## Gas source for fluidisation

Smith (1960a), Sparks (1976) and Wilson (1980) have identified the principal sources of gas for the fluidisation of pyroclastic flows. Wilson (1980) provided some criteria which could be used to assess the importance of internal gas sources (that is, residual magmatic volatiles released from juvenile pyroclasts) in comparison with external gas sources (such as, ingestion of air, steam generated from trapped groundwater or surface water, gas from combustion of vegetation). The former are mainly responsible for vertical textural variations in pyroclastic flow deposits, whereas the latter promote proximal-distal lateral zonation (Wilson, 1980).

Ingestion of air at the site of initial flow formation is correlated with a brief but very efficient fluidisation event that may result in segregation of co-ignimbrite lag breccias, proximal pyroclastic ground surge deposits and excessive crystal enrichment (Wilson, 1980; Wright and Walker, 1981; Wright, 1981; Druitt and Sparks, 1982). Entrapment of air at the front of a pyroclastic flow leads to the differentiation of a fluidised head from the rest of the body of the flow (Wilson, 1980). The two parts leave different deposits; for example, fines-depletion and enrichment in coarse and/or dense components, and also layering, are characteristic of flow head deposits (e.g. 'fines-depleted ignimbrite' of Walker, Wilson and Froggatt, 1980; 'ground layer' of Walker, Self and Froggatt, 1981; 'Layer 1' of Wilson and Walker, 1982; 'ground breccia' of Druitt and Sparks, 1982). Wright et al. (1984) have described Quaternary pumice- and ash-flow deposits of St Lucia, West Indies, marked by exceptional fines depletion. Gas from combustion of vegetation and turbulence caused by the nature of the flow paths probably significantly contributed to fluidisation during transport, in addition to flow-front air ingestion. It is thus possible to detect the effects of former fluidisation by flow front air ingestion, or other external sources of gas, in the resulting ignimbrite.

There is no sign that air ingestion, or any other external gas supply, either at source or enroute, influenced the emplacement of the Normal facies pyroclastic flows. The Normal facies ignimbrite is not known to be associated with lag breccias or ground breccias, lateral facies variation is negligible and there is no excessive crystal enrichment. That is, the ignimbrite is almost entirely composed of pyroclastic flow body deposits. The thin interval thought to have been deposited by pyroclastic ground surges is volumetrically minor (less than 0.1 km<sup>3</sup>), areally restricted and confined to a single stratigraphic level, and is interpreted to register the initial flow formation by eruption column collapse (discussed further below).

It is clear that air ingestion was not an effective gas supply for fluidisation. However, there is little evidence that the alternative, an internal gas supply, was any more significant. Residual magmatic volatiles may produce gas flow rates sufficient to fluidise significant amounts of fine ash, especially in the upper parts of thick pyroclastic flows (Sparks, 1978a). The substantial thicknesses of Normal facies ignimbrite available are essentially texturally homogeneous, although admittedly the effects of gas grading can be very subtle (*cf*. Wright and Walker, 1981; Wright, 1981). Nevertheless, the poorly fluidised condition of the Normal facies pyroclastic flows attests to the inadequacy of residual magmatic volatiles as a source of gas for fluidisation.

## Pyroclastic flow velocity and aspect ratio of the Normal facies ignimbrite

Wilson and Walker (1981,1982; Fig. 6) related the spectrum of pyroclastic flow types to flow velocity. Their analysis shows that air ingestion at the flow front is promoted by high flow velocity. Air ingestion fluidisation is insignificant or minor for flows travelling less than about 30 m/s. In view of the poor fluidisation inferred for the Normal facies pyroclastic flows, their velocities are unlikely to have exceeded a few tens of metres per second.

The aspect ratio of an ignimbrite is another means by which pyroclastic flow velocity can be qualitatively assessed (Walker *et al.*, 1980a,b; Wilson and Walker, 1981; Walker, 1983). The three dimensional geometry of deposits from high velocity pyroclastic flows is exemplified by lowaspect ratio ignimbrites. These are comparatively thin but widespread, show little evidence in their distribution of the flows having been topographically controlled, and exhibit mappable lateral variations in facies; aspect ratios of the Taupo (1:70,000; Walker *et al.*, 1980a; Wilson and Walker, 1981) and Rabaul (1:7000; Wilson and Walker, 1981; Walker, Heming *et al.*, 1981) ignimbrites are considered low (Walker, 1983). In

comparison, the passage of low velocity pyroclastic flows shows sensitive response to topographic controls and resultant deposits form high-aspect ratio geometries. The Rio Caliente ignimbrite has a high aspect ratio (1:300; Wright, 1981).

Using an area (450 km<sup>2</sup>) slightly larger than the present Coombadjha Volcanic Complex (360 km<sup>2</sup>) as an estimate of the former extent of the Normal facies ignimbrite within the Coombadjha cauldron, and a value of 600 m for average thickness, gives an aspect ratio of 1:40 (Table 8.4). This is considered to be the lowest reasonable result, as the thickness is an underestimate. Even after doubling the area estimate (to 1000 km<sup>2</sup>), the aspect ratio is reduced only slightly to 1:70. The Normal facies ignimbrite has an exceptionally high aspect ratio although comparable values would be expected for as yet unmeasured Tertiary intracaldera ignimbrites of the western United States. For example, the data of Ratté and steven (1967, p.H42) indicate that the intracaldera Snowshoe Mountain Quartz Latite has an aspect ratio of 1:10 (Table 8.4). The lowest aspect ratio cited by Walker *et al*. (1980a) was 1:250 for the Bishop Tuff, California, and presumably includes the outflow sheets of this unit.

The high aspect ratio of the Normal facies ignimbrite is another hallmark of emplacement by slow-moving, relatively immobile pyroclastic flows. Flows with velocities of 30 m/s would be blocked and diverted by all obstacles higher than about 50 m (*cf.* Francis and Baker, 1977, Fig. 2) so that their deposits accumulate in high-aspect ratio bodies. Confinement within a caldera, or any other topographic depression, will contribute to, but not cause, the high aspect ratio of ignimbrites deposited by poorly fluidised, slow moving pyroclastic flows.

## Style of eruption and emplacement of the Normal facies pyroclastic flows

The generation and movement of silicic pyroclastic flows are currently referred to a model involving the gravitational collapse of a vertical eruption column (Sparks and Wilson, 1976; Wilson, 1976; Sparks *et al.*, 1978; Wilson *et al.*, 1978,1980). To some extent the model allows reconstruction of the course of an eruption from the character and distribution of the deposits. It also permits evaluation of the conditions at the

TABLE 8.4: Dimensions and aspect ratios of the Dundee Rhyodacite of the Coombadjha Volcanic Complex, the Fish Canyon Tuff (Lipman, 1975; Steven and Lipman, 1976), the Snowshoe Mountain Quartz Latite (Ratté and Steven, 1967) and the Fish Creek Mountains Tuff (McKee, 1970)

|                                                                         | area<br>(km²) | thickness<br>(m) | volume<br>(km³) | aspect ratio <sup>1</sup> |
|-------------------------------------------------------------------------|---------------|------------------|-----------------|---------------------------|
| Dundee Rhyodacite,                                                      | 450           | (00              | 270             | 1 40                      |
| coombad jna vorcanie comprex                                            | 450           | 600              | 270             | 1:40                      |
|                                                                         | 450           | 1000             | 450             | 1:24                      |
| Fish Canyon Tuff, Colorado<br>intracaldera ignimbrite                   | 1250          | 1400             | 1750            | 1:29                      |
| Snowshoe Mountain Quartz<br>Latite, Colorado<br>intracaldera ignimbrite | 206           | 1600             | 330             | 1:10                      |
| Fish Creek Mountains Tuff,<br>Nevada<br>intracaldera? ignimbrite        | 515           | 610              | 315             | 1:42                      |

<sup>1</sup>Aspect ratio calculation follows Walker  $et \ al$ . (1980a):

Aspect ratio = <u>average thickness</u> <u>diameter of circle with the same area</u> vent known to influence eruptive style (e.g. Wright, 1981). Using this approach, several lines of evidence suggest that the pyroclastic flows responsible for the Normal facies were produced by a continuously collapsing ignimbrite fountain fed by a low eruption column, which was established without any initial convective plume phase.

Nowhere beneath the Normal facies has a pumice- or ash-fall tuff potentially related to the ignimbrite been identified, suggesting that column collapse took place without an established convective plume phase (cf. Sparks *et al.*, 1973). Although prevailing wind directions during an eruption can distribute airfall deposits independently of related ignimbrite (e.g. Roseau pyroclastic flow deposits to the west, and plinian airfall tephra to the east, of the source on Dominica, Lesser Antilles; Carey and Sigurdsson, 1980), there is an independent, though indirect, argument in support of the conclusion that no convective phase was established. Sparks and Wilson (1976) demonstrated that most eruptions commencing with a convective plume produced ignimbrites with low emplacement temperatures. The Normal facies ignimbrite has welding and recrystallisation features indicative of high emplacement temperatures, consistent with the absence of an associated airfall deposit.

Sparks *et al.* (1978) calculated collapse heights of 600 m to 9 km above the vent and the ignimbrite fountains in the models of Wilson *et al.* (1980) were all less than 10 km high. Pyroclastic flows formed from the collapse of eruption columns at the high end of the predicted range are thought to undergo a vigorous fluidisation episode at the site of initial flow formation (Wilson, 1980) which is recorded by deposition of proximal co-ignimbrite lag breccias (e.g. Wright and Walker, 1981; Druitt and Sparks, 1982). Away from the source, such flows sustain high flow velocities and are effectively fluidised, especially by flow front air ingestion, so that ground breccias (Layer 1 of Wilson and Walker, 1982), marked textural variations, and excessive crystal enrichment are typical (Sparks *et al.*, 1978; Wilson, 1980; Wilson and Walker, 1981,1982; Wright, 1981). The pyroclasts are significantly cooled during column collapse so that subsequent welding of deposits is inhibited.

The Normal facies ignimbrite displays very little resemblance to pyroclastic flow deposits correlated with collapse from a high eruption

column: no exposures of co-ignimbrite lag breccias have been found and the pyroclastic flows are inferred to have been poorly fluidised and slow moving. In addition, the ignimbrite was emplaced at temperatures high enough for thorough welding, devitrification and recrystallisation of formerly vitric pyroclasts. Comparison of vent radius and upward gas velocity estimates for the Dundee eruption (Table 8.5; discussed further below) with the models presented graphically by Sparks *et al.* (1978, Fig. 1, Fig. 3) suggests collapse heights may have been as low as 2 to 4 km, and are unlikely to have exceeded 6 km.

That the initial eruption column collapse was sustained to form an eruptive fountain is a conclusion based on the lithological homogeneity of the Normal facies ignimbrite. Above the base of the Normal facies, there are no changes which could be correlated with interruption to the discharge, or with alteration in its style. Further, there is only one lithological record of column collapse. The bedded tuff of the Basal facies is considered to include pyroclastic ground surge deposits. These occupy a stratigraphic position consistent with the interpretation that the surges were generated at the onset of column collapse which was thereafter maintained. Any pause significant enough to terminate the erupting fountain would be followed by another collapse event on reinstatement of activity. Bedded tuff, or other lithological variants to the Normal facies ignimbrite, would register such deviations. Sparks  $et \ al.$  (1973) suggest that breaks as brief as an hour would be sufficient for settling of co-ignimbrite ash (Layer 3) between flow units. Continuous production of pyroclastic flows is thus inferred.

## Duration of the eruption of the Dundee Rhycdacite

Estimation of the duration of the Dundee Rhyodacite eruption episode is a poorly constrained procedure, especially without the guide of recorded events analogous in scale and style. The durations of large volume explosive eruptions have been deduced using measured subaqueous settling rates of associated airfall ash and other sophisticated techniques (e.g. Wilson and Walker, 1981; Wright, 1981). Ledbetter and Sparks (1979) estimated 20 to 27 days for a Quaternary eruption from Lake Atitlan caldera, Guatemala, which produced 250 km<sup>3</sup> (DREV) of rhyolitic ignimbrite and

ash-fall tuff. The 1000 km<sup>3</sup> Toba eruption, Sumatra (0.75 Ma) has been estimated to have lasted 9 to 14 days (Ninkovich *et al.*, 1978; Ledbetter and Sparks, 1979). Wright (1981) calculated 15 to 31 days for the Pleistocene eruption of 32.5 km<sup>3</sup> (DREV) of ignimbrite and airfall deposits from Sierra La Primavera volcano, Mexico, the lithological record of which includes many signs of interruptions to discharge.

It is apparent from these examples that an eruption lasting at least a few weeks would be necessary for the emplacement of ignimbrites such as the Normal facies of the Dundee Rhyodacite in the Coombadjha Volcanic Complex. Accumulation of the Basal facies may have been much slower, as it is likely that significant quiescent spells separated eruptions of the ignimbrite and the lava (perhaps tens of thousands of years?;  $c_{f}$ . Mahood, 1980; Hildreth, 1981).

# Controls on the character and course of the eruption of the Normal facies ignimbrite

As interpreted above, the eruption of the Normal facies involved prompt collapse of a low eruption column and establishment of a sustained pyroclastic flow-forming fountain. Theoretical analyses of controls on the behaviour of explosive eruption columns have isolated those conditions which promote column collapse and the ensuing production of pyroclastic flows (e.g. Sparks and Wilson, 1976; Wilson, 1976; Sparks *et al.*, 1978; Wilson *et al.*, 1978,1980). In brief, these are:

- i. large or increasing vent radius;
- ii. relatively low or decreasing upward gas velocity;
- iii. relatively low or decreasing magmatic gas content.

In addition, a high volume rate of eruption may also favour column collapse because this circumstance arises with widening vents and decreasing gas contents (Wilson *et al.*, 1978). Relatively coarse grained pyroclast populations in the eruption column will also be conducive to collapse because large particles are less efficient in contributing their heat to drive convection (Settle, 1978; Wilson *et al.*, 1978). All these factors influence the density of the eruption column at the top of the gas thrust region and determine whether progression to convective plume activity, or column collapse, ensues.

In the following discussion an attempt is made to assess the controls on the character and course of the eruption that produced the Normal facies.

#### Vent radius

The number and dimensions of vents for the Normal facies eruption are unknown. Crude estimates of vent radius ranging from about 350 m to 500 m were determined (Table 8.5), using the equations of Wilson (1976, Equations 18,19, p.554) which relate mass erupted and duration of plinian events. The calculations require an approximation of the upward gas velocity, although the value chosen has only a minor effect on the results (Table 8.5). Comparable estimates of vent radius are indicated by the models of Wilson *et al.* (1980, Figs. 7 and 9) for the mass eruption rate of the Normal facies event of about  $10^8$  kg/s (Table 8.6a). Vent radii adopted in theoretical models range from tens of metres to more than 600 m (e.g. Wilson *et al.*, 1978,1980; Sparks *et al.*, 1978), and it is concluded that the vent(s) for the Normal facies eruption episode had dimensions near the wide end of this range.

It can also be inferred that stable vent dimensions were achieved very soon after the onset of the Normal facies eruption. The proportion of lithics in the Normal facies ignimbrite is very low and they are only conspicuous in samples from near the base. The Basal facies ignimbrite has a relatively high proportion of dense lithics. If both facies had the same or nearby vents, the earlier Basal facies ignimbrite eruption may have achieved most of the necessary conduit excavation. There is a ubiquitous though minor component of millimetre sized gabbroic and dioritic crystal aggregates in the ignimbrites of both facies which may have significance with regard to magma chamber processes (cumulate disruption and roof or wall disintegration respectively), but are unlikely to reflect events affecting the conduit(s) and/or vent(s).

Wilson *et al*. (1980) examined the effects of conduit geometry on the eruption velocity of the gas-particle mixture. Conduits that had constant or decreasing radii near the surface were shown to retard eruption velocities, and to increase the gas pressure, and hence also the gas

vent radius<sup>1</sup>, 
$$b_{o} = \sqrt{\frac{m_{t}}{q} \frac{u_{o}}{u_{o}} \pi \frac{T_{e}}{T_{e}} \frac{100\rho_{o}}{100\rho_{o}}}$$
 where  $m_{t} \equiv \text{total mass of pyroclasts;}$   
 $n, U_{o}$  are average magma volatile content  
and muzzle velocity;  
 $T_{e} \equiv \text{eruption duration;}$   
 $\rho_{o} \equiv \text{initial gas density;}$ 

q = ratio of average upward velocity across eruption column to central value.

For q = 1,  $\rho_0$  = 0.18 kg/m<sup>3</sup> for steam at 1200K, and average U = 0.5 U maximum,

$$b_{o} = \sqrt{\frac{m_{t} n}{9 \pi T_{e} U_{o}}}$$

For the Normal facies ignimbrite of the Dundee Rhyodacite, assuming

 $m_t = 1.125 \times 10^{15} \text{ kg}$   $T_e = 21 \text{ days}$  $= 1.8 \times 10^6 \text{ seconds}$ 

$$b_{o} = \sqrt{\frac{2.21 \times 10^7 \text{ n}}{U_{o}}}$$

•

| n (weight %) | U (m/s) | b (m) |
|--------------|---------|-------|
| 2            | 400     | 332   |
|              | 300     | 384   |
|              | 200     | 470   |
| 3            | 400     | 407   |
|              | 300     | 470   |
| 4            | 300     | 542   |

<sup>1</sup>From Wilson (1976), equations (18) and (19).

density, in the vent for the range of magma volatile contents tested (up to 7 weight percent). Thus, the rapid formation of stable, probably wide and non-flared vent(s) may have placed limits on the upward gas velocity of the Normal facies eruption, a condition favourable to premature column collapse, inferred from stratigraphic evidence.

## Upward gas velocity

The upward gas velocity at eruption controls (with vent radius) the collapse height of the eruption column (Sparks  $et \ al.$ , 1978). Because pyroclastic flows inherit significant momentum from the collapse event, especially those produced from vents within low profile rhyolitic calderas, the character of their deposits reflects the collapse height (Sparks, 1976; Francis and Baker, 1977; Sparks  $et \ al.$ , 1978; Sheridan, 1979; Wilson and Walker, 1981). The Normal facies pyroclastic flows are thought to have been slow moving, poorly fluidised and emplaced at high temperatures, matching the character of flows predicted to result from low collapse heights (Sparks et al., 1978; Wilson and Walker, 1981). Upward gas velocities can thus be indirectly inferred to have been relatively low in this case, a conclusion consistent with the lithological record of premature column collapse. Eruption velocities up to 600 m/s are used in the theoretical models (e.g. Wilson et al., 1978,1980; Sparks et al., 1978). However, for non-flared conduits, vent eruption velocities are less than 200 m/s for magma water contents up to 7 weight percent (Wilson  $et \ al.$ , 1980, Fig. 8). Thus the proposed absence of flaring in the Normal facies ignimbrite vent(s) is consistent with relatively low upward gas velocity during eruption. Velocities were probably in the lower half of the theoretically considered range.

#### Released gas content

Magmas with high water content have the potential to release large amounts of gas (largely steam) when erupted and are capable of sustaining convective plume activity, whereas those eruptions involving low released gas content require excessively high gas velocities or very narrow vents in order to avoid column collapse (Wilson, 1976; Sparks *et al.*, 1978). Gas content has a relatively minor effect on the height at which column collapse occurs, though collapse height increases with larger gas contents (Sparks *et al.*, 1978).

There is no direct means for establishing the pre-eruption dissolved volatile content of the Dundee Rhyodacite magma. However, there are no positive indications that it had the potential to release large gas contents during eruption and indirect arguments suggest the converse. The eruption of the Normal facies ignimbrite was preceded by extrusion of phenocrystrich lava, an event interpreted as an early sign of the low volatile content of the magma supply because the production of pyroclastic flows more commonly follows a gas-rich plinian stage (Sparks *et al.*, 1973; Sheridan, 1979; Hildreth, 1981). At eruption, the Dundee Rhyodacite magma was similarly phenocryst-rich (at least 45 weight percent), including about 10 weight percent hydrous minerals (biotite and hornblende).

The character of the Normal facies pyroclastic flows and the ignimbrite they deposited is consistent with two implications of low released volatile content. Firstly, it has been inferred above that the main gas source for fluidisation of the Normal facies pyroclastic flows was internal, that is, dependent on the volatile contents of juvenile pyroclasts. This supply is potentially adequate for efficient fluidisation (Sparks, 1978a) but was clearly incapable of effectively fluidising the Normal facies pyroclastic flows beyond the condition typical of type 1. Secondly, the Dundee Rhyodacite ignimbrite was originally welded and vitric pyroclasts are completely devitrified and substantially recrystallised. There are two ways in which low released gas content promotes a high temperature of emplacement of pyroclastic flows:

i. this circumstance is consistent with low column collapse height, predicted to enhance heat conservation by inhibiting entrainment of air (Sparks and Wilson, 1976; Sparks  $e^{\pm}$  al., 1978);

ii. the smaller proportion of hot pyroclasts in gas-rich columns fed by magmas releasing several weight percent gas during eruption reduces their conservation of heat relative to columns involving lower released gas content (Sparks *et al.*, 1978).

These stratigraphic and lithological clues are the basis for interpreting comparatively low released gas content for the Dundee Rhyodacite eruption episode, a conclusion in accord with the record of early enstatement of a pyroclastic flow-forming eruption fountain without prior establishment of a plinian phase.

## Discharge rate

For an eruption duration of 3 weeks, the mass eruption rate for the Normal facies ignimbrite is approximately 6 x  $10^8$  kg/s and volume eruption rate is  $25 \times 10^5 \text{m}^3$ /s (Table 8.6a). Both these figures are near the maxima of rates considered in the theoretical models of Wilson *et al.* (1978, 1980) though comparable to data from other large volume silicic ignimbrite eruptions (Table 8.6b). Wilson *et al.* (1978, p.1835) predicted that volume eruption rates in excess of  $6.5 \times 10^5 \text{m}^3$ /s would lead to eruption column collapse. The high discharge rate for the Normal facies ignimbrite eruption is consistent with two previous and related conclusions: that wide vents were involved, and that conditions were never appropriate for transformation of the gas thrust of the eruption into a maintained convecting plume. Instead, the eruption column is thought to have very promptly collapsed downward.

## Degree of magma fragmentation

Progression of explosive eruptions from the initial gas thrust to a maintained convecting plume requires efficient transfer of the magmatic heat of the pyroclasts to entrained air (Wilson, 1976; Settle, 1978; Wilson *et al.*, 1978). The efficiency of exchange depends on the grain size of pyroclasts and the theoretical models assume that 60 weight percent or more of pyroclasts are less than a millimetre in diameter (Sparks and Wilson, 1976; Wilson, 1976; Sparks *et al.*, 1978; Wilson *et al.*, 1978; Wilson *et al.*, 1976; Sparks *et al.*, 1978; Wilson *et al.*, 1978; Wilson *et al.*, 1980). At the time of vesiculation and eruption, the Dundee Rhyodacite magma was at least 45 weight percent crystals or crystal aggregates generally coarser than 1 mm. The implication of a relatively coarse pyroclast population which was already substantially crystalline is that the heat needed to drive plume convection may not have been available from the outset. The conservation, rather than transfer, of the heat energy of the pyroclasts may have contributed to premature column collapse.

#### Summary

The eruption of the Normal facies ignimbrite, as reconstructed here,

involved from the outset a pyroclastic flow-forming fountain of moderate to low height. The stratigraphy and lithological character of the Normal facies ignimbrite provide indirect evidence that the eruption was marked by low upward gas velocity, low released gas content, very high discharge rate and a comparatively coarse pyroclast population. These conditions, in conjunction with large vent radii, are predicted by theoretical models to be necessary for the envisaged eruption behaviour (Sparks and Wilson, 1976; Wilson, 1976; Sparks *et al.*, 1978; Wilson *et al.*, 1978,1980). No aspects of the geology of the Normal facies are incompatible with the additional inference of non-flaring, probably wide vent(s).

#### The "bigness" of the Normal facies eruption episode

The parameters used to measure the "bigness" of explosive eruptions, reviewed and further refined by Walker (1980,1981e), are here applied to the Normal facies eruption episode.

Magnitude measures the dense rock equivalent volume erupted and the scale ranges from 0.001 km<sup>3</sup> to 1000 km<sup>3</sup>. The volume of the Normal facies of the Dundee Rhyodacite is presently more than 200 km<sup>3</sup> and originally may have been as much as 450 km<sup>3</sup> (Table 8.6a). It was densely welded on emplacement so these figures are effectively dense rock equivalent volumes. Hence, the order of magnitude of the entire volume erupted, including probable outflow sheets and co-ignimbrite ash, may have approached 1000 km<sup>3</sup>, and was clearly of enormous magnitude. The Normal facies ignimbrite has magnitude 2 on Smith's (1979) scale of ash flow eruptions, and has the same order as some Tertiary intracaldera ignimbrites (e.g. 330 km<sup>3</sup>, Snowshoe Mountain Quartz Latite, Ratté and Steven, 1967) but is much less than the most voluminous examples (e.g. about 1200 to 1800 km<sup>3</sup> for the intracaldera part of the Fish Canyon Tuff, Colorado; Lipman, 1975; Steven and Lipman, 1976).

Intensity is the term used for the rate of release of material, in dense rock equivalent volume, or of energy (Walker, 1980). The volume  $\cdot$ eruption rate for the Normal facies ignimbrite was approximately 6 x 10<sup>5</sup> m<sup>3</sup>/s (Table 8.6a), corresponding to the class of high intensity eruptions (between 10<sup>3</sup> and 10<sup>6</sup> m<sup>3</sup>/s, Walker, 1980). The duration would have to have been 10 times longer than estimated to achieve a reduction in the order of the volume eruption rate, but would not shift the event from the class of high intensity eruptions.

Violence reflects the importance of momentum in the emplacement and distribution of the products of an explosive eruption (Walker, 1980,1981e; Wilson and Walker, 1981). The violence of eruptions producing pyroclastic flows is expressed by flow velocity and the morphology of their deposits. The Normal facies pyroclastic flows had a low velocity and the preserved deposits suggest they built a high-aspect ratio ignimbrite pile.

Although the eruption of the Normal facies ignimbrite was outstanding in magnitude and intensity, it was an event unspectacular in violence.

## Cessation of eruption

The Dundee Rhyodacite eruption episode can only be reconstructed for the existing incomplete lithological record so the course of the later stages is unknown. The history of events leading to the formation of the Coombadjha cauldron are thought to indicate that major subsidence did not begin until after the emplacement of most of the preserved thickness of the Normal facies ignimbrite (Chapter 6). If the eruption duration is taken as a measure of the time involved in evacuation of the Dundee Rhyodacite magma supply, it is perhaps not unreasonable to find that there was a delay before movements on the ring fracture system and cauldron subsidence began. Later eruptions, inferred on the basis of the total amount of collapse, may have been accompanied by sagging of the cauldron floor and displacement along incipient ring fractures. A major subsidence event at a stage when activity was waning could ultimately have been responsible for terminating discharge from ring fault-located vents (cf. Wilson  $et \ al.$ , 1980).

## Post-emplacement modification and preservation of the Normal facies ignimbrite

The thorough welding, devitrification and recrystallisation exhibited by formerly glassy pumiceous components of the Normal facies ignimbrite throughout the Coombadjha Volcanic Complex are largely attributable to the large magnitude and low violence of the eruption. These parameters together determined the character of the Normal facies pyroclastic flows, TABLE 8.6a: Measures of "bigness" of the eruption of the Normal facies of the Dundee Rhyodacite, Coombadjha Volcanic Complex

| MAGNITUDE:             |           |                                                              | ` |       |
|------------------------|-----------|--------------------------------------------------------------|---|-------|
| dense rock equivalent  | volume    | 450 km <sup>3</sup><br>4.5 x 10 <sup>11</sup> m <sup>3</sup> | } | large |
|                        | mass      | 1.125 x 10 <sup>15</sup> kg                                  | J |       |
| INTENSITY:             |           |                                                              |   |       |
| volume eruption rate   | (21 days) | $2.5 \times 10^5 m^3/s$                                      | ] | hiah  |
| mass eruption rate (23 | l days)   | 6 x 10 <sup>8</sup> kg/s                                     | ſ | mrgn  |
| VIOLENCE:              |           |                                                              |   | low   |

TABLE 8.6b: Intensities of the Normal facies ignimbrite eruption and other ignimbrite-producing eruptions

|                                                                                    | volume<br>eruption  | DRE<br>volume |
|------------------------------------------------------------------------------------|---------------------|---------------|
|                                                                                    | rate (m³/s)         | (km³)         |
| Dundee Rhyodacite: Normal facies ignimbrite                                        | 2.5 x $10^5$        | 450           |
| Toba <sup>1</sup> , Indonesia: ignimbrite and airfall ash                          | 10 <sup>6</sup>     | 1000          |
| Los Chocoyos <sup>2</sup> , Guatemala: ignimbrite and airfall<br>ash               | 2.4 x $10^5$        | 250           |
| Rio Caliente Ignimbrite <sup>3</sup> , Mexico: ignimbrite and<br>co-ignimbrite ash | $1.4 \times 10^4$   | 18.5          |
| Taupo Ignimbrite, New Zealand <sup>4</sup> : ignimbrite and<br>co-ignimbrite ash   | $3 \times 10^{7}$   | 12            |
| Valley of Ten Thousand and Smokes <sup>5</sup> , Alaska:<br>ignimbrite             | 2 x 10 <sup>5</sup> | 5.5           |
| <sup>1</sup> Ninkovich, Sparks and Ledbetter (1978).                               |                     |               |
| <sup>2</sup> Ledbetter and Sparks (1979).                                          |                     |               |
| <sup>3</sup> Wright (1981).                                                        |                     |               |

 $^{\rm 4}{\rm Wilson}$  and Walker (1981).

<sup>5</sup>Curtis (1968).

and ensured their emplacement at high temperatures and the pronounced compaction of their deposits. The Normal facies ignimbrite probably had a low initial porosity which may have been important in inhibiting alteration of crystal fragments; these are noticeably fresher than crystal fragments and phenocrysts of most of the other volcanic units of the Coombadjha Volcanic Complex.

All surviving exposures of the Normal facies ignimbrite are erosional remnants of a thicker simple (or compound) cooling unit, the preservation of which is due to subsidence of the Coombadjha cauldron.

