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CHAPTER 7

PETROGENESIS OF THE NANDEWAR SUITE

Many of the conclusions reached in the preceding chapter are

also pertinent to the genesis of the Nandewar suite. The applicability

of each of the genetic controls already discussed will now be evaluated

in view of the field, petrographic, mineralogical and chemical data

presented in Chapters 2 to 5.

FRACTIONAL CRYSTALLIZATION

Field, Petrographic and Mineralogical Evidence 

The predominance of rhyolitic lavas and the absence of basalts

s.s. from the Nandewar eruptives appears inconsistent with a genetic

model involving closed-system crystal fractionation of transitional

basaltic magma. However, the advanced state of erosion of the Nandewar

Volcano, indicated by the outcrop of intrusive plugs on the highest

peaks, suggests that significant quantities of volcanics of unknown

composition have been removed. Even if most of this material were

basaltic (which does not seem likely because of the trend towards increased

acidity of the later eruptives), there would still probably be an excess

of felsic types.

The inferred order of eruption and mineralogical characteristics

of the various eruptive types are also difficult to reconcile w:_th

closed-system low to moderate pressure fractionation models. Field and

geochronological evidence indicates that the voluminous alkali rhyolites

were erupted first, followed by the main shield-forming sequence which

appears to have been erupted in a restricted time interval (possibly

within 1 Ma). Heat balance calculations (Usselman and Hodge, 1978)

indicate that relatively large magma chambers will crystallize and

solidify within approximately 10
5
 years. Thus, if the older alkali

rhyolites are cogenetic with the other eruptives (as is indicated by

their trace element chemistries, discussed below), then age differences

of up to 2 Ma indicated by the Rb/Sr and K/Ar data are unrealistically

large.
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The presence of aluminous orthopyroxene and clinopyroxene

megacrysts and cumulate assemblages within the trachyandesites and

hawaiites indicates periods of intratelluric crystallization of these

magmas at approximately 6 to 8 kb, prior to the rapid movement of the

host melts to the surface. On the other hand, the petrographic and

mineralogical characteristics of the most evolved trachyandesites

(e.g. 49012), tristanites and more felsic types indicate that, although

they have generally experienced some intratelluric crystallization at

low pressures, there is no evidence of crystallization at elevated

pressures. To be internally consistent with a simple closed-system

crystal fractionation model, it must be postulated that differentiation

of 'parental' trachyandesite or hawaiite melts occurred at elevated

pressures to give a tristanite melt (even though the volumes of high-

pressure phases are trivial), which then migrated to a high-level magma

chamber and subsequently fractionated to produce the trachytes, alkali

rhyolites and comendites. According to this model, the 'parental'

trachyandesites and/or hawaiites remained in a moderate pressure environment

(without experiencing further fractionation) during removal of the

tristanite magma, followed by a later residence period of the alleged

tristanite derivatives in a high-level magma chamber necessary to produce

the more evolved differentiates.

Thus constraints imposed by the order of eruption, apparent depth

of origin and volumetric relationships require an unnecessarily complicated

and probably quite unrealistic sequence of events to be consistent

with crystal fractionation models.

Chemical Evidence

The role of fractional crystallization in the development of

the Nandewar suite can be tested quantitatively by mass-balance calculations

utilizing major and trace element data from natural phenocryst/host

assemblages.

Major Elements

Evaluation of the major element mass-balance requirements for a

number of proposed fractionation steps in the Nandewar series has been

performed using the generalized least-squares mixing method of Le Maitre
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(1979). The technique involves determination of a best fit linear

combination of the proposed daughter composition and an appropriate

crystal extract with the composition of the proposed parent. The

relative success of a particular 'mixing model' is assessed mathematically

from the sum of the squares (Er
2
) of the differences between oxide

contents in the actual and computed parent magma compositions. Estimates

of a 'good fit' range from Er
2
 < 0.1 (le Roex and Erlank, 1982) to Er

2

< 1 (Baker et al., 1977). Rigorous statistical evaluation of the
,

relationship between the size of Er 2 and the degree of fit requires

information on the variances and covariances of the input data (Bryan

et al., 1969; Zielinski, 1975) which is rarely available. In the absence
of a single definitive criterion for an acceptable fit, the solution

should be scrutinized with due regard to the likely magnitude of analytical

errors in the input data. In addition, the Er
2
 value may be quite low

for a particular solution but the differences for one element within

that solution may be quite significant.

A reasonable fit for all oxides between parent and daughter

compositions plus the alleged extract demonstrates that their inter-

relationship via fractional crystallization is feasible although not

proven. Acceptance of the fractionation model also depends on internal

consistency of field, petrographic, mineralogical and other chemical

data.

The mixing calculations were performed in a stepwise fashion.

Initially the most primitive composition was selected as the parent and

slightly more evolved compositions were tested as potential daughter

products. One of these daughter products was then used as the parent

for the next fractionation step. Computed and actual parent compositions

together with the weight fraction of the calculated extracts and daughter

compositions for the major fractionation steps are given in Table 7.1.

Crystal extract compositions were based on microprobe analyses of the

core zones of phenocrysts in the parent, with the exception of peralkaline

trachyte 49098. However, phenocryst compositions used in transitions

for this parental composition were from compositionally similar hosts.

Solutions for the remaining lava compositions are summarized in Table

7.2 and are based on the same parent and phenocryst compositions as the

calculations shown in Table 7.1. A1l analyses were normalized to 100



49012

Oliv. (Fo80)

Cpx (Ca41mg47Fe12)

2r2

Fp

Solution

(Wt. Fraction)

0.909

0.050

0.041

9.70

0.642

TABLE 7.1 

Major element fractionation models for the Nandewar series

Fractionation
Step

Hawaiite	 Hawaiite
to

(49001)	 (49003)
Hawaiite	 Trachyandesite

to
(49001)	 (49008)

Trachyandesite to Trachyandesite

(49000)	 (49008)

49001	 49001
	

49001
	

49001
	

49000
	

49000

Observed	 Calculated
	

Observed
	

Calculated
	

Observed
	

Calculated
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SiO
2
	48.35
	

48.35
	

48.35
	

48.16
	

48.61
	

48.55

TiO
2
	2.29
	

1.98
	

2.29
	

2.08
	

2.74
	

2.14

Al 2 0 3	14.35
	

14.33
	

14.35
	

14.17
	

15.05
	

14.78

EFe0
	

11.22
	

11.32
	

11.22
	

10.86
	

10.85
	

10.52

Mn0
	

0.16
	

0.14
	

0.16
	

0.13
	

0.13
	

0.13

Mg0
	

10.02
	

10.03
	

10.02
	

9.99
	

8.46
	

8.43

Ca0
	

8.68
	

8.78
	

8.68
	

8.62
	

9.28
	

9.23

Na20
	

3.23
	

3.61
	

3.23
	

3.46
	

2.90
	

3.52

K
2
0
	

1.09
	

0.87
	

1.09
	

1.55
	

1.48
	

1.63

P
2
0
5
	0.62
	

0.59
	

0.62
	

0.99
	

0.49
	

1.05

0.824

0.063

0.043

0.070

0.311

0.663

0.122

0.110

0.105

0.651

Solution
(Wt. Fraction)

49003

Oliv. (Fo81)

Cpx (Ca49Mg43Fe8)

2
Plag. (An52)

Er

Solution
(Wt. Fraction)

49008

Oliv. (Fo81)

Cpx (Ca49Mg43Fe8)

Plag. (An52)

Er2

Solution
(Wt. Fraction)

49008

Oliv. (Fo82)

Cpx (Ca47Mg43Fel0)

Plag. (An61)

E
2

r

Fo

0.706

0.074

0.118

0.102

1.279

0.706

Fractionation	 Trachyandesiteto Trachyandesite
Step	 (49008)	 (49012)

Trachyandesite	 Tristanite
(49012)	 "3 (49076)

Tristanite 	 Trachyte
(49076)	 (49083)

