THE NANDEWAR VOLCANO

by

Andrew J. Stolz

Thesis submitted for the degree of Doctor of Philosophy, University of New England, Armidale, N.S.W.

January, 1983

ABSTRACT

The Miocene Nandewar Volcano in north-eastern New South Wales is composed of a suite of transitional alkaline eruptives and minor associated intrusives. The volcanics include minor hawaiites but are dominated by a mildly potassic lineage extending from hy-normative trachyandesites to comendites via tristanites and mafic to peralkaline trachytes. Although the trachyandesites, tristanites and trachytes (the main shieldforming sequence) are collectively the most abundant volcanics, alkali rhyolites comprise the most voluminous 'evolved' eruptive type. Peralkaline trachytes and comendites are relatively insignificant volumetrically.

Olivine, Ca-rich pyroxene and amphibole display marked decreases in their 100 Mg/(Mg+Fe) ratios in the transition from trachyandesite to comendite, reflecting variation in host-rock compositions. The presence of tschermakitic Ca-rich pyroxenes and aluminian bronzite megacrysts in several trachyandesites indicates that their hosts experienced intratelluric crystallization at elevated pressures (~6 to 8 kb). Some plagioclase, olivine and titanomagnetite phenocrysts may also represent moderatepressure cognate precipitates. Groundmass pyroxenes in some trachytes and comendites may be strongly acmitic, and this reflects the peralkaline character of those melts. Titanomagnetite is the dominant Fe-Ti oxide phase throughout the series, and only occasionally does it coexist with ilmenite. Fe-Ti oxide compositional data indicate that magmas spanning the spectrum trachyandesite to comendite generally crystallized under conditions of decreasing T and fo_2 which were broadly parallel with the FMQ synthetic buffer curve. However, some alkali rhyolites appear to have crystallized under significantly more oxidizing conditions. Crystallization of aenigmatite in the groundmass of peralkaline trachytes and comendites also reflects relatively strongly reducing conditions in the more 'evolved' variants and ns-bearing melts. In several specimens the presence of aenigmatite rimming titanomagnetite and ilmenite microphenocrysts provides some support for the existence of a 'no-oxide' field in $T-fo_2$ space.

Major, trace element and isotopic data indicate that the Nandewar volcanics derived from a common upper mantle source with specific trace element and isotopic characteristics. Mass-balance calculations for

(i)

ACKNOWLEDGEMENTS

I wish to sincerely thank Professor J.F.G. Wilkinson for suggesting this project, and for his continued interest, encouragement and constructive criticism throughout the course of the study. I am also very grateful to Dr Nick Stephenson for making his time so freely available in numerous discussions and for proof-reading parts of the manuscript. Dr Ian Plimer, Jocelyn McPhie and Chris Fergusson also kindly proof-read sections of the thesis. Other members of the U.N.E. Geology Department who contributed through discussion of ideas and problems include Ken Cross, Ray Roberts, Neil Godden and Bob Haydon.

Dr Hans Hensel performed the Sr and Nd isotopic analyses and provided much useful advice and discussion on this and other aspects of the study. Nick Ware skilfully supervised my use of the microprobe at the Research School of Earth Sciences A.N.U., and Mike Speak provided similar support on the U.N.E. facility. Assistance with chemical analyses was provided by Dr John Kleeman and Wendy Roberts, and G.I.Z. Kalocsai duplicated some of the major element analyses as a check.

John Cook patiently prepared the polished thin sections used in microprobe studies and the general support provided throughout the study by the Geology Department secretarial and technical staff, including Heather Roan, Rhonda Vivian, Doug Cameron, David Morgan and Nick Petrasz, is gratefully acknowledged.

The patience and expertise shown by Rhonda Vivian and Faye Hughes in typing portions of the manuscript is also deeply appreciated.

Financial support for the acquisition of REE analyses was provided by a grant from AINSE to Dr John Kleeman, and general financial assistance was provided, initially by a Commonwealth Postgraduate Scholarship, and subsequently by internal research grants from the University of New England.

Finally, my wife Kerrie demonstrated extraordinary patience and was a pillar of support throughout the entire study.