## SIMILAR CAINOZOIC IGNIMBRITES

Although the Dundee Rhyodacite of the Coombadjha Volcanic Complex is a remarkable rock unit, it is by no means unique. The following brief descriptions of three Tertiary ignimbrites of the western United States support this conclusion. All three have comparable composition (high  $K_20$ dacites), lithology (crystal-rich, texturally homogeneous ignimbrite) and volume (hundreds of cubic kilometres) to the Dundee Rhyodacite.

#### The La Jara Canyon Member

Eruption of the La Jara Canyon Member of the Treasure Mountain Tuff (29.8 Ma) led to subsidence of the Platoro caldera (Lipman, 1975; Steven and Lipman, 1976). Vent locations are unknown. About half (250 km<sup>3</sup>) of the total volume of ignimbrite of this Member (580 km<sup>3</sup>) is within the caldera where it is more than 800 m thick at some localities. The aspect ratio of the densely welded, crystal-rich (40 to 50 modal percent crystals) intracaldera ignimbrite is approximately 1:40. Lipman (1975) reported that it is largely devitrified and pumice fragments and flow unit boundaries are both masked by post-emplacement changes. Although there are no intercalations of "landslide breccias" in the intracaldera ignimbrite indicative of an exposed caldera wall, the late stages of the eruption were considered to have been accompanied by subsidence (Lipman, 1975). Evidently the first pyroclastic flows to be erupted spread widely as outflow sheets whereas subsequently, eruptions were concurrent with collapse (Steven and Lipman, 1976).

## The Fish Canyon Tuff

The Fish Canyon Tuff, erupted from La Garita caldera, Colorado at 28.6 Ma (Lipman, 1975; Steven and Lipman, 1976; Whitney and Stormer, 1983) is lithologically similar to, but has a greater extent  $(15,000 \text{ km}^2)$ and volume (3000 km<sup>3</sup>) than what remains of the Dundee Rhyodacite in the Coombadjha Volcanic Complex. Outflow sheets of the Fish Canyon Tuff spread widely and ponded to exceptional thicknesses in all nearby topographic depressions including unrelated calderas (e.g. it is 1 km thick in the Mt Hope caldera; Steven and Lipman, 1976). The intracaldera ignimbrite has an aspect ratio of about 1:29, and although crystal-rich (approximately 53 weight percent crystals) the loss of vitric pyroclasts appears to have been very minor as the enrichment factor is only 1.2 (Table 8.3). Contrasts between the thickness of the outflow and intracaldera ignimbrite are interpreted to indicate concurrent cauldron subsidence and eruptions (Lipman, 1975; Steven and Lipman, 1976). The earliest inception of subsidence cannot be resolved because relationships at the base of the intracaldera ignimbrite are not exposed.

#### The Snowshoe Mountain Quartz Latite

Perhaps the best Cainozoic analogue for the Dundee Rhyodacite of the Coombadjha Volcanic Complex is the Snowshoe Mountain Quartz Latite (26.5 Ma) of Creede caldera, Colorado (Ratté and Steven, 1967; Steven and Lipman, 1976). Most of this unit is very thick (about 1.6 km) intracaldera ignimbrite with a volume of 330 km<sup>3</sup> and an aspect ratio of 1:10. It is densely welded and completely devitrified with vaguely defined pumice lapilli, and minor cooling and flow unit partings. Crystal fragments constitute about 55 weight percent of the ignimbrite although the enrichment factor is only 1.6 (Table 8.3). No vents have been located but are inferred to have been situated along part of the ring fracture zone (Ratté and Steven, 1967). Subsidence concurrent with ignimbrite eruption has been proposed (Ratté and Steven, 1967; Steven and Lipman, 1976). However "avalanche breccia" tonques are only known within the upper 700 m of the unit (Steven and Lipman, 1976, p.28), possibly indicating that collapse post-dated emplacement of a substantial thickness of ignimbrite. Because the base of the unit is not exposed in the caldera, the timing of initial subsidence is not known with precision.

#### Discussion

These examples are cited in order to illustrate that ignimbrites similar to the Dundee Rhyodacite of the Coombadjha Volcanic Complex are common as intracaldera fill although there are differences in their temporal and spatial relationships to host calderas. All are members of the "monotonous intermediates" magmatic group identified by Hildreth (1981). Such ignimbrites display minimal compositional variations throughout enormous volumes and are not apparently associated with more siliceous differentiates (Hildreth, 1981). Volcanological parallels cannot be demonstrated here but are by no means inconceivable. These voluminous densely welded, high-aspect ratio ignimbrites may also be the deposits of poorly fluidised pyroclastic flows generated by eruptions of large magnitude but relatively low violence.

## REGIONAL IMPLICATIONS

The lithological uniformity of the widespread occurrences of crystalrich ignimbrite (the Dundee Rhyodacite) of the Late Permian volcanic pile of New England is striking (Tables 8.1,8.2; Wilkinson et al., 1964). However the original continuity of these areas of Dundee Rhyodacite ignimbrite is an unlikely circumstance in view of some of the conclusions reached with regard to the representative occurrence in the Coombadjha Volcanic Complex (cf. Flood et al., 1977, p.301). Specifically, the crystal-rich ignimbrite of the Coombadjha Volcanic Complex was generated by an eruption of large magnitude but low violence, resulting in deposits with exceptional thickness and limited lateral extent. If the same style of eruption and emplacement proves applicable to the occurrences of crystalrich ignimbrite elsewhere, they were probably originally discrete bodies, as at present. Furthermore, it is apparent from descriptions (Wilkinson et al., 1964; Flood et al., 1977; Cuddy, 1978; Wood, 1982) and reconnaissance inspection of the Dundee Rhyodacite of other areas that each of these is part of a densely welded, thoroughly recrystallised, incomplete (that is, eroded) cooling unit lacking in the typical features of outflow sheets and locally very thick (e.g. 1.5 km at Dundee, Shaw  $et \ all$ ., 1982). In contrast, the outflow sheets produced by major Cainozoic caldera-forming ignimbrite eruptions, such as the Fish Canyon Tuff, Colorado, are texturally distinguishable from essentially coeval intracaldera fill (J.V. Wright, written comm., 1984) even where ponded to exceptional thicknesses and densely welded.

The Dundee Rhyodacite had an intracaldera setting at Coombadjha (and Timbarra), and probably also at Dundee (Flood *et al.*, 1977; Godden, 1982; Shaw et al., 1982). Resolution of the status of the remaining occurrences at Bolivia, Brassington, Tenterfield and Tarban must await further field studies. It is tentatively concluded that very little of the ignimbrite can be attributed to a formerly co-extensive outflow sheet. An alternative is suggested by the former proximity of the Tenterfield, Coombadjha and Brassington areas of the Dundee Rhyodacite prior to movement on the Demon Fault System (Appendix A). In plan, the arrangement is similar to Cainozoic nested cauldrons of the western United States (e.g. Yellowstone caldera complex, Wyoming, Eaton et al., 1975; Christiansen, 1979; Timber Mountain-Oasis Valley caldera complex, Nevada, Byers et al., 1976; clustered calderas of the western and central San Juan Volcanic Field, Colorado, Steven and Lipman, 1976). Formation of the adjacent Uncompanyre and San Juan calderas was essentially simultaneous and each is filled by the same intracaldera ignimbrite unit (Eureka Member; Steven and Lipman, 1976).

#### CONCLUSIONS

The Normal facies of the Late Permian Dundee Rhyodacite of the Coombadjha Volcanic Complex constitutes the lower 500 m of an originally thicker, densely welded, in places recrystallised, simple (or compound) cooling unit of crystal-rich ignimbrite. This ignimbrite has a very high aspect ratio and was deposited from poorly fluidised, weakly expanded, low velocity, type 1 (Wilson, 1980) pyroclastic flows which were sensitive to topographic control. Losses of fine grained pyroclasts were not extreme and probably took place at the site of eruption because elutriation from flows of this type can only have been minor.

The emplacement of thick, texturally uniform, crystal-rich ignimbrite was preceded by discharge of small volumes of compositionally similar, crystal-rich lava and ignimbrite. Thereafter the eruption episode was continuous and involved a sustained pyroclastic-flow forming fountain of low to moderate height. There was a delay before cauldron subsidence began

at Coombadjha, although at later stages in the eruption, subsidence and ignimbrite production may have been concurrent.

Although of large magnitude  $(10^2 \text{ km}^3)$  and probably high intensity  $(10^5 \text{ m}^3/\text{s})$ , the eruption was of subdued violence. In particular, the combination of large magnitude and low violence appears to have been significant in determining the style of eruption and hence the character of the resulting pyroclastic flows and their deposits. No modern analogues for the Dundee Rhyodacite ignimbrite are known, but there are lithologically similar crystal-rich Cainozoic ignimbrites of comparable magnitude and in intracaldera settings.

Crystal rich ignimbrites are evidently uncommon in the Tertiary volcanic fields of the western United States (Smith, 1979). Smith (1979) interpreted this circumstance to be a reflection of the "maximum viscosity barrier" operating in the source magmas. That is, 40 to 50 percent crystals in magmas could be a limiting condition for their capacity to produce an ignimbrite eruption (Smith, 1979). The Dundee Rhyodacite magma<sup>-</sup> was certainly close to this limit when erupted. Although silicic magmas which are substantially crystallised in many cases erupt to form atypical, high-aspect ratio ignimbrites exemplified by the Dundee Rhyodacite, they also supply eruptions that generate low-aspect ratio outflow sheets. Thus, it would seem that eruption style cannot be predicted solely on the basis of the properties of the porphyritic magma.

The causes of the character of the Normal facies ignimbrite of the Dundee Rhyodacite in the Coombadjha Volcanic Complex prevailed from the outset of its emplacement, when there was no caldera in existence at Coombadjha (Chapter 6). Although an intracaldera emplacement setting is a likely coincidence for voluminous, high-aspect ratio ignimbrites, the setting alone does not fully account for the contrasts these ignimbrites show with typical outflow sheets. This is also evident from cases where outflow ignimbrite is found ponded in unrelated calderas and yet remains distinguishable from the genuine, characteristically texturally homogeneous, high -aspect ratio intracaldera ignimbrites. Again, the eruption style is implicated as the primary determinant of the character of the Normal facies ignimbrite although style may have been influenced by processes attendant on cauldron formation, and by special properties of the crystal-rich magma, in a manner which is as yet unclear.

#### CHAPTER 9

#### SYNTHESIS AND SUMMARY

The first part of this synthesis attempts to integrate some of the separate threads of the foregoing chapters by focussing on the causes of facies diversity in the products of volcanic activity which was generally silicic in character and continental in setting. The discussion deals in turn with the control exerted by the circumstances of eruption (setting, style, magnitude), and the influence of proximity of sites of emplacement to the eruptive sources.

The second part summarises the main conclusions regarding the palaeogeographic setting of late Palaeozoic silicic volcanism in the southern portion of the New England Orogen.

#### VOLCANOLOGY

#### CIRCUMSTANCES OF ERUPTION

#### The role of external water

Ignimbrite members of the Currabubula Formation provide a clear illustration of contrasts in facies as functions of the involvement of external water. All the members were produced by explosive rhyolitic eruptions of similar magnitude (about 100 km<sup>3</sup> in volume) and were emplaced in much the same environment (braidplain). With one exception, the ignimbrite members display the 'normal' patterns of flow unit stratigraphy, systematic welding zonation and lateral and vertical changes in texture (*cf.* Smith, 1960a,b; Ross and Smith, 1961; Sparks *et al.*, 1973). The exception is the Cana Creek Tuff. The departure of this Member from the norm can be fully and effectively accounted for by the inference that external water was involved in its eruption and emplacement. Several features attest to the hydrovolcanic origin of the Cana Creek Tuff.

i. This member comprises a close association of primary pyroclastic facies (ignimbrite and ash-fall tuff) and compositionally equivalent, redeposited volcaniclastic facies (crystal-rich sandstone, pumiceous conglomerate).

ii. The ignimbrite of the pyroclastic facies is uniformly low-grade and relatively fine in grain size.

iii. Accretionary lapilli are present in the ignimbrite and in fine grained ash-fall tuff of the pyroclastic facies.

iv. The member is widely distributed and the internal arrangement of primary pyroclastic and redeposited volcaniclastic facies is complex.

v. Flood and debris flow deposits predominate in the volcaniclastic facies.

The Cana Creek Tuff shows vertical and lateral variations in proportions of primary and redeposited facies which may have been controlled by fluctuations in the water:magma mass ratio at the vent during the eruption, and by increases in condensation of steam with distance from the source.

## Eruption style, mobility of pyroclastic flows and aspect ratio of ignimbrites

In reviewing studies of Cainozoic ignimbrites, Wilson and Walker (1981) demonstrated the importance of the style of an explosive eruption (especially its violence) in controlling the behaviour of the pyroclastic flows generated and hence also the nature of their deposits. A Palaeozoic illustration of this relationship has been inferred by comparing the character and distribution of the outflow ignimbrite sheets of the Currabubula Formation with the Dundee Rhyodacite of the Coombadjha Volcanic Complex. Each of the ignimbrite members of the Currabubula Formation is essentially similar in volume (100 km<sup>3</sup>) and composition (high K<sub>2</sub>O, silicic, calc-alkaline) to the Dundee Rhyodacite.

The ignimbrites of the Currabubula Formation are considered to be the deposits from adequately fluidised pyroclastic flows that had moderate to high velocities inherited from collapse of a vertical eruption column. Supporting evidence is as follows:

i. The ignimbrites have sheet-like geometry with low to moderate aspect ratios.

ii. Lateral and vertical variations in grain size are well developed and systematic, and flow units are in general clearly defined. iii. Both welded and non-welded ignimbrites are present, as well as a number of instances of regular welding zonation within a single member.

This style of eruption is also responsible for additional features either not recognised or not established in the Currabubula Formation, such as enrichment of crystals in the ignimbrite relative to magmatic proportions, and the presence of a pumice- or ash-fall layer beneath the ignimbrite that records a prior stage of the same eruption.

The mobility of pyroclastic flows so formed commonly results in emplacement at sites at least several kilometres from the source in settings which are not affected by any collapse events accompanying eruption. By contrast, the Dundee Rhyodacite of the Coombadjha Volcanic Complex was deposited by slow-moving, poorly fluidised, topographically controlled pyroclastic flows generated by sustained collapse of an eruption fountain of comparatively low height. Such an origin is in accord with:

i. the high aspect ratio of the ignimbrite;

ii. lateral and vertical textural homogeneity of the ignimbrite;

iii. uniformly dense welding and pervasive recrystallisation of formerly glassy pumiceous components of the ignimbrite;

iv. slight enrichment of crystal fragments in the ignimbrite over magmatic proportions, as indicated by relic pumice;

v. the absence of a precursor pumice- or ash-fall layer beneath the ignimbrite;

vi. confinement of the ignimbrite to the vicinity of the eruptive source, the subsidence of which may have restricted flow mobility and contributed to the high aspect ratio.

## The influence of magnitude and magma composition on hydrovolcanic facies

The two instances of Palaeozoic hydrovolcanism had disparate eruption magnitudes and they also differed slightly in composition. The Cana Creek Tuff involved a large magnitude rhyolitic hydrovolcanic eruption whereas the volcaniclastic facies of the Hianana Volcanics (Coombadjha Volcanic Complex) is the product of a small magnitude event of dacitic composition. The former generated an extensive sheet of ignimbrite, ash-fall tuff and redeposited volcaniclastic facies in which lateral variations are gradual over distances of several to tens of kilometres. The latter built a tuff ring of well-bedded surge facies closely confined to the vicinity of the vent, encircled by more widespread though thin airfall ash.

Vesiculated pumiceous pyroclasts are minor in the dacitic Hianana tuff ring deposits, but are the dominant component of the rhyolitic Cana Creek Tuff. It is inferred that vesiculation prior to magma-water interaction had reached a more advanced stage for the Cana Creek Tuff eruption than for the Hianana episode, and may be a reflection of the differences in magma compositions, especially SiO<sub>2</sub> and volatile contents, involved in each case (*cf.* Sparks, 1978b).

#### Lava-dominated ignimbrite centres and cauldrons

The Boggabri Volcanics and Coombadjha cauldron preserve the most proximal environments related to ignimbrite centres encountered in the course of this study. The Boggabri Volcanics are composed of large volumes of silicic lava and display no evidence of any collapse structure associated with the eruption of ignimbrites. Thus the Boggabri Volcanics exemplify an ignimbrite centre with constructional relief imparted by the lava pile that caps the pyroclastic apron, similar to the clusters of lava domes marking some of the ignimbrite centres of the Andes (e.g. Cerro Panizos, Baker, 1981).

Identification of the Coombadjha cauldron as an ignimbrite eruptive centre is based on the presence of thick, high-aspect ratio ignimbrite within a genetically related, large-scale subsidence structure that is encircled by a ring pluton. The Coombadjha cauldron is dissimilar in constitution and structure to the Boggabri ignimbrite centre, perhaps as a result of differences in the relative importance of effusive as against explosive eruption styles, and in the magnitude of eruptions in relation to the supply of magma.

#### PROXIMITY TO SOURCE

The Currabubula Formation and the Coombadjha Volcanic Complex each record the activity of ignimbrite-dominated silicic volcanic centres. Given that the style, scale and composition were comparable, the contrasts between these two sequences demonstrate the importance of proximity to eruptive centres as a control on the preserved lithofacies.

Medial to distal settings (more than several kilometres from the source volcanic centres), represented by the Currabubula Formation, display the following characteristics:

i. Primary volcanic units are principally outflow ignimbrites with overall sheet-like geometries.

ii. Ignimbrite sheets are separated by epiclastic facies (e.g. braidplain conglomerate in the Currabubula Formation). The proportion of epiclastic facies relative to ignimbrites increases with distance from eruptive sources.

iii. Because erosion is active at the depositional site, the stratigraphic record is biased in favour of voluminous and welded ignimbrites.

iv. The potential for overlap of ignimbrites produced at approximately the same time from nearby volcanic centres is low and diminishes with increasing distances from source.

In addition, the ignimbrites lack proximal facies indicators (e.g. co-ignimbrite breccias, coarse grained ground layers, lithic clasts larger than lapilli). Vent-produced pyroclastic surge deposits are absent, as are lavas and welded airfall tuffs. The ignimbrite-conglomerate stack accumulated beyond the influence of any collapse or intrusive events marking the eruption site.

The volcanic units emplaced in the Coombadjha area prior to formation of the Coombadjha cauldron constitute a proximal (extra-caldera) volcanic pile. Important identifying features are listed below.

i. Primary volcanic units are diverse. In addition to ignimbrites, lavas, block and ash flow deposits and pyroclastic surge deposits are present.

ii. The proportion of epiclastic and reworked pyroclastic facies is minor. Volcaniclastic deposits are principally breccias related to the ignimbrites or to the lavas and are of local or irregular extent.

iii. Ignimbrites may display pronounced changes in thickness over short distances reflecting the constructional relief of the site of emplacement.

iv. The stratigraphic pile incorporates ignimbrites from different volcanic centres because there is no filtering of the smaller volume or

less extensive ignimbrites from the record.

v. Small-scale subsidiary volcanic centres are present (e.g. Hianana tuff ring, Babepercy lava dome).

#### PALAEOGEOGRAPHY

The regional setting of the Late Carboniferous explosive rhyolitic volcanism was that of a continental margin volcanic arc lining the edge of the Lachlan Fold Belt and accompanied to the east by a subaerial arc flank and submarine subduction complex (Leitch, 1975; Day  $et \ a^{\uparrow}$ ., 1978; Fergusson, 1982,1984a). The arc flank record (Currabubula Formation and equivalents) spans some 30 Ma of volcanogenic, braidplain gravel sedimentation interrupted by emplacement of ignimbrite sheets and glacial advances. Using an analogous section of the modern Andean arc as a quide, the Late Carboniferous volcanic terrain was most probably composed of stratovolcano mountains and ignimbrite centres (calderas and shields), the highest parts of which were intermittently clad by glaciers. The interplay between contemporaneous volcanic activity, glaciation and uplift of the volcanic terrain is inferred to have controlled the lithofacies constitution of the Late Carboniferous arc flank sequence, and produced the large and small scale disconformities within it. The compositions of the Late Carboniferous ignimbrites (high K<sub>2</sub>O calc-alkaline rhyolites) are compatible with their sources having been within thick continental crust.

A similar tectonic and palaeogeographic configuration persisted into the Early Permian, at least for the limited section of the New England Orogen studied. Successions traditionally regarded as Late Carboniferous (*Rhacopteris*-bearing, e.g. the Currabubula Formation) and Early Permian (*Glossopteris*-bearing, e.g. the Temi Formation) have essentially conformable relationships and comprise generally similar lithofacies. Explosive volcanism continued but was accompanied by effusion of silicic lavas in proximity to the eruptive centres (e.g. at Boggabri) prior to final extinction of activity later in the Early Permian.

The cessation of major silicic volcanism from the Early Permian to the Late Permian in the southern part of the New England Orogen coincides with an interval during which the convergent, subduction-related tectonic configuration altered to a dextral, transcurrent regime involving the eastern edge of the entire Orogen (Murray and Whitaker, 1982). The older subduction complex of the southern part of the Orogen was deformed into a megafold and former deep marine environments were supplanted by shallow marine and continental settings. The latter prevailed at the resumption of widespread silicic volcanic activity in the Late Permian (Flood and Fergusson, 1982,1984).

The tectonic significance of the Late Permian silicic magmatism is uncertain and cannot be resolved solely on the basis of the character of the volcanic sequence. Such ignimbrite-dominated, high K<sub>2</sub>O, silicic, calc-alkaline volcanism indicates little else than the presence of thick continental crust. Other workers have suggested that the Late Permian igneous activity represents the culmination of regional orogenesis essentially related to (but post-dating) the prior subduction-controlled regime (Leitch, 1975; Crook, 1980a), a response to circumstances operating in an entirely new transcurrent configuration (Flood and Fergusson, 1984), or the inception of subduction and convergence at a more easterly site (Shaw and Flood, 1981).

Though subordinate, basic igneous rocks are a typical accompaniment to the high-SiO<sub>2</sub>, rhyolitic ignimbrites of extensional settings within continents (e.g. the western United States during the late Cainozoic; Christiansen and Lipman, 1972; Elston and Bornhorst, 1979; Hildreth, 1981), and andesitic volcanic rocks appear to be a characteristic component of magmatic arcs related to subduction (Coulon and Thorpe, 1981; Ewart, 1982; e.g. present day Andes, Thorpe *et al.*, 1982). As presently known, the Late Permian volcanics of New England do not closely match either of these settings because basalts are absent and andesitic extrusives are uncommon.

On a more local scale, it can be argued that the Coombadjha Volcanic Complex occupied an extensional setting : it is located on the limb of the megafold, offset by dextral movement on the Demon Fault and elliptical in plan, with the major axis parallel to the direction of extension implied by both the older megafold and the younger strike-slip fault (Fig. 9.1).



Figure 9.1: Schematic illustration of the setting of the Coombadjha Volcanic Complex in relation to the adjacent major structures, the Texas-Coffs Harbour megafold (Flood and Fergusson, 1982) and the Demon Fault System.

## REFERENCES

- Andrews, E.C. 1905. The geology of the New England plateau with special reference to the granites of northern New England, Parts II and III. Records Geol. Surv. N.S.W. 8:108-152.
- Andrews, E.C., Mingaye, J.C.H. and Card, G.W. 1907. The geology of the New England plateau, with special reference to the granites of northern New England, Part IV. Records Geol. Surv. N.S.W. 8: 196-238.
- Archbold, N.W. 1982. Correlation of the Early Permian faunas of Gondwana: implications for the Gondwanan Carboniferous-Permian boundary. J. geol. Soc. Aust. 29:267-276.
- Bailey, R.A., Dalrymple, G.B. and Lanphere, M.A. 1976. Volcanism, structure and geochronology of Long Valley caldera, Mono County, California. J. geophys. Res. 81:725-744.
- Baker, M.C.W. 1977. Geochronology of upper Tertiary volcanic activity in the Andes of north Chile. Geol. Rdsch. 66:455-465.
- Baker, M.C.W. 1981. The nature and distribution of Upper Cenozoic ignimbrite centres in the Central Andes. J. Volcanol. Geotherm. Res. 11:293-315.
- Baker, M.C.W. and Francis, P.W. 1978. Upper Cenozoic volcanism in the Central Andes - ages and volumes. Earth Planet. Sci. Lett. 41:175-187.
- Barazangi, M. and Isacks, B.L. 1976. Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America. Geology 4:686-692.
- Beanland, S. 1982. The Rotokawau Basalt. In: B.F. Houghton and I.E.M. Smith (Editors), New Zealand Volcanological Workshop, Handbook and Proceedings, 17 pp.
- Beckett, J., Hamilton, D.S. and Weber, C.R. 1983. Permian and Triassic stratigraphy and sedimentation in the Gunnedah-Narrabri-Coonabarabran region. N.S.W. Geol. Surv., Q. Notes 51:1-16.
- Bembrick, C., Herbert, C., Scheibner, E. and Stunz, J. 1980. Structural subdivision of the Sydney Basin. In: C. Herbert and R. Helby (Editors), A Guide to the Sydney Basin. Bull. geol. Surv. N.S.W. 26:2-9.
- Bennett, F.D. 1972. Shallow submarine volcanism. J. geophys. Res. 77:5755-5759.
- Benson, W.N. 1920. The geology and petrology of the Great Serpentine Belt of New South Wales. Part IX. The geology of the Currabubula district. Proc. Linn. Soc. N.S.W. 45:285-317.
- Blank, H.R. 1965. Ash-flow deposits of the central King County, New Zealand. N.Z. Jl. Geol. Geophys. 8:588-607.

- Brazier, S., Sparks, R.S.J., Carey, S.N., Sigurdsson, H. and Westgate, J.A. 1983. Bimodal grain size distribution and secondary thickening in air-fall ash layers. Nature 301:115-119.
- Briggs, N.D. 1976. Welding and crystallisation zonation in Whakamaru Ignimbrite, Central North Island, New Zealand. N.Z. Jl. Geol. Geophys. 19:189-212.
- Brownlow, J.W. 1979. Discussion: the Reids Mistake Formation at Swansea Heads, New South Wales. J. geol. Soc. Aust. 26:319-322.
- Brownlow, J.W. 1981. Early Permian sediments in the Maules Creek district, New South Wales. Geol. Soc. Aust., Coal Geology Group, Journal, 2:125-160.
- Brunker, R.L. and Chesnut, W.S. 1976. Grafton 1:250,000 Geological Sheet. Geol. Surv. N.S.W., Sydney.
- Butel, D., McLean, A. and Millar, A. 1983. Maules Creek an interesting deposit. In: K.H.R. Moelle (Editor), Advances in the Study of the Sydney Basin, 17th Symposium, Programme and Abstracts. Newcastle University, N.S.W. pp. 34-35.
- Byers, F.M., Carr, W.J., Orkild, P.P., Quinlivan, W.D. and Sargent, K.A. 1976. Volcanic suites and related cauldrons of Timber Mountain-Oasis Valley caldera complex, southern Nevada. Prof. Pap. U.S. geol. Surv. 919.
- Cant, D.J. 1982. Fluvial facies models and their application. In: P.A. Scholle and D. Spearing (Editors), Sandstone Depositional Environments. AAPG, Oklahoma, pp. 115-137.
- Carey, S.N. and Sigurdsson, H. 1980. The Roseau ash: deep-sea tephra deposits from a major eruption on Dominica, Lesser Antilles arc. J. Volcanol. Geotherm. Res. 7:67-86.
- Carey, S.W. 1934. The geological structure of the Werrie Basin. Proc. Linn. Soc. N.S.W. 59:351-374.
- Carey, S.W. 1935. Note on the Permian sequence in the Werrie Basin. Proc. Linn. Soc. N.S.W. 60:447-456.
- Carey, S.W. 1937. The Carboniferous sequence in the Werrie Basin. Proc. Linn. Soc. N.S.W. 62:341-376.
- Carey, S.W. and Browne, W.R. 1938. Review of the Carboniferous stratigraphy, tectonics and palaeogeography of New South Wales and Queensland. J. Proc. R. Soc. N.S.W. 71:591-614.
- Cas, R.A.F. 1983. Submarine 'crystal tuffs': their origin using a Lower Devonian example from southeastern Australia. Geol. Mag. 120:471-486.

- Cawood, P.A. 1982. Structural relations in the subduction complex of the Paleozoic New England Fold Belt, eastern Australia. J. Geol. 90:381-392.
- Chapin, C.E. and Lowell, G.R. 1979. Primary and secondary flow structures in ash-flow tuffs of the Gribbles Run palaeovalley, central Colorado. In: C.E. Chapin and W.E. Elston (Editors), Ash-flow Tuffs. Spec. Pap. geol. Soc. Am. 180:137-154.
- Chong, G. 1977. Contribution to the knowledge of the Domeyko Range in the Andes of Northern Chile. Geol. Rdsch. 66:374-403.
- Christiansen, R.L. 1979. Cooling units and composite sheets in relation to caldera structure. In: C.E. Chapin and W.E. Elston (Editors), Ash-flow Tuffs. Spec. Pap. geol. Soc. Am. 180:29-42.
- Christiansen, R.L. and Lipman, P.W. 1966. Emplacement and thermal history of a rhyolite lava flow near Fortymile Canyon, southern Nevada. Bull. geol. Soc. Am. 77:671-684.
- Christiansen, R.L. and Blank, H.R. 1972. Volcanic stratigraphy of the Quaternary rhyolite plateau in Yellowstone National Park. Prof. Pap. U.S. geol. Surv. 729-B.
- Christiansen, R.L. and Lipman, P.W. 1972. Cenozoic volcanism and platetectonic evolution of the western United States. II. Late Cenozoic. Philos. Trans. R. Soc. Lond. 271:249-284.
- Christiansen, R.L., Lipman, P.W., Carr, W.J., Byers, F.M., Orkild, P.P. and Sargent, K.A. 1977. Timber Mountain-Oasis Valley caldera complex of southern Nevada. Bull. geol. Soc. Am. 88:943-959.
- Clark, A.H., Mayer, A.E.S., Mortimer, C., Sillitoe, R.H., Cooke, R.U. and Snelling, N.J. 1967. Implications of the isotopic ages of ignimbrite flows, southern Atacama Desert, Chile. Nature 215:723-724.
- Clough, B.J., Wright, J.V. and Walker, G.P.L. 1981. An unusual bed of giant pumice in Mexico. Nature 289:49-50.
- Clough, B.J., Wright, J.V. and Walker, G.P.L. 1982. Morphology and dimensions of the young comendite lavas of La Primavera volcano, Mexico. Geol. Mag. 119:477-485.
- Cole, J.W. 1970. Structure and eruptive history of the Tarawera Volcanic Complex. N.Z. Jl. Geol. Geophys. 13:879-902.
- Colgate, S.A. and Sigurgeirsson, T. 1973. Dynamic mixing of water and lava. Nature 244:552-555.
- Collinson, J.D. 1978a. Alluvial sediments. In: H.G. Reading (Editor), Sedimentary Environments and Facies. Blackwell Scientific Publications, pp. 15-60.
- Collinson, J.D. 1978b. Lakes. In: H.G. Reading (Editor), Sedimentary Environments and Facies. Blackwell Scientific Publications, pp. 61-79.