49008
	

49008
	

49012
	

49012
	

49076
	

49076

Observed
	

Calculated
	

Observed
	

Calculated
	

Observed
	

Calculted

Si02
	 48.82
	

51.45
	

52.27
	

52.45
	

56.98
	

56.75

TiO
2
	2.73
	

2.20
	

2.36
	

1.39
	

1.73
	

1.73

Al 20 3	15.76
	

15.14
	

16.32
	

16.29
	

16.21
	

16.41

EFe0
	

11.74
	

10.78
	

10.46
	

10.77
	

9.06
	

8.91

Mn0
	

0.16
	

0.14
	

0.14
	

0.19
	

0.17
	

0.16

Mg0
	

5.07
	

5.77
	

3.35
	

3.07
	

1.85
	

2.00

Ca0
	

7.64
	

6.86
	

6.70
	

6.98
	

4.53
	

4.59

Na
2
0
	

4.32
	

4.19
	

4.58
	

4.59
	

5.49
	

4.89

K
2
0
	

2.26
	

2.32
	

2.55
	

2.35
	

3.28
	

4.16

P
2
0
5
	1.49
	

1.15
	

1.27
	

1.21
	

0.70
	

0.40

Solution

(Wt. Fraction)

49076	 0.697

Oliv. (Fo 50 )	 0.040

Cpx (Ca Ma
44Fe 12 )44 ,	

0.053

Plag. (An 53 )	 0.161

Timt. (Usp 61 )	 0.032

Ap.!tite	 0.017

Er	 0.475

Fp	 0.447

Solution

(Wt. Fraction)

49083	 0.731

Oliv. (Fo 56 )	 0.023

Cpx (Ca 45Mg40Fe 
15 ) 0.064

Plag. (An 46 )	 0.142

Timt. (Usp71)
	

0.037

Apatite
	

0.003

Er2
	

1.384
Fp
	

0.327



Fractionation

Step

Trachyte	 Comendite

(49098G)	 to	 (49161)

Comendite

(49161)

49161

Observed

Comendite
to	

(49163)

Comendite
(49161)

49161

Observed

Comendite
to

(49164)

49098G
	

49098G

Observed
	

Calculated

49161

Calculated

49161

Calculated

TABLE 7.1 (continued) 

Major element fractionation models for the Nandewar series

Fractionation	 Trachyte	 Trachyte
to

Step	 (49083)	 (49088)

Trachyte	 Trachyte
to

(49088)	 (490980)
Trachyte 	 Comendite

(490980)	 (49162)

49083
	

49088
	

49088	 49088	 49098G
	

49098G

Observed
	

Calculated
	

Observed	 Calculated	 Observed
	

Calculated

SiO
2

61.17 61.27 63.97 63.61 63.51 63.64

TiO
2

0.95 1.02 0.65 0.42 0.55 0.76

Al 20 3 16.79 16.61 16.48 16.81 15.37 15.47

EFe0 6.37 6.41 4.83 5.21 6.62 6.65

Mn0 0.12 0.15 0.12 0.23 0.20 0.20

Mg0 0.67 0.56 0.33 0.13 0.16 0.45

Ca0 2.43 2.47 1.68 1.75 1.62 1.57

Na
2
0 5.51 6.30 6.56 6.74 6.68 5.36

K
2
0 5.58 4.77 5.25 5.04 5.22 5.90

P
2
0
5

0.40 0.43 0.13 0.05 0.06 0.01

Solution
	

Solution
	

So-Aition

(Wt. Fraction)
	

(Wt. Fraction)
	

(Wt. Fraction)

49088

Oliv.	
(Fo21)

Cpx.	 (Ca	 a	 e	 )
47M'4OF 	13.

Anorth.	 (0r24)

Timt.	 (Usp66)

Apatite

Er2

Fp

0.783

0.015

0.012

0.161

0.021

0.008

1.344

0.256

49098

Anorth.	
(Cir28)

r 2
_r

Fp

0.774

0.226

0.579

0.198

49162
*

Oliv.	 (Fo,,)

Cpx.	 (Ca.-Mg	 r	 )
4p	 18 e36'

Anorth.	 (0r43)

Timt.	 (Usp65)	

*

rr2

Fp

0.389

0.029

0.049

0.503

0.025

2.376

0.077

SiO
2

63.51 63.67 69.10 69.13 69.10 68.55

TiO
2

0.55 0.80 0.36 0.67 0.36 0.65

Al 20 3 15.37 15.36 14.42 14.60 14.42 15.01

IF e0 6.62 6.64 4.30 4.23 4.30 3.77

Mn0 0.20 0.18 0.11 0.08 0.11 0.09

Mg0 0.16 0.45 0.02 0.07 0.02 0.34

Ca0 1.62 1.52 0.48 0.58 0.48 0.84

Na20 6.68 5.55 5.89 5.81 5.89 6.17

K
2
0 5.22 5.81 5.29 4.82 5.29 4.58

P
2
0
5

0.06 0.01 0.03 0.01 0.03 0.00

Solution
	

Solution
	

Solution

(Wt. Fraction)
	

(Wt. Fraction)
	

(Wt. Fraction)

49161 *
Oliv. (Fo13) *
Cpx. (Ca.-Mg	 e )40 18F-36'
Anorth. (0r43)

Timt. (Usp65)**

Er2

Fp

0.422

0.027

0.054

0.471

0.026

1.816

0.084

49163

Cpx. (Ca47Mgee45)

Anorth. (0r35)

Timt. (Usp67)

Erg

Fp

0.646

0.019

0.311

0.024

0.382

0.054

49164

Cpx. (Ca47Mgee45)

Timt. (Usp67)

Er
2

Fp

0.946

0.032

0.022

1.823

0.080

*
Composition of microphenocrysts in trachyte 49103

** Composition of microphenocrysts in trachyte 49102

Er 2 = sum of the squares of the residuals

Fp = the weight fraction which a derivative liquid represents of the 'parental' trachyandesite

(49000)
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TABLE 7.2 

Summary of major element mass-balance calculations for the Nandewar suite

Fractionation Weight Fraction of Crystal 	 Extracts

Step Olivine Clinopyroxene Plagioclase Titanomagnetite Apatite Anorthoclase F 1r 2

Hawaiite	 49001

.	 49000 0.053 - 0.016 - 0.931 0.473

49002 0.065 0.034 - - 0.901 0.530

.	 49004 0.099 0.067 0.015 - 0.819 0.625

,	 49007 0.119 0.115 0.003 - - 0.763 2.409

Trachyandesite 49000

,	 49005 0.060 0.104 0.102 - - - 0.734 0.954

,	 49009 0.069 0.114 0.088 - - 0.729 1.536

,	 49011 0.111 0.135 0.148 0.606 5.351

,	 49012 0.109 0.148 0.107 - - 0.636 6.845

.	 49013 0.107 0.147 0.105 0.641 5.923

Trachyandesite 49008

,	 49011 0.033 0.044 - 0.923 8.075

49013 0.048 0.039 - - 0.913 7.956

,	 49018 0.065 0.146 - - - 0.789 32.139

Trachyandesite 49012

.	 49018 0.025 0.053 0.093 0.025 0.011 0.793 0.658

.	 49075 0.031 0.067 0.104 0.036 0.017 0.745 0.339

49077 0.044 0.047 0.163 0.034 0.018 - 0.594 0.394

.	 49078 0.039 0.070 0.160 0.029 0.017 - 0.685 0.500

49079 0.038 0.066 0.139 0.036 0.020 0.701 0.244

.	 49080 0.038 0.072 0.127 0.043 0.019 - 0.701 0.413

Tristanite 49076

.	 49080 0.031 0.018 0.951 0.300

-	 49081 0.008 0.029 0.059 0.040 0.008 0.856 0.304

49082 0.029 0.026 0.098 0.036 0.006 - 0.805 0.255

.	 49097 0.015 0.057 0.100 0.035 0.007 - 0.786 0.336

49084 0.029 0.074 0.148 0.047 0.007 - 0.695 1.325

Trachyte 49083

49084 0.007 0.020 0.013 0.005 0.036 0.919 0.121

-	 49085 0.008 0.005 0.021 0.009 0.107 0.850 0.943

.	 49086 0.010 0.011 0.021 0.008 0.121 0.829 1.162

.	 49087 - 0.036 - 0.018 0.008 0.091 0.847 0.489

•	 49119 0.014 0.017 0.043 0.016 0.423 0.487 2.265

•	 49120 0.012 0.026 - 0.038 0.015 0.346 0.563 1.376

49121 0.009 0.027 0.037 0.014 0.321 0.592 1.273

.	 49122 0.016 0.016 0.043 0.016 0.476 0.433 2.067

,	 49123 0.018 0.017 0.044 0.017 0.418 0.486 1.821

49124 0.031 0.015 0.046 0.017 0.352 0.539 1.933
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TABLE 7.2. (continued)

