
</tr>
<tr>
<td>Unexplained variation</td>
<td>100% - explained variation%</td>
</tr>
<tr>
<td>QDMR</td>
<td>Queensland Department of Main Roads. This name has been changed to the Department of Transport and Main Roads (QTMR).</td>
</tr>
<tr>
<td>Quartile</td>
<td>Value of a variable within which 25% of observations fall. The first quartile is the 25th percentile, the second quartile is the median or 50th percentile and the third quartile is 75th quartile.</td>
</tr>
<tr>
<td>Quantile</td>
<td>A point taken at regular intervals from the cumulative distribution function.</td>
</tr>
</tbody>
</table>