- Collinson, J.D. 1978c. Deserts. In: H.G. Reading (Editor), Sedimentary Environments and Facies. Blackwell Scientific Publications, pp. 80-97.
- Collinson, J.D. and Thompson, D.B. 1982. Sedimentary Structures. George Allen and Unwin, London, 194 pp.
- Conaghan, P.J., Jones, J.G., McDonnell, K.L. and Royce, K. 1982. A dynamic fluvial model for the Sydney Basin. J. geol. Soc. Aust. 29:55-70.
- Coulon, C. and Thorpe, R.S. 1981. Role of continental crust in petrogenesis of orogenic volcanic associations. Tectonophys. 77:79-93.
- Crandell, D.R. 1971. Postglacial lahars from Mount Rainier Volcano, Washington. Prof. Pap. U.S. geol. Surv. 677.
- Crane, D.T. and Hunt, J.W. 1980. The Carboniferous sequence in the Gloucester-Myall Lake area New South Wales. J. geol. Soc. Aust. 26:341-352.
- Crisci, G.M., De Rosa, R., Lanzafame, G., Mazzuoli, R., Sheridan, M.F. and Zuffa, G.G. 1981. Monte Guardia sequence: a Late-Pleistocene eruptive cycle on Lipari (Italy). Bull. Volcanol. 44:241-255.
- Crook, K.A.W. 1980a. Fore-arc evolution and continental growth: a general model. J. Struct. Geol. 2:289-303.
- Crook, K.A.W. 1980b. Fore-arc evolution in the Tasman Geosyncline: the origin of the southeast Australian continental crust. J. geol. Soc. Aust. 27:215-232.
- Crook, K.A.W. and Powell, C.McA. 1976. The evolution of the southeastern part of the Tasman Geosyncline. 25th Int. geol. Congr., Field Guide, Excursion 17A.
- Crowe, B.M. and Fisher, R.V. 1973. Sedimentary structures in basesurge deposits with special reference to cross-bedding, Ubehebe Craters, Death Valley, California. Bull. geol. Soc. Am. 84:663-682.
- Crowell, J.C. and Frakes, L.A. 1971a. Late Palaeozoic glaciation of Australia. J. geol. Soc. Aust. 17:115-155.
- Crowell, J.C. and Frakes, L.A. 1971b. Late Palaeozoic glaciation: part IV, Australia. Bull. geol. Soc. Am. 82:2515-2540.
- Cuddy, R.G. 1978. Internal structures and tectonic setting of part of the New England Batholith and associated volcanic rocks, northern New South Wales. Unpub. Ph.D. Thesis, University of New England, Armidale.
- Curtis, G.H. 1968. The stratigraphy of the ejecta from the 1912 eruption of Mount Katmai and Novarupta, Alaska. In: R.R. Coats and others (Editors), Studies in Volcanology. Mem. geol. Soc. Am. 116:153-210.

- Davies, D.K., Vessell, R.K., Miles, R.C., Foley, M.G. and Bonis, S.B. 1978. Fluvial transport and downstream sediment modifications in an active volcanic region. In: A.D. Miall (Editor), Fluvial Sedimentology. Canadian Society of Petroleum Geologists, Alberta, Canada, pp. 61-84.
- Day, R.W., Murray, C.G. and Whitaker, W.G. 1978. The eastern part of the Tasman Orogenic Zone. Tectonophys. 48:327-364.
- Deal, E.G., Elston, W.E., Erb, E.E., Peterson, S.L., Reiter, D.E., Damon, P.E. and Shafiqullah, M. 1978. Cenozoic volcanic geology of the Basin and Range province in Hidalgo County, southwesternmost New Mexico: progress report no. 1. New Mex. geol. Soc., Guidebook of Land of Cochise, 29th Field Conference, pp. 219-229.
- Deruelle, B. 1978. Calc-alkaline and shoshonitic lavas from five Andean volcanoes (between latitudes 21°45' and 24°30'S) and the distribution of the Plio-Quaternary volcanism of the south-central and southern Andes. J. Volcanol. Geotherm. Res. 3:281-298.
- Deruelle, B. 1982. Petrology of the Plio-Quaternary volcanism of the South-Central and Meridional Andes. J. Volcanol. Geotherm. Res. 14:77-124.
- Dickinson, W.R. 1970. Relations of andesites, granites and derivative sandstones to arc-trench tectonics. Rev. Geophysics Space Physics 8:813-860.
- Dickinson, W.R. and Seely, D.R. 1979. Structure and stratigraphy of forearc regions. Bull. AAPG 63:2-31.
- Dingman, R.J. 1965. Pliocene age of the ash-flow deposits of the San Pedro area, Chile. Prof. Pap. U.S. geol. Surv. 525-C:63-67.
- Doell, R.R., Dalrymple, G.B., Smith, R.L. and Bailey, R.A. 1968. Paleomagnetism, potassium-argon ages, and geology of rhyolites and associated rocks of the Valles caldera, New Mexico. In: R.R. Coats and others (Editors), Studies in Volcanology. Mem. geol. Soc. Am. 116:211-248.
- Druitt, T.H. and Sparks, R.S.J. 1982. A proximal ignimbrite breccia facies on Santorini, Greece. J. Volcanol. Geotherm. Res. 13:147-171.
- Eaton, G.P., Christiansen, R.L., Iyer, H.M., Pitt, A.M., Mabey, D.R., Blank, H.R., Zietz, I. and Gettings, M.E. 1975. Magma beneath Yellowstone National Park. Science 188:787-796.
- Ekren, E.B. and Byers, F.M. 1976. Ash-flow fissure vent in westcentral Nevada. Geology 4:247-251.
- Elston, W.E. 1978. Mid-Tertiary cauldrons and their relationship to mineral resources, southwestern New Mexico: a brief review. In: C.E. Chapin and W.E. Elston (Editors), Field Guide to Selected Cauldrons and Mining Districts of the Datil-Mogollon Volcanic Field New Mexico. New Mex. geol. Soc., Spec. Publ. 7:107-113.

- Elston, W.E. 1984. Mid-Tertiary ash-flow tuff cauldrons, southwestern New Mexico. J. geophys. Res. in press.
- Elston, W.E. and Bornhorst, T.J. 1979. The Rio Grande rift in context of regional post-40 M.Y. volcanic and tectonic events. In: R.E. Riecker (Editor), Rio Grande Rift: Tectonics and Magmatism. American Geophysical Union, pp. 416-438.
- Elston, W.E., Rhodes, R.C., Coney, P.J. and Deal, E.G. 1976. Progress report on the Mogollon Plateau volcanic field, southwestern New Mexico, no. 3 - Surface expression of a pluton. In: W.E. Elston and S.A. Northrop (Editors), Cenozoic Volcanism in Southwestern New Mexico. New Mex. geol. Soc., Spec. Publ. 5:3-28.
- Evernden, J.F. and Richards, J.R. 1962. Potassium-argon ages in eastern Australia. J. geol. Soc. Aust. 9:1-50.
- Ewart, A. 1979. A review of the mineralogy and chemistry of Tertiary-Recent dacitic, latitic, rhyolitic, and related salic volcanic rocks. In: F. Barker (Editor), Trondhjemites, Dacites and Related Rocks. Elsevier, Amsterdam, pp. 13-121.
- Ewart, A. 1982. The mineralogy and petrology of Tertiary-Recent orogenic volcanic rocks: with special reference to the andesitic-basaltic compositional range. In: R.S. Thorpe (Editor), Andesites. John Wiley and Sons, pp. 25-87.
- Ewart, A. and Le Maitre, R.W. 1980. Some regional compositional differences within Tertiary-Recent orogenic magmas. Chem. Geol. 30:257-283.
- Exon, N.F. 1974. The geological evolution of the southern Taroom Trough and the overlying Surat Basin. J. Aust. Pet. Explor. Assoc. 14:50-58.
- Facer, R.A. 1978. New and recalculated radiometric data supporting a Carboniferous age for the emplacement of the Bathurst Batholith, New South Wales. J. geol. Soc. Aust. 25:429-432.
- Fenner, C.N. 1948. Incandescent tuff flows in southern Peru. Bull. geol. Soc. Am. 59:879-893.
- Fergusson, C.L. 1982. An ancient accretionary terrain in eastern New England - evidence from the Coffs Harbour Block. In: P.G. Flood and B. Runnegar (Editors), New England Geology. Department of Geology, University of New England and AHV Club, Armidale, pp. 63-70.
- Fergusson, C.L. 1984a. The Gundahl Complex of the New England Fold Belt, eastern Australia: a tectonic mélange formed in a Palaeozoic subduction complex. J. Struct. Geol. 6:257-271.
- Fergusson, C.L. 1984b. Tectono-stratigraphy of a Palaeozoic subduction complex in the central Coffs Harbour Block of north-eastern New South Wales. Aust. J. Earth Sciences 31:217-236.

- Fink, J.H. 1980b. Gravity instability in the Holocene Big and Little Glass Mountain rhyolitic obsidian flows, northern California. Tectonophys. 66:147-166.
- Fink, J.H. 1983. Structure and emplacement of a rhyolitic obsidian flow: Little Glass Mountain, Medicine Lake Highland, northern California. Bull. geol. Soc. Am. 94:362-380.
- Fink, J.H. and Pollard, D.D. 1983. Structural evidence for dikes beneath silicic domes, Medicine Lake Highland volcano, California. Geology 11:458-461.
- Fisher, R.V. 1961. Proposed classification of volcaniclastic sediments and rocks. Bull. geol. Soc. Am. 72:1409-1414.
- Fisher, R.V. 1964. Maximum size, median diameter and sorting of tephra. J. geophys. Res. 69:341-355.
- Fisher, R.V. 1977. Erosion by volcanic base-surge density currents: U-shaped channels. Bull. geol. Soc. Am. 88:1287-1297.
- Fisher, R.V. 1979. Models for pyroclastic surges and pyroclastic flows. J. Volcanol. Geotherm. Res. 6:305-318.
- Fisher, R.V. and Waters, A.C. 1970. Base surge bed forms in maar volcanoes. Am. J. Sci. 268:157-180.
- Flood, P.G. and Fergusson, C.L. 1982. Tectono-stratigraphic units and structure of the Texas-Coffs Harbour region. In: P.G. Flood and B. Runnegar (Editors), New England Geology. Department of Geology, University of New England and AHV Club, pp. 71-78.
- Flood, P.G. and Fergusson, C.L. 1984. The geological development of the northern New England Province of the New England Fold Belt. In: H.K. Herbert and J.M.W. Rynn (Editors), Volcanics, Granites and Mineralisation of the Stanthorpe-Emmaville-Drake Region. Geol. Soc. Aust., Queensl. Div. pp. 1-19.
- Flood, R.H., Vernon, R.H., Shaw, S.E. and Chappell, B.W. 1977. Origin of pyroxene-plagioclase aggregates in a rhyodacite. Contr. Mineral. Petrol. 60:299-309.
- Francis, P.W. and Rundle, C.C. 1976. Rates of production of the main magma types in the central Andes. Bull. geol. Soc. Am. 87:474-480.
- Francis, P.W. and Baker, M.C.W. 1977. Mobility of pyroclastic flows. Nature 270:164-165.
- Francis, P.W. and Baker, M.C.W. 1978. Sources of two large ignimbrites in the Central Andes: some LANDSAT evidence. J. Volcanol. Geotherm. Res. 4:81-87.

- Francis, P.W., Roobol, M.J. and Walker, G.P.L. 1974. The San Pedro and San Pablo volcanoes of northern Chile and their hot avalanche deposits. Geol. Rdsch. 63:357-388.
- Francis, P.W., Moorbath, S. and Thorpe, R.S. 1977. Strontium isotope data for Recent andesites in Ecuador and North Chile. Earth Planet. Sci. Lett. 37:197-202.
- Francis, P.W., Halls, C. and Baker, M.C.W. 1983. Relationships between mineralization and silicic volcanism in the Central Andes. J. Volcanol. Geotherm. Res. 18:165-190.
- Francis, P.W., Hammill, M., Kretzschmar, G. and Thorpe, R.S. 1978. The Cerro Galan caldera, north-west Argentina and its tectonic setting. Nature 274:749-751.
- Fransen, P.J.B. and Briggs, R.M. 1981. Ignimbrites at Karapiro-Putaruru. In: R.M. Briggs (Compiler), Field Excursions Guide Book, Hamilton Conference. Geological Society of New Zealand Inc., pp. 29-34.
- Froggatt, P.C. 1981. Stratigraphy and nature of the Taupo Pumice Formation. N.Z. Jl. Geol. Geophys. 24:231-248.
- Gloppen, T.G. and Steel, R.J. 1981. The deposits, internal structure and geometry in six alluvial fan-fan delta bodies (Devonian-Norway) a study in the significance of bedding sequence in conglomerates. In: F.G. Ethridge and R.M. Flores (Editors), Recent and Ancient Nonmarine Depositional Environments: Models for Exploration. SEPM Spec. Publ. 31:49-69.
- Godden, N.L. 1982. The volcanic-plutonic association, Tenterfield region, New South Wales. In: P.G. Flood and B. Runnegar (Editors), New England Geology. Department of Geology, University of New England and AHV Club, pp. 211-219.
- Green, T.H. 1980. Island arc and continent-building magmatism a review of petrogenetic models based on experimental petrology and geochemistry. Tectonophys. 63:367-385.
- Guest, J.E. 1969. Upper Tertiary ignimbrites in the Andean Cordillera of part of the Antofagasta Province, northern Chile. Bull. geol. Soc. Am. 80:337-362.
- Guest, J.E. and Sanchez, J. 1969. A large dacitic lava flow in northern Chile. Bull. Volcanol. 33:778-790.
- Hanlon, F.N. 1947a. Geology of the north-western coalfield. Part I. Geology of the Willow Tree district. J. Proc. R. Soc. N.S.W. 81: 280-286.
- Hanlon, F.N. 1947b. Geology of the north-western coalfield. Part II. Geology of the Willow Tree-Temi district. J. Proc. R. Soc. N.S.W. 81:287-291.
- Hanlon, F.N. 1947c. Geology of the north-western coalfield. Part III. Geology of the Murrurundi-Temi district. J. Proc. R. Soc. N.S.W. 81:292-297.
- Hanlon, F.N. 1948a. Geology of the north-western coalfield. Part IV. Geology of the Gunnedah-Curlewis district. J. Proc. R. Soc. N.S.W. 82:241-250.
- Hanlon, F.N. 1948b. Geology of the north-western coalfield. Part VI. Geology of the south-western part of County Nandewar. J. Proc. R. Soc. N.S.W. 82:255-261.
- Hanlon, F.N. 1949. Geology of the north-western coalfield. Part XIX. Geology of the Boggabri district. J. Proc. R. Soc. N.S.W. 82:297-301.
- Harrington, H.J. 1974. The Tasman geosyncline in Australia. In: A.K. Denmead, G.W. Tweedale and A.F. Wilson (Editors), The Tasman Geosyncline - a Symposium. Geol. Soc. Aust., Queensl. Div. pp. 383-407.
- Harrington, H.J. 1982. Tectonics and the Sydney Basin. In: D.R. Offler (Editor), Advances in the Study of the Sydney Basin, 16th Symposium, Programme and Abstracts. Newcastle University, N.S.W. pp. 15-19.
- Heiken, G.H. 1971. Tuff rings: examples from the Fort Rock-Christmas Lake Valley Basin, south-central Oregon. J. geophys. Res. 76:5615-5626.
- Heiken, G.H. 1972. Morphology and petrography of volcanic ashes. Bull. geol. Soc. Am. 83:1961-1988.
- Heiken, G. and Goff, F. 1983. Hot dry rock geothermal energy in the Jemez volcanic field, New Mexico. J. Volcanol. Geotherm. Res. 15:223-246.
- Heiken, G., Crowe, B., McGetchin, T., West, F., Eichelberger, J., Bartram, D., Peterson, R. and Wohletz, K. 1980. Phreatic eruption clouds: the activity of La Soufrière de Guadeloupe, F.W.I., August-October, 1976. Bull. Volcanol. 43:383-395.
- Herbert, C. 1980. Evidence for glaciation in the Sydney Basin and Tamworth Synclinorial Zone. In: C. Herbert and R. Helby (Editors), A Guide to the Sydney Basin. Bull. geol. Surv. N.S.W. 26:274-293.
- Hildreth, W. 1981. Gradients in silicic magma chambers: implications for lithospheric magmatism. J. geophys. Res. 86:10153-10192.
- Hildreth, W. 1983. The compositionally zoned eruption of 1912 in the Valley of Ten Thousand Smokes, Katmai National Park, Alaska. J. Volcanol. Geotherm. Res. 18:1-56.
- Hildreth, W., Grunder, A.L. and Drake, R.E. 1984. The Loma Seca Tuff and the Calabozos caldera: a major ash-flow and caldera complex in the southern Andes of central Chile. Bull. geol. Soc. Am. 95:45-54.

- Hoblitt, R.P., Miller, C.D. and Vallance, J.W. 1981. Origin and stratigraphy of the deposit produced by the May 18 directed blast. In: P.W. Lipman and D.R. Mullineaux (Editors), The 1980 Eruptions of Mount St. Helens, Washington. Prof. Pap. U.S. geol. Surv. 1250:401-419.
- Hollingworth, S.E. and Guest, J.E. 1967. Pleistocene glaciation in the Atacama Desert, northern Chile. J. Glaciology 6:749-751.
- Hollingworth, S.E. and Rutland, R.W.R. 1968. Studies of Andean uplift Part I - post-Cretaceous evolution of the San Bartolo area, north Chile. Geol. J. 6:49-62.
- Honnorez, J. and Kirst, P. 1975. Submarine basaltic volcanism: morphometric parameters for discriminating hyaloclastites from hyalotuffs. Bull. Volcanol. 39:441-465.
- Houghton, B.F., Scott, F.J., Nairn, I.A. and Wood, C.P. 1983. Cyclic variation in eruption products, White Island Volcano, New Zealand 1976-79 (Note). N.Z. Jl. Geol. Geophys. 26:213-216.
- Hulme, G. 1974. The interpretation of lava flow morphology. Geophys. J. R. astr. Soc. 39:361-383.
- Hume, T.M., Sherwood, A.M. and Nelson, C.S. 1975. Alluvial sedimentology of the Upper Pleistocene Hinuera Formation, Hamilton Basin, New Zealand. N.Z. Jl. Geol. Geophys. 5:421-462.
- Hunt, J.W., Brakel, A.T. and Harrington, H.J. 1983. Coal quality and geological setting in the Early Permian Sydney and Gunnedah Basins.
  In: K.H.R. Moelle (Editor), Advances in the Study of the Sydney Basin, 17th Symposium, Programme and Abstracts. Newcastle University, N.S.W. pp. 36-39.
- Huppert, H.E., Shepherd, J.B., Sigurdsson, H. and Sparks, R.S.J. 1982. On lava dome growth, with application to the 1979 lava extrusion on the Soufrière of St. Vincent. J. Volcanol. Geotherm. Res. 14:199-222.
- Irvine, T.N. and Baragar, W.R.A. 1971. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. 8:523-548.
- Irving, E. 1966. Paleomagnetism of some Carboniferous rocks from New South Wales and its relation to geological events. J. geophys. Res. 71:6025-6051.
- James, D.E. 1971. Plate tectonic model for the evolution of the central Andes. Bull. geol. Soc. Am. 82:3325-3346.
- Janda, R.J., Scott, K.M., Nolan, K.M. and Martinson, H.A. 1981. Lahar movement, effects, and deposits. In: P.W. Lipman and D.R. Mullineaux (Editors), The 1980 Eruptions of Mount St. Helens, Washington. Prof. Pap. U.S. geol. Surv. 1250:461-478.

- Jordan, T.E., Isacks, B.L., Allmendinger, R.W., Brewer, J.A., Ramos, V.A. and Ando, C.J. 1983. Andean tectonics related to geometry of subducted Nazca plate. Bull. geol. Soc. Am. 94:341-361.
- Karig, D.E. and Sharman, G.F. 1975. Subduction and accretion in trenches. Bull. geol. Soc. Am. 86:377-389.
- Katz, H.R. 1971. Continental margin in Chile is tectonic style compressional or extensional? Bull. AAPG 55:1753-1758.
- Kemp, E.M., Balme, B.E., Helby, R.J., Playford, G. and Price, P.L. 1977. Carboniferous and Permian palynostratigraphy in Australia and Antarctica: a review. Bur. Miner. Resour. J. Aust. Geol. Geophys. 2:177-208.
- Kienle, J., Kyle, P.R., Self, S., Motyka, R.J. and Lorenz, V. 1980. Ukinrek Maars, Alaska, I. April 1977 eruption sequence, petrology and tectonic setting. J. Volcanol. Geotherm. Res. 7:11-37.
- Kokelaar, B.P. 1983. The mechanism of Surtseyan volcanism. J. geol. Soc. Lond. 140:939-944.
- Korringa, M.K. 1973. Linear vent area of the Soldier Meadow Tuff, an ash-flow sheet in northwestern Nevada. Bull. geol. Soc. Am. 84:3849-3866.
- Korsch, R.J. 1977. A framework for the Palaeozoic geology of the southern part of the New England Geosyncline. J. geol. Soc. Aust. 25:339-355.
- Korsch, R.J. 1978. Petrographic variations within thick turbidite sequences: an example from the late Palaeozoic of eastern Australia. Sedimentology 25:247-265.
- Korsch, R.J. 1984. Sandstone compositions from the New England Orogen, eastern Australia: implications for tectonic setting. J. sediment. Petrol. 54:192-211.
- Korsch, R.J. and Harrington, H.J. 1981. Stratigraphic and structural synthesis of the New England Orogen. J. geol. Soc. Aust. 28:205-226.
- Korsch, R.J., Archer, N.R. and McConachy, G.W. 1978. The Demon Fault. J. Proc. R. Soc. N.S.W. 111:101-106.
- Kortemeier, C.P. and Sheridan, M.F. 1983. Role of grain type in quantitative surface morphology of pyroclasts from the Monte Guardia sequence on Lipari, Italy. In: R. Gooley (Editor), Microbeam Analysis - 1983. San Francisco Press Inc., San Francisco, pp. 43-46.
- Kuno, H., Ishikawa, T., Katsui, Y., Yagi, K., Yamasaki, M. and Taneda, S. 1964. Sorting of pumice and lithic fragments as a key to eruptive and emplacement mechanism. Jap. J. Geol. Geogr. 35:223-238.

- Kussmaul, S., Hörmann, P.K., Ploskonka, E. and Subieta, T. 1977. Volcanism and structure of southwestern Bolivia. J. Volcanol. Geotherm. Res. 2:73-111.
- Lahsen, A. 1982. Upper Cenozoic volcanism and tectonism in the Andes of northern Chile. Earth Sci. Rev. 18:285-302.
- Ledbetter, M.T. and Sparks, R.S.J. 1979. Duration of large-magnitude explosive eruptions deduced from graded bedding in deep-sea ash layers. Geology 7:240-244.
- Leeman, W.P. 1983. The influence of crustal structure on compositions of subduction-related magmas. J. Volcanol. Geotherm. Res. 18:561-588.
- Leitch, E.C. 1969. Igneous activity and diastrophism in the Permian of New South Wales. Geol. Soc. Aust., Spec. Publ. 2:21-37.
- Leitch, E.C. 1974. The geological development of the southern part of the New England Fold Belt. J. geol. Soc. Aust. 21:133-156.
- Leitch, E.C. 1975. Plate tectonic interpretation of the Paleozoic history of the New England Fold Belt. Bull. geol. Soc. Am. 86:141-144.
- Leitch, E.C. and Willis, S.G.A. 1982. Nature and significance of plutonic clasts in Devonian conglomerates of the New England Fold Belt. J. geol. Soc. Aust. 29:83-89.
- Lindsay, J.F. 1969. The glacial origin of Carboniferous conglomerates west of Barraba, New South Wales: discussion. Bull. geol. Soc. Am. 80:911-914.
- Lipman, P.W. 1975. Evolution of Platoro caldera complex and related volcanic rocks, southeastern San Juan Mountains, Colorado. Prof. Pap. U.S. geol. Surv. 852.
- Lipman, P.W. 1976. Caldera-collapse breccias in the western San Juan Mountains, Colorado. Bull. geol. Soc. Am. 87:1397-1410.
- Lipman, P.W., Steven, T.A., Luedke, R.G. and Burbank, W.S. 1973. Revised volcanic history of the San Juan, Uncompany, Silverton, and Lake City calderas in the western San Juan Mountains, Colorado. J. Res. U.S. geol. Surv. 1:627-642.
- Lipman, P.W., Doe, B.R., Hedge, C.E. and Steven, T.A. 1978. Petrologic evolution of the San Juan volcanic field southwestern Colorado: Pb and Sr isotope evidence. Bull. geol. Soc. Am. 89:59-82.
- Lipman, P.W., Fisher, F.S., Mehnert, H.H., Naeser, C.W., Luedke, R.G. and Steven, T.A. 1976. Multiple ages of mid-Tertiary mineralization and alteration in the western San Juan Mountains, Colorado. Econ. Geol. 71:571-588.
- Loney, R.A. 1968. Flow structure and composition of the Southern Coulee, Mono Craters, California - a pumiceous rhyolite flow. In: R.R. Coats and others (Editors), Studies in Volcanology. Mem. geol. Soc. Am. 116:415-440.

- Lorenz, V. 1970. Some aspects of the eruption mechanism of the Big Hole Maar, central Oregon. Bull. geol. Soc. Am. 81:1823-1830.
- Lorenz, V. 1973. On the formation of maars. Bull. Volcanol. 37:183-204.
- Lorenz, V. 1974. Vesiculated tuffs and associated features. Sedimentology 21:273-291.
- Loughnan, F.C. 1973. Kaolinite clayrocks of the Koogah Formation, New South Wales. J. geol. Soc. Aust. 20:329-341.
- Loughnan, F.C. 1975. Correlatives of the Greta Coal Measures in the Hunter Valley and the Gunnedah Basin, New South Wales. J. geol. Soc. Aust. 22:243-253.
- Lowe, D.R. and Lo Piccolo, R.D. 1974. The characteristics and origins of dish and pillar structures. J. sediment. Petrol. 44:484-501.
- Lowe, S.P. 1971. Stratigraphy of the Willow Tree district, New South Wales. Unpubl. B.Sc. (Hons) Thesis, University of New England, Armidale.
- Luedke, R.G. and Burbank, W.S. 1968. Volcanism and cauldron development in the western San Juan Mountains, Colorado. In: R.R. Coats and others (Editors), Studies in Volcanology. Mem. geol. Soc. Am. 116:175-208.
- Mahood, G.A. 1980. Geological evolution of a Pleistocene rhyolitic center - Sierra La Primavera, Jalisco, Mexico. J. Volcanol. Geotherm. Res. 8:199-230.
- Manser, W. 1965a. Geological Map of New England 1:100 000 Curlewis Sheet (no. 330), with marginal text. University of New England, Armidale, N.S.W., Australia.
- Manser, W. 1965b. Geological Map of New England 1:100 000 Gunnedah Sheet (no. 320), with marginal text. University of New England, Armidale, N.S.W., Australia.
- Manser, W. 1968. Geological Map of New England 1:100 000 Wingen Sheet (no. 359), with marginal text. University of New England, Armidale, N.S.W., Australia.
- Martin, H. 1981. The late Palaeozoic Gondwana glaciation. Geol. Rdsch. 70:480-498.
- McClung, G. 1980. Permian marine sedimentation in the northern Sydney Basin. In: C. Herbert and R. Helby (Editors), A Guide to the Sydney Basin. Bull. geol. Surv. N.S.W. 26:54-72.
- McKee, E.D., Crosby, E.J. and Berryhill, H.L. 1967. Flood deposits, Bijou Creek, Colorado, June 1965. J. sediment. Petrol. 37:829-851.

- McKee, E.H. 1970. Fish Creek Mountains Tuff and volcanic center, Lander County, Nevada. Prof. Pap. U.S. geol. Surv. 681.
- McKee, E.H. 1979. Ash-flow sheets and calderas: their genetic relationship to ore deposits in Nevada. In: C.E. Chapin and W.E. Elston (Editors), Ash-flow Tuffs. Spec. Pap. geol. Soc. Am. 180:205-211.
- McKelvey, B.C. 1968. Geological Map of New England 1:100 000 Bangheet (no. 280), with marginal text. University of New England, Armidale, N.S.W., Australia.
- McKelvey, B.C. 1974. Devonian and Carboniferous sedimentation on the Tamworth Shelf. In: C.G. Murray and B. Runnegar (Editors), Field Conference, New England Area. Geol. Soc. Aust., Queensl. Div. pp. 20-22.
- McKelvey, B.C. and White, A.H. 1964. Geological Map of New England 1:100 000 Horton Sheet (no. 290), with marginal text. University of New England, Armidale, N.S.W., Australia.
- McKelvey, B.C. and Gutsche, H.W. 1969. The geology of some Permian sequences on the New England Tablelands, New South Wales. Geol. Soc. Aust., Spec. Publ. 2:13-20.
- McPhie, J. 1982. The Coombadjha Volcanic Complex: a Late Permian cauldron, northeastern New South Wales. In: P.G. Flood and B. Runnegar (Editors), New England Geology. Department of Geology, University of New England and AHV Club, pp. 221-227.
- McPhie, J. 1983. Outflow ignimbrite sheets from Late Carboniferous calderas, Currabubula Formation, New South Wales, Australia. Geol. Mag. 120:487-503.
- McPhie, J. 1984. Permo-Carboniferous silicic volcanism and palaeogeography on the western edge of the New England Orogen, northeastern New South Wales. Aust. J. Earth Sciences 31:133-146.
- McPhie, J. and Fergusson, C.L. 1983. Dextral movement on the Demon Fault, northeastern New South Wales: a reassessment. J. Proc. R. Soc. N.S.W. 116:123-127.
- Megard, F. and Philip, H. 1976. Plio-Quaternary tectono-magmatic zonation and plate tectonics in the central Andes. Earth Planet. Sci. Lett. 33:231-238.
- Miall, A.D. 1977. A review of the braided-river depositional environment. Earth Sci. Rev. 13:1-62.
- Miall, A.D. 1978. Lithofacies types and vertical profile models in braided river deposits: a summary. In: A.D. Miall (Editor), Fluvial Sedimentology. Canadian Society of Petroleum Geologists, Alberta, Canada, pp. 597-604.