Summary of major element mass-balance calculations for the Nandewar suite

Fractionation

Step Olivine

Weight F raction of Crystal 	 Extracts

Clinopyroxene	 Titanomagnetite	 Apatite Anorthoclase
1.,r2

Trachyte 49088

.	 49090 0.039 0.006	 - 0.230 0.725 0.625

49089 - 0.014 0.005 0.096 0.885 0.222

-.	 49091 0.033 0.042 -	 - 0.925 2.663

-	 49102 - 0.012 0.008	 - 0.145 0.835 0.127

Peralkaline trachyte 490980

-■ 	 49103 0.026 0.014 0.003	 - - 0.957 0.554

-,.	 49099 0.023 0.042 0.011	 - 0.287 0.637 0.822

49100 0.008 0.050 0.024	 - 0.300 0.618 0.780

--,-	 49104 0.056 0.017	 - 0.130 0.797 0.584

-.	 49107 0.008 0.047 0.015 0.052 0.378 0.458
.	 49101 0.016 0.056 0.025 0.398 0.505 0.932

-..	 49105 0.021 0.054 0.024 0.314 0.587 0.934

--,-	 49106 0.015 0.055 0.017	 - 0.090 0.323 0.463

.	 49108 0.028 0.058 0.025 0.324 0.565 1.380

..	 49160 0.023 0.043 0.026 0.439 0.469 1.558

Comendite 49161

-	 49165 - 0.029 0.036 0.249 0.686 1.071

Alkali	 rhyolite 49121

49119 0.017	 - 0.258 0.725 0.581

49120 0.007 0.077 0.916 0.286

49122 - - 0.020 0.358 0.622 0.334

49123 0.023 0.239 0.738 0.379

49124 0.036	 - 0.065 0.899 0.602

49125 - - 0.045 0.239 0.716 1.139

49126 - 0.045 0.955 1.407

49127 - 0.048 0.257 0.695 1.090

49128 - 0.042 0.049 0.909 0.601

49129 - 0.052	 - 0.364 0.584 0.919

49130 0.055 0.412 0.533 1.051

49131 0.052 0.238 0.710 1.476

F = weight fraction of liquid remaining

Erg	sum of the squares of the residuals
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percent anhydrous with total Fe as Fe0 for the calculations.

It was noted in Chapter 5 that the marked variation in Na20/K20

ratios of the Nandewar mafic rocks may be difficult to explain by a

closed-system fractional crystallization model. Poor fits between

actual and calculated Na 20, K20, P 20 5 and Ti0 2 values in the modelling

calculations (Tables 7.1 and 7.2), which test the possible derivation

of hawaiite from trachyandesite and vice versa, confirmed these suspicions.

Similarly, the considerable variation of Na 20/K2
0 ratios amongst the

hawaiites (2.13 to 3.88) results in poor agreement between computed and

actual alkali contents. TiO 2 also often exhibits poor agreement,

suggesting that if the hawaiites were related in some way by fractionation

controls, the alleged crystal extracts were at variance with observed

phenocryst phases.

Poor fits for Ti0 2 ,Na 20 and P 205 are evident in the transitions

trachyandesite 49000 4 49008 and trachyandesite 49008 4- 49012. In the

latter example poor agreement also exists between calculated and observed

Si0 2' EFe0, Mg0 and Ca0 contents. Compositions of plagioclase pheno-

crysts and orthopyroxene megacrysts in trachyandesite 49008 were initially

used in the calculations, but both gave unrealisticall y large negative

solutions and were omitted from subsequent calculations. The marked

disparity in the calculated and observed P 2
05 contents for the transition

trachyandesite 49008 4 49012 exists, because, although apatite was not

observed as a phenocryst phase in the alleged parent, P 20 5 nevertheless

decreases in the more evolved types.

Many of the solutions for the fractionation steps involving the

more evolved trachyandesites 4 tristanites and tristanites 4 mafic

trachytes are acceptable. However, the generally aphyric nature of the

most evolved trachyandesites seems at variance with the quite significant

amounts of crystal extracts (-30 wt. percent) which are required to

have been removed to generate the tristanites. The poor fits for Na 20

and K2
0 evident in several solutions for the fractionation step tristanite

4 mafic trachyte may be partly explicable by Na 2
0 loss from the trachytes

during crystallization, but K20 contents in some of the proposed daughter

products are higher than expected by concentration resulting from loss

of Na.

An analogous fractionation step to the derivation of mafic
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trachyte from tristanite is provided by monzonite (49070) and its

schlieren. The results of mass-balance calculations for these compositions

are listed in Table 7.3. There are two interesting features of these

solutions. Firstly, alkali feldspar and biotite, which are relatively

TABLE 7.3 

Monzonite (49070) calculated as a linear combination of

its schlieren composition and its constituent minerals

Host
Observed

Host
Calculated

Schlieren Solution
(Wt.	 Fraction)

SiO 2 57.78 57.68 65.22

TiO 2 1.78 1.72 0.57 ScIlieren 0.598

Al 2 0 3 16.13 16.06 17.18 Cpx 0.052

EFe0 8.55 8.50 3.28 Plag. 0.205

Mn0 0.15 0.15 0.05 Amph. 0.083

Mg0 1.95 1.90 0.79 Timt. 0.049
Ca0 4.62 4.64 1.40 Ilm. 0.004

Na 20 5.29 5.48 6.33 Apat. 0.009
K 2 0 3.11 3.24 5.04

P 20 5 0.63 0.46 0.15 Er g 0.108

abundant phases in the host monzonite gave negative solutions in initial

calculations. Secondly, the calculated weight fraction of schlieren

(59.8 percent) contrasts strikingly with the generous volumetric estimates

of 1 to 5 percent at the outcrop. However, the latter feature may have

resulted from only localized segregation of residual liquids, the major

portion remaining interstitial to early crystallized phases.

There is reasonable agreement for most elements in the fraction-

ation step mafic trachyte to peralkaline trachyte although quite

significant amounts of anorthoclase (-20 wt. percent) must be extracted.

Production of the comendites from a peralkaline trachyte parent requires

removal of even larger amounts of anorthoclase (-40 to 48 wt. percent)

and the solutions generally display poor fits for Na 20, K20, Ti0 2 and
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P 20 5 . The discrepancies in P 205 contents arise, because, although

apatite ceases to occur as a phenocryst phase in lavas more evolved

than the mafic trachytes, P 205 continues to decrease to very low levels

in the peralkaline trachytes and comendites.

Generation of the most evolved comendites by fractionation of

comendite 49161 seems feasible in some cases (e.g. 49163) and most

unlikely in others (e.g. 49164), where there are significant discrepancies

for most elements in the solution.

The feasibility of deriving the metaluminous to peraluminous

alkali rhyolites from mafic and peralkaline trachyte parents was tested,

even though the latter case is precluded on experimental grounds (Bailey

and Schairer, 1964). Removal of anorthoclase, the dominant phenocryst

phase in the peralkaline trachytes, should result in increased peralk-

alinity in the derivative liquids. In this regard, it is of interest

to note that the transition from peralkaline trachytes to comendites

(see Fig. 5.2a) is accompanied by a trend of decreasing peralkalinity.

Solutions for the derivation of the alkali rhyolites from a mafic

trachyte parent (Table 7.2) are generally characterized by poor fits and

do not support a simple relationship of the volcanics by fractional

crystallization.

The compositional variation amongst the older alkali rhyolites,

albeit somewhat restricted,was also considered in terms of crystal

fractionation models. Solutions based on removal of anorthoclase and

titanomagnetite from the least evolved variant commonly resulted in poor

fits for Na 20, K20, TiO2 and ZFeO in the proposed daughter products.

Inspection of the Fp values in Table 7.1, which give the weight

fraction that a particular derivative melt represents of the 'parental'

trachyandesite (49000), indicates that approximately 90 to 95 percent

crystallization of the proposed parent is required to produce a

comenditic liquid. The trivial volumes of cognate cumulates which occur

as inclusions in the volcanics and the rarity of phenocrysts in many

types do not support the production of the more evolved variants by

such large degrees of crystallization. Nevertheless, the estimated

weight fractions of crystal extracts in each transition can be used as

a basis to evaluate the consistency of trace element variations in the

suite with major element fractionation models.
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Trace Elements

Trace element modelling calculations may be performed assuming

either equilibrium between the surface of the crystallizing phases and

the melt (equation 1; Gast, 1968), or, equilibrium between the total

solid and the melt (equation 2; Arth, 1976)

CL 	 (D
s
-1)

= F
O

CL	 1— = 	
C
o
	F+D (1-F)

where C is the concentration of the element in the original melt,
0 

C
L
 is the concentration of the element in the differentiated liquid, F

is the weight fraction of liquid remaining and D s is the bulk distribution

coefficient given by:

D = W K
A/liq 

+ W K
B/liq

A

where 
KA/liq 

and 
KB/liq

are the solid/liquid partition coefficients and

WA and WB represent the weight fractions of A and B in the crystal

extract, respectively.