	Page
ABSTRACT	(i)
ACKNOWLEDGEMENTS	(iii)
TABLE OF CONTENTS	(iv)
CHAPTER 1: INTRODUCTION	1
CHAPTER 2: FIELD RELATIONS	4
EXTRUSIVE HISTORY	4
VOLUME ESTIMATES	8
CHAPTER 3: PETROGRAPHY	9
NOMENCLATURE	9
PETROGRAPHY	9
Hawaiites and Trachyandesites Tristanites Trachytes Rhyolites Pyroclastic Rocks Monzonite	9 12 13 14 16 17
CHAPTER 4: MINERALOGY	18
OLIVINE	18
Occurrence Compositional Variation	18 20
PYROXENES	26
Occurrence	26
Pyroxene Megacrysts Pyroxene-rich Cumulates Low-pressure Ca-rich Pyroxene Phenocrysts Groundmass Clinopyroxenes	26 27 27 27
Compositional Variation	27
Pyroxene Megacrysts Pyroxene-rich Cumulates Low-pressure Ca-rich Pyroxene Phenocrysts and Groundmass Pyroxenes	34 35 35
Conditions of Crystallization	41
Pyroxene Megacrysts Low-pressure Pyroxenes	41 44
AMPHIBOLES	47
Occurrence Compositional Variation Discussion	47 47 56
IRON-TITANIUM OXIDES	57
Occurrence Compositional Variation Conditions of Crystallization	57 58 63

	Page
FELDSPARS	68
Occurrence Compositional Variation Conditions of Crystallization Plagioclase Geothermometry	68 69 79 82
AENIGMATITE	86
Occurrence Compositional Variation Discussion	86 86 88
APATITE	89
Occurrence Compositional Variation Conditions of Crystallization	89 90 90
BIOTITE	92
CHAPTER 5: CHEMISTRY	95
SAMPLING CONSIDERATIONS	95
GENERAL CHEMICAL CHARACTERISTICS OF THE SERIES	100
Silica Saturation Alkali-Alumina Relations Classification Major Element Variation Trace Element Variation	100 102 102 104 110
Transition Elements Alkali and Alkaline Earth Elements 'Residual' Elements Rare Earth Elements	110 123 124 125
ISOTOPIC DATA	128
Strontium Isotopes Neodymium Isotopes	128 132
SUMMARY	135
CHAPTER 6: COMPARATIVE REVIEW OF TRANSITIONAL ALKALINE ASSOCIATIONS FROM CONTINENTAL AND OCEANIC ENVIRONMENTS	137
RELATIVE VOLUMETRIC PROPORTIONS	137
CHEMICAL CHARACTERISTICS OF TRANSITIONAL ALKALINE SERIES	142
Characteristics of the Mafic Associates Range of Rock Types in the Suites Chemical Variation Within and Between Suites	142 150 150
Major Elements Trace Elements Isotopes	150 155 158
MODELS OF ORIGIN	161
High-pressure Fractionation Low-pressure Fractionation	161 166

(vi)

	Page
Volumetric Relationships Chemical Coherence and Mass-balance Cognate Cumulates Magma Chamber Models Intrusive Complexes and Vitric Residua	167 169 177 179 179
Partial Melting in the Upper Mantle	182
Composition of the Upper mantle 'Primary' Melt Compositions Mantle Heterogeneity Upper Mantle Metasomatism Alternative Models	182 183 186 187 189
Partial Melting in the Lower Crust Contamination/Hybridism Volatile Transfer	190 194 195
Volatile Loss Volatile Addition	195 198
Magma Mixing Liquid Immiscibility Thermogravitational Diffusion	199 200 202
SUMMARY	205
CHAPTER 7: PETROGENESIS OF THE NANDEWAR SUITE	208
FRACTIONAL CRYSTALLIZATION	208
Field, Petrographic and Mineralogical Evidence Chemical Evidence	208 209
Major Elements Trace Elements Isotopes	209 218 230
Experimental Evidence Physical Conditions of Fractionation	230 233
PARTIAL MELTING	235
General Characteristics of the Source Constraints on the Nandewar Source Composition of the Residuum Composition of a Hypothetical Undepleted Source	236 237 239 240
CONTAMINATION/HYBRIDISM/WALL-ROCK REACTION	244
VOLATILE TRANSFER	244
MAGMA MIXING	247
LIQUID IMMISCIBILITY	248
THERMOGRAVITATIONAL DIFFUSION	248
CONCLUSIONS	250
CHAPTER 8: SUMMARY OF CONCLUSIONS	253
REFERENCES	257
APPENDIX I: ANALYTICAL TECHNIQUES	298
APPENDIX II: SPECIMEN NUMBERS, ROCK TYPES AND GRID REFERENCES	305