- Moore, D. and Roberts, J. 1976. The Early Carboniferous marine transgression in the Merlewood Formation, Werrie Syncline, New South Wales. J. Proc. R. Soc. N.S.W. 109:49-57.
- Moore, J.G. 1967. Base surge in recent volcanic eruptions. Bull. Volcanol. 30:338-363.
- Moore, J.G. and Peck, D.L. 1962. Accretionary lapilli in volcanic rocks of the western continental United States. J. Geol. 70:182-193.
- Moore, J.G., Nakamura, K. and Alcaraz, A. 1966. The 1965 eruption of Taal Volcano. Science 151:955-960.
- Moore, P.R. 1983. Rhyolite domes and pyroclastic rocks (Whitianga Group) of the Hahei area, Coromandel Peninsula. J.R. Soc. N.Z. 13:79-92.
- Mortimer, C. 1973. The Cenozoic history of the southern Atacama Desert, Chile. J. geol. Soc. Lond. 129:505-526.
- Mortimer, C. and Saric, N. 1975. Cenozoic studies in northernmost Chile. Geol. Rdsch. 64:395-420.
- Mory, A.J. 1981. A review of Early Carboniferous stratigraphy and correlations in the northern Tamworth Belt, New South Wales. Proc. Linn. Soc. N.S.W. 105:213-236.
- Mory, A.J. 1982. The Early Carboniferous palaeogeography of the northern Tamworth Belt, New South Wales. J. geol. Soc. Aust. 29:357-366.
- Murray, C.G. 1983. Permian geology of Queensland. In: Permian Geology of Queensland. Geol. Soc. Aust., Queensl. Div. pp. 1-32.
- Murray, C.G. and Whitaker, W.G. 1982. A review of the stratigraphy, structure and regional tectonic setting of the Brisbane Metamorphics. In: P.G. Flood and B. Runnegar (Editors), New England Geology. Department of Geology, University of New England and AHV Club, pp. 79-94.
- Nairn, I.A. 1976. Atmospheric shock waves and condensation clouds from Ngauruhoe explosive eruptions. Nature 259:190-192.
- Nairn, I.A. 1982. The Okataina Volcanic Centre. In: B.F. Houghton and I.E.M. Smith (Editors), New Zealand Volcanological Workshop, Handbook and Proceedings, pp. 1-16.
- Nairn, I.A. and Wiradiradjha, S. 1980. Late Quaternary hydrothermal explosion breccias at Kawerau geothermal field, New Zealand. Bull. Volcanol. 43:1-13.
- Nasher, B., Engel, B.A. and McKnight, S.W. 1976. Hunter Valley: Carboniferous geology. 25th Int. geol. Congr., Field Guide, Excursion 10B.

- Nathan, S. (Compiler) 1976. Volcanic and geothermal geology of the central North Island, New Zealand. 25th Int. geol. Congr., Field Guide, Excursions 55A and 56A.
- Newhall, C.G. and Self, S. 1982. The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. J. geophys. Res. 87:1231-1238.
- Newhall, C.G. and Melson, W.G. 1983. Explosive activity associated with the growth of volcanic domes. J. Volcanol. Geotherm. Res. 17:111-131.
- Nilsen, T.H. 1982. Alluvial fan deposits. In: P.A. Scholle and D. Spearing (Editors), Sandstone Depositional Environments. AAPG, Oklahoma, pp. 49-86.
- Ninkovich, D., Sparks, R.S.J. and Ledbetter, M.T. 1978. The exceptional magnitude and intensity of the Toba eruption, Sumatra: an example of the use of deep-sea tephra layers as a geological tool. Bull. Volcanol. 41:286-298.
- Noble, D.C., McKee, E.H., Farrar, E. and Petersen, U. 1974. Episodic Cenozoic volcanism and tectonism in the Andes of Peru. Earth Planet. Sci. Lett. 21:213-220.
- Olgers, F., Flood, P.G. and Robertson, A.D. 1974. Palaeozoic geology of the Warwick and Goondiwindi 1:250 000 Sheet areas, Queensland and New South Wales. Bur. Miner. Resour. Geol. Geophys. Aust., Report 164, 109 pp.
- Packham, G.H. 1969. The general features of the geological provinces of New South Wales. In: G.H. Packham (Editor), The Geology of New South Wales. J. geol. Soc. Aust. 16:1-17.
- Palacios, M.C. 1984. Considerations about the plate tectonic model, volcanism and continental crust in the southern part of the Central Andes. Tectonophys. 106:205-214.
- Paskoff, R.P. 1977. Quaternary of Chile: the state of research. Quaternary Research 8:2-31.
- Peccerillo, A. and Taylor, S.R. 1976. Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area, northern Turkey. Contr. Mineral. Petrol. 58:63-81.
- Peckover, R.S., Buchanan, D.J. and Ashby, D.E.T.F. 1973. Fuel-coclant interactions in submarine volcanism. Nature 245:307-308.
- Pichler, H. and Zeil, W. 1972. The Cenozoic rhyolite-andesite association of the Chilean Andes. Bull. Volcanol. 36:424-452.
- Pogson, D.J. and Hitchins, B.L. 1973. New England 1:500,000 Geological Sheet. Geol. Surv. N.S.W., Sydney.

- Pogson, D.J. and Scheibner, E. 1976. Palaeozoic accretion of eastern Australia. 25th Int. geol. Congr., Field Guide, Excursion 16A.
- Powell, C.McA. and Edgecombe, D.R. 1978. Mid-Devonian movements in the northeastern Lachlan Fold Belt. J. geol. Soc. Aust. 25:165-184.
- Powell, C.McA., Edgecombe, D.R., Henry, N.M. and Jones, J.G. 1976. Timing of regional deformation of the Hill End Trough: a reassessment. J. geol. Soc. Aust. 23:407-421.
- Price, I. 1973. A new Permian and Upper Carboniferous (?) succession near Woodsreef, N.S.W., and its bearing on the palaeogeography of western New England. Proc. Linn. Soc. N.S.W. 97:202-210.
- Ragan, D.M. and Sheridan, M.F. 1972. Compaction of the Bishop Tuff, California. Bull. geol. Soc. Am. 83:95-106.
- Ramsay, W.R.H. and Stanley, J.M. 1976. Magnetic anomalies over the western margin of the New England foldbelt, northeast New South Wales. Bull. geol. Soc. Am. 87:1421-1428.
- Ratté, J.C. and Steven, T.A. 1967. Ash flows and related volcanic rocks associated with the Creede caldera, San Juan Mountains, Colorado. Prof. Pap. U.S. geol. Surv. 524-H.
- Rhodes, R.C. 1976a. Volcanic geology of the Mogollon Range and adjacent areas, Catron and Grant Counties, New Mexico. In: W.E. Elston and S.A. Northrop (Editors), Cenozoic Volcanism in Southwestern New Mexico. New Mex. geol. Soc., Spec. Publ. 5:42-50.
- Rhodes, R.C. 1976b. Petrologic framework of the Mogollon Plateau volcanic ring complex, New Mexico - surface expression of a major batholith. In: W.E. Elston and S.A. Northrop (Editors), Cenozoic Volcanism in Southwestern New Mexico. New Mex. geol. Soc., Spec. Publ. 5:103-112.
- Rhodes, R.C. and Smith, E.I. 1972. Geology and tectonic setting of the Mule Creek caldera, New Mexico, U.S.A. Bull. Volcanol. 36:401-411.
- Roberts, J. and Engel, B.A. 1980. Carboniferous palaeogeography of the Yarrol and New England Orogens, eastern Australia. J. geol. Soc. Aust. 27:167-186.
- Roobol, M.J. and Smith, A.L. 1976. Mount Pelée, Martinique: a pattern of alternating eruptive styles. Geology 4:521-524.
- Rose, W.I. 1973. Pattern and mechanism of volcanic activity at the Santiaguito volcanic dome, Guatemala. Bull. Volcanol. 37:73-94.
- Rose, W.I., Pearson, T. and Bonis, S. 1977. Nuée ardente eruption from the foot of a dacite lava flow, Santiaguito volcano, Guatemala. Bull. Volcanol. 40:23-38.
- Ross, C.S. and Smith, R.L. 1961. Ash-flow tuffs: their origin, geologic relations, and identification. Prof. Pap. U.S. geol. Surv. 366.

- Rowley, P.D., Kuntz, M.A. and Macleod, N.S. 1981. Pyroclastic flow deposits. In: P.W. Lipman and D.R. Mullineaux (Editors), The 1980 Eruptions of Mount St. Helens, Washington. Prof. Pap. U.S. geol. Surv. 1250:489-512.
- Runnegar, B.N. 1970. The Permian faunas of northern New South Wales and the connection between the Sydney and Bowen Basins. J. geol. Soc. Aust. 16:697-710.
- Runnegar, B.N. 1974. The geological framework of New England. In: C.G. Murray and B. Runnegar (Editors), Field Conference, New England Area. Geol. Soc. Aust., Queensl. Div. pp. 9-19.
- Russell, T.G. and Middleton, M.F. 1981. Coal rank and organic diagenesis studies in the Gunnedah Basin: preliminary results. N.S.W. Geol. Surv., Q. Notes 45:1-11.
- Rust, B.R. 1978. Depositional models for braided alluvium. In: A.D. Miall (Editor), Fluvial Sedimentology. Canadian Society of Petroleum Geologists, Alberta, Canada, pp. 605-625.
- Rust, B.R. 1979. Facies models 2. Coarse alluvial deposits. In: R.G. Walker (Editor), Facies Models. Geological Association of Canada, pp. 9-21.
- Schmincke, H-R. and Swanson, D.A. 1967. Laminar viscous flowage structures in ash-flow tuffs from Gran Canaria, Canary Islands. J. Geol. 75:641-664.
- Schmincke, H-U., Fisher, R.V. and Waters, A.C. 1973. Antidune and chute and pool structures in the base surge deposits of the Laacher See area, Germany. Sedimentology 20:553-574.
- Scholl, D.W., Christiansen, M.N., Von Huene, R. and Marlow, M.S. 1970. Peru-Chile trench sediments and sea-floor spreading. Bull. geol. Soc. Am. 81:1339-1360.
- Self, S. 1983. Large-scale phreatomagmatic silicic volcanism: a case study from New Zealand. J. Volcanol. Geotherm. Res. 17:433-469.
- Self, S. and Sparks, R.S.J. 1978. Characteristics of widespread pyroclastic deposits formed by the interaction of silicic magma and water. Bull. Volcanol. 41:196-212.
- Self, S. and Wright, J.V. 1983. Large wave forms from the Fish Canyon Tuff, Colorado. Geology 11:443-446.
- Self, S., Kienle, J. and Huot, J-P. 1980. Ukinrek Maars, Alaska, II. Deposits and formation of the 1977 craters. J. Volcanol. Geotherm. Res. 7:39-65.
- Selley, R.C. 1970. Ancient Sedimentary Environments. Chapman and Hall Ltd., London, 237 pp.

- Settle, M. 1978. Volcanic eruption clouds and the thermal power output of explosive eruptions. J. Volcanol. Geotherm. Res. 3: 309-324.
- Shaw, S.E. 1969. Granitic rocks from the northern portion of the New England Batholith. In: G.H. Packham (Editor), The Geology of New South Wales. J. geol. Soc. Aust. 16:285-290.
- Shaw, S.E. and Flood, R.H. 1981. The New England Batholith, eastern Australia: geochemical variation in time and space. J. geophys. Res. 86:10530-10544.
- Shaw, S.E., Flood, R.H. and Vernon, R.H. 1982. Permian volcanism associated with the New England Batholith. In: F.L. Sutherland and J.R. Hardie (Editors), Symposium on Volcanism in Eastern Australia with Case Histories from N.S.W. Geol. Soc. Aust., Abstracts 7:7-8.
- Shepherd, J.B. and Sigurdsson, H. 1982. Mechanism of the 1979 explosive eruption of Soufriere volcano, St. Vincent. J. Volcanol. Geotherm. Res. 13:119-130.
- Sheridan, M.F. 1971. Particle-size characteristics of pyroclastic tuffs. J. geophys. Res. 76:5627-5634.
- Sheridan, M.F. 1979. Emplacement of pyroclastic flows: a review. In: C.E. Chapin and W.E. Elston (Editors), Ash-flow Tuffs. Spec. Pap. geol. Soc. Am. 180:125-136.
- Sheridan, M.F. 1980. Pyroclastic block flow from the September, 1976, eruption of La Soufrière volcano, Guadeloupe. Bull. Volcanol. 43:397-402.
- Sheridan, M.F. and Updike, R.G. 1975. Sugarloaf Mountain tephra a Pleistocene rhyolitic deposit of base-surge origin in northern Arizona. Bull. geol. Soc. Am. 86:571-581.
- Sheridan, M.F. and Wohletz, K.H. 1981. Hydrovolcanic explosions: the systematics of water-pyroclast equilibration. Science 212: 1387-1389.
- Sheridan, M.F. and Marshall, J.R. 1983. Interpretation of pyroclast surface features using SEM images. J. Volcanol. Geotherm. Res. 16:153-159.
- Sheridan, M.F. and Wohletz, K.H. 1983a. Hydrovolcanism: basic considerations and review. J. Volcanol. Geotherm. Res. 17:1-29.
- Sheridan, M.F. and Wohletz, K.H. 1983b. Origin of accretionary lapilli from the Pompeii and Avellino deposits of Vesuvius. In: R. Gooley (Editor), Microbeam Analysis - 1983. San Francisco Press Inc., San Francisco, pp. 35-38.
- Sheridan, M.F., Barberi, F., Rosi, M. and Santacroce, R. 1981. A model for Plinian eruptions of Vesuvius. Nature 289:282-285.

- Skilbeck, C.G. 1982. Carboniferous depositional systems of the Myall Lakes district, northern New South Wales. In: P.G. Flood and B. Runnegar (Editors), New England Geology. Department of Geology, University of New England and AHV Club, pp. 121-132.
- Slack, J.F. and Lipman, P.W. 1979. Chronology of alteration, mineralization, and caldera evolution in the Lake City area, western San Juan Mountains, Colorado. In: J.D. Ridge (Editor), Papers on Mineral Deposits of Western North America, Fifth I.A.G.O.D. Symposium. Nevada Bureau Mines Geol., report 33:151-158.
- Smith, A.L. and Roobol, M.J. 1982. Andesitic pyroclastic flows. In: R.S. Thorpe (Editor), Andesites. John Wiley and Sons, pp. 416-433.
- Smith, A.L., Fisher, R.V., Roobol, M.J. and Wright, J.V. 1981.
  Pyroclastic flows and surges: examples from the Lesser Antilles.
  In: S. Self and R.S.J. Sparks (Editors), Tephra Studies. D. Reidel
  Publishing Company, pp. 421-425.
- Smith, E.I. 1973. Mono Craters, California: a new interpretation of the eruption sequence. Bull. geol. Soc. Am. 84:2685-2690.
- Smith, E.I. 1976. Structure and petrology of the John Kerr Peak dome complex, southwestern New Mexico. In: W.E. Elston and S.A. Northrop (Editors), Cenozoic Volcanism in Southwestern New Mexico. New Mex. geol. Soc., Spec. Publ. 5:71-78.
- Smith, R.L. 1960a. Ash flows. Bull. geol. Soc. Am. 71:795-842.
- Smith, R.L. 1960b. Zones and zonal variations of welded ash flows. Prof. Pap. U.S. geol. Surv. 354-F:149-159.
- Smith, R.L. 1979. Ash-flow magmatism. In: C.E. Chapin and W.E. Elston (Editors), Ash-flow Tuffs. Spec. Pap. geol. Soc. Am. 180:5-27.
- Smith, R.L. and Bailey, R.A. 1966. The Bandelier Tuff: a study of ash-flow eruption cycles from zoned magma chambers. Bull. Volcanol. 29:83-104.
- Smith, R.L. and Bailey, R.A. 1968. Resurgent cauldrons. In: R.R. Coats and others (Editors), Studies in Volcanology. Mem. geol. Soc. Am. 116:613-662.
- Smith, R.L., Bailey, R.A. and Ross, C.S. 1961. Structural evolution of the Valles caldera, New Mexico, and its bearing on the emplacement of ring dikes. Prof. Pap. U.S. geol. Surv. 424-D:145-149.
- Sparks, R.S.J. 1975. Stratigraphy and geology of the ignimbrites of Vulsini Volcano, Central Italy. Geol. Rdsch. 64:497-523.
- Sparks, R.S.J. 1976. Grain size variations in ignimbrites and implications for the transport of pyroclastic flows. Sedimentology 23:147-188.

- Sparks, R.S.J. 1978a. Gas release rates from pyroclastic flows: an assessment of the role of fluidisation in their emplacement. Bull. Volcanol. 41:1-9.
- Sparks, R.S.J. 1978b. The dynamics of bubble formation and growth in magmas: a review and analysis. J. Volcanol. Geotherm. Res. 3:1-37.
- Sparks, R.S.J. and Walker, G.P.L. 1973. The ground surge deposit: a third type of pyroclastic rock. Nature 241:62-64.
- Sparks, R.S.J. and Wilson, L. 1976. A model for the formation of ignimbrite by gravitational column collapse. J. geol. Soc. Lond. 132:441-451.
- Sparks, R.S.J. and Walker, G.P.L. 1977. The significance of vitricenriched air-fall ashes associated with crystal-enriched ignimbrites. J. Volcanol. Geotherm. Res. 2:329-341.
- Sparks, R.S.J. and Huang, T.C. 1980. The volcanological significance of deep-sea ash layers associated with ignimbrites. Geol. Mag. 117:425-436.
- Sparks, R.S.J., Self, S. and Walker, G.P.L. 1973. Products of ignimbrite eruptions. Geology 1:115-118.
- Sparks, R.S.J., Wilson, L. and Hulme, G. 1978. Theoretical modeling of the generation, movement, and emplacement of pyroclastic flows by column collapse. J. geophys. Res. 83:1727-1739.
- Sparks, R.S.J., Wilson, L. and Sigurdsson, H. 1981. The pyroclastic deposits of the 1875 eruption of Askja, Iceland. Philos. Trans. R. Soc. Lond. 299:241-273.
- Steven, T.A. and Lipman, P.W. 1976. Calderas of the San Juan volcanic field, southwestern Colorado. Prof. Pap. U.S. geol. Surv. 958.
- Steven, T.A., Luedke, R.G. and Lipman, P.W. 1974. Relation of mineralization to calderas in the San Juan volcanic field, southwestern Colorado. J. Res. U.S. geol. Surv. 2:405-409.
- Stoertz, G.E. and Ericksen, G.E. 1974. Geology of salars in northern Chile. Prof. Pap. U.S. geol. Surv. 811.
- Streckeisen, A. 1976. To each plutonic rock its proper name. Earth Sci. Rev. 12:1-33.
- Tadros, N.Z. 1982. Geology and coal resources west of Boggabri. N.S.W. Geol. Surv., Q. Notes 48:2-14.
- Thomson, J. 1976. Geology of the Drake 1:100 000 sheet 9340. Geol. Surv. N.S.W. 185 pp.
- Thorpe, R.S., Francis, P.W. and Moorbath, S. 1979. Rare earth and strontium isotope evidence concerning the petrogenesis of North Chilean ignimbrites. Earth Planet. Sci. Lett. 42:359-367.

- Thorpe, R.S., Francis, P.W., Hammill, M. and Baker, M.C.W. 1982. The Andes. In: R.S. Thorpe (Editor), Andesites. John Wiley and Sons, pp. 187-205.
- Tunbridge, I.P. 1981. Sandy high-energy flood sedimentation some criteria for recognition, with an example from the Devonian of S.W. England. Sediment. Geol. 28:79-85.
- Tunbridge, I.P. 1983. Alluvial fan sedimentation of the Horseshoe Park Flood, Colorado, U.S.A., July 15th, 1982. Sediment. Geol. 36:15-23.
- Vernon, R.H. 1983. Restite, xenoliths and microgranitoid enclaves in granites. J. Proc. R. Soc. N.S.W. 116:77-103.
- Voisey, A.H. and Williams, K.L. 1964. The geology of the Carroll-Keepit-Rangari area of New South Wales. J. Proc. R. Soc. N.S.W. 97:65-72.
- Vucetich, C.G. and Pullar, W.A. 1969. Stratigraphy and chronology of late Pleistocene volcanic ash beds in central North Island, New Zealand. N.Z. Jl. Geol. Geophys. 12:784-837.
- Walker, G.P.L. 1971. Grain-size characteristics of pyroclastic deposits. J. Geol. 79:696-714.
- Walker, G.P.L. 1972. Crystal concentration in ignimbrites. Contr. Mineral. Petrol. 36:135-146.
- Walker, G.P.L. 1973a. Explosive volcanic eruptions a new classification scheme. Geol. Rdsch. 62:431-446.
- Walker, G.P.L. 1973b. Length of lava flows. Philos. Trans. R. Soc. Lond., Ser. A. 274:107-118.
- Walker, G.P.L. 1979. A volcanic ash generated by explosions where ignimbrite entered the sea. Nature 281:642-646.
- Walker, G.P.L. 1980. The Taupo Pumice: product of the most powerful known (ultraplinian) eruption? J. Volcanol. Geotherm. Res. 8:69-94.
- Walker, G.P.L. 1981a. Characteristics of two phreatoplinian ashes, and their water-flushed origin. J. Volcanol. Geotherm. Res. 9: 395-407.
- Walker, G.P.L. 1981b. The Waimihia and Hatepe plinian deposits from the rhyolitic Taupo Volcanic Centre. N.Z. Jl. Geol. Geophys. 24:305-324.
- Walker, G.P.L. 1981c. Generation and dispersal of fine ash and dust by volcanic eruptions. J. Volcanol. Geotherm. Res. 11:81-92.
- Walker, G.P.L. 1981d. Plinian eruptions and their products. Bull. Volcanol. 44:223-240.

- Walker, G.P.L. 1981e. New Zealand case histories of pyroclastic studies. In: S. Self and R.S.J. Sparks (Editors), Tephra Studies. D. Reidel Publishing Company, pp. 317-330.
- Walker, G.P.L. 1981f. Volcanological applications of pyroclastic studies. In: S. Self and R.S.J. Sparks (Editors), Tephra Studies. D. Reidel Publishing Company, pp. 391-403.
- Walker, G.P.L. 1982. Eruptions of andesitic volcanoes. In: R.S. Thorpe (Editor), Andesites. John Wiley and Sons, pp. 403-413.
- Walker, G.P.L. 1983. Ignimbrite types and ignimbrite problems. J. Volcanol. Geotherm. Res. 17:65-88.
- Walker, G.P.L. 1984. Characteristics of dune-bedded pyroclastic surge bedsets. J. Volcanol. Geotherm. Res. 20:281-296.
- Walker, G.P.L. and Croasdale, R. 1970. Two Plinian-type eruptions in the Azores. J. geol. Soc. Lond. 127:17-55.
- Walker, G.P.L. and Croasdale, R. 1972. Characteristics of some basaltic pyroclastics. Bull. Volcanol. 35:303-317.
- Walker, G.P.L. and McBroome, L.A. 1983. Mount St. Helens 1980 and Mount Pelée 1902 - flow or surge? Geology 11:571-574.
- Walker, G.P.L. and Wilson, C.J.N. 1983. Lateral variations in the Taupo ignimbrite. J. Volcanol. Geotherm. Res. 18:117-133.
- Walker, G.P.L., Heming, R.F. and Wilson, C.J.N. 1980a. Low-aspect ratio ignimbrites. Nature 283:286-287.
- Walker, G.P.L., Heming, R.F. and Wilson, C.J.N. 1980b. Ignimbrite veneer deposits or pyroclastic surge deposits? Reply. Nature 286:912.
- Walker, G.P.L., Wilson, C.J.N. and Froggatt, P.C. 1980. Fines-depleted ignimbrite in New Zealand - the product of a turbulent pyroclastic flow. Geology 8:245-249.
- Walker, G.P.L., Self, S. and Froggatt, P.C. 1981. The ground layer of the Taupo ignimbrite: a striking example of sedimentation from a pyroclastic flow. J. Volcanol. Geotherm. Res. 10:1-11.
- Walker, G.P.L., Wilson, C.J.N. and Froggatt, P.C. 1981. An ignimbrite veneer deposit: the trail-marker of a pyroclastic flow. J. Volcanol. Geotherm. Res. 9:409-421.
- Walker, G.P.L., Heming, R.F., Sprod, T.J. and Walker, H.R. 1981. Latest major eruptions of Rabaul volcano. In: R.W. Johnson (Editor), Cooke-Ravian Volume of Volcanological Papers. Geological Survey of Papua New Guinea, Memoir 10:181-193.
- Walker, G.P.L., Wright, J.V., Clough, B.J. and Booth, B. 1981. Pyroclastic geology of the rhyolitic volcano of La Primavera, Mexico. Geol. Rdsch. 70:1100-1118.

- Walker, R.G. and Middleton, G.V. 1979. Facies models 4. Eolian Sands. In: R.G. Walker (Editor), Facies models. Geological Association of Canada, pp. 33-41.
- Warner, D.S. 1972. Late Palaeozoic stratigraphy and sedimentation in the Murrurundi area, New South Wales. Unpub. B.Sc. (Hons) Thesis, University of New England, Armidale, 82 pp.
- Waterhouse, J.B. 1978. Chronostratigraphy for the World Permian. In: Contributions to the Geologic Time Scale. AAPG Studies in Geology 6:299-322.
- Waters, A.C. and Fisher, R.V. 1971. Base surges and their deposits: Capelinhos and Taal volcanoes. J. geophys. Res. 76:5596-5614.
- Whetten, J.T. 1965. Carboniferous glacial rocks from the Werrie Basin, New South Wales, Australia. Bull. geol. Soc. Am. 76:43-56.
- White, A.H. 1965. Geological Map of New England 1:100 000 Tareela Sheet (no. 300), with marginal text. University of New England, Armidale, N.S.W., Australia.
- White, A.H. 1968. The glacial origin of Carboniferous conglomerates west of Barraba, New South Wales. Bull. geol. Soc. Am. 79:675-686.
- Whitney, J.A. and Stormer, J.C. 1983. Igneous sulfides in the Fish Canyon Tuff and the role of sulfur in calc-alkaline magmas. Geology 11:99-102.
- Wilkinson, J.F.G. 1971. The petrology of some vitrophyric calc-alkaline volcanics from the Carboniferous of New South Wales. J. Petrol. 12:587-619.
- Wilkinson, J.F.G. and Whetten, J.T. 1964. Some analcime-bearing pyroclastic and sedimentary rocks from New South Wales. J. sediment. Petrol. 34:543-553.
- Wilkinson, J.F.G., Vernon, R.H. and Shaw, S.E. 1964. The petrology of an adamellite-porphyrite from the New England Bathylith (New South Wales). J. Petrol. 5:461-488.
- Williams, H. 1941. Calderas and their origin. Univ. Calif. Publ. Geol. Sci. 25:239-346.
- Wilson, C.J.N. 1980. The role of fluidization in the emplacement of pyroclastic flows: an experimental approach. J. Volcanol. Geotherm. Res. 8:231-249.
- Wilson, C.J.N. 1984. The role of fluidization in the emplacement of pyroclastic flows, 2: experimental results and their interpretation. J. Volcanol. Geotherm. Res. 20:55-84.
- Wilson, C.J.N. and Walker, G.P.L. 1981. Violence in pyroclastic flow eruptions. In: S. Self and R.S.J. Sparks (Editors), Tephra Studies. D. Reidel Publishing Company, pp. 441-448.

- Wilson, C.J.N. and Walker, G.P.L. 1982. Ignimbrite depositional facies: the anatomy of a pyroclastic flow. J. geol. Soc. Lond. 139:581-592.
- Wilson, L. 1976. Explosive volcanic eruptions-III. Plinian eruption columns. Geophys. J. R. astr. Soc. 45:543-556.
- Wilson, L., Sparks, R.S.J. and Walker, G.P.L. 1980. Explosive volcanic eruptions-IV. The control of magma properties and conduit geometry on eruption column behaviour. Geophys. J.R. astr. Soc. 63:117-148.
- Wilson, L., Sparks, R.S.J., Huang, T.C. and Watkins, N.D. 1978. The control of volcanic column heights by eruption energetics and dynamics. J. geophys. Res. 83:1829-1836.
- Winchester, J.A. and Floyd, P.A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 20:325-343.
- Wohletz, K.H. 1983. Mechanisms of hydrovolcanic pyroclast formation: grain-size, scanning electron microscopy, and experimental studies. J. Volcanol. Geotherm. Res. 17:31-63.
- Wohletz, K.H. and Sheridan, M.F. 1979. A model of pyroclastic surge. In: C.E. Chapin and W.E. Elston (Editors), Ash-flow Tuffs. Spec. Pap. geol. Soc. Am. 180:177-194.
- Wohletz, K.H. and Sheridan, M.F. 1983. Hydrovolcanic explosions II. Evolution of basaltic tuff rings and tuff cones. Am. J. Sci. 283: 385-413.
- Wolff, J.A. and Wright, J.V. 1981. Rheomorphism of welded tuffs. J. Volcanol. Geotherm. Res. 10:13-34.
- Wood, B.L. 1982. The geology and mineralization of the Emmaville tin field. In: P.G. Flood and B. Runnegar (Editors), New England Geology. Department of Geology, University of New England and AHV Club, pp. 335-344.
- Wood, C.A. 1974. Reconnaissance geophysics and geology of the Pinacate craters, Sonora, Mexico. Bull. Volcanol. 38:149-172.
- Wright, J.V. 1981. The Rio Caliente Ignimbrite: analysis of a compound intraplinian ignimbrite from a major late Quaternary Mexican eruption. Bull. Volcanol. 44:189-212.
- Wright, J.V. and Walker, G.P.L. 1977. The ignimbrite source problem: significance of a co-ignimbrite lag-fall deposit. Geology 5:729-732.
- Wright, J.V. and Walker, G.P.L. 1981. Eruption, transport and deposition of ignimbrite: a case study from Mexico. J. Volcanol. Geotherm. Res. 9:111-131.