Arth (1976) suggested that the surface-equilibrium model may be

more applicable to rapidly cooled high-level magma bodies, whereas the

total-equilibrium model is likely to more closely approximate slowly

cooled plutonic magmas. Most trace element modelling studies (e.g.

Baker et al., 1977; le Roex and Erlank, 1982) assume Rayleigh fraction-

ation or surface equilibrium (i.e. equation 1). This assumption is not

unreasonable in view of trace element zoning observed in natural volcanic

phenocrysts (Shimizu and le Roex, 1982). Slow cationic diffusion rates

in crystals compared to crystallization rates (Margaritz and Hofmann,

1978a), coupled with natural convective processes likely to occur in

magma chambers (Bartlett, 1969), probably results in a relatively homo-

geneous liquid and surface-equilibrium conditions. Decreased diffusion

rates in relatively dry granitic magmas may result in significant departures

from a homogeneous melt in a boundary layer adjacent to crystal surfaces

(Margaritz and Hofmann, 1978a). However, such effects are unlikely to

(1)

(2)
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be important in peralkaline melts with moderately high F and Cl contents.

Meaningful application of trace element modelling calculations

depends strongly on the availability of partition coefficients which

are appropriate to the particular system under consideration. Partition

coefficients are generally determined by analysis of phenocrysts and

matrix separated from porphyritic lavas (e.g. Onuma et al., 1968; Berlin
and Henderson, 1969; Philpotts and Schnetzler, 1970), or by experimental

studies, reviewed by Irving (1978).

Both approaches are subject to a number of uncertainties which

makes selection of appropriate partition coefficients very difficult.

Since phenocrysts may commonly be zoned with respect to major and trace

elements, bulk separation of the phenocrysts will not provide partition

coefficients appropriate to the surface-equilibrium model. In addition,

the very techniques of mineral separation and purification discriminate

against phenocryst rims with adhering matrix fragments which further

biases the partition coefficients (Alberede and Bottinga, 1972). Other

problems with partition coefficients based on phenocryst/matrix data

relate to the presence of inclusions in phenocrysts and the purity of

separated mineral and matrix fractions. Whilst these difficulties can

generally be overcome by careful scrutiny of the separated materials, the

rarity or absence of phenocrysts in certain lava types often precludes

the determination of partition coefficients appropriate to those

compositions.

The problems associated with experimentally-determined partition

coefficients include: (1) the attainment of equilibrium in the experiments

(Irving, 1978); (2) the possibility that the relatively high concentrations

used in 'doped' experimental runs results in non-Henry's law behaviour

(Mysen, 1976,1978); and (3) that simple synthetic systems may not produce

results appropriate to natural systems.

Factors which may affect partition coefficients include pressure

(Mysen and Kushiro, 1978), temperature (Watson, 1977; Lindstrom and

Weill, 1978), bulk composition of the liquid and solid phases (McIntyre,

1963; Lindstrom and Weill, 1978), rate of crystal growth (Alberede and

Bottinga, 1972; Long 1978; Henderson and Williams, 1979) and melt

structure (Henderson, 1977; Watson, 1977; Ryerson and Hess, 1978;
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Mysen and Virgo, 1980; Mahood, 1981a). Variations of partition coefficients

with temperature are difficult to isolate from compositional effects

and are as yet incompletely understood. However, a common trend observed

in both natural and experimental systems is that partition coefficients

increase with Si/0 atomic ratio of the liquid (Irving, 1978) and with

increasing degree of melt polymerization, as indicated by the ratio of

non-bridging to bridging oxygens (Mysen and Virgo, 1980). Factors which

tend to depolymerize the melt, such as increased (Na+K)/A1 ratio (Larsen,

1979) and addition of volatiles (i.e. H 20, Cl, F) will result in a

reduction of crystal/liquid partition coefficients (Mysen and Virgo, 1980).

The increased availability of anionic volatile constituents probably also

results in a greater degree of complex formation with the incompatible

elements, thereby reducing the likelihood of their incorporation in

crystalline phases and effectively reducing the solid/liquid partition

coefficients. In view of these factors, the considerable increases in

partition coefficients which occur in subalkaline to mildly peralkaline

high-SiO
2
 rhyolites (Mahood, 1981a) are unlikely to be as marked in the

more evolved members of many transitional alkaline suites due to the

inferred relatively high F (and ?Cl) contents and their more obvious

peralkaline character.

Partition coefficients used to evaluate fractionation models for

the Nandewar suite (Table 7.4) have been determined where possible from

natural phenocryst matrix compositions. In spite of the potential

constraints on these values, discussed above, it is considered that these

are likely to most closely approximate the actual partition coefficients

at the time of crystallization. Olivine was sufficiently abundant in

only the more mafic trachyandesites to permit its separation, and olivine,

clinopyroxene and plagioclase partition coefficients for the tristanites

and mafic trachytes must be inferred from the trachyandesite data since

the scarcity of these phases as phenocrysts in the more evolved rocks

precluded their separation. However, errors in the calculated trace

element abundances resulting from incorrect partition coefficients for

these phases should be relatively small because of the small amounts of

these phases which are indicated to have been fractionated in the more

evolved variants (see Tables 7.1 and 7.2).

REE data were unfortunately not obtained for the separated olivine,
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but published REE partition coefficients based on olivine phenocryst/

matrix data and experimental investigations (Irving, 1978) are uniformly

low, and olivine/groundmass values for a basalt measured by Schnetzler

and Philpotts (1970) have been used in the modelling calculations.

Similarly, complete REE analyses were not obtained for the titanomagnetite

separate, and partition coefficients used in the calculations are for

a basalt from the Azores (Schock, 1979). These were selected because partition

coefficients for La, Ce and Nd correspond quite closely with values

determined by XRF analysis of the Nandewar trachyandesite titanomagnetite/

groundmass pair. REE partition coefficients for the major crystallizing

phases used in the calculations are plotted versus atomic number in

Fig. 7.1.

Remaining partition coefficients from the Nandewar phenocryst/

matrix data are comparable to and generally within the range of published

values for similar rock types. The broad range of published values,

especially for 
DPlag/liq 

and 
DKfsp/liq

(Berlin and Henderson, 1969;
Sr	 Ba

Higuchi and Nagasawa, 1969; Philpotts and Schnetzler, 1970; De ?ieri

and Quareni, 1978; Leeman and Phelps, 1981) reaffirms the necessity to

carefully select these values.

A simple and limiting case for the trace element models is provided

by the incompatible trace elements (i.e. 
DSol/lig 

C). For these

	

C,	 1
x

	

elements _±.±	 Fand hence the maximum possible enrichment from the
Co

proposed parent to the most evolved derivative can be simply calculated.

Inspection of the partition coefficient data (Table 7.4) indicates that

none of the elements are perfectly incompatible, although U (Dostal and

Capedri, 1975) and Th, Ta, Hf and Nb (Ferrara and Treuil, 1974) most

closely approximate this behaviour.

Assuming perfect incompatibility (i.e. D 	 = 0) the maximum
x
Sol/liq 

possible enrichment of any element in the most evolved comendites (e,g.

49163 and 49164) with respect to the proposed parental trachyandesite

(49000) is of the order of 10 to 20 times. Although enrichment levels

for many of the elements are within this range La is enriched -22 times

in comendite 49164. Since the partition coefficient data (Table 7.4)

indicate that La cannot be regarded as an incompatible element, this

level of enrichment must be attributable to some process other than, or,

in addition to closed-system fractional crystallization.
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,) 3
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Fig. 7.1: A log-normal plot of REE partition coefficients versus
atomic number for the phases used in the trace
element modelling calculations.
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Furthermore, the major element calculations (Table 7.2) indicate

the necessity for significant anorthoclase fractionation to produce

comendite 49163 from comendite 49161, whereas minimal feldspar removal

is apparently required to generate comendite 49164 from the same parent.

This is inconsistent with the fact that both alleged derivatives have
Anor/liq

identical Sm/Eu ratios since D
Eu	

is considerably larger than

D
Anor/liq

for the other REE (see Table 7.4).