- Wright, J.V., Smith, A.L. and Self, S. 1980. A working terminology of pyroclastic deposits. J. Volcanol. Geotherm. Res. 8:315-336.
- Wright, J.V., Self, S. and Fisher, R.V. 1981. Towards a facies model for ignimbrite-forming eruptions. In: S. Self and R.S.J. Sparks (Editors), Tephra Studies. D. Reidel Publishing Company, pp. 433-439.
- Wright, J.V., Roobol, M.J., Smith, A.L., Sparks, R.S.J., Brazier, S.A., Rose, W.I. and Sigurdsson, H. 1984. Late Quaternary explosive silicic volcanism on St Lucia, West Indes. Geol. Mag. 121:1-15.
- Yokoyama, S. 1974. Mode of movement and emplacement of Ito pyroclastic flow from Aira Caldera, Japan. Sci. Rep. Tokyo Kyoiku Daigaku Cl2:17-62.
- Yokoyama, S. 1981. Base surge deposits in Japan. In: S. Self and R.S.J. Sparks (Editors), Tephra Studies. D. Reidel Publishing Company, pp. 427-432.

## APPENDIX A

DEXTRAL MOVEMENT ON THE DEMON FAULT, NORTHEASTERN NEW SOUTH WALES: A REASSESSMENT

J. McPHIE AND C.L. FERGUSSON

Department of Geology and Geophysics, University of New England, Armidale, 2351. <sup>1</sup>Present address: Department of Earth Sciences, Monash University, Clayton, 3168.

> ABSTRACT. The Demon Fault is a meridional transcurrent fault extending for at least 200 km in the eastern part of the New England Orogen. The southern margin of the Late Permian Coombadjha Volcanic Complex, and contacts between units within it, are displaced for 23 km in a dextral sense along the Fault. In the Cooraldooral Creek area the Fault consists of at least four major fractures. This contrasts with the Timbarra River area where the trace of the Fault is marked by an elongate zone of sheared rock 500 m wide.

### INTRODUCTION

The Demon Fault (or Fault System) was recognized by Shaw (1969) to be a major transcurrent fault in the New England Orogen of northeastern New South Wales (Fig.A.1). The Fault extends from Ebor in the south for 200 km following a northward meridional trend. Shaw (1969, p.285) estimated dextral strike-slip movement amounting to about 30 km on the basis of the displacement of the Stanthorpe Adamellite.

Korsch *et al.* (1978) documented the general characteristics of the Demon Fault and described its effects in detail for two sites. They rejected Shaw's estimate in favour of offset totalling only 17 km. This result was obtained by matching the contact between the Dundee Rhyodacite and the Bungulla Porphyritic Adamellite on either side of the Fault in the Timbarra River area (Korsch *et al.*, 1978, Fig. 3).

Further fieldwork in the Timbarra River area, herein reported,



Figure A.1: Locality map for the areas discussed, northeastern New South Wales. Tb, Tertiary basalt.

indicates 23 km of dextral movement on the Demon Fault since the time of emplacement of the Early Triassic Dandahra Creek Granite. Details of the character of the Fault in this area and at one other locality (Cooraldooral Creek) are also described.

#### DISPLACEMENT OF THE COOMBADJHA VOLCANIC COMPLEX

The Coombadjha Volcanic Complex comprises Late Permian continental silicic volcanics and granitoids preserved adjacent and to the east of the Demon Fault in the upper reaches of Coombadjha and Washpool Creeks (Fig. A.2). The Complex has a mappable internal stratigraphy and structure which suggest that it is the eroded remnant of a volcanic cauldron (McPhie, 1982). Only those features relevant to the movement on the Demon Fault are described here.

Volcanic and plutonic rocks of the Complex that form its southern margin are intruded by the Dandahra Creek Granite, and all these rock units are truncated by the Demon Fault. Three of the five volcanic units of the Coombadjha Volcanic Complex can be traced to the Fault. The two older units (Pheasant Creek Volcanics and Pi Pi Ignimbrite, Chapter 6; Units A and C, McPhie, 1982) are both composed predominantly of outflow sheets of welded ignimbrite. In the field, these units are distinguishable from each other on the basis of the mineralogy and proportion of crystal fragments, and on the nature of the pumice lenticle foliation. The youngest unit is a representative of the Dundee Rhyodacite, a widespread and distinctive crystal-rich ignimbrite characterised by tor-like outcrops and textures similar to those of porphyritic granitoids. These three volcanic units dip to the north or northwest at shallow angles (10° to 25°). The contact with the Dandahra Creek Granite is sharp, and dips steeply to the north.

These same three volcanic units and the Dandahra Creek Granite have been located to the north on the west side of the Demon Fault (Fig. A.2). Contacts between the volcanic units, and between the volcanics and the Dandahra Creek Granite on the east side of the Fault are consistently offset for 23 km in a dextral sense to the Boundary Creek area. The quality of outcrop in this area west of the Fault is poorer, particularly within the Dundee Rhyodacite. Farther west, the Complex is intruded by the Billyrimba Leucoadamellite. To the north in the Demon Creek area, the Dundee Rhyodacite outcrops in isolated patches surrounded by microgranite that forms the shallowly east-dipping roof zone of the Bungulla Porphyritic Adamellite. In this area, no single, straight-line contact exists between the Dundee Rhyodacite and the Bungulla Porphyritic Adamellite (*cf.* Korsch *et al.*, 1978, Fig. 3).

#### THE DEMON FAULT IN THE TIMBARRA RIVER AREA

Here the Demon Fault separates the Coombadjha Volcanic Complex to the east from undifferentiated, complexly deformed Palaeozoic sedimentary rocks to the west (Fig. A.3). One main fracture is present, marked by poor exposure. For 500 m to the west of this fracture, the deformed Palaeozoic rocks are pervasively sheared with many randomlyoriented shear surfaces and complete destruction of sedimentary layering. The volcanics on the east side within 50 m of the fracture are closely jointed.

The complexly deformed rocks on the west consist of argillite, argillite-tuffaceous mudstone, massive tuffaceous(?) rock, thin-bedded turbidite and massive greywacke. Bedding in much of this sequence is near vertical and strikes northwest. Uncommon exposures of graded bedding and micro-crosslamination indicate northeasterly younging directions. Slaty cleavage is sporadically present in argillite.

#### THE DEMON FAULT IN THE COORALDOORAL CREEK AREA

There are two major arms of the Demon Fault in the Cooraldooral Creek area (Fig. A.4), each marked by prominent aerial photolineaments. These fault branches are entirely within complexly deformed sedimentary rocks. Two informal units of the Coffs Harbour beds occur east of the Fault (Fig. A.4): a northeastern unit  $(Chb_2)$  of argillite and less abundant thin-bedded turbidite and massive greywacke, and a southwestern unit  $(Chb_1)$  of thin-bedded turbidite and massive greywacke in similar proportions. To the west of the Fault, the sequence is dominated by argillite with less abundant thin-bedded turbidite, massive greywacke



Figure A.2: The geology of the Timbarra River area showing the 23 km of dextral displacement of the Coombadjha Volcanic Complex along the Demon Fault.



Timbarra River. See Figure A.4 for a key to the structural symbols.

and intermediate volcanics. Areas of sheared rocks are exposed in Barool Creek 1 km west of the Fault. Bedding on both sides of the Fault is steeply dipping and northwesterly striking, with most younging directions facing towards the northeast. In the Coffs Harbour beds there are at least two tight to isoclinal folds pairs, with west-younging limbs up to 500 m across, and sporadically developed slaty cleavage in argillites.

Two additional fractures to the west of the main arms of the Fault offset an east-west trending, vertical, quartz-feldspar porphyry dyke (Fig. A.4). The dyke is up to 100 m in width and forms a cliff line, the displacement of which is readily apparent on aerial photographs.

### CONCLUSIONS

Detailed mapping of silicic volcanics either side of the Demon Fault provides evidence for 23 km of dextral strike-slip movement. The relationships herein described confirm that this movement occurred after the cessation of Permo-Triassic silicic volcanic and intrusive activity within the region, as was implicit on Shaw's (1969, Fig. 4.9) map. Prior existence of the Fault is unlikely, since there is no indication of its influence on either the original stratigraphy or primary structure of the Coombadjha Volcanic Complex.

Study of the tectono-stratigraphic units of the Coffs Harbour Block has enabled correlation of this area with the Texas-Warwick area (Fergusson, 1982; Flood and Fergusson, 1982). Extrapolation of boundaries of the equivalent tectono-stratigraphic units of each of these areas gives a result consistent with the 23 km of movement determined in this study of the Fault.

#### ACKNOWLEDGEMENTS

We thank Peter Flood for helpful discussions and his review of the manuscript.

## REFERENCES

- Fergusson, C.L. 1982. An ancient accretionary terrain in eastern New England - evidence from the Coffs Harbour Block. In: P.G. Flood and B. Runnegar (Editors), New England Geology. Department of Geology, University of New England and AHV Club, pp.63-70.
- Flood, P.G. and Fergusson, C.L. 1982. Tectono-stratigraphic units and structure of the Texas-Coffs Harbour region. In: P.G. Flood and B. Runnegar (Editors), New England Geology. Department of Geology, University of New England and AHV Club, pp.71-88.

303.

- Korsch, R.J., Archer, N.R. and McConachy, G.W. 1978. The Demon Fault. J. Proc. R. Soc. N.S.W., 111:101-106.
- McPhie, J. 1982. The Coombadjha Volcanic Complex: a Late Permian cauldron, northeastern New South Wales. In: P.G. Flood and B. Runnegar (Editors), New England Geology. Department of Geology, University of New England and AHV Club, pp.221-227.
- Shaw, S.E. 1969. Granitic rocks from the northern portion of the New England Batholith. In: G.H. Packham (Editor), The Geology of New South Wales. J. geol. Soc. Aust., 16:285-290.



Figure A.4: Detailed map of the Demon Fault in the Cooraldooral Creek area. Equal-area stereographic projection of 58 poles to bedding contoured at 5,10,15,20% per 1% area.

Pz - undifferentiated Palaeozoic sedimentary rocks. Chb<sub>1</sub>, Chb<sub>2</sub>, subunits of the Coffs Harbour beds.

## APPENDIX B

# MODAL DATA

The tables give modal analyses obtained by point counting thin-sections using a Swift Automatic Point Counter (mechanical stage, digital counting unit). The data have been presented on figures in the text as indicated below.

Chapter 2: Table B.1.

Chapter 3: Tables B.1, B.2.

Chapter 6: Tables B.3, B.5, B.6, B.9.

Chapter 7: Table B.4.

Chapter 8: Tables B.6, B.7, B.8.

TABLE B.1: Modes<sup>1</sup> of representative samples of ignimbrite members of the Currabubula Formation.

|                | Cana Cr | eek Tuff | Member | lgni            | Iventure<br>mbrite M | ember  | Tagg<br>Ignii | arts Mou<br>mbrite M | ntain<br>ember | Pia<br>Igni | llaway T<br>mbrite M | rig<br>ember |
|----------------|---------|----------|--------|-----------------|----------------------|--------|---------------|----------------------|----------------|-------------|----------------------|--------------|
|                | R55049  | R55045   | R55104 | R55155          | R55148               | R55149 | R55206        | R55212               | R55213         | R55274      | R55276               | R55278       |
| Quartz         | 4       | 7        | ю      | 9               | 9                    | Ĺ      | 16            | 18                   | 17             | 4           | 4                    | 5            |
| Total feldspar | 4       | Ŋ        | 4      | 14              | 14                   | 10     | 28            | 24                   | 29             | 20          | 23                   | 22           |
| Biotite        | ı       | I        | ł      | i               | ł                    | ł      | 2             | 2                    | 4              | т           | щ                    | 2            |
| Opaque         | ş       | I        | I      | tr <sup>2</sup> | tr                   | tr     | tr            | tr                   | Ч              | г           | Т                    | 1            |
| Σ Crystals     | 8       | 2        | 7      | 20              | 20                   | 17     | 46            | 44                   | 51             | 28          | 29                   | 27           |
| Matrix         | 92      | 93       | 93     | 80              | 80                   | 82     | 54            | 56                   | 49             | 72          | 70                   | 73           |
| Lithic         | tr      | tr       | tr     | tr              | tr                   | Н      | tr            | tr                   | ı              | tr          | Ч                    | tr           |
|                |         |          |        |                 |                      |        |               |                      |                |             |                      |              |

<sup>1</sup> 1000 points counted per thin-section, expressed as percentage points.

<sup>2</sup> Trace amount present.

TABLE B.2: Modes<sup>1</sup> of sandstones of the Cana Creek Tuff Member of the Currabubula Formation.

|                     | R55090 | R55093 | R55094 | R55101 | R55121 | R55128 |
|---------------------|--------|--------|--------|--------|--------|--------|
| Crystals            | 24.9   | 25.4   | 39.2   | 40.2   | 31.4   | 22.2   |
| Vitric <sup>2</sup> | 74.1   | 73.6   | 57.8   | 54.6   | 67.4   | 76.8   |
| Lithic              | 1.0    | 1.0    | 3.0    | 5.2    | 1.2    | 1.0    |
|                     |        |        |        |        |        |        |

1 1000 points counted per thin-section, expressed as
percentage points.

 $^{2}$  Includes pumice, shards and unresolvable fine grained matrix.

| Complex.           |
|--------------------|
| Volcanic           |
| Coombadjha         |
| Volcanics,         |
| Creek              |
| Pheasant           |
| the                |
| of                 |
| ignimbrites        |
| of                 |
| Modes <sup>1</sup> |
| TABLE B.3:         |

|                             | R55369         | R55370 | R55371 | R55373 | R55374 | R55375 | R55377 | R55378 | R55380 | R55381 | R55382 | R55383 | R55385 | R55386 | R55387 | R55388 | R55389 | R55391 | R55394 | R55402 |
|-----------------------------|----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|                             |                |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| Quartz                      | 1.5            | 1.3    | 0.8    | 2.0    | 1.2    | 1.1    | 0.8    | 1.3    | 0.9    | 0.8    | 3.9    | 2.3    | 0.4    | tr"    | 4.3    | 0.6    | 2.8    | 3.1    | 3.2    | ı      |
| Total feldspar              | 39.5           | 22.6   | 27.8   | 27.3   | 36.5   | 34.3   | 25.4   | 36.9   | 21.5   | 33.3   | 25.2   | 24.2   | 32.5   | 35.7   | 22.7   | 35.5   | 36.9   | 5.1    | 10.7   | 11.8   |
| K-feldspar                  | n <sup>3</sup> | ŋ      | p      | Þ      | n      | n      | 6.6    | 11.7   | 4.6    | 7.7    | 12.4   | Þ      | 16.3   | 6.9    | 13.1   | 11.3   | 15.2   | 4.3    | 4.5    | ł      |
| Biotite                     | 0.7            | 1.9    | 0.7    | 0.4    | 0.5    | 1.3    | 3.3    | 2.2    | 2.2    | 3.0    | 2.0    | 3.1    | 1.6    | 4.1    | 1.6    | 3.7    | 2.0    | •      | í      | ı      |
| Ferromagnesian <sup>2</sup> | 2.3            | 0.6    | 1.7    | 1.2    | 1.3    | 2.1    | 0.8    | 0.9    | 0.8    | 2.3    | 1.4    | 0.8    | 3.0    | 2.7    | 0.2    | 1.2    | 0.4    | 0.3    | 2.0    | 0.4    |
| Opadae                      | 0.1            | 0.2    | 0.2    | 0.8    | 0.1    | 0.3    | 0.4    | 0.1    | 6.0    | 0.3    | 1.2    | 1.0    | 0.2    | 0.5    | 0.4    | 0.3    | ı      | 0.1    | 1.4    | 0.1    |
| Σ <b>Crystals</b>           | 44.1           | 26.6   | 31.2   | 31.7   | 39.6   | 39.1   | 30.7   | 41.4   | 26.3   | 39.7   | 33.7   | 31.4   | 37.7   | 43.0   | 29.2   | 41.3   | 42.1   | 8.6    | 17.3   | 12.3   |
| Matrix                      | 55.9           | 73.4   | 68.8   | 66.5   | 60.4   | 6.09   | 69.3   | 58.6   | 73.7   | 60.0   | 66.3   | 68.6   | 61.3   | 55.6   | 70.8   | 58.7   | 57.9   | 91.4   | 82.7   | 87.7   |
| Lithic                      | I              | ı      | I      | 1.8    | 1      | I      | ı      | ı      | 1      | 0.3    | I      | tr     | 1.0    | 1.4    | ı      | ı      | ı      | ı      | I      | I      |
|                             |                |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |

 $^{1}$  1000 points counted per thin-section, expressed as percentage points.

<sup>2</sup> Extensively altered ferromagnesian mineral phase.

 $^3$  Not differentiated from total feldspar count.

4 Trace amount present.

TABLE B.4: Modes<sup>1</sup> of the massive porphyry facies of the Hianana Volcanics, Coombadjha Volcanic Complex.

|                             | R55421 | R55424 | R55425 | R55428 | R55429 | R55430 |
|-----------------------------|--------|--------|--------|--------|--------|--------|
| Feldspar                    | 19.7   | 20.3   | 20.8   | 28.3   | 25.5   | 25.3   |
| Ferromagnesian <sup>2</sup> | 1.8    | 4.4    | 1.6    | 2.0    | 2.2    | 2.4    |
| Opaque <sup>3</sup>         | 1.9    | 1.4    | 1.3    | 1.0    | 0.4    | 0.5    |
| $\Sigma$ Phenocrysts        | 23.4   | 26.1   | 23.7   | 31.3   | 28.1   | 28.2   |
| Groundmass                  | 76.6   | 73.9   | 76.3   | 68.7   | 71.9   | 71.8   |
|                             |        |        |        |        |        |        |

1 1000 points counted per thin-section, expressed as
percentage points.

<sup>2</sup> Extensively altered pyroxene and hornblende.

<sup>3</sup> Opaque phase is predominantly pyrite and is not necessarily primary.

TABLE B.5: Modes<sup>1</sup> of Pi Pi Ignimbrite, Coombadjha Volcanic Complex.

|                             | R55432 | R55433 | R55435 | R55436 | R55438 | R55439 | R55440 | R55441 | R55442 | R55443 | R55445 |
|-----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|                             |        |        |        |        |        |        |        |        |        |        |        |
| Total feldspar              | 16.2   | 22.5   | 13.4   | 17.4   | 22.0   | 22.2   | 22.2   | 16.8   | 18.5   | 15.0   | 17.1   |
| Ferromagnesian <sup>2</sup> | 1.8    | 2.6    | 2 • 2  | 1.2    | 3.1    | 1.6    | 1.5    | 3.0    | 1.4    | 2.4    | 2.7    |
| Opaque                      | 0.3    | 0.8    | 0 3    | 0.3    | 0.4    | 0.6    | 0.3    | 0.9    | 0.7    | ł      | I      |
| Σ Crystals                  | 18.3   | 25.9   | 15.9   | 18.9   | 25.5   | 24.4   | 24.0   | 20.7   | 20.6   | 17.4   | 19.8   |
| Matrix                      | 81.7   | 73.6   | 84.1   | 81.1   | 74.5   | 75.6   | 76.0   | 79.3   | 79.4   | 82.6   | 80.2   |
| Lithic                      | ł      | 0.5    | 1      | I      | i      | ŀ      | ł      | I      | I      | ł      | ł      |
|                             |        |        |        |        |        |        |        |        |        |        |        |

<sup>1</sup> 1000 points counted per thin-section, expressed as percentage points.

<sup>2</sup> Extensively altered ferromagnesian phase.

|                   |        |        |        |        |        | COOL   | ABADJHA VO | LCANIC COM | PLEX   |        |        |        |        |
|-------------------|--------|--------|--------|--------|--------|--------|------------|------------|--------|--------|--------|--------|--------|
|                   | R55453 | R55454 | R55457 | R55459 | R55464 | R55465 | R55466     | R55468     | R55469 | R55472 | R55473 | R55474 | R55475 |
| Quartz            | 7.8    | 6.9    | 10.2   | 6.7    | 4.7    | 6.2    | 6.0        | 2.8        | 4.1    | 6.8    | 4.6    | 2.9    | 7.4    |
| Total feldspar    | 39.3   | 33.9   | 34.5   | 34.0   | 39.7   | 34.6   | 38.4       | 42.0       | 36.4   | 38.9   | 35.1   | 34.2   | 36.7   |
| Biotite           | 9.7    | 10.3   | 10.1   | 13.1   | 11.4   | 11.8   | 14.0       | 10.1       | 9.3    | 9.7    | 7.2    | 10.4   | 10.8   |
| Hornblende        | 4.1    | 3.1    | 3.0    | 3.6    | 3.3    | 2.6    | 3.0        | 6.3        | 2.5    | 3.7    | 4.4    | 3.8    | 3.7    |
| Pyroxene          | 2.5    | 2.4    | 1.3    | 2.0    | 1.3    | 2.8    | 3.5        | 0.2        | 2.2    | 2.5    | 4.2    | 3.3    | 2.3    |
| Opaque            | 1.2    | 1.0    | 0.7    | 0.7    | 0.4    | 0.4    | 1.2        | 0.3        | 0.6    | 0.8    | 0.4    | 1.0    | 0.8    |
| $\Sigma$ Crystals | 64.6   | 57.6   | 59.8   | 60.1   | 60.8   | 58.4   | 66.1       | 61.7       | 55.1   | 62.4   | 55.9   | 55.6   | 61.7   |

TABLE B.6: Modes<sup>1</sup> of the Normal facies ignimbrite of the Dundee Rhyodacite.

R55477

2.2 30.3 9.5 4.2 1.1 47.7 52.0 0.3

38.3

44.3

44.1

36.6 1.0

43.4 1.5

37.7 0.6

33.4 0.5

41.2

39.0 0.2

39.1 0.8

37.5 2.7

42.2

35.1

Matrix

0.3

Inclusions

i

| points.       |
|---------------|
| percentage    |
| as            |
| expressed     |
| thin-section, |
| per           |
| counted ]     |
| points        |
| 1 1000        |
| _             |

311.

<sup>2</sup> Basal facies ignimbrite.

R55617 39.7 4.8 40.8 6.8 2.8 2.9 0.9 59.0 1.3 R55616 2.8 32.7 10.0 3.0 2.5 0.5 51.5 47.7 0.8 R55615 5.3 27.8 2.8 1.5 0.5 44.0 54.7 1.3 6.1 R55613 38.9 2.3 0.6 60.3 38.1 1.6 6.7 10.4 1.4 R55611 6.7 37.6 9.6 2.7 1.0 59.7 40.3 2.I ; R55610 9.0 2.9 0.8 53.0 47.0 2.1 34.1 4.1 ŧ R55501<sup>2</sup> 36.2 2.5 1.3 5.0 10.6 2.3 0.4 57.0 41.7 R55497<sup>2</sup> 31.7 0.9 4.8 8.6 4.5 1.8 52.3 46.4 1.3 R55489 5.3 37.0 9.3 1.6 3.9 1.0 58.1 40.5 1.4 R55488 0.5 6.4 36.7 8.5 3.6 3.5 1.8 60.5 39.0 R55487 3.7 38.4 11.9 2.6 1.2 61.9 37.5 0.6 4.1 R55481 2.5 8.5 34.0 8.9 2.3 1.2 57.4 42.2 0.4 R55480 34.7 1.9 1.1 52.3 2.6 8.6 3.4 45.4 2.3 R55479 0.5 7.0 40.4 10.4 3.2 1.7 63.2 36.2 0.6 Total feldspar Hornblende  $\Sigma$  Crystals Inclusions Pyroxene Biotite Opaque Matrix Quartz

DUNDEE

TARBAN

TENTERFIELD

BRASSINGTON

COOMBADJHA VOLCANIC COMPLEX

TABLE B.6: Modes<sup>1</sup> of the Dundee Rhyodacite continued.

<sup>1</sup> 1000 points counted per thin-section, expressed as percentage points.

TABLE B.7: Modes<sup>1</sup> of lenticles (relic pumice) in Dundee Rhyodacite ignimbrite.

|                      | Coomb  | adjha Volo<br>Complex | canic  | Brassington | Tente  | rfield |
|----------------------|--------|-----------------------|--------|-------------|--------|--------|
|                      | R55465 | R55465                | R55469 | R55610      | R55611 | R55612 |
| Quartz               | 4.2    | 14.0                  | 1.2    | 1.5         | 0.8    | 4.4    |
| Total feldspar       | 29.0   | 25.3                  | 35.9   | 12.0        | 19.9   | 24.6   |
| Biotite              | 9.4    | 5.7                   | 6.5    | 3.7         | 6.4    | 4.2    |
| Hornblende           | 1.4    | 0.8                   | 2.3    | 0.8         | 0.4    | 1.3    |
| Pyroxene             | 0.8    | 0.3                   | 1.2    | 0.8         | 2.4    | 0.8    |
| Opaque               | 0.6    | 0.3                   | 0.4    | 0.8         | 0.8    | 0.2    |
| $\Sigma$ Phenocrysts | 45.4   | 46.4                  | 47.5   | 19.6        | 30.7   | 35.5   |
| Groundmass           | 54.6   | 53.6                  | 52.5   | 80.4        | 67.7   | 61.8   |
| Inclusions           | -      | -                     | -      | -           | 1.6    | 2.7    |
| Points counted       | 500    | 384                   | 259    | 133         | 251    | 476    |

<sup>1</sup> Expressed as percentage points.

TABLE B.8: Modes<sup>1</sup> of the porphyritic dacite of the Basal facies Dundee Rhyodacite, Coombadjha Volcanic Complex.

|                      | R55506           | R55509 | R55514           | R55515          |
|----------------------|------------------|--------|------------------|-----------------|
| Quartz               | 3.2              | 0.9    | 4.2              | 1.0             |
| Total feldspar       | 31.0             | 30.2   | 25.2             | 21.3            |
| Biotite              | 5.6              | 5.3    | 5.4              | 7.0             |
| Hornblende           | -                | 1.6    | 0.8              | tr <sup>3</sup> |
| Pyroxene             | 2.8 <sup>2</sup> | 1.4    | 6.0 <sup>2</sup> | 2.0             |
| Opaque               | 0.3              | 0.3    | 0.4              | 0.3             |
| $\Sigma$ Phenocrysts | 42.9             | 39.7   | 42.0             | 31.6            |
| Groundmass           | 55.1             | 60.0   | 58.0             | 67.0            |
| Inclusions           | 2.0              | 0.3    | -                | 1.4             |
|                      |                  |        |                  |                 |

<sup>1</sup> 1000 points counted per thin-section, expressed as percentage points.

<sup>2</sup> Extensively altered.

 $^{\rm 3}$  Trace amount present.
| TABLE   | в.9:    | Modes <sup>1</sup> | of the | Moonta | Gully | Adamellite | of | the |
|---------|---------|--------------------|--------|--------|-------|------------|----|-----|
| Coombad | ljha Vo | lcanic C           | omplex | •      |       |            |    |     |

|             | R55554 | R55556 | R55562 |
|-------------|--------|--------|--------|
| Quartz      | 23.8   | 20.4   | 20.8   |
| Plagioclase | 39.8   | 35.4   | 36.6   |
| K-feldspar  | 22.4   | 28.8   | 28.4   |
| Biotite     | 11.0   | 9.2    | 9.4    |
| Hornblende  | 3.0    | 6.2    | 4.8    |
|             |        |        |        |

1 1000 points counted per thin-section, expressed
as percentage points.

# APPENDIX C

## ANALYTICAL METHODS

Samples collected for major and trace element analyses were crushed to -200 mesh in a tungsten-carbide vessel of a Siebtechnik mill. Major elements other than sodium and ferrous iron were determined by X-ray fluorescence spectrometry (XRF) at the School of Earth Sciences, Macquarie University, Sydney, (analyst John Bedford) using the method of Norrish and Chappell (1977). Na<sub>2</sub>O was determined by flame photometry and ferrous iron by titrometric methods, also at the School of Earth Sciences, Macquarie University. Trace element analyses were performed by X-ray fluorescence spectrometry in several runs using the appropriate tubes, at the School of Earth Sciences, Macquarie University (analyst John Bedford) following the procedures outlined by Norrish and Chappell (1977). Mass absorptions were calculated from the major element analyses.

Total  $H_2^0$  was determined by weighing the cooled condensate collected after heating the powdered sample at 1050°C for one hour.  $H_2^0$  was determined by measuring the loss in weight after heating the powdered sample at 100°C for one hour.  $H_2^0^+$  is reported as the difference between total  $H_2^0$  and  $H_2^0^-$ . Where necessary,  $CO_2$  was measured using a Collins' Calcimeter apparatus.

#### REFERENCE

Norrish, K. and Chappell, B.W. 1977. X-ray fluorescence spectrometry. In: J. Zussman (Editor), Physical Methods in Determinative Mineralogy, Second Edition. Academic Press, London, pp.201-272.

### APPENDIX D

#### LIST OF HANDSPECIMENS AND THIN-SECTIONS

List of hand specimens and thin-sections, Department of Geology and Geophysics, University of New England catalogue.

| Abbreviations and symbols:  | loc personal mapping locality numbers      |
|-----------------------------|--------------------------------------------|
|                             | PTIM - Piallaway Trig Ignimbrite Member    |
|                             | TMIM - Taggarts Mountain Ignimbrite Member |
|                             | IIM - Iventure Ignimbrite Member           |
|                             | * - chemical analysis                      |
|                             | M - modal analysis                         |
|                             | † - K-Ar date                              |
| The first half of each grid | reference refers to 'eastings', and the    |

second half refers to 'northings'. R55021 to R55362: six-figure grid reference to the 1000 yard grid on Standard 2 inches to 1 mile Topographic Maps, New South Wales Department of Lands, Sydney.

Therribri 8936-IV-N

Boggabri 8936-IV-S Willuri 8936-I-S

Kelvin 8936-II-N

Gunnedah 8936-II-S Somerton 9036-III-S Winton 9035-IV-N Piallaway 9035-IV-S Werris Creek 9035-III-N Goonoo 9035-II-N Quipolly 9035-III-S Emblem 9035-II-S Quirindi-A 9034-IV-N Quirindi-B 350-B Quirindi-D 350-D

R55369 to R55614: eight-figure grid reference to 1000 metre Australian Map Grid on 1:25000 Series Topographic Maps, New South Wales Department of Lands, Sydney.

| Tenterfield | 9339-IV-N  |              |           |
|-------------|------------|--------------|-----------|
| Sandy Flat  | 9339-IV-S  | Malara Creek | 9339-I-S  |
| Spirabo     | 9339-III-N | Washpool     | 9339-II-N |
| Rockadooie  | 9339-III-S | Coombadjha   | 9339-II-S |

317.

R55615 and R55616: grid reference to 1000 metre Australian Map Grid 1:100 000 Series R631 Topographic Map, Sheet 9240, Stanthorpe, Department of Lands, New South Wales.

R55617: grid reference to 1000 metre Australian Map Grid on 1:100 000 Series R651 Topographic Map, Sheet 9239, Clive, New South Wales Department of Lands.

|                | Catalogue        | Hand     | Thin-        | Map sheet and  |                        |
|----------------|------------------|----------|--------------|----------------|------------------------|
| loc.           | number           | specimen | section      | grid reference | Lithology              |
|                |                  |          |              |                | Currabubula Formation  |
|                |                  |          |              |                | Cana Creek Tull Member |
| W16a           | R55021           | +        | +            | Winton 579496  | Ignimbrite             |
| W16b           | R55022           | +        |              | 579496         | Ash-fall tuff          |
| W22            | R55023           | +        | +            | 575487         | Ignimbrite             |
| W53            | R55024           | +        | +            | 626493         | Ignimbrite             |
| W53            | R55025           | +        |              | 626493         | Ignimbrite             |
| W59            | R55026           | +        |              | 625496         | Ignimbrite             |
| W91a           | R55027           | +        |              | 579509         | Ignimbrite             |
| W91b           | R55028           | +        |              | 579509         | Ignimbrite             |
| W99a           | R55029           | +        | +            | 576506         | Ignimbrite             |
| w99Ъ           | R55030           | +        |              | 576506         | Ignimbrite             |
| W99c           | R55031           | +        |              | 576506         | Ash-fall tuff          |
| W140           | R55032           | +        |              | 597534         | Ignimbrite             |
| W140           | R55033           | +        |              | 597534         | Ash-fall tuff          |
| W153           | R55034           | +        |              | 623500         | Ignimbrite             |
| W180A          | R55035           | +        |              | 567529         | Ignimbrite             |
| W180B          | R55036           | +        | +            | 567529         | Ignimbrite             |
| W180C          | R55037           | +        | +            | 567529         | Ignimbrite             |
| W180D          | R55038           | +        | +            | 567529         | Ash-fall tuff          |
| W180E          | R55039           | +        | +            | 567529         | Ignimbrite             |
| w180F          | R55040           | +        |              | 567529         | Sandstone              |
| w180G          | R55041           | +        | +            | 567529         | Ignimbrite             |
| W180a          | R55042           | +        | +            | 567529         | Ignimbrite             |
| W180b          | R55043           | +        |              | 567529         | Ignimbrite             |
| W180c          | R55044           | +        |              | 567529         | Tanimbrite             |
| w186           | R55045*          | +        | + M          | 576510         | Tanimbrite             |
| W188           | R55046           | +        |              | 565523         | Ash-fall tuff          |
| w534           | R55047           | +        | +            | 564528         | Tanimbrite             |
| W31            | R55048           | +        | +            | Piall- 584470  | Ash-fall tuff          |
| WAAa           | R55049           | +        | + M          | away 590460    | Tanimbrite             |
| W440           | R55050           | ,<br>+   |              | 590460         | Ignimbrite             |
| WAAB           | R55050           | +        |              | 590460         | Sandstone              |
|                | R55052           | +        |              | 590460         | Ash-fall tuff          |
| w44b<br>w73>   | R55052<br>R55053 | +        | +            | 578481         | Tanimbrite             |
| W73h           | R55054           | •        | •            | 578481         | Ignimbrite             |
| W730           | R55055           | +        | +            | 578481         | Ignimbrite             |
| W730           | R55056           | +        | +            | 578481         | Accretionary lanill    |
| W754           | 133030           | 1        |              | 570401         | tuff                   |
| W730           | R55057           | +        | +            | 578481         | Tanimbrite             |
| 1737<br>1777   | R55052           | ,<br>+   | ,            | 578481         | Ash-fall tuff          |
| **/ンLi<br>い7つい | NJJ0J0<br>D55050 | ,<br>+   |              | 570401         | Ach-fall tuff          |
| W100           | RJJUJ9<br>D55060 | 7<br>1   | Ŧ            | 570401         | Sandetono              |
| WLUZ           | R55000           | T<br>L   | 7            | 504470         | Tanimbrito             |
| WTOZA          | REEDCO           | T .      | <del>.</del> | J0447U         | Ignimbrita             |
| WT05B          | R55062           | +        | +            | 584470         | Ignimbrite             |
| WL02C          | R55063           | +        | +            | 584470         | Ignimprite             |
| WI02D          | R55064           | +        | +            | 584470         | ASN-TALL TUIT          |
| WLU2D          | R55065           | +        | +            | 584470         | ASN-IALI TUII          |
| W102E          | R55066           | +        |              | 584470         | Granule conglomerat    |
| W102a          | R5506/           | +        | +            | 584470         | Ignimorite             |
| WI02b          | R55068           | +        |              | 584470         | Asn-tall tuff          |

| 100.                 | Catalogue | Hand     | Thin-   | Map shee   | t and  |                           |
|----------------------|-----------|----------|---------|------------|--------|---------------------------|
| 100.                 | number    | specimen | section | grid refe  | erence | Lithology                 |
|                      |           |          |         |            |        |                           |
| W115                 | R55069    | +        | +       | Piallaway  | 631483 | Ignimbrite                |
| W215                 | R55070    | +        | +       |            | 641449 | Ignimbrite                |
| W215                 | R55071    | +        | +       |            | 641449 | Fine ash tuff             |
| W227                 | R55072    | +        | +       |            | 649435 | Fine ash tuff             |
| W227a                | R55073    | +        | +       |            | 649435 | Ignimbrite                |
| W234                 | R55074    | +        |         |            | 639463 | Ash-fall tuff             |
| W253                 | R55075    | +        |         |            | 644446 | Accretionary lapilli tuff |
| W254                 | R55076    | +        |         |            | 648445 | Sandstone                 |
| W255                 | R55077    | +        | +       |            | 646441 | Ignimbrite                |
| W256                 | R55078    | +        | +       |            | 649435 | Ignimbrite                |
| W259a                | R55079    | +        |         |            | 666417 | Fine ash tuff             |
| W278                 | R55080    | +        | +       |            | 699362 | Ignimbrite                |
| W321                 | R55081    | +        |         |            | 590452 | Ash-fall tuff             |
| W322                 | R55082    | +        |         |            | 592448 | Ignimbrite                |
| W409                 | R55083    | +        |         |            | 704360 | Sandstone                 |
| W410                 | R55084    | +        | +       |            | 703358 | Ignimbrite                |
| W410a                | R55085    | +        | +       |            | 703358 | Ignimbrite                |
| W421                 | R55086    | +        |         |            | 711342 | Ignimbrite                |
| W421a                | R55087    | +        | +       |            | 711342 | Ignimbrite                |
| W421b                | R55088    | +        | +       |            | 711342 | Ignimbrite                |
| W446                 | R55089    | +        | +       |            | 706349 | Ignimbrite                |
| 0 2                  | R55090    | +        | + M W   | erris Ck.  | 740186 | Sandstone                 |
|                      | R55091    | +        | +       |            | 726228 | Coarse ash tuff           |
| 0 14a                | R55092    | +        |         |            | 726228 | Ignimbrite                |
| 0 18                 | R55093    | +        | + M     |            | 740245 | Sandstone                 |
| 0 18                 | R55094    | +        | + M     |            | 740245 | Sandstone                 |
| 2<br>0 18a           | R55095    | +        | +       |            | 740245 | Ignimbrite                |
| 0 60                 | R55096    | +        | +       |            | 725225 | Ignimbrite                |
| 0102                 | R55097*   | +        | +       |            | 738251 | Ignimbrite                |
| 0103                 | R55098    | +        | +       |            | 738256 | Ignimbrite                |
| 0302                 | R55099    | +        | +       |            | 737308 | Sandstone                 |
| 0223                 | R55100*   | +        |         |            | 557261 | Ignimbrite                |
| 02230                | R55101    | +        | + M     |            | 557261 | Sandstone                 |
| 0223B                | R55102    | +        | +       |            | 557261 | Ignimbrite                |
| 02230                | R55103    | +        | +       |            | 557261 | Ignimbrite                |
| 0223D                | R55104*   | +        | + M     |            | 557261 | Ignimbrite                |
| 0223E                | R55105    | +        | +       |            | 557261 | Ash-fall tuff             |
| 0223E                | R55106    | +        | +       |            | 557261 | Ash-fall tuff             |
| 0223G                | R55107    | +        | +       |            | 557261 | Accretionary lapilli tuff |
| <u>0223н</u>         | R55108    | +        | +       |            | 557261 | Ignimbrite                |
| 0223T                | R55109    | +        | +       |            | 557261 | Ignimbrite                |
| 0224                 | R55110    | +        | +       |            | 558265 | Ignimbrite                |
| 0 44                 | R55112    | +        | +       | Ouipollv   | 736146 | Fine ash tuff             |
| 0 45                 | R55113    | +        | +       | 2          | 738149 | Ignimbrite                |
| 2<br>0 45a           | R55114    | +        | +       |            | 738149 | Ignimbrite                |
| 0.45b                | R55115    | +        | +       |            | 738149 | Ignimbrite                |
|                      | R55116    | +        | +       |            | 738149 | Ignimbrite                |
| 0.45D                | R55117    | +        |         |            | 738149 | Ignimbrite                |
| 0 45A                | R55118    | +        | +       |            | 738149 | Ignimbrite                |
| $\chi$ $\frac{1}{2}$ | R55119*   |          |         |            | 738149 | Fine ash tuff             |
| 2 - JE               | R55120    | +        | Goo     | noo Goonoo | 745186 | Sandstone                 |
| ~ ~                  |           |          |         |            |        |                           |

\$

|              | Catalogue        | Hand     | Thin-   | Map sheet | and    |                             |
|--------------|------------------|----------|---------|-----------|--------|-----------------------------|
|              | number           | specimen | section | grid refe | rence  | Lithology                   |
| Q 53         | R55121           | +        | + M     | Emblem    | 742183 | Sandstone                   |
| Q 54         | R55122           | +        | +       |           | 743174 | Sandstone                   |
| Q 62         | R55123           | +        | +       |           | 743161 | Ignimbrite                  |
| Q 62         | R55124           | +        | +       |           | 743161 | Ignimbrite                  |
| õ 63         | R55125           | +        | +       |           | 743158 | Ignimbrite                  |
| õ 66         | R55126           | +        |         |           | 742135 | Ignimbrite                  |
| ~<br>0 66a   | R55127           | +        |         |           | 742135 | Tanimbrite                  |
| 0 78         | R55128           | +        | + M     |           | 759112 | Sandstone                   |
| 0 78a        | R55129           | +        | +       |           | 759112 | Ignimbrite                  |
| 0 79         | R55130           | +        | +       |           | 758115 | Ignimbrite                  |
| 0 79a        | R55131           | +        | ·       |           | 758115 | Ignimbrite                  |
| 0.85         | R55132           | +        | +       |           | 763091 | Ignimbrito                  |
| 0 86         | P55133           | +        | +       |           | 769096 | Ignimbrito                  |
| 0 87         | D55124           | ,<br>.L  | 1<br>   |           | 703030 | Ignimbrite                  |
| 0210-        | NJJ134           | T        | Ŧ       |           | 772001 |                             |
| Q3104        | RUSISS           | +        |         |           | 744132 | Sandstone                   |
| QJICD        | R55136           | +        |         |           | 744132 | Sandstone                   |
| Q310c        | R55137           | +        | +       |           | 744132 | Ignimbrite                  |
| Q310d        | R55138           | +        | +       |           | 744132 | Ignimbrite                  |
| Q322a        | R55139           | +        | +       |           | 770060 | Ignimbrite                  |
| PMT          | R55140           | +        | +       |           | 773067 | Ignimbrite                  |
| Q 91         | R55141           | +        | + Q1    | uirindi-B | 781013 | Ignimbrite                  |
|              |                  |          |         |           |        | Iventure Ignimbrite Member  |
| W 9a         | R55146           | +        | +       | Winton    | 578534 |                             |
| W148         | R55147           | +        | +       |           | 598523 |                             |
| W161         | R55148           | +        | + M     |           | 610508 |                             |
| W163         | R55149           | +        | + M     |           | 578514 |                             |
| W173         | R55150           | +        | +       |           | 619497 |                             |
| W458         | R55151           | +        | +       |           | 507629 |                             |
| W459         | R55152           | +        | +       |           | 516629 |                             |
| W459         | R55153           | +        | +       |           | 516629 |                             |
| W104         | R55154*          | +        | + P.    | iallaway  | 586476 |                             |
| W104         | R55155           | +        | + M     | 1         | 586476 |                             |
| W191         | R55156*          | +        | +       |           | 583482 |                             |
| W191a        | R55157*          | +        | ·       |           | 583482 |                             |
| W265         | R55158           | •        | +       |           | 632466 |                             |
| W200         | P55150           | +        | +       |           | 645429 |                             |
| 0.38         | R55160           | ,<br>+   | + (     | Ouipolly  | 731170 |                             |
| Q 50         | R55161           | 1<br>-   | · ·     | Quipoiry  | 731170 |                             |
| 0 50         | NJJ101<br>D55162 | -<br>-   | ،<br>ب  |           | 722172 |                             |
| Q 50         | R55162           | +<br>,   | +       |           | 732173 |                             |
| Q 50a        | R55163           | +        | +       |           | 732173 |                             |
| Q114<br>W120 | R55164           | +        | +       | <b>G</b>  | 729181 |                             |
| K138         | R55165           | +        | + (     | Gunnedan  | 364749 |                             |
| K II         | R55166           | +        | +       | Willuri   | 312962 |                             |
| K 41         | R55167           | +        | +       |           | 289982 |                             |
| К 53         | R55168           | +        | +       |           | 303986 |                             |
|              |                  |          |         |           |        | Ignimbrite X (Figs.2.2,2.4) |
| W 17         | R55171           | +        | +       | Winton    | 588497 |                             |
| W 20         | R55172           | +        | +       |           | 586488 |                             |
| W 82         | R55173           | +        | +       |           | 586491 |                             |
| w190         | R55174           | +        | +       |           | 584504 |                             |
| 11250        | D55175           | ,        | ,<br>_  |           | 605511 |                             |
| W352         | RODI/O           | Ŧ        | т<br>1  |           | COLETI |                             |
| ws52a        | K22T10           | +        | +       |           | LICCUO |                             |

| loc.         | Catalogue<br>number | Hand<br>specimen | Thin-<br>section | Map sheet<br>grid refe | and<br>rence | Lithology                |
|--------------|---------------------|------------------|------------------|------------------------|--------------|--------------------------|
| W379         | R55177              | +                | +                | Winton                 | 589534       | Member X continued       |
| W431         | R55178              | +                | +                |                        | 615497       |                          |
| W443         | R55179              | +                | +                |                        | 617496       |                          |
| W203         | R55180              | +                | +                | Piallaway              | 636450       |                          |
| W203         | R55181              | +                | +                |                        | 636450       |                          |
| W435         | R55182              | +                | +                |                        | 585485       |                          |
| W436         | R55183              | +                | +                |                        | 587477       |                          |
| Q 70         | R55184              | +                | +                | Quipolly               | 727153       |                          |
| Q 71         | R55185              | +                | +                |                        | 730159       |                          |
|              |                     |                  |                  |                        |              | Taggarts Mountain Ignim- |
|              |                     |                  |                  |                        |              | brite Member             |
| W 55c        | R55187              | +                | +                | Winton                 | 622492       |                          |
| W 83         | R55188              | +                | +                |                        | 588494       |                          |
| W174a        | R55189              | +                | +                |                        | 621494       |                          |
| W174b        | R55190              | +                | +                |                        | 621494       |                          |
| W267         | R55191              | +                | +                |                        | 613499       |                          |
| W304         | R55192              | +                | +                |                        | 591529       |                          |
| W354         | R55193              | +                | +                |                        | 591526       |                          |
| W373         | R55194              | +                | +                |                        | 608507       |                          |
| W377a        | R55195              | +                | +                |                        | 592519       |                          |
| W429         | R55196              | +                | +                |                        | 619492       |                          |
| W466         | R5519 <b>7</b>      | +                | +                |                        | 498612       |                          |
| W466         | R55198*             | +                | +                |                        | 498612       |                          |
| W202         | R55199              | +                | +                | Piallawav              | 635446       |                          |
| W210         | R55200              | +                | +                |                        | 636435       |                          |
| W236         | R55201              | +                | +                |                        | 632452       |                          |
| W385         | R55202              | +                | +                |                        | 642422       |                          |
| W386         | R55203              | +                | +                |                        | 643429       |                          |
| W434         | R55204              | +                | +                |                        | 586486       |                          |
| W436a        | R55205              | +                | +                |                        | 642429       |                          |
| W492         | R55206              | +                | + M              |                        | 580421       |                          |
| W492a        | R55207              | +                | +                |                        | 580421       |                          |
| Q259a        | R55210              | +                | Ŵ                | Verris Ck.             | 576226       |                          |
| õ268         | R55211              | +                | +                | Quipolly               | 569171       |                          |
| õ287         | R55212              | +                | + M              | ~ + +                  | 571179       |                          |
| õ416         | R55213*             | +                | + M              |                        | 568179       |                          |
| Q226         | R55214*             | +                | + W              | Verris Ck.             | 562267       |                          |
| ~<br>0227    | R55215              | +                | +                |                        | 548288       |                          |
| Q243         | R55216              | +                | +                |                        | 576241       |                          |
| ~<br>0245    | R55217              | +                | +                |                        | 566245       |                          |
| 0349a        | R55218*             | +                |                  |                        | 569228       |                          |
| 0349b        | R55219              | +                | +                |                        | 569228       |                          |
| 0377a        | R55220              | +                | +                |                        | 572187       |                          |
| 0413         | R55221*             | +                | +                |                        | 567198       |                          |
| ¥112         | R55222              | +                | +                | Gunnedah               | 335758       |                          |
| к130         | R55223              | +                | +                |                        | 344749       |                          |
| K1 31        | R55224              | +                | +                |                        | 346751       |                          |
| K136         | R55225              | +                | +                |                        | 358755       |                          |
| к 71         | R55226              | +                | +                | Kelvin                 | 283914       |                          |
| K OU         | R55227              | +                | +                | 100 ± V ±11            | 278902       |                          |
| х ЭU<br>х о7 | D55000              | ,<br>+           | +                |                        | 270902       |                          |
| к эл<br>к100 | R55220              | •<br>+           | ,<br>+           |                        | 294974       |                          |
| VT00         | 1133223             | •                |                  |                        | 274014       |                          |

|                              | Catalogue        | Hand     | Thin-  | Map shee   | t and  | Lithology                                            |  |  |
|------------------------------|------------------|----------|--------|------------|--------|------------------------------------------------------|--|--|
| 100.                         | number           | specimen | sectio | n grid ref | erence | Lituoiogy                                            |  |  |
| к153                         | R55230           | +        | +      | Kelvin     | 314795 | Taggarts Mt.Ig.Mbr.contd.                            |  |  |
| K155b                        | R55231           | +        | ÷      |            | 320798 |                                                      |  |  |
| K160a                        | R55232           | +        | +      |            | 332794 |                                                      |  |  |
| K179                         | R55233           | +        | +      |            | 278917 |                                                      |  |  |
| K180                         | R55234           | +        |        |            | 278915 |                                                      |  |  |
| K181a                        | R55235           | +        | +      |            | 286919 |                                                      |  |  |
| К 23                         | R55236           | +        | +      | Willuri    | 284966 |                                                      |  |  |
| К 26                         | R5523 <b>7</b>   | +        | +      |            | 273957 |                                                      |  |  |
| к 39                         | R55238           | +        | +      |            | 286987 |                                                      |  |  |
| R127                         | R55239           | +        | +      |            | 285032 |                                                      |  |  |
|                              |                  |          |        |            |        | Taggarts Mountain Ignim-<br>brite Member vitrophyres |  |  |
| Q244a                        | R55240*          | +        | +      | Werris Ck. | 571245 |                                                      |  |  |
| ~<br>0244d                   | R55241*          | +        |        |            | 571245 |                                                      |  |  |
| ~<br>Q246a                   | R55242*          | +        | +      |            | 563246 |                                                      |  |  |
| õ<br>349                     | R55243           | +        | +      |            | 569228 |                                                      |  |  |
| ~<br>0367a                   | R55244*          | +        | +      |            | 554278 |                                                      |  |  |
| 0287a                        | R55245*          | +        | +      | Ouipolly   | 572179 |                                                      |  |  |
| 2                            |                  |          |        | 2          |        | Taggarts Mountain Ignim-<br>brite textural variants  |  |  |
| 0211h                        | P55246           | +        | +      | Werris Ck  | 571245 |                                                      |  |  |
| 02440                        | R55240           | +        | +      | dirib ch.  | 571245 |                                                      |  |  |
| 0348a                        | R55248           | +        | +      |            | 575231 |                                                      |  |  |
| 0367h                        | RJJ240<br>D552/0 | 1<br>-   | ,<br>+ |            | 554278 |                                                      |  |  |
| 0267                         | RJJ24J<br>D55250 | 1<br>-   | +      | Ouipolly   | 569171 |                                                      |  |  |
| 0.267                        | R55251           | ۰<br>+   | ,<br>+ | Quipoity   | 569171 |                                                      |  |  |
| 02074                        | RJJ2J1<br>D55252 | r<br>    | ,<br>- |            | 565176 |                                                      |  |  |
| 0385                         | RJJ2J2<br>R55253 | +        | +      |            | 572158 |                                                      |  |  |
| 0303                         | R55254           | +        | +      |            | 566157 |                                                      |  |  |
| <u>ұ</u> ју <u>2</u><br>кііі | R55255           | +        |        | Gunnedah   | 333756 |                                                      |  |  |
| K113a                        | R55255           | +        | +      | Guineaan   | 338757 |                                                      |  |  |
| KIIJA<br>KIIA                | R55257           | +        | ,<br>+ |            | 344757 |                                                      |  |  |
| K1 26                        | RJJ2J7<br>D55250 | +        | ,<br>+ |            | 327786 |                                                      |  |  |
| KIZO<br>K Q2                 | R55250           | ۰<br>+   | ،<br>ب | Kelvin     | 282902 |                                                      |  |  |
| K 52<br>K156                 | R55260           | ,<br>-   | ,<br>- | Netvill    | 322702 |                                                      |  |  |
| K150<br>V174                 | R55260           | +        | ,<br>+ |            | 323790 |                                                      |  |  |
| v 2                          | NJJ201<br>D55262 | 1        | ,<br>  | Willuri    | 222720 |                                                      |  |  |
|                              | RJJ202<br>DEE262 | -        | 1<br>- | WILLIUL I  | 204974 |                                                      |  |  |
| K S                          | R55205           | Ŧ        | T      |            | 200057 |                                                      |  |  |
| K 0                          | RDDZ04           | +        | +<br>1 | Dilluona   | 290957 | Diaguan Dhualita                                     |  |  |
| RIJI                         | R55265           | +        | +      | BIIIyena   | 160260 | Plagyan Rhyolice                                     |  |  |
| RISS                         | R55200           | Ť        | Ŧ      |            | 100300 | Diallaway Wrig Tanimbrito                            |  |  |
|                              |                  |          |        |            |        | Member                                               |  |  |
| W 19                         | R55267           | +        | +      | Winton     | 591486 |                                                      |  |  |
| W 19a                        | R55268           | +        | +      |            | 591486 |                                                      |  |  |
| W 19B                        | R55269*          | +        |        |            | 591486 |                                                      |  |  |
| W 37                         | R55270           | +        | +      | Piallaway  | 596469 |                                                      |  |  |
| W127                         | R55271*          | +        | +      |            | 627468 |                                                      |  |  |
| W199                         | R55272           | +        | +      |            | 629445 |                                                      |  |  |
| W206                         | R55273*          | +        | +      | `          | 631437 |                                                      |  |  |
| W388                         | R55274*          | +        | + M    |            | 633430 |                                                      |  |  |
| W498                         | R55275           | +        | +      |            | 635429 |                                                      |  |  |

ć

| Lit      | cholog | ЭХ    |
|----------|--------|-------|
| allaway. | Trig   | Ignim |

|              |                  |         |        |             |        | Piallaway Trig Ignimbrite                          |
|--------------|------------------|---------|--------|-------------|--------|----------------------------------------------------|
|              |                  |         |        |             |        | Member                                             |
| w430         | R55276           | +       | + 1    | M Winton    | 618494 |                                                    |
| 0229         | R55277           | +       | +      | Werris Ck.  | 552299 |                                                    |
| ~<br>Q265a   | R55278*          | +       | + 1    | 4 Quipolly  | 563165 |                                                    |
| ~<br>Q266a   | R55279           | ÷       | +      | ~ • •       | 567168 |                                                    |
| Q279         | R55280           | +       | +      |             | 571137 |                                                    |
| Q286         | R55281           | +       | +      |             | 583149 |                                                    |
| Q384         | R55282           | +       | +      |             | 586149 |                                                    |
| Q391         | R55283*          | +       | +      |             | 567159 |                                                    |
| Q422         | R55285           | +       | +      |             | 671115 |                                                    |
|              |                  |         |        |             |        | Piallaway Trig Ignimbrite<br>Member vitrophyres    |
| 0266         | DEEDOC           |         | . Е.   | Outpolly    | ECOLCO |                                                    |
| $Q_{200}$    | RJJ200           | т<br>.ь | T<br>L | δατροιιλ    | 500150 |                                                    |
| $Q_2 r_3$    | RJJ207"          | +<br>-  | т      |             | 500152 |                                                    |
| 0402         | P55280*          | +       | +      |             | 575135 |                                                    |
| Q402<br>Q371 | R55290           | +       | +      | Werris Ck.  | 578243 |                                                    |
|              |                  |         |        |             |        | Other unnamed ignimbrites<br>Clifton-Carroll Block |
| W161         | 055000           | т       | Ŧ      | Winton      | 511622 | $(\mathbf{V}  \mathbf{Figure 2} \ 2)$              |
| W401<br>W473 | R55292           | +       | +      | WILLOU      | 195569 | (v, rigure 2.2)                                    |
| W473<br>W478 | R55294           | +       | +      |             | 495509 |                                                    |
| w481         | R55295           | +       | +      |             | 509533 |                                                    |
| W482         | R55296           | +       | +      |             | 508531 |                                                    |
| 1102         | 100290           |         |        |             | 000001 | Werrie Syncline                                    |
| W 14         | R55297           | +       | +      | Winton      | 571492 |                                                    |
| W 15         | R55298           | +       | +      |             | 574491 |                                                    |
| W160         | R55299           | +       | +      |             | 621513 |                                                    |
| W275h        | D55201           |         | -      | Diallaway   | 701276 |                                                    |
|              | R55301<br>R55302 | +       | т<br>- | Ouirindi-B  | 776012 | (W Figure 2.2) Vitrophure                          |
| Q JU         | 100002           | 1       |        | guirringi b | 110012 | Quirindi Dome                                      |
| Q338         | R55303*          | +       | +      | Werris Ck.  | 576224 | (V, Figure 2.5A) Vitrophyre                        |
| Q275         | R55304*†         | +       | +      | Quipolly    | 581149 | (Y,Figure 2.2) Vitrophyre<br>155-4                 |
| Q395         | R55305           | +       | +      |             | 575151 | (Y, Figure 2.2)                                    |
| õ<br>330     | R55306           | +       | +      |             | 586105 | Vitrophyre                                         |
| ~            |                  |         |        |             |        | Castle Mountain Dome                               |
| Q136         | R55307           | +       | +      | Quirindi-A  | 716963 | (W, Figure 2.2)                                    |
| Q136a        | R55308           | +       | +      |             | 716963 | (W, Figure 2.2) Vitrophyre                         |
| Q172         | R55309           | +       | +      |             | 706932 | (Z, Figure 2.2) Vitrophyre                         |
| Q192a        | R55310           | +       | +      |             | 716936 | (Z,Figure 2.2) Vitrophyre                          |
| Q195         | R55311           | +       | +      |             | 713934 | (Z, Figure 2.2)                                    |
| Q169         | R55312           | +       | +      |             | 731943 | Kankool area Figuro 53                             |
| мг           | R55313           | +       |        | Ouirindi-D  | 768808 | Lava                                               |
| M 15         | R55314           | +       |        | Farringr D  | 811794 | Lava                                               |
| M 27         | R55315           | ,<br>+  | +      |             | 795794 | Tanimbrite 2                                       |
| M 28         | R55316           | +       | +      |             | 789803 | Ignimbrite 1 (Z.Figure 2.2)                        |
| M 37         | R55317           | +       | +      |             | 791799 | Ignimbrite 1                                       |
|              |                  |         |        |             |        |                                                    |

Thin-

specimen section grid reference

Map sheet and

Catalogue Hand

number

loc.