Plots of elements which are commonly regarded as incompatible

against Nb and Ta (Figs. 7.2 and 7.3) display considerable variation in

their degree of colinearity. Nb and Ta were selected as the x ordinates

because they display a strong correlation with each other (r = 0.985)

and the crystal/liquid partition coefficients for Nb in the major

crystallizing phases are very low, thus indicating their approximate

incompatible behaviour. Th and Hf are also strongly correlated with Nb

and Ta (r = 0.971 to 0.990) and regression lines for these plots generally

pass through the origin at the 95 percent confidence level.

These strong inter-element correlations provide compelling

evidence for derivation of this suite of volcanics from a common source,

It does not seem plausible that certain members of the suite (e.g. the

older alkali rhyolites) could have been generated from an independent

(? lower crustal) source, since this source would be unlikely to have

almost identical incompatible trace element ratios.

Trace element modelling calculations for the major fractionation

steps are presented in Table 7.5. Although the correlation between

calculated and trace element abundances for some transitions appear

reasonable for some elements, the calculated values for many elements

diverge significantly from the observed abundances.

Depletion of V, Cr, Ni and Cu does not occur rapidly enough in

the calculated values for the transition from the parental trachyandesite

(49000) to the more evolved trachyandesites (49008 and 49012). The

observed depletion could be generated in the calculated values by

inclusion of titanomagnetite in the crystal extract but this phase is

not present as a phenocryst phase in trachyandesites less evolved than

or similar to 49008, and hence cannot be regarded as a plausible crystal

extract.
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Similarly, the observed Sc depletion in the mafic trachytes

and comendites is not apparent in the calculated products. The relatively
Cpx

high D 
/liq

Sc	 values (Table 7.4) indicate that clinopyroxene fractionation

is the dominant control on Sc abundances in derivative liquids produced

by fractional crystallization. While it is plausible that 
DSCpx/liq
 may

increase in the more evolved variants (cf. Mahood, 1981a), the partition

coefficient data in Table 7.4 appear to suggest the reverse in this

case.

Correlations between observed and calculated values for zn are

acceptable for most transitions. However, calculated Zn values for the

derivation of comendites 49161 and 49162 from peralkaline trachyte 49098G

are considerably higher than observed abundances. This is in fact the

case for most moderately incompatible trace elements (e.g. Rb, Y, Zr,

Nb and the REE) in this transition because of the large quantities of

anorthoclase which are required to have been fractionated to satisfy

the major element mass-balance constraints.

Calculated Rb and Y values are in reasonable agreement with

observed abundances for transitions spanning the com positional range

trachyandesite to tristanite, and the calculated Rb values correspond

quite well with the observed values for the transitions from the mafic

trachytes to the peralkaline trachyte (49098G). For most other transitions

the calculated Rb and Y values depart significantly from the observed

values.

Sr, Zr and Nb values calculated for the transitions trachyandesite

49012	 tristanite 49076 and tristanite 49076 -4- trachyte 49083 are

considerably higher than the observed values and the calculated values

for Zr and Nb depart markedly from the observed abundances in the

transitions involving the derivation of comendites 49161 and 49162 from

peralkaline trachyte 49098G.

The agreement between calculated and observed Ba values in the

mafic and intermediate members, where Ba is most abundant, is generally

quite poor. The most notable disparity occurs in the transition from

mafic trachyte 49088 to peralkaline trachyte 49098G where the extreme

depletion in the latter cannot be explained by the amount of anorthoclase

fractionation indicated from major element mass-balance calculations.
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Calculated REE abundances depart significantly from observed

values in all transitions except that involving production of trachy-

andesite 49012, and perhaps trachyandesite 49008. Chondrite-normalized

REE plots for each of the calculated derivatives are shown in Fig. 7.4

and can be compared with similar plots of the observed abundances

(Fig. 5.13). It is interesting to note the absence of negative Eu

anomalies in the calculated REE patterns for the tristanite and mafic

trachytes. This may in part have resulted from the use of published
partition coefficients for titanomagnetite/liquid which are characterized

by a slight negative Eu anomaly (Fig. 7.1), and which may or may not

have been appropriate.

The typically poor correlation between calculated and observed

trace element abundances, particularly in alleged derivatives more

evolved than mafic trachyte 49088, does not support their develo pment by

closed-system fractional crystallization.

Isotopes

The relatively restricted range of initial 
87

Sr/
86
Sr ratios

supports the notion that all members of the Nandewar suite were derived

from a common source, a conclusion which is also required by the incom-

patible trace element data. The variation in initial 
87

Sr/
86
Sr ratios

is probably due to slight contamination by radiogenic crustal Sr, although

liquid fractionation involving thermogravitational diffusion may

conceivably be responsible for some of the variation (Hildreth, 1981).
The available isotopic data cannot be used to discriminate between

genetic models involving fractional crystallization or partial melting

and thus are of little further use.

Experimental Evidence 

Experimental evidence relevant to the genesis of the comendites

is available from studies in the systems K 20-Al20 3 -S10 2 and Na20-Al203-

Si0
2 at 1 atmosphere (Schairer and Bowen, 1955,1956) and the system

Ab-Or-Q-Ac-Ns-H 20 at 1 kb P,	
(Carmichael and MacKenzie, 1963). The

2C)
Nandewar peralkaline trachyte and comendite analyses are plotted (Fig. 7.5)

in terms of molecular Si0 2-Al 20 3-Na20+K20, following Bailey and Macdonald

1969,1970), and are compared with the quartz-feldspar cotectic zone and
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quartz-feldspar minima determined in the above systems.

In contrast to the continental comendites plotted by Bailey and

MacDonald (1970), the Nandewar comendites do not plot in the quartz-

feldspar cotectic zone. Instead, they are spread along a rough trend

with the peralkaline trachytes extending from the feldspar point towards

the cotectic zone and comparable in some respects to the trend displayed

by oceanic comendites (Bailey and Macdonald, 1970). However, the

decreasing peralkalinity in the transition from the peralkaline trachytes

to comendites noted previously is also evident in this plot, and is at

variance with a trend of increasing peralkalinity which should result

from fractionation of alkali feldspar from peralkaline trachyte magma.

Selective loss of volatiles and alkalies is not considered to be

responsible for this trend since the most evolved comendites are intrusive

and are less likely to have been affected by this process than extrusive

peralkaline trachytes.

Thus, interpretations based on the available experimental data

are consistent with major and trace element modelling calculations, which

do not support an origin for the Nandewar comendites by fractionation of

alkali feldspar from peralkaline trachyte melts.

Physical Conditions of Fractionation 

The difficulties associated with the mechanics of the crystal

fractionation process which relate to crystal settling, convection and

the general paucity of cognate cumulates were discussed in Chapter 6. The

feasibility of crystal/liquid separation, which is fundamental to

crystallization differentiation models, can be assessed by reference to

relevant viscosity and density data.

Densities (Bottinga and Weill, 1970) and viscosities (Shaw,

1972) have been calculated for several Nandewar lavas at approximate

magmatic temperatures (estimated from geothermometric data, Chapter 4),

and for dry and for reasonable H 2
0 contents. The results are presented

together with calculated feldspar densities in Table 7.6. Coefficients

of expansion for the feldspars were taken from Clark (.1966) and applied

to density data (determined at 20°C) on appropriate compositions from

Deer et aZ. (1963). Calculated viscosities for the trachyandesites and
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TABLE 7.6 

Calculated densities and viscosities for

Nandewar lavas and feldspar densities

Melt
Density
(g cm 3 )

Feldspar
Density
(g cm 3 )

Viscosity

(poise)

Trachyandesite (49000)

1100°C (Dry)

1100°C	 (1% H20)

1100°C	 (2% H20)

2.77

2.70

2.64

2.66	 (An59) 5.4 x	 10
2

1.1	 x	 10
2

Trachyandesite (49012)

1100°C	 (Dry) 2.60 2.64	 (An48) 3.9 x 10
3

1100°C	 (2% H
2
0) 2.48 5.7 x 10

2

Tristanite	 (49076)

1000°C (Dry) 2.57 2.62	 (An44) 7.1 x 10
5

1000 ° C 	 (1% H
2
0) 2.45 2.2 x	 10

4

Trachyte (49088)

1000 ° C	 (Dry) 2.28 2.54	 (0r28) 1.7 x	 10
6

1000°C	 (1% H20) 2.23 3.0 x 10
5

Peralkaline Trachyte	 (49098)

1000 ° C (Dry) 2.31 2.54	
(Or30)

1.4 x 10
6

1000° C	 (1% H
2
0) 2.25 5.2 x 10

4

Comendite	 (49161)

1000°C	 (Dry) 2.25 2.54	
(Or30)

8.9 x 10
6

1000°C	 (0.5% H20) 2.23 2.5 x 10
6
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comendites are comparable to measured values on rocks of similar composition

(Scarfe, 1977).