ŕ

|       | Catalogue | Hand     | Thin-   | Map sheet          | and     |                                                        |
|-------|-----------|----------|---------|--------------------|---------|--------------------------------------------------------|
| 100.  | number    | specimen | section | grid refer         | ence    | Lithology                                              |
|       |           |          |         |                    |         | Undifferentiated                                       |
|       |           |          |         |                    |         | ignimbrites Kankool                                    |
| м125  | R55318    | +        | +       | Quirindi-D         | 781787  |                                                        |
| M111  | R55319    | +        | ÷       | ~                  | 782778  |                                                        |
| M118  | R55320    | +        | +       |                    | 785779  |                                                        |
| м135  | R55321    | +        | +       |                    | 802756  |                                                        |
| M 73  | R55322    | +        | +       |                    | 788778  |                                                        |
| M 54  | 055322    | +        | +       |                    | 793793  |                                                        |
| M J4  | 199929    | ·        | ·       |                    | 199109  | Currabubula Formation<br>miscellany                    |
| 0324  | R55324    | +        | +       | Emblem             | 763059  | Laminated mudstone                                     |
| 0.47  | R55325+   | +        | +       |                    | 748156  | Granitoid clast 155-1                                  |
| 2 1/  | R55326    | +        | +       | Winton             | 560531  | Quartzite clast spiri-                                 |
| 11.02 | N33320    | •        | ·       | WINCON             | 500531  | ferid fossils                                          |
| W 93  | R55327    | +        |         |                    | 590512  | Tuffaceous laminated<br>mudstone                       |
| W 96  | R55328    | +        |         |                    | 589508  | Quartzofeldspathic<br>sandstone                        |
| W137a | R55329    | +        |         |                    | 611524  | Conglomerate                                           |
| W179  | R55330    | +        |         |                    | 564535  | Lithic sandstone                                       |
| W215a | R55331    | +        |         | Piallaway          | 641449  | Laminated pebbly mudstone                              |
| W513a | R55332    | +        |         | Werris Ck.         | 717328  | Rosedale Member, mudstone                              |
| W 18  | F16381    | +        | 1.18    | 41 Winton          | 591495  | Carboniferous plant fossils                            |
| W 55b | F16382    | +        | L18     | 42 Willion<br>42   | 622/192 | carboniterous plane lobsitis                           |
| W/90  | F16383    | +        | T 18    | 43 Diallawaw       | 57//23  |                                                        |
| W490  | F16204    | +<br>-   | T 10    | 45 FIAIIAWAY<br>AA | 710005  |                                                        |
| WJIZ  | F10304    | T        | L10     | 44<br>70 Normia Ch | 717220  | T J 1                                                  |
| M2T3G | F16385    | +        | L18     | 79 Werris CK       | ./1/328 | Isopoaiennus sp.                                       |
| Q274  | F.T0380   | +        | L18-    | 80 Quipolly        | 582150  | Isopodichnus sp.                                       |
|       |           |          |         |                    |         | <u>Figure 5.3</u>                                      |
| M160b | R55333    | +        |         | Ouirindi-D         |         | Fossiliferous mudstone                                 |
| M163  | R55334    | +        | +       | yurringr D         |         | 'Flint clay' conglomerate                              |
|       |           |          |         |                    |         | (Figure 5.4b)                                          |
| M168  | R55335    | +        | +       |                    |         | Conglomerate, mafic volcan-<br>ic clasts (Figure 5.4c) |
| M160a | R55336    | +        | +       |                    |         | Fossiliferous 'flint clay'                             |
|       |           |          |         |                    |         | conglomerate (Fig. 5.4d)                               |
|       |           |          |         |                    |         | Boggabri Volcanics,<br>Figures 5.5,5.6                 |
| K189a | R55338    | ÷        |         | Therribri          | 025108  | Uppermost lava, Fig. 5.6a                              |
| K197  | R55339    | +        | +       |                    | 009099  | Upper ignimbrite, top of                               |
| K198  | R55340    | +        | +       |                    | 011096  | Upper ignimbrite, base of                              |
|       |           |          |         |                    |         | upper flow unit                                        |
| K198a | R55341    | +        | +       |                    | 011096  |                                                        |
| K287  | R55342    | +        |         |                    | 028105  | Upper ignimbrite, lower<br>flow unit                   |
| K269  | R55343    | +        | +       | Boggabri           | 000079  | Upper ignimbrite, lower<br>flow unit                   |
| K301  | R55344    | +        | +       |                    | 016006  | Lower ignimbrite                                       |
| K202  | P22344    | •<br>+   | -<br>-  |                    | 010000  | Lower Laws Figure 5 62                                 |
|       | *******   | •        | •       |                    | 001010  | Donese Lava, Elyute J.Ud                               |

| loc.     | Catalogue<br>number | Hand<br>specimen | Thin-<br>section | Map sheet<br>grid refe | and<br>cence | Lithology                  |
|----------|---------------------|------------------|------------------|------------------------|--------------|----------------------------|
|          |                     |                  |                  |                        |              | Undifferentiated lavas     |
| к209     | R55346              | +                |                  | Therribri              | 053116       |                            |
| к215     | R55347              | +                | +                |                        | 059096       |                            |
| K255a    | R55348              | +                | ·                |                        | 044153       |                            |
| K270a    | R55349              | +                |                  | Boggabri               | 997027       |                            |
| K271     | R55350              | +                | +                | 20990012               | 999044       |                            |
| K326     | R55351              | +                | +-               |                        | 988080       |                            |
| K328     | R55352              | +                | •                |                        | 093078       |                            |
| K342     | R55353              | +                | +                |                        | 985083       |                            |
| 1042     | 135555              |                  | ·                |                        | 505005       | Undifferentiated           |
|          |                     |                  |                  |                        |              | ignimbrites                |
| K322     | R55354              | +                | +                | Boggabri               | 977070       | cf upper ignimbrite        |
| NJ22     | 100004              |                  | •                | DoggaDII               | 211010       | Figure 5 62                |
| v227     | D55255              | т                | <u>н</u>         |                        | 999927       | af upper ignimbrite        |
| 1221     | K)))))              | т                | Ŧ                |                        | 555027       | Eigure 5 6a                |
| K1977    | <b>D</b> 55356      | +                |                  | Therribri              | nnanaa       | Laminated mudstone         |
| K197A    | T 1920              | 7                |                  | THELTTOLT              | 009099       | nlant forgila              |
| KT 2 1 2 | D55257              | Т                |                  | Poggobri               | 979069       | Accretionary lapilli tuff  |
| K323     | KJJJJ1              | т                |                  | BOGGADIT               | 978009       | Accretionary rapitir curr  |
|          |                     |                  |                  |                        |              | Gunnedah Volcanics         |
| K277     | R55359              | +                |                  | Gunnedah               | 226745       | Ignimbrite Figure 5.6d     |
|          |                     |                  |                  |                        |              | Leard Formation            |
| K223     | R55360              | +                |                  | Therribri              | 079126       | "Flint clay' conglomerate  |
| к229     | R55361              | +                |                  |                        | 061129       |                            |
|          |                     |                  |                  |                        |              | Coembadiba Volgania Comple |
|          |                     |                  |                  |                        |              | Dhoasant Crook Volcanics   |
|          |                     |                  |                  |                        |              | Crystal-rich ignimbrite    |
|          |                     |                  |                  |                        |              | crystal from fightabilito  |
| G 1      | R55369              | +                | + M              | Coombadjha             | 1            |                            |
|          |                     |                  |                  | 32                     | 2054235      |                            |
| G 51     | R55370              | +                | + M              | 30                     | )504255      |                            |
| G 60     | R55371              | +                | + M              | 33                     | 3854245      |                            |
| G 63a    | R55372              | +                | +                | 33                     | 3754187      |                            |
| G 90     | R55373              | +                | + M              | 35                     | 5204185      |                            |
| G 97     | R55374              | +                | + M              | 35                     | 5404230      |                            |
| G101     | R55375              | +                | + M              | 34                     | 254168       |                            |
| G104a    | R55376*             | +                | +                | 34                     | 154016       |                            |
| G239     | R55377              | +                | + M              | 41                     | 354552       |                            |
| G295     | R55378              | +                | + M              | 28                     | 3604266      |                            |
| G316     | R55379*             | +                | +                | 33                     | 8064068      |                            |
| G341     | R55380              | +                | + M              | 40                     | 504708       |                            |
| G851     | R55381              | +                | + M              | 40                     | 624640       |                            |
| G177b    | R55382              | +                | + M              | Washpool 36            | 5105181      |                            |
| G189     | R55383              | +                | + M              | 38                     | 3585207      |                            |
| G437     | R55384*             | +                | +                | 28                     | 3506045      |                            |
| G473     | R55385              | +                | + M              | 33                     | 825570       |                            |
| G489     | R55386              | +                | + M              | 31                     | 745577       |                            |
| G543     | R55387              | +                | + M              | 27                     | 475908       |                            |
| G581     | R55388              | +                | + M              | Sandy                  |              |                            |
|          |                     |                  |                  | Flat 24                | 626736       |                            |
| G612     | R55389              | +                | + M              | `25                    | 306626       |                            |

ĩ

|         | Cataloque | Hand     | Thin-                                 | Map sheet  | and      | ~ ' /                    |
|---------|-----------|----------|---------------------------------------|------------|----------|--------------------------|
| loc.    | number    | specimen | section                               | grid refer | ence     | Lithology                |
|         |           |          | · · · · · · · · · · · · · · · · · · · |            |          | Phosesnt Crook Volcanica |
|         |           |          |                                       |            |          | Fine grained crystal-    |
|         |           |          |                                       |            |          | poor ignimbrite          |
|         |           |          |                                       |            |          | poor ignimbried          |
| G112    | R55391    | +        | + M                                   | Coombadjha | 35954082 |                          |
| G234    | R55392    | +        | +                                     |            | 39204530 |                          |
| G315a   | R55393    | +        |                                       |            | 33054050 |                          |
| G339    | R55394    | +        | + M                                   |            | 40454730 |                          |
| G405A   | R55395    | +        |                                       | Washpool   | 30405618 |                          |
| G102    | R55397    | +        |                                       | Coombadjha | 33924100 | Lava breccia             |
| G848    | R55398    | +        |                                       | 1 1        | 34404025 |                          |
| G483    | R55399    | +        | +                                     | Washpool   | 30705882 | Microbreccia             |
| G484    | R55400    | +        |                                       |            | 30585857 |                          |
|         |           |          |                                       |            |          | Strongly tollated        |
| ~ 1 1 0 |           |          |                                       | ~ 1 1'1    | 25004110 | ignimbrite               |
| GII3    | R55401    | +        |                                       | Coombadjha | 35904112 |                          |
| G182    | R55402    | +        | + M                                   | Washpool   | 37005318 |                          |
| G900    | R55403    | +        |                                       |            | 29336112 |                          |
|         |           |          |                                       |            |          | Hianana Volcanics        |
|         |           |          |                                       |            |          | Bedded volcaniclastic    |
|         |           |          |                                       |            |          | facies                   |
| G84↓    | R55405    | +        | +                                     | Coombadjha | 36004560 |                          |
| G 84a   | R55406    | +        | +                                     |            | 36004560 |                          |
| G 84b   | R55407    | +        | +                                     |            | 36004560 |                          |
| G 84↑   | R55408    | +        | +                                     |            | 36004560 |                          |
| G1174   | R55409    | +        | +                                     |            | 36004230 |                          |
| G140b   | R55410    | +        | +                                     |            | 37824615 |                          |
| G209a↑  | R55411    | +        | +                                     |            | 37654298 |                          |
| G223a   | R55412    | +        | +                                     |            | 38024550 |                          |
| G303    | R55413    | +        | +                                     | **         | 37984190 |                          |
| GI//    | R55414    | +        | +                                     | Wasnpool   | 36085180 |                          |
| G515    | R55415    | +        | +                                     |            | 33655478 |                          |
| G515a   | R55416*   | +        | +                                     |            | 33655478 |                          |
| G /8c   | R55417    | +        | +                                     | Coombadjna | 35004546 | Microbreccia             |
| G 82    | R55418    | +        | +                                     |            | 36004606 |                          |
| G209    | R55419    | +        | +                                     |            | 37654300 | Ignimbrite(?)            |
|         |           |          |                                       |            |          | Massive porphyry facies  |
| G 78    | R55421    | +        | + M                                   | Coombadjha | 35014544 |                          |
| G 82    | R55422    | +        | +                                     |            | 36004606 |                          |
| G116    | R55423    | +        | +                                     |            | 36054220 |                          |
| G204    | R55424    | +        | + M                                   |            | 36904456 |                          |
| G205    | R55425*   | +        | + M                                   |            | 37104350 |                          |
| G210a   | R55426    | +        | +                                     |            | 37324275 |                          |
| G310    | R55427    | +        | +                                     |            | 36784082 |                          |
| G318a   | R55428    | +        | + M                                   |            | 35634270 |                          |
| G719    | R55429    | +        | + M                                   |            | 39484375 |                          |
| E 70    | R55430    | +        | + M                                   |            | 39604295 |                          |
|         |           |          |                                       |            |          | Pi Pi Ignimbrite         |
| G 53    | R55432    | +        | + M                                   | Coombadjha | 30704321 |                          |
| G 69    | R55433    | +        | + M                                   |            | 34464318 |                          |
| G133    | R55434*   | +        |                                       |            | 37964930 |                          |
| G202a   | R55435    | +        | + M                                   |            | 36904520 |                          |
| G258a   | R55436    | +        | + M                                   |            | 29384628 |                          |
| G294    | R55437*   | +        |                                       |            | 28504295 |                          |

| 100          | Catalogue         | Hand     | Thin-   | Map sheet               | and      | Lithology                           |
|--------------|-------------------|----------|---------|-------------------------|----------|-------------------------------------|
| 100.         | number            | specimen | section | grid refe               | rence    | 1101101097                          |
|              |                   |          |         |                         |          | Pi Pi Ignimbrite continued          |
| G304         | R55438            | +        | + M     | Coombadjha              | 37954282 |                                     |
| G338         | R55439            | +        | + M     |                         | 40274752 |                                     |
| G359         | R55440            | +        | + M     |                         | 37754276 |                                     |
| G330         | R55441            | +        | + M     | Washpool                | 36625146 |                                     |
| G335         | R55442            | +        | + M     |                         | 37955030 |                                     |
| G421a        | R55443            | +        | + M     |                         | 28935648 |                                     |
| G468         | R55444*           | +        |         |                         | 34705365 |                                     |
| G621         | R55445            | +        | + M     | Sandy Flat              | 24006877 |                                     |
| G290c        | R55446            | +        | +       | Coombadjha              | 29004675 | (contact with Dundee<br>Rhyodacite) |
|              |                   |          |         |                         |          | Babepercy Volcanics                 |
|              |                   |          |         |                         |          | Volcaniclastic rocks                |
| E 1          | R55447            | +        | +       |                         | 30944506 |                                     |
| G24b↑        | R55448            | +        | +       |                         | 31014496 |                                     |
| G 25         | R55449            | +        | +       |                         | 30704510 |                                     |
| E 64         | R55450            | +        |         |                         | 30704510 |                                     |
| G 24         | R55451            | +        |         |                         | 31014496 | Dundee Rhyodacite                   |
|              |                   |          |         |                         |          | Normal facios ignimbrito            |
| C 70         | D55452            | -        | т м     | Coombadiba              | 34704386 | Normal factes igninutite            |
| G 72         | RJJ4JJ<br>D55/5/  |          |         | coolibadjila            | 35064490 |                                     |
| $G_{1122}$   | R55454<br>D55455  | +        | + M     |                         | 35984080 |                                     |
| G112a        | RJJ4JJ<br>D55456* | •        | i i     |                         | 37694930 |                                     |
| GIJJ<br>F 46 | R55450            | ،<br>ب   | + M     |                         | 31704877 |                                     |
| E 40         | R55457            | -<br>-   | + 14    | Wachnool                | 27965450 |                                     |
| G413         | RJJ450<br>D55450  | +        | T M     | Washpool                | 27805450 |                                     |
| CA1A         | NJJ4JJ            | t t      | 1 11    |                         | 27005450 |                                     |
| G414<br>G415 | R55461            | +        | +       |                         | 28245545 |                                     |
| G417         | R55462            | +        | +       |                         | 28645580 |                                     |
| C463         | R55463            | +        | •<br>+  |                         | 28876367 |                                     |
| G405<br>G464 | R55463<br>R55464  | 1<br>+   | ÷ м     |                         | 28506378 |                                     |
| G530         | R55465*           | +        | + M     | Coombadiba              | 39454915 |                                     |
| G532         | R55466            | +        | + M     | Washpool                | 28305746 |                                     |
| G981         | R55467            | +        | +       | habiipoor               | 31656245 |                                     |
| G700         | R55468            | +        | + M     | Sandy Flat              | 22947720 |                                     |
| G703         | R55469            | +        | + M     | bund <sub>j</sub> 1 rac | 24267706 |                                     |
| 0,00         | 100409            | ·        | , 11    |                         | 21207700 | Near-base. Normal facies            |
|              |                   |          |         |                         |          | ignimbrite                          |
| G 11b        | R55471            | +        | +       | Coombadjha              | 33254506 |                                     |
| G 12         | R55472            | +        | + M     |                         | 33374532 |                                     |
| G120a        | R55473            | +        | + M     |                         | 35954308 |                                     |
| G228         | R55474            | +        | + M     |                         | 37604492 |                                     |
| G258         | R55475            | +        | + M     |                         | 29434630 |                                     |
| G290         | R55476            | +        | +       |                         | 29004675 |                                     |
| G290b        | R55477            | +        | + M     |                         | 29004675 |                                     |
| G715         | R55478*           | +        | +       |                         | 38704436 |                                     |
| G716         | R55479            | +        | + M     |                         | 38804425 |                                     |
| G853         | R55480*           | +        | + M     |                         | 40074653 |                                     |
| G863         | R55481*           | +        | + M     |                         | 27884401 |                                     |
| G932a        | R55482            | +        | +       | `                       | 39104268 |                                     |

ć

| loc.   | Catalogue<br>number                                                                                             | Hand<br>specimen | Thin-<br>sectio | Map she<br>on grid re | et and<br>ference | I       | Lithology               |            |
|--------|-----------------------------------------------------------------------------------------------------------------|------------------|-----------------|-----------------------|-------------------|---------|-------------------------|------------|
|        | An Million and Annual Annua |                  |                 |                       | ]                 | Near-ba | ase Normal<br>continued | facies     |
| G166a  | R55483                                                                                                          | +                | +               | Washpool              | 35055060          |         |                         |            |
| G397   | R55484                                                                                                          | +                | ÷               |                       | 29925360          |         |                         |            |
| G398   | R55485                                                                                                          | +                |                 |                       | 30365370          |         |                         |            |
| G402   | R55486                                                                                                          | +                | +               |                       | 30755585          |         |                         |            |
| G425a  | R55487                                                                                                          | +                | + M             |                       | 28905722          |         |                         |            |
| G492   | R55488                                                                                                          | +                | + M             |                       | 31755503          |         |                         |            |
| G523   | R55489                                                                                                          | +                | + M             |                       | 34555326          |         |                         |            |
| G544a  | R55490                                                                                                          | +                | +               |                       | 27385900          |         |                         |            |
| G897a  | R55491                                                                                                          | +                | +               |                       | 30556215          |         |                         |            |
| G1005  | R55492                                                                                                          | +                | +               |                       | 28125840          |         |                         |            |
| G447   | R55493                                                                                                          | +                | ÷               | Spirabo               | 26735972          | _       |                         |            |
| 0406   | DEFACE                                                                                                          |                  |                 | 5.7 la                | 20005750          | Basal   | facies-ig               | nimbrite   |
| G426   | R55496                                                                                                          | +                | +               | wasnpool              | 28805750          |         |                         |            |
| G438   | R55497                                                                                                          | +                | + M             |                       | 28386116          |         |                         |            |
| G439   | R55498                                                                                                          | +                | +               |                       | 27886149          |         |                         |            |
| G534   | R55499                                                                                                          | +                | +               |                       | 28605775          |         |                         |            |
| G825a  | R55500                                                                                                          | +                | +               |                       | 28905875          |         |                         |            |
| G826   | R55501                                                                                                          | +                | + M             |                       | 28775855          |         |                         |            |
| G827a  | R55502                                                                                                          | +                | +               |                       | 28205845          |         |                         |            |
| 6838   | RSSSU3                                                                                                          | +                | <b>T</b>        |                       | 29955655          |         |                         |            |
| G973a  | R55504                                                                                                          | Ŧ                | т               |                       | 29400201          |         |                         |            |
|        |                                                                                                                 |                  |                 |                       |                   | Basal   | facies-po<br>dacite     | orphyritic |
| G 37   | R55506                                                                                                          | +                | + M             | Coombadjha            | 31754521          |         |                         |            |
| G 80a  | R55507                                                                                                          | +                | +               |                       | 35024635          |         |                         |            |
| G 87   | R55508                                                                                                          | +                | +               |                       | 35204330          |         |                         |            |
| G141   | R55509                                                                                                          | +                | + M             |                       | 36924613          |         |                         |            |
| G235a  | R55510*                                                                                                         | +                | +               |                       | 39404530          |         |                         |            |
| G237   | R55511                                                                                                          | +                | +               |                       | 39804520          |         |                         |            |
| G237A  | R55512                                                                                                          | +                | +               |                       | 39804520          |         |                         |            |
| G249   | R55513                                                                                                          | +                | +               |                       | 40314685          |         |                         |            |
| G168a  | R55514                                                                                                          | +                | + M             | Washpool              | 34465065          |         |                         |            |
| G333   | R55515*                                                                                                         | +                | + M             |                       | 35955094          |         |                         |            |
| G420   | R55516                                                                                                          | + ,              | +               |                       | 28855632          |         |                         |            |
| G421   | R55517                                                                                                          | +                | +               |                       | 28935647          |         |                         |            |
| G440   | R55518                                                                                                          | +                | +               |                       | 27856110          |         |                         |            |
| G5351  | R55519                                                                                                          | +                | +               |                       | 28775830          |         |                         |            |
| G554   | R55520*                                                                                                         | +                |                 |                       | 28456142          |         |                         |            |
| G897   | R55521                                                                                                          | +                | +               |                       | 30556214          | (shea:  | red)                    |            |
|        |                                                                                                                 |                  |                 |                       |                   | Basal   | facies-be               | dded tuff  |
| G153a  | R55523                                                                                                          | +                | +               | Coombadiha            | 35204838          |         |                         |            |
| G235   | R55524                                                                                                          | +                | +               |                       | 39404530          |         |                         |            |
| G236   | R55525                                                                                                          | +                | +               |                       | 35524525          |         |                         |            |
| G290a  | R55526                                                                                                          | +                | +               |                       | 29004675          |         |                         |            |
| G120   | R55527                                                                                                          | +                | +               |                       | 35964308          |         |                         |            |
| G441   | R55528                                                                                                          | +                | +               | Washpool              | 27506071          |         |                         |            |
| G827h  | R55529                                                                                                          | +                | +               | <b>1</b> <del>-</del> | 28165842          |         |                         |            |
| G1005b | R55530                                                                                                          | +                | +               |                       | 28105840          |         |                         |            |
| G 80   | R55533                                                                                                          | +                | +               | Coombadiha            | 35024634          | Basal   | facies -                | "breccia"  |
| G 80a  | R55534                                                                                                          | +                | +               |                       | 35044640          |         |                         |            |
| G 80h  | R55535                                                                                                          | +                | +               |                       | 35044640          |         |                         |            |
| G153   | R55536                                                                                                          | +                | +               |                       | 35204838          |         |                         |            |
| -      |                                                                                                                 |                  |                 |                       |                   |         |                         |            |

| Number     Dependent Gernan grin Ferretate       C231a     R55537     +     +     Coombadjha     38004509       C231a     R55537     +     +     Coombadjha     38004509       C166     R55539     +     +     34385060       C169     R55541     +     +     20015565       C420A     R55542     +     +     20855622       C333     R55544     +     20855622       C333     R55545     +     +     22855622       C333     R55546     +     +     22855622       C333     R55547     +     +     22855622       C305     R555548     +     +     2010525       C336     R55557     +     +     02004525       C338     R55556     +     +     3153962       C342     R55556     +     +     32053266       C343     R55558     +     +     3205920       C311     R55561     +     +     3205920       C311     R55561     +      320705920 <tr< th=""><th>loc.</th><th>Catalogue</th><th>Hand</th><th>Thin-</th><th>Map sheet</th><th>and arence</th><th>Lithology</th></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | loc.   | Catalogue | Hand   | Thin-  | Map sheet      | and arence | Lithology                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|--------|--------|----------------|------------|-------------------------------------|
| G231a       R55537       +       +       Coombadja       3680450       continued         G166       R55539       +       +       3026058         G167       R55539       +       +       3438506         G169       R55540       +       +       2001555         G160       R55541       +       +       2001556         G4200       R55542       +       +       2805632         G4208       R55547       +       +       2805582         G4208       R55547       +       +       2805582         G169       R55547       +       +       2805632         G239       R55547       +       +       280562         G300       R55547       +       +       0104525         G338       R55558       +       +       0104525         G342       R55558       +       +       0201502         G343       R55558       +       +       032556         G341       R5556       +       +       0470455         G342       R55561       +<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |           |        |        |                |            |                                     |
| C231a     R55537     +     +     Coombadjha     38004509       G166     R55538     +     34385060       G169     R55540     +     +     34385060       G409     R55541     +     +     28055632       G420A     R55543     +     +     28055632       G333     R55544     +     +     28055622       G333     R55546     +     +     28055622       G338     R55547     +     +     28055622       G338     R55553     +     +     28055622       G338     R55553     +     +     40104525       G338     R55553     +     +     40704780       G313     R55555     +     +     3315362       G314     R55558     +     +     3355385       G318     R55562     +     +     32075920       G313     R55561     +     +     3205580       G318     R55562     +     +     32025860       G314     R55561     +      32025586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |           |        |        |                |            | Basal facies-"breccia"<br>continued |
| G166     R55538     +     Washpool     35065058       G169     R55539     +     +     34385060       G409     R55541     +     +     28055632       G4200     R55543     +     +     28055632       G4200     R55544     +     2805632       G4200     R55544     +     28055622       G839     R55544     +     29555622       G005a     R5554     +     +     29555622       G105a     R55554     +     +     2955622       G238A     R55552     +     +     0004525       G238A     R55553     +     +     0104525       G238A     R55554     +     M     3604095       G313     R55557     +     M     3153962       G313     R55557     +     M     3270520       G404     R55560     +     +     32705203       G405     R55561     +     Malara Ck.     2806578       G404     R55567     +     Malara Ck.     2806578       G507A <td< td=""><td>G231a</td><td>R55537</td><td>+</td><td>+</td><td>Coombadjha</td><td>38804509</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | G231a  | R55537    | +      | +      | Coombadjha     | 38804509   |                                     |
| G169     R55539     +     +     34385060       G409     R55540     +     +     34385060       G400     R55541     +     +     28855632       G420R     R55543     +     +     28855632       G533     R55544     +     +     28555622       G839     R55546     +     +     29555622       G305a     R55547     +     +     28059622       G3005a     R55545     +     +     2000538       G238A     R55555     +     +     40104525       G303     R55556     +     +     Machdels       G313     R55555     +     +     3153962       G313     R55556     +     +     Machdels       G478     R55560     +     +     32705920       G318     R55561     +     +     32705920       G478     R55561     +     +     32705920       G478     R55561     +     +     3265586       G371     R55564     +      32655601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G166   | R55538    | +      |        | Washpool       | 35065058   |                                     |
| G169 R55540 + + A 34385060<br>G409 R55541 + + 2865562<br>G420A R55542 + + 2865562<br>G420B R55543 + + 2865632<br>G839 R55544 + + 2855622<br>G839 R55546 + 4 29555622<br>G839 R55546 + 4 29555622<br>G839 R55546 + + 29555622<br>G238A R55552 + + A 2008badjha 40104525<br>G238B R55553 + + 4 40104525<br>G238B R55555 + A 3153962<br>G313 R55555 + A 40704780<br>G843 R5555 + A 40704780<br>G843 R5556 + + M 40704780<br>G843 R5556 + + M 407054635<br>G850 R5558 + + A 29276213<br>G850 R5556 + + A 32705920<br>G407a R5556 + + A 29276213<br>G406 R55564 + + A 29276213<br>G406 R55564 + + Washpool 38405526<br>G971 R5562 + + M 2927586<br>G407a R5556 + + 2968578<br>G407a R5556 + + 2968578<br>G407a R5556 + + 33545501<br>Hutusions similar to the<br>Moonta Gully Adamellite<br>Moonta Gully Porphyry<br>Malara Ck. 28906545<br>G455 R55573 + + 33364525<br>G448 R55578 + 4 2068454<br>G456 R55571 + A 31806170<br>G446 R5556 + + 2968578<br>G457 R55571 + Washpool 28406400<br>G456 R5557 + + 33364521<br>G457 R55571 + 20405454<br>G457 R55571 + 20405454<br>G458 R55572 + 4 24068406<br>G778 R55573 + + 24068405<br>G778 R55573 + + 24068405<br>G788 R55578 + + 85978<br>G448 R55581 | G169   | R55539    | +      | +      |                | 34385060   |                                     |
| G409     R55541     +     +     29015565       G420R     R55542     +     +     2885632       G632R     R55545     +     +     2805562       G633R     R55545     +     +     2805562       G633R     R55545     +     +     2805843       G633R     R55545     +     +     29555622       G1005a     R55545     +     +     2955562       G238R     R55553     +     +     28105840       C238R     R55553     +     +     40104525       G309     R55553     +     +     40104525       G313     R55553     +     +     40104525       G313     R55557*     +     33153862     -       G313     R55556     +     +     3205586       G478     R55560     +     +     3205586       G478     R55561     +     +     2926573       G404     R55564     +      2926574       G404     R55566     +      3055561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | G169   | R55540    | +      | +      |                | 34385060   |                                     |
| G420A     R55542     +     +     2885532       G420A     R55543     +     +     2885632       G33     R55544     +     +     2805843       G827     R55545     +     +     2855522       G339A     R55546     +     +     2805843       G339A     R55574     +     +     28105840       G238A     R55552     +     +     28105840       G238A     R55553     +     +     40104525       G238A     R55554     +     +     40104525       G238A     R55555     +     +     40104525       G342     R55556     +     +     40754635       G342     R55557*     +     40754635       G478     R55560     +     +     32705920       G501     R55561     +     +     2922586       G404     R55564     +     2968578     905561       G407a     R55564     +     32905515     1       G404     R55569     +     33452515     1       G4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | G409   | R55541    | +      | +      |                | 29015565   |                                     |
| G420D     R55543     +     +     2885632       G833     R55544     +     +     28205843       G839     R55554     +     +     2955622       G005a     R55546     +     +     2955622       G005a     R55547     +     +     28105840       G238A     R55554     +     +     28105840       G238B     R55552     +     +     40104525       G238B     R55553     +     +     40104525       G238A     R55555     +     3153962     -       G2342     R55556     +     +     M 40704780       G342     R55557*     +     33153962     -       G343     R55557*     +     3353856     -       G343     R55557*     +     3353566     -       G343     R55556     +     +     29276213       G478     R55561     +     2905586     -       G404     R55564     +     2905586     -       G507     R55571     +     Malara Ck.     28906573 <td>G420A</td> <td>R55542</td> <td>+</td> <td>+</td> <td></td> <td>28855632</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G420A  | R55542    | +      | +      |                | 28855632   |                                     |
| G33     R55544     +     +     2845770       G827     R55545     +     +     2955622       G839     R55547     +     +     2955622       G398     R55547     +     +     2955622       G309     R55548     +     +     2955622       G238A     R5555     +     +     205843       G238A     R5555     +     +     40104525       G309     R5555     +     +     40704780       G313     R55555     +     +     40754635       G403     R55557*     +     -     3355386       G478     R55561     +     +     32705920       G501     R55561     +     +     32205586       G478     R5566     +     29257621       G407a     R55565     +     +     3259586       G407a     R55561     +     4     324285135       G507     R55571     +     Malara Ck.     28906545       G457     R55571     +     28045645       G457     R5557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | G420B  | R55543    | +      | +      |                | 28855632   |                                     |
| CB27     R55546     +     +     28205843       CB39     R55546     +     +     29555622       CB39A     R55547     +     +     29555622       CB39A     R5554     +     +     29555622       CC33BA     R5555     +     40104525       CC33BA     R5555     +     40104525       CC33BA     R5555     +     40104525       CC33BA     R5555     +     40104525       CC33BA     R55556     +     +     M       CB42     R55560     +     +     M       CB43     R55561     +     +     40704780       CB43     R55561     +     +     40754635       CB43     R55561     +     +     3220586       CB47     R55561     +     3205586     -       CB47     R5556     +     +     29625586       CG407     R5556     +     +     29625586       CG404     R55568     +     +     29625546       CG404     R55567     +     +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | G533   | R55544    | +      | +      |                | 28545770   |                                     |
| GB39     R55540     +     +     29555622       G1005a     R55547     +     +     28105840       G238A     R55553     +     +     28105840       G238B     R55553     +     +     40104525       G333     R55553     +     +     40104525       G342     R5555     +     +     3153962       G342     R55556     +     +     Moonta Gully Adamellite       G843     R55557     +     -     3153962       G342     R55556     +     +     Moorta Gully Adamellite       G843     R55557     +     -     3153962       G342     R55565     +     +     Moorta Gully Adamellite       G608     R55561     +     +     32705920       G407a     R55565     +     +     29685578       G407a     R55563     +     +     32805175       G407a     R55563     +     +     33425155       G407a     R55563     +     +     33425155       G404     R55571     +     Mal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | G827   | R55545    | +      | +      |                | 28205843   |                                     |
| G339A     K55547     +     +     29352622       G1005a     K55548     +     +     28105840       G238A     K55552     +     +     40104525       G238B     K55553     +     +     40104525       G238B     K55553     +     +     40104525       G309     K55554     +     M     36604095       G313     K55555     +     M     40704780       G843     K55556     +     +     M     40704780       G843     K55556     +     +     40754635     G       G108     K55560     +     +     32705920     G       G501     K55561     +     +     3205586     G       G404     K55565     +     +     2992586     G     GEX     Creek Intrusion       G507A     K55564     +     +     3395155     G     GEX     Cauly Forphyry       G455     K55570     +     Halara Ck.     29065573     G     Intrusions similar to the       G559     K55573     +     +     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G839   | R55546    | +      | +      |                | 29555622   |                                     |
| GLUSSA     KSS548     +     Provide and the second                                                                                                                                                                                                                               | G839A  | R55547    | +      | +      |                | 29555622   |                                     |
| G238A     R55552     +     +     Coombadjha     40104525       G238B     R55553     +     40104525       G309     R55554     +     M     36604095       G313     R55555     +     M     40704780       G342     R55556     +     +     M     40704780       G843     R55557*     +     40704780     3405526       G850     R55558     +     +     40704780       G8418     R55560     +     +     32705920       G501     R55561     +     +     32055561       G771     R55565     +     2982586       G407A     R55565     +     2982586       G407A     R55565     +     2982586       G506     R5557     +     Washpool     33975155       G507     R55571     +     Washpool     3395155       G455     R55571     +     Malara Ck.     28906542       G456     R55573     +     Tenterfield     2406806       G782     R55575     +     Tenterfield     24068010 <td>G1005a</td> <td>R55548</td> <td>+</td> <td>+</td> <td></td> <td>28105840</td> <td>Maanta Cullu Adamallita</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | G1005a | R55548    | +      | +      |                | 28105840   | Maanta Cullu Adamallita             |
| G238A     R5552     +     +     Coombadjha     40104525       G238B     R5553     +     +     M     3604095       G313     R5555     +     +     M     40704780       G342     R5556     +     +     M     40754635       G843     R5557*     +     -     3353885       G850     R5556     +     +     Mashpool     38405526       G478     R55560     +     +     Mashpool     38205520       G501     R55561     +     +     Mashpool     29276213       G406     R55565     +     +     29685578       G407a     R55566     +     +     29685578       G404     R55566     +     +     33595155       G404     R55566     +     +     3366102       G503     R55571     +     Washpool     33975155       G455     R5571     +     Malara Ck.     28906545       G455     R5573     +     Tenterfield     2406806       G778     R55575     +     Tent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |           |        |        |                |            | Moonta Gully Adamellite             |
| G238B     R5553     +     +     40104525       G309     R55554     +     +     M     36604095       G313     R55555     +     +     M     40704780       G342     R55556     +     +     M     40704780       G843     R55557*     +     +     40754635       G188     R55550*     +     +     3250586       G478     R55561     +     +     3205586       G474     R55562     +     +     2925586       G474     R55565     +     +     2968578       G404     R55567     +     +     2968578       G404     R55567     +     +     2968578       G506     R55570     +     Malara Ck.     28906545       G457     R55571     +     Malara Ck.     28906542       G458     R55573     +     +     27836365       G458     R55573     +     +     24068910       G458     R55578     +     +     24068910       G778     R55576     + <td>G238A</td> <td>R55552</td> <td>+</td> <td>+</td> <td>Coombadjha</td> <td>40104525</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | G238A  | R55552    | +      | +      | Coombadjha     | 40104525   |                                     |
| Ga0e R5554 + + M 36604095<br>G313 R55555 + 3153962<br>G322 R55556 + + M 40704780<br>G342 R55556 + + M 40704780<br>G843 R55557 + + 33553885<br>G371 R5556 + + A 32705920<br>G501 R5561 + + A 35205586<br>G478 R5556 + + A 35205586<br>G407a R5556 + + A 29685578<br>G404 R5556 + + 29685578<br>G506 R55567 + + Washpool 2992586<br>G407a R55568 + + 34225135<br>G507 R55568 + + 34225135<br>G507 R55568 + + 34225135<br>G507 R55569 + + 34225135<br>G507 R55569 + + 34225135<br>G405 R5557 + + Malara Ck. 28906545<br>G457 R5557 + + 30456422<br>G457 R5557 + + Tenterfield 2406806<br>G459 R5557 + + Tenterfield 2406806<br>G738 R55573 + + 31806170<br>G559 R55573 + + 31806170<br>G738 R55575 + + Tenterfield 2406806<br>G738 R55573 + + 31806170<br>G738 R55575 + + Tenterfield 2406806<br>G738 R55573 + + 24068010<br>G448a R55578 + + 24068010<br>G448a R55578 + + 26605890<br>G448a R55581 + + 2640595<br>G448a R55581 + + 2640595<br>G448a R55581 + + 2640595<br>G448a R55583 + - 26008905<br>G448a R55583 + - 2800844<br>G448a R55583 + - 280084<br>G448a R55583 + - 280084<br>G448a R55583 + - 280084<br>G448a R55583 + - 280084<br>G448a R55583 + - 280           | G238B  | R55553    | +      | +      |                | 40104525   |                                     |
| G312     R5555     +     +     M     40704780       G342     R55556     +     +     M     40704780       G843     R55557*     +     33553885     -     -       G843     R55557*     +     Washpocl     38405526       G848     R55559*     +     +     32705920       G478     R55560     +     +     3205586       G971     R55561     +     +     3205586       G971     R55562     +     +     Washpool     29276213       G406     R55565     +     +     29265578        G404     R55566     +     +     29685578        G503     R55567     +     +     33545215        G457     R55570     +     +     330456422        G455     R55571     +     Malara Ck.     28906545        G778     R55573     +     Tenterfield     2406806        G807A     R55578     +     Tenterfield     2406806        G8677 </td <td>G309</td> <td>R55554</td> <td>+</td> <td>+ M</td> <td></td> <td>36604095</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G309   | R55554    | +      | + M    |                | 36604095   |                                     |
| G342 R5556 + + M 40704780<br>G843 R5557* + 40754635<br>G188 R55558 + 40754635<br>G188 R5559* + Washpool 38405526<br>G478 R55560 + + 32705920<br>G501 R55561 + + M 29275286<br>G478 R55562 + M 29276213<br>G406 R55564 + + 29685578<br>G404 R55565 + + 29685578<br>G404 R55566 + 3055561<br>G506 R55567 + + Washpool 33975155<br>G507A R55568 + + 3325215<br>G507A R55568 + + 3325215<br>G507A R55568 + + 3325215<br>G405 R55571 + Malara Ck. 28906545<br>G457 R55571 + Washpool 28406400<br>G458 R55572 + Washpool 28406400<br>G788 R55573 + + 27836365<br>G893 R55573 + + 27836365<br>G893 R55574 + + 1208051<br>G448 R55578 + + 24068910<br>G778 R55575 + + Tenterfield 24068806<br>G782 R55576 + + 24068910<br>G778 R55577 + + 1208057<br>G448 R55578 + + 26605890<br>G448 R55579 + + 26605890<br>G448 R55579 + + 26605890<br>G448 R55579 + + 26406015<br>G448 R55578 + + 26406015<br>G448 R55579 + + 26406015<br>G448 R55579 + + 26406015<br>G448 R55579 + + 264060580<br>G448 R55579 + + 264060580<br>G448 R55579 + + 264060580<br>G448 R55579 + + 264060580<br>G448 R55578 + + 26406015<br>G448 R55579 + + 85918<br>G448 R557 | G313   | R55555    | +      |        |                | 33153962   |                                     |
| GR43     R5557*     +     3353885       GR50     R5558     +     +     40754635       GR50     R5559*     +     Washpool     38405526       G478     R55560     +     +     32705920       G501     R55561     +     +     32205586       G971     R55562     +     +     29276213       G406     R55565     +     +     29685578       G404     R55566     +     29685578       G404     R55566     +     29685578       G506     R55568     +     +     33975155       G507     R55568     +     +     33975155       G507     R55568     +     +     3354521       G457     R55570     +     Malara Ck.     28906545       G457     R55571     +     Washpool     28406400       G458     R55572     +     Washpool     28406400       G807A     R55575     +     Tenterfield     24068906       G428     R55578     +     Spirabo     26605890 <td< td=""><td>G342</td><td>R55556</td><td>+</td><td>+ M</td><td></td><td>40704780</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | G342   | R55556    | +      | + M    |                | 40704780   |                                     |
| C850     R5558     +     +     40754635       G188     R5559*     +     Washpool     38405526       G478     R55560     +     +     35205586       G971     R55561     +     +     35205586       G971     R55562     +     +     29275213       G406     R55564     +     +     29685578       G404     R55566     +     +     29685578       G404     R55566     +     +     29685578       G506     R55567     +     +     30555601       G507A     R55568     +     +     33975155       G503     R55570     +     +     33242513       G457     R55571     +     Malara Ck.     28906545       G458     R55571     +     27836365     -       G839     R55573     +     Tenterfield     24068400       G782     R55576     +     24058905     -       G448     R55578     +     Spirabo     26605890       G448     R55579     +     26406595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | G843   | R55557*   | +      |        |                | 33553885   |                                     |
| G188 R5559* + Washpool 3840526<br>G478 R5560 + + 32205920<br>G501 R55561 + + M 29276213<br>G406 R55562 + + M 2922586<br>G407a R55565 + + 29685578<br>G404 R55566 + 3055560<br>G507a R55568 + + 332555<br>G507a R55568 + + 34225135<br>G507a R55568 + + 34225135<br>G507a R55569 + + 333545215<br>G455 R55571 + Malara Ck. 28906545<br>G455 R55572 + Washpool 28406400<br>G559 R55573 + + Tenterfield 2406806<br>G782 R55576 + + 31806170<br>G778 R55577 + + Tenterfield 2406806<br>G782 R55576 + + 24059005<br>G448 R55578 + + Spirabo 26605890<br>G448 R55579 + + 24059005<br>G448 R55579 + + 26605890<br>G448 R55578 + + Spirabo 26605890<br>G448 R55578 + + Spirabo 26605890<br>G448 R55578 + + 26605890<br>G448 R55578 + + M Sandy Flat 09007765 Dundee Rhyodacite -<br>Brassington                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | G850   | R55558    | +      | +      |                | 40754635   |                                     |
| G478     R55560     +     +     32705920       G501     R55561     +     +     35205586       G971     R55562     +     +     M     29276213       G406     R55564     +     +     29685578       G404     R55565     +     +     29685578       G404     R55566     +     2905586       G506     R55567     +     +     2925866       G507A     R55568     +     +     33975155       G503     R55569     +     +     332545215       G455     R55570     +     Malara Ck.     28906545       G457     R55571     +     27836365     -       G458     R55572     +     Washpool     28406400       G559     R55573     +     -     27836365       G833     R55574     +     27836365     -       G448     R55575     +     Tenterfield     24068906       G778     R55577     +     24059005     -       G448     R55578     +     26605890     -<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | G188   | R55559*   | +      |        | Washpocl       | 38405526   |                                     |
| G501     R55561     +     +     M     29276213       G406     R55562     +     +     M     29276213       G407a     R55562     +     +     29685578       G407a     R55565     +     +     29685578       G404     R55566     +     30555601       G506     R55567     +     +     33975155       G507A     R55568     +     +     332425135       G503     R55569     +     +     332425135       G455     R55571     +     Malara Ck.     28906545       G456     R55572     +     Washpool     28406400       G457     R55573     +     +     27836365       G458     R55573     +     27836365     -       G778     R55575     +     Tenterfield     2406806       G782     R55578     +     24059005     -       G448     R55579     +     2605890     -       G448     R55579     +     26406015     -       G365     R55583     +     264060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | G478   | R55560    | +      | +      |                | 32705920   |                                     |
| G971     R55562     +     +     M     29276213     OBX Creek Intrusion       G406     R55564     +     +     Washpool     29925586     OBX Creek Intrusion       G407a     R55565     +     +     29685578     Weat Gully Porphyry       G506     R55567     +     +     3397515     Weat Gully Porphyry       G507A     R55568     +     +     33452135     Intrusions similar to the       G503     R55570     +     Malara Ck.     28906545     Moonta Gully Adamellite       G455     R55571     +     Malara Ck.     28906545     Moonta Gully Adamellite       G456     R55571     +     Yeat Gully Adamellite     Moonta Gully Adamellite       G457     R55571     +     21806400     Yeat Gully Adamellite       G458     R55573     +     20406800     Yeat Gully Adamellite       G778     R55575     +     Tenterfield     24068900       G448     R55578     +     24059005     Other intrusions       G448     R55579     +     264065905     Other intrusions       G448a     R55573                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | G501   | R55561    | +      | +      |                | 35205586   |                                     |
| G406     R55564     +     +     Washpool     29925586       G407a     R55565     +     +     29685578       G404     R55566     +     2968578       G506     R55567     +     +     2968578       G507A     R55568     +     +     33975155       G503     R55568     +     +     34225135       G503     R55570     +     +     333545215       G455     R55571     +     33456422     Intrusions similar to the       G455     R55571     +     Washpool     28406400       G455     R55572     +     Washpool     28406400       G559     R55573     +     +     27836365       G893     R55575     +     +     24068906       G782     R55576     +     +     24065905       G448     R55578     +     +     24059005       G448     R55579     +     +     26605890       G442     R55582     +     +     26406015       G365     R55583     +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | G971   | R55562    | +      | + M    |                | 29276213   |                                     |
| G406     R55564     +     +     Washpool     29925586       G407a     R55565     +     +     29685578       G404     R55566     +     3055560       G506     R55567     +     +     Washpool     33975155       G507A     R55568     +     +     34225135     Intrusions similar to the       G503     R55569     +     +     33545215     Intrusions similar to the       G457     R55571     +     Malara Ck.     28906545     Adots6422       G455     R55571     +     Washpool     28406400     Intrusions similar to the       G559     R55573     +     +     27836365     Intrusions       G893     R55575     +     +     27836365     Intrusions       G778     R55575     +     +     24068910     Intrusions       G807A     R55578     +     +     24068910     Intrusions       G448     R55579     +     +     26605890     Intrusions       G448     R55581     +      2640595     Intrusions <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>OBX Creek Intrusion</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |           |        |        |                |            | OBX Creek Intrusion                 |
| G407a     R55565     +     +     29685578       G404     R55566     +     30555601       G506     R55567     +     +     Washpool     33975155       G507A     R55568     +     +     34225135     Intrusions similar to the       G503     R55569     +     +     33545215     Intrusions similar to the       G455     R55570     +     Malara Ck.     28906545     Moonta Gully Adamellite       G457     R55571     +     Washpool     28406400     Hoonta Gully Adamellite       G455     R55572     +     Washpool     28406400     Hoonta Gully Adamellite       G457     R55573     +     +     27836365     Hoonta Gully Adamellite       G458     R55573     +     +     27836365     Hoonta Gully Adamellite       G778     R55575     +     +     2068910     Hoonta Gully Adamellite       G807A     R55578     +     +     24059005     Her intrusions       G448     R5579     +     +     26605890     Her intrusions       G448     R55581     +     26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | G406   | R55564    | +      | +      | Washpool       | 29925586   |                                     |
| G404     R55566     +     3055560     Heat Gully Porphyry       G506     R55567     +     +     Washpool     3397515       G507     R55568     +     +     34225135     Intrusions similar to the       G503     R55569     +     +     33545215     Intrusions similar to the       G455     R55570     +     Malara Ck.     28906545     Moonta Gully Adamellite       G457     R55571     +     Malara Ck.     28006400     Hoonta Gully Adamellite       G559     R55571     +     Washpool     28406400     Hoonta Gully Adamellite       G559     R55573     +     +     27836365     Hoonta Gully Adamellite       G59     R55573     +     +     27836365     Hoonta Gully Adamellite       G782     R55576     +     +     24068910     Hoonta Gully Adamellite       G448     R55578     +     +     24059005     Hoter Intrusions       G448     R55579     +     +     2605890     Hoter Intrusions       G448     R55581     +     +     26405955     Hoter Intrusions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | G407a  | R55565    | +      | +      | -              | 29685578   |                                     |
| G506     R55567     +     +     Washpool     33975155       G507A     R55568     +     +     34225135       G503     R55569     +     +     33545215       G455     R55570     +     Malara Ck.     28906545       G457     R55571     +     30456422     Moonta Gully Adamellite       G458     R55572     +     Washpool     28406400       G559     R55573     +     +     31806170       G778     R55575     +     +     24068910       G807A     R55576     +     +     24068910       G807A     R55577     +     +     24068910       G807A     R55578     +     +     24068910       G8448     R55578     +     +     2605580       G841A     R55581     +     +     26405955       G842     R55582     +     +     26406015       G365     R55583     +     Coombadjha     29604100       G713     R55610*     +     +     M Sandy Flat     09007765       Dundee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | G404   | R55566    | +      |        |                | 30555601   | Mast Culler Development             |
| G506     R53567     +     +     washpool     333743133       G507A     R55568     +     +     34225135       G503     R55569     +     +     33545215       G455     R55570     +     Malara Ck.     28906545       G457     R55571     +     Washpool     28406400       G455     R55572     +     Washpool     28406400       G559     R55573     +     +     27836365       G893     R55574     +     +     31806170       G778     R55575     +     +     Tenterfield     24068910       G807A     R55576     +     +     24059005     0ther intrusions       G448     R55578     +     +     Spirabo     26605890       G448     R55579     +     +     26605890     0ther intrusions       G842     R55581     +     +     26405955     6444       G365     R55583     +     Coombadjha     29604100       G713     R55610*     +     M     Sandy Flat     09007765     Dundee Fhyodacite - Brassingt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0506   | DEFEC7    |        |        | Washpool       | 22075155   | weat Guily Porphyry                 |
| G507A     R55569     +     +     33545215       G455     R55570     +     33545215       G457     R55571     +     30456422       G465     R55572     +     Washpool     28406400       G559     R55573     +     +     27836365       G893     R55574     +     4     27836365       G893     R55575     +     +     Tenterfield     2406806       G782     R55576     +     +     24059005     0ther intrusions       G448     R55578     +     +     24059005     0ther intrusions       G448     R55579     +     +     26605890     0ther intrusions       G448     R55579     +     +     26605890     0ther intrusions       G841A     R55581     +     +     26405915     0ther intrusions       G365     R55583     +     Coombadjha     29604100     0undee Rhyodacite -       G713     R55610*     +     M Sandy Flat     09007765     Dundee Rhyodacite -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G200   | R55567    | т<br>- | т<br>1 | Washpoor       | 3/225135   |                                     |
| G3503     R55505     Image: Constraint of the model     Intrusions similar to the Moonta Gully Adamellite       G455     R55570     +     Malara Ck. 28906545     Moonta Gully Adamellite       G457     R55571     +     30456422     Moonta Gully Adamellite       G465     R55572     +     Washpool     28406400       G559     R55573     +     +     27836365       G893     R55574     +     +     31806170       G778     R55575     +     +     Tenterfield     24068910       G807A     R55576     +     +     24059005     0ther intrusions       G448     R55578     +     +     Spirabo     26605890       G448a     R55579     +     +     26465995     0ther intrusions       G841A     R55581     +     +     26405995     0ther intrusions       G365     R55583     +     Coombadjha     29604100     09007765       G713     R55610*     +     +     M Sandy Flat     09007765     Dundee Rhyodacite -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C503   | R55560    | +      | +      |                | 33545215   |                                     |
| G455     R55570     +     Malara Ck.     28906545       G457     R55571     +     30456422       G465     R55572     +     Washpool     28406400       G559     R55573     +     +     27836365       G893     R55574     +     +     31806170       G778     R55575     +     +     Tenterfield     2406806       G782     R55576     +     +     2406910        G807A     R55578     +     +     Spirabo     26605890       G448     R55579     +     +     26605890        G841A     R55581     +     +     26465995        G842     R55582     +     +     26406015        G365     R55583     +     Coombadjha     29604100        G713     R55610*     +     +     M Sandy Flat     Ondee Rhyodacite - Brassington                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0000   | K33309    | •      | 1      |                | 55545215   | Intrusions similar to the           |
| G455     R55570     +     Malara Ck. 28906545       G457     R55571     +     30456422       G465     R55572     +     Washpool     28406400       G559     R55573     +     +     27836365       G893     R55574     +     +     31806170       G778     R55575     +     +     Tenterfield     24068900       G782     R55576     +     +     24059005     Other intrusions       G448     R55578     +     +     Spirabo     26605890       G448a     R55579     +     +     26405955        G841A     R55581     +     +     26405955       G842     R55583     +     Coombadjha     29604100       G713     R55610*     +     +     M Sandy Flat     Dundee Rhyodacite -       Brassington     +     M Sandy Flat     99007765     Dundee Rhyodacite -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |           |        |        |                |            | Moonta Gully Adamellite             |
| G457     R55571     +     30456422       G465     R55572     +     Washpool     28406400       G559     R55573     +     +     27836365       G893     R55574     +     +     31806170       G778     R55575     +     +     Tenterfield     24068910       G782     R55576     +     +     24059005     0ther intrusions       G448     R55578     +     +     Spirabo     26605890       G448a     R55579     +     +     26465995       G841A     R55581     +     +     26406015       G365     R5583     +     Coombadjha     29604100       G713     R55610*     +     +     M Sandy Flat     Dundee Rhyodacite -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | G455   | R55570    | +      |        | Malara Ck.     | 28906545   |                                     |
| G465     R55572     +     Washpool     28406400       G559     R55573     +     +     27836365       G893     R55574     +     +     31806170       G778     R55575     +     +     Tenterfield     24068900       G782     R55576     +     +     24068910       G807A     R55577     +     +     24059005       G448     R55578     +     +     Spirabo     26605890       G448a     R55579     +     +     26405955     G841A     R55581     +     +     26405955       G842     R55582     +     +     26406015     Ender Khyodacite -     Brassington       G713     R55610*     +     +     M Sandy Flat     09007765     Dundee Khyodacite -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | G457   | R55571    | +      |        |                | 30456422   |                                     |
| G559     R55573     +     +     27836365       G893     R55574     +     +     31806170       G778     R55575     +     +     Tenterfield     24068900       G782     R55576     +     +     24059005     0ther intrusions       G448     R55578     +     +     Spirabo     26605890       G448a     R55579     +     +     26405955       G841A     R55581     +     +     26406015       G365     R55583     +     Coombadjha     29604100       G713     R55610*     +     +     M Sandy Flat     09007765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | G465   | R55572    | +      |        | Washpool       | 28406400   |                                     |
| G893     R55574     +     +     Tenterfield     24068900       G778     R55576     +     +     Tenterfield     24068910       G807A     R55577     +     +     24059005     Other intrusions       G448     R55578     +     +     Spirabo     26605890       G448a     R55579     +     +     26405905       G841A     R55581     +     +     26405995       G842     R55582     +     +     26406015       G365     R55583     +     Coombadjha     29604100       G713     R55610*     +     +     M Sandy Flat     09007765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G559   | R55573    | +      | +      |                | 27836365   |                                     |
| G778 R55575 + + + Tenterfield 24068806<br>G782 R55576 + + 24068910<br>G807A R55577 + + 24059005<br>G448 R55578 + + Spirabo 26605890<br>G448a R55579 + + 26605890<br>G841A R55581 + + 26465995<br>G842 R55582 + + 26406015<br>G365 R55583 + Coombadjha 29604100<br>G713 R55610* + + M Sandy Flat 09007765 Dundee Rhyodacite -<br>Brassington                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | G893   | R55574    | +      | +      | mant and in 14 | 31806170   |                                     |
| G782     R55576     +     +     24068910       G807A     R55577     +     +     24059005       G448     R55578     +     +     Spirabo     26605890       G448     R55579     +     +     26605890       G841A     R55581     +     +     26465995       G842     R55582     +     +     26406015       G365     R55583     +     Coombadjha     29604100       G713     R55610*     +     +     M Sandy Flat     09007765     Dundee Rhyodacite -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | G778   | R55575    | +      | +      | Tenterrieid    | 24068806   |                                     |
| G807A     R55577     +     +     24059003     Other intrusions       G448     R55578     +     +     Spirabo     2605890       G448a     R55579     +     +     2605890     G841A       G841A     R55581     +     +     26465995       G842     R55582     +     +     26406015       G365     R55583     +     Coombadjha     29604100       G713     R55610*     +     +     M Sandy Flat     09007765     Dundee Rhyodacite -       Brassington     -     -     Brassington     -     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | G/82   | R55576    | +      | +      |                | 24066910   |                                     |
| G448     R55578     +     +     Spirabo     26605890       G448a     R55579     +     +     26605890       G841A     R55581     +     +     26465995       G842     R55582     +     +     26406015       G365     R55583     +     Coombadjha     29604100       G713     R55610*     +     +     M Sandy Flat     09007765     Dundee Rhyodacite -       Brassington     -     -     Brassington                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | G807A  | R55577    | Ŧ      | т      |                | 24059005   | Other intrusions                    |
| G448a     R55579     +     +     26605890       G841A     R55581     +     +     26465995       G842     R55582     +     +     26406015       G365     R55583     +     Coombadjha     29604100       G713     R55610*     +     +     M Sandy Flat     09007765     Dundee Rhyodacite -<br>Brassington                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | G448   | R55578    | +      | +      | Spirabo        | 26605890   | _                                   |
| G841A     R55581     +     +     26465995       G842     R55582     +     +     26406015       G365     R55583     +     Coombadjha     29604100       G713     R55610*     +     +     M Sandy Flat     09007765     Dundee Rhyodacite -<br>Brassington                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | G448a  | R55579    | +      | +      |                | 26605890   |                                     |
| G842     R55582     +     +     26406015       G365     R55583     +     Coombadjha     29604100       G713     R55610*     +     +     M Sandy Flat     09007765     Dundee     Rhyodacite -       Brassington     -     -     -     -     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G841A  | R55581    | +      | +      |                | 26465995   |                                     |
| G365 R55583 + Coombadjha 29604100<br>G713 R55610* + + M Sandy Flat 09007765 Dundee Rhyodacite -<br>Brassington                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | G842   | R55582    | +      | +      |                | 26406015   |                                     |
| G713 R55610* + + M Sandy Flat 09007765 Dundee Rhyodacite -<br>Brassington                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | G365   | R55583    | +      |        | Coombadjha     | 29604100   |                                     |
| Brassington                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | G713   | R55610*   | +      | + M    | Sandy Flat     | 09007765   | Dundee Rhyodacite -                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |           |        |        |                |            | Brassington                         |

| loc. | Catalogue<br>number | Hand<br>specimen | Thin-<br>section | Map sheet and grid reference |          | Lithology                   |   |  |
|------|---------------------|------------------|------------------|------------------------------|----------|-----------------------------|---|--|
| G810 | R55611              | +                | + M              | Tenterfield                  | 11288535 | Dundee Rhyodacite           | - |  |
| G811 | R55612*             | +                | +                |                              | 11098456 | Tenterfield                 |   |  |
| G812 | R55613*             | +                | + M              |                              | 10648311 |                             |   |  |
| G575 | R55614              | +                | +                |                              | 14258122 |                             |   |  |
| G868 | R55615              | +                | + M              | Stanthorpe                   | 90809431 | Dundee Rhyodacite           | - |  |
| G869 | R55616*             | +                | + M              | _                            | 94209415 | Tarban                      |   |  |
| A 10 | R55617              | +                | + M              | Clive                        | 67253915 | Dundee Rhyodacite<br>Dundee | - |  |

.