The calculated liquid densities indicate that in the absence of

significant convection olivine, clinopyroxene and Fe-Ti oxides should

have settled in all compositional variants. Plagioclase is also likely

to have settled in trachyandesite 49012 and the tristanites. However,

if trachyandesite 49000 contained 1 weight percent H 20 or less, the

calculations suggest that plagioclase (An
58

) would have floated. Increasing

the H
20 content of the melt to 2 weight percent at 1100

o
C reduces the

melt density to a value fractionally below that of the feldspar, which

may then permit it to settle out. The uncertainties regarding the

initial H20 content of the melt preclude a definitive solution to this

problem.

The calculated density data do not preclude fractionation of

alkali feldspar from any of the trachytic or comenditic melts. However,

calculation of settling velocities from Stokes Law (assuming perfect

spherical crystals of 0.5 cm radius) indicates settling rates of -2 to

90 m yr
-1
 under optimum conditions of minimum viscosity and maximum

density contrast. These settling rates are small and probably ineffectual

when convection processes are considered. Calculated Rayleigh numbers

for the trachytic and comenditic melts utilizing data from Bartlett

(1969) are >> 10
5
 for magma bodies of -100 m thick. Strong eddying

motions and active convection are expected when Rayleigh numbers exceed

10
5
 (Elder, 1976).

Therefore fractionation of -48 to 50 weight percent alkali

feldspar from peralkaline trachyte melts to produce the comendites does

not seem plausible by crystal settling. The absence of essentially

monomineralic anorthoclase cumulates as inclusions within any of the

lavas further weakens the crystal fractionation model.

PARTIAL MELTING

It has been established that the members of the Nandewar suite

are cogenetic and were derived from a common source with constant

isotopic and incompatible trace element ratios. Since the results of

mass-balance calculations in the preceding section indicate that the
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members (at least spanning the compositional range trachyandesites 49000

to trachyandesite 49012) are unlikely to be related by closed-system

fractional crystallization, alternative genetic models must be considered.

General Characteristics of the Source

It was concluded in Chapter 6 that progressive partial fusion

of a lower crustal source is not plausible because P-T constraints preclude

generation of the more mafic variants. Therefore an upper mantle source

is the only viable alternative. Since the silicic members of the suite

are at present generally regarded as unlikely products of partial melting

of an upper mantle source, a model involving partial melting followed by

liquid or crystal fractionation (or both) may be appropriate for their

genesis.

Clearly, if lavas as evolved as trachyandesites and perhaps

tristanites are to be considered as 'primary' products of partial melting

in the upper mantle, the composition of the source must differ significantly

from the popular 'pyrolite' model of Ringwood (1975). Since we have no

a priori knowledge of the composition of undepleted upper mantle, it is

considered reasonable to test alternative potential source compositions

within the broad constraints imposed by geophysical data (Ringwood, 1975)

which indicate a peridotitic mineralogy.

Attempts to estimate the composition of undepleted upper mantle

material are severely constrained by the lack of model-independent

information concerning the percentage of partial melting required to

produce the various lava types. Estimates based on trace element

abundances of lavas and near-cosmic abundances for the upper mantle (Kay

and Gast, 1973) require very small degrees of partial melting (<3

percent) to produce nephelinites and other strongly alkaline and LREE-

enriched volcanics. It was noted in Chapter 6 that such small quantities

of melt may be difficult to separate from the source. Frey et al. (1978)

concluded that most basaltic lavas are probably produced by larger

degrees of melting (i.e. 10 to 25 percent for alkali basalts to olivine

tholeiites), and they based their estimates on the K 20 and P
2
0
5 

contents

of the lavas in conjunction with the abundance of these constituents

in 'pyrolite'. This model assumes uniformity of K20- and P205-bearing

phases (presumably phlogopite, amphibole and apatite) in the source
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region. However, xenoliths from kimberlites and other alkaline rocks

containing these phases (e.g. Dawson and Smith, 1973; Lloyd and Bailey,

1975; Francis, 1976; Wass et aZ., 1980) typically display considerable

modal variation, which presumably reflects heterogeneity in the source

region. Thus, estimates of the degree of partial melting based on the

concentration of K
2
0 and P

2
0
5 

in the resultant melts are subject to

uncertainties from this variable as well as the uncertainty regarding

the assumed composition of the source.

Constraints on the Nandewar Source

The compositions of the Nandewar lavas permit several constraints

to be placed on the likely nature of the source material. 1) Experimental

investigations on the solubility of apatite in basaltic liquids (Watson,

1979b) indicate that apatite should not be a residual phase during the

relatively large degrees of melting required to produce the more mafic

(lower SiO
2
) variants of the suite. This is supported by the absence

of apatite as a liquidus phase in all trachyandesites and hawaiites less

evolved than 49012 and its general absence from refractory lherzolitic

xenoliths. If all of the apatite is partitioned into early-formed melts

the P
2
0
5 
content should decrease by dilution as melting proceeds. A plot

of M versus P
2
0
5 

(Fig. 7.6) shows that this is true for all of the

Nandewar trachyandesites except 49005, 49008 and 49009. The higher P205

contents of these lavas for similar Al values suggests their derivation

from a source with slightly higher modal apatite. The trend of increasing

P
2
0
5
 with M in the range tristanite to trachyandesite is consistent with

the presence of apatite as a liquidus phase indicating their saturation

in this component. Moreover, this suggests that if these more evolved

lavas were also formed by partial melting, apatite was a residual phase

in the source region to this stage of melting.

2) The relatively high K/Rb ratios of the Nandewar mafic and

intermediate rocks (generally in the range 450 to 460) appears to

require the presence of amphibole in the source region. Menzies and

Murthy (1980c) showed that the probable range of K/Rb ratios in lavas

produced by 5 to 25 percent partial melting of an anhydrous mantle source

is 220 to 400. The range of K/Rb ratios is considerably extended (449

to 794) by the addition of 5 percent pargasite to the source.
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Fig. 7.6: Plot of M versus P 20 5 for the Nandewar hawaiites
(circles), trachyandesites (crosses) and
tristanites (squares).

3) The relatively constant K/Rb ratios in the Nandewar mafic

and intermediate lavas indicates that there could not have been significant

variation in the modal amounts of phases with markedly different K/Rb

ratios contributing to the melt. Amphibole and phlogopite would have

the highest contents of K and Rb in any plausible upper mantle assemblage

(Griffin and Murthy, 1969) and are likely to have had the greatest

influence on K/Rb ratios of derivative melts. Phlogopite typically has

quite low K/Rb ratios (-120, Dawson, 1972) whereas amphiboles typically

have higher K/Rb ratios and commonly display a wide range of values

(e.g. 336-3058; Menzies and Murthy, 1980c). If both of these phases

contributed to the melt phase in variable proportions then a greater

degree of variation in the K/Rb ratios of the melts would be expected.

It therefore seems reasonable to conclude that the source for the Nandewar

lavas contained some amphibole and apatite, whereas phlogopite was
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probably absent.

4) Assuming amphibole and apatite were present in the source

rocks of these lavas, it seems likely that they were completely consumed,

at least for the highest degrees of partial melting, because of the

general scarcity of amphibole-bearing inclusions amongst xenolith

populations. Possible variations in melt composition resulting from

the incongruent melting of amphibole (Holloway and Ford, 1975) are

ignored, although this assumption may not be valid for small degrees of

partial melting if amphibole is relatively abundant in the source (i.e.

5 to 10 percent).

Composition of the Residuum 

The most obvious constraint on the composition of the residuum

is provided by the M values of derivative melts with which it was in

equilibrium. Experimental data (Roeder and Emslie, 1970; Cawthorn

et al., 1973; Thompson, 1974) indicate that the olivine-liquid Fe/Mg

exchange partition coefficient at elevated pressures is -0.33. The mg

value of the peridotitic residuum is enhanced with increased degrees

of melting (Mysen and Boettcher, 1975). Hence, tracnyandesite 49000

= 62) should have been in equilibrium with a residuum with mg -83.

Descriptions of xenoliths with such low mg values are rare and the

average of -300 continental peridotite xenoliths (which would be

'depleted' relative to pristine upper mantle; Maal0e and Aoki, 1977)

has mg = 90.1. If trachyandesites similar to the Nandewar trachyandesites

and tristanites were indeed primary melts, the residua from these partial

melting events is only rarely sampled. Further melting of a relatively

Fe-rich residue (assuming it is undepleted in elements such as Al, Ca,

Na, K, P) would probably yield basaltic melts, thereby leaving relatively

Mg-rich residua more typical of the peridotitic inclusions in alkaline

lavas.

A weight percent mode of the average spinel lherzolite (Maal0e

and Aoki, 1977) is olivine 66.7, orthopyroxene 23.8, clinopyroxene 7.8

and spinel 1.7. Because clinopyroxene preferentially enters the melt

with small degrees of partial melting (Mysen and Kushiro, 1975; Jaques

and Green, 1980), undepleted 'pristine' Fe-rich lherzolites, and also

Fe-rich residua persisting after only small degrees of melting, must be
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significantly enriched in this phase (and/or amphibole for hydrous

assemblages) relative to the more common clinopyroxene-bearing harzburgite

xenoliths.

Wilkinson and Binns (1977) used an average analysis (mg - 93.7)

based on relatively Fe-rich lherzolite compositions as a potential

upper mantle source composition from which moderately evolved hawaiites

and tholeiitic andesites might be derived leaving harzburgitic and

dunitic residua, respectively. However, even this relatively Fe--rich

composition was depleted in important minor elements (Na 20, K20, TiO2

and P205) and consequently it was unable to satisfy mass-balance requirements

for the production of the moderately evolved derivatives. As a first

approximation it appears reasonable to use this relatively Fe-rich

source composition as a possible residuum from a partial melting event

which produced a trachyandesite (e.g. 49000) with M -62. The compositions

of the potential (already extracted) melt fractions are unknown. They

may have possessed M-values similar to the Nandewar trachyandesite but

could have differed significantly in other components (e.g. Otago mafic

phonolite, M = 56; Price and Green, 1972). However, uncertainties of

this type are inherent in all model upper mantle compositionsformulated

in this manner, including that of 'pyrolite'.

Composition of a Hypothetical Undepleted Source 

Since the degree of partial melting required to produce trachy-

andesitic melts in equilibrium with the proposed residuum is unknown,

various increments of trachyandesite 49000 (10,15,20,25 and 30 weight

percent) were added to the residuum, thereby defining a range of . possible

source compositions (Table 7.7).

The respective modes (Table 7.7) were calculated using microprobe

analyses of the anhydrous phases in an Fe-rich lherzolite (M -80) from

Spring Mount in north-eastern New South Wales (Wilkinson and Binns,

1977), and an apatite from a Victorian lherzolite xenolith (Frey and

Green, 1974). Alternative modes were calculated adding amphibole

(average analysis of pargasite from a lherzolite xenolith in a nephelinite

from the Walcha district in north-eastern New South Wales; unpublished

data of the author) to the anhydrous phases listed above. It was not

possible to obtain a satisfactory solution using the least-squares
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TABLE 7.7 

Compositions and modes of a range of possible undepleted

upper mantle materials

Residuum Residuum + Residuum + Residuum + Residuum + Residuum +
(A)	 10% 49000 15% 49000 20% 49000 25% 49000 30% 49000

SiO 2 	44.32 44.73 44.96 45.17 45.39 45.59

TiO 2 	0.48 0.71 0.82 0.93 1.05 1.16

Al 2 0 3 	4.25 5.33 5.87 6.41 6.95 7.50

Cr20 3 	0.31 0.31 0.26 0.25 0.23 0.22

EFeO	 11.91 11.80 11.75 11.70 11.64 11.60

Mn0	 0.17 0.17 0.16 0.17 0.16 0.16

Mg0	 34.23 31.64 30.37 29.07 27.79 26.50

Ca0	 3.55 4.12 4.41 4.70 4.98 5.27

Na 20	 0.63 0.86 0.98 1.08 1.20 1.31

K20	 0.09 0.23 0.30 0.37 0.44 0.50

P 2 0 5	 0.06 0.10 0.12 0.15 0.17 0.19

Total	 100.00 100.00 100.00 100.00 100.00 100.00

mg	 83.7 82.7 82.2 81.6 81.0 80.3

Anhydrous Modes	 (Wt.	 percent)

Olivine	 63.9 42.7 37.6 32.3 27.1 22.0

Orthopyroxene	 15.9 33.5 36.0 38.7 41.3 43.8

Clinopyroxene	 18.1 19.1 20.8 22.4 24.0 25.6

Spinel	 2.1 4.3 5.2 6.1 7.0 8.0

Apatite	 - 0.4 0.4 0.5 0.6 0.6

Erg	- 7.525 5.895 4.649 4.003 3.755

Hydrous Modes	 (Wt.	 percent)

Olivine	 - 42.3 38.0 33.6 29.3 25.0

Orthopyroxene	 - 31.6 32.6 33.7 34.7 35.5

Amphibole	 - 25.2 28.5 31.8 35.1 38.5

Apatite	 - 0.9 0.9 0.9 1.0 1.0

Er
2
	- 3.614 1.823 0.672 0.229 0.462

*
Analysis and volume % mode from Wilkinson and Binns (1977).

Er
2
 = Sum of the squares of the residuals.
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mixing procedure by including clinopyroxene and spinel with amphibole

in the hypothetical source composition. Better fits (i.e. lower Er g )

were generally obtained for the amphibole-bearing assemblages but the

amount of amphibole defined by the least-squares data generally appeared

inordinately large (20 to 40 wt. percent, Table 7.7) and the olivine/

orthopyroxene ratios appear too low.

Mass-balance calculations were carried out to test the feasibility

of producing the Nandewar trachyandesites, hawaiites and tristanites

from the range of proposed source rocks (Table 7.8). The best fits for

the trachyandesites and hawaiites were achieved using a parent composition

based on the addition of 15 percent trachyandesite 49000 to residuum A

(Table 7.7). A less depleted residuum was adopted for the calculations

involving the tristanites (i.e. residuum B, Table 7.8; calculated by

adding 10 percent trachyandesite 49000 to residuum A) because the source

will be relatively less depleted by the lower degrees of partial melting

required for the production of the more 'evolved' primary melts. These

calculations indicate that it is feasible in terms of major element
mass-balance constraints, to produce the Nandewar tristanites, hawaiites

and trachyandesites by 4 to 15 percent partial melting of the proposed

source.

It is acknowledged that the existence of such a source is highly
speculative, although it is supported to some extent by the compositions

of some relatively Fe-rich lherzolites (Wilkinson and Binns, 1977;

but see Irving, 1980). The possibility of deriving liquids with M < 50

by direct partial melting of a source similar to the one proposed is

rather more speculative. Although many of the components can be

satisfactorily balanced in least-squares mixing calculations, adopting

a constant value of K
D
 = 0.33 for olivine-liquid equilibria a ppears to

be a major constraint in parent-daughter relations. K
D 

depends on P, T

and f02 (Mysen, 1975; Mysen and Boettcher, 1975) but Wilkinson and
Binns (1977) suggested that opposing effects of P-T and f0 2 will probably

be counterbalancing and KD -0.3 is likely to persist in relatively

Fe-rich upper mantle source regions. Although this may be true for

basaltic and hawaiitic melts, possible effects of higher alkali contents

and variable bulk composition on KD at elevated pressures are unknown

and require more experimental data.
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Other alternative upper mantle sources might also be considered

e.g. the metasomatized lherzolitic material described by Lloyd and

Bailey (1975). The enrichment of Fe and incompatible trace elements,

as well as the relative depletion in Cr and Ni which apparently accompanied

metasomatism, indicates the potential for such a source to generate

melts with very evolved major and trace element characteristics. Pro-

duction of relatively siliceous upper mantle melts based on the incongruent

melting of orthopyroxene (Mysen and Boettcher, 1975) appear to require

further experimental data.

In view of the limited data defining the major element character-

istics of pristine upper mantle there appears to be little profit in

speculating on trace element compositions. Trace element models based

on the equations for equilibrium or fractional melting (Shaw, 1970)

depend heavily on information concerning the degree of partial melting,

the nature and mode of the residual mineralogy of the source and solid/

liquid partition coefficients, which are at present poorly known.

CONTAMINATION/HYBRIDISM/WALL-ROCK REACTION 

The arguments outlined in the previous chapter regarding the

general inapplicability of these processes to the production of transitional

alkaline suites also pertain to the Nandewar suite. The general absence

of xenoliths, partially digested igneous or sedimentary materials and

disequilibrium phase assemblages argue strongly against the significant

involvement of hybridism and contamination processes in the genesis of

the Nandewar lavas.

However, the slightly higher initial 
87

Sr/
86

Sr ratios of several

comendites (see Table 5.3) suggests that some contamination of these

melts by radiogenic crustal Sr occurred. The very high Rb/Sr ratios of

these rocks renders them very susceptible to such effects and the amount

of contaminant may have been very small. This would indeed be the case

if isotopic contamination occurred by direct exchange between magma

and country rocks (Taylor, 1977) or by influx of groundwater (Lipman

and Friedman, 1975).

VOLATILE TRANSFER

The conclusion in Chapter 6, that volatile transfer (especially
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volatile loss) is unlikely to have resulted in significant modification

to the compositions of transitional mafic lavas, is also applicable to

the Nandewar lavas. It was further suggested that loss of a volatile

phase may be responsible for some of the compositional variation evident

amongst the more evolved members of some suites.

Inspection of Tables 5.1 and 5.2 and Figs 5.4 to 5.11 reveals

considerable scatter in the concentration of alkalies and several of

the incompatible trace elements amongst the younger alkali rhyolites

and comendites. Typically the alkali rhyolites are depleted in Na,)0,

EFe0, Li, Zn, Rb, Y, Zr, Nb, HREE, Hf, Ta and Th relative to comendites

of similar Si0
2
 content. Since it has been established that these

differences cannot be reasonably attributed to fractional crystallization,

and their highly irregular nature appears inconsistent with thermo-

gravitational diffusion processes (discussed below), chemical modification

by loss of a volatile phase may be the most appropriate explanation.

The commonly vesicular character of the alkali rhyolites indicates

that some loss of volatiles occurred, probably when the partly crystalline

magma was extruded as exogenous domes. Evidence of alkali amphiboles

having grown within the vesicles of some specimens was interpreted as

indicating crystallization from an escaping volatile-rich fluid (see

Chapter 4). Trace element data for the separated amphibole (Table 4.7)

revealed that many of the elements (e.g. Li, Zr, Nb, HREE) depleted in

the alkali rhyolites relative to the comendites are concentrated in

this phase.

It is proposed therefore, that the magma which finally consolidated

as the younger alkali rhyolites was originally comenditic in composition.

The field occurrence of the comendites, principally as intrusive plugs,

apparently prevented serious loss of volatiles and thus they more closely

reflect original melt compositions. It is envisaged that the pressure

release accompanying extrusion of the partially crystalline comenditic

magma led to saturation of the interstitial melt fraction in a F-rich

volatile phase and its subsequent loss from the system. Alkalies

(principally Na) and many of the incompatible trace elements concentrated

in the interstitial melt (probably in the form of fluoride complexes;

see Chapter 6 for discussion) are also inferred to have been lost during

the degassing process.
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Whilst this process appears to have most seriously affected the

alkali rhyolites, it may also have modified the compositions of some

mafic and peralkaline trachytes. However, the generally non-vesicular

character and higher Na 20/K20 ratios (usually >1) of these lavas suggests

that such losses were probably less important.

The older alkali rhyolites also have relatively low Na20/K20

ratios and irregularities in some trace element contents which suggests

loss of a volatile phase during eruption. Specimen 49162 is slightly

peralkaline (A.I. = 1.01) and hence was classified as a comendite, but

it is regarded as a member of the older alkali rhyolites because of its

close association in the field and similar mineralogy. These rocks are

typically more Fe-rich than the younger alkali rhyolites and are compo-

sitionally similar to the most mafic extrusive comendites (e.g. 49160

and 49161; see Tables 5.1 and 5.2), the most notable discrepancy being

lower Na20 and higher Fe 20 3/Fe0 ratios in the former. The older alkali

rhyolites are depleted in Li relative to the comendites but many of the

other incompatible trace element concentrations are comparable.

It is proposed that the older alkali rhyolites were also produced

by degassing of a comenditic magma as it was extruded in the form of

exogenous domes during the initial phases of volcanism. These magmas

are thought to have been relatively H 20-rich which permitted some loss

of alkalies and trace elements and resulted in pervasive oxidation of the

partially crystallized magma. The apparently minimal losses of Fe, Mn

and incompatible trace elements, relative to those inferred for the

younger alkali rhyolites, perhaps reflects different a
H0 

and a
F) 

between
2 

the melts and the extent of complexing by halogen anions. The low

partition coefficients for most elements between aqueous vapour and melt

which support this interpretation were discussed in Chapter 6.

Whilst most of the chemical differences between the alkali

rhyolites and comendites may be attributable to volatile-loss, one

comendite (49164) is enriched in LREE beyond levels that can be reasonably

attributed to fractional crystallization processes. Compared to

comendite 49163, this particular specimen displays less enrichment in

Zn, Rb, Zr, Hf and HREE, has almost identical Nb and Ta contents and

Sm/Eu ratio, and is enriched in LREE by -x 5 to 16 and U by -x 3.
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Specific enrichments of this magnitude are inconsistent with crystal

fractionation involving alkali feldspar because the preferential

concentration of Eu in this phase (see Table 7.4) would result in

increased Sm/Eu ratios in derivative liquids. Also, the limited data

available for magmas considered to be related by thermogravitational

diffusion (cf. Hildreth, 1979,1981; Mahood, 1981a) suggests that Sm/Eu

ratios do not remain unchanged during the operation of this process.

Therefore, some form of volatile transfer may be responsible

for the strong enrichment in LREE and U evident in this comendite.

Although this seems inconsistent with the tendency of the HREE to form

complexes more readily than the LREE (Balashov and Krigman, 1976), the

stability of metal complexes may be strongly dependent on the nature of

the anionic species (e.g. Mitchell and Brunfelt, 1975; Balashov and

Krigman, 1975), thereby creating the potential for selective cationic

mobility in an evolving magma chamber. Volatile transfer could occur by

exsolution of vapour from a saturated melt followed by its concentration

in the upper part of the magma chamber. However, roofward migration and

concentration of volatile species may also occur in the absence of a

discrete vapour phase (Shaw, 1974).

MAGMA MIXING

Petrographic and mineralogical evidence of disequilibrium in the

Nandewar lavas is sparse. Reaction rims on orthopyroxene megacrysts in

several trachyandesites (considered to be moderate-pressure precipitates

from their hosts) are explicable by their low-pressure instability. On

the other hand, unusually magnesian olivine microphenocrysts (Fo88)

in trachyandesite 49008 (M = 47.6) constitute a disequilibrium assemblage.

If a value of KD -0.3 for olivine-liquid equilibria is appropriate, it

must be concluded that the euhedral olivine microphenocrysts crystallized
from a melt with a higher /V-value than their host (M -70), and which

is not currently represented in the volcanic pile, This melt could then

have mixed with a more evolved trachyandesitic or hawaiite melt to

produce the current host. There is, however, no evidence of two pheno-

cryst populations which might support this proposal.

Sparse plagioclase phenocrysts (An 57 ) rimmed by anorthoclase in

mafic trachyte 49082 also probably represent a disequilibrium assemblage.
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Their presence could be interpreted in terms of mixing of a relatively

Ca-rich (trachyandesitic) melt with a trachytic melt. The typically low

MgO and CaO contents of the mafic trachytes indicate that if mixing with

more Mg- and Ca-rich melts occurred, the relative volume of the latter

was quite small. The absence of magnesian olivine and clinopyroxene

phenocrysts, which usually accompany plagioclase phenocrysts in the

trachyandesites, suggests that the calcic-plagioclase cores may be isolated

accidental inclusions rather than the remnants of extensive magma mixing.

Although magma mixing may have occurred on a very restricted

basis producing some of the localized disequilibrium mineral assemblages

in the Nandewar lavas, it is not considered to have played a significant

role in the development of the suite.

LIQUID IMMISCIBILITY 

On the basis of the arguments outlined in Chapter 6, the process

of liquid immiscibility is not considered to have been involved in the

development of the major compositional variants comprising the Nandewar

suite. There is no physical evidence of immiscibility in the volcanics

or intrusive rocks and the essentially continuous chemical variation

evident in the suite is inconsistent with such a process. Furthermore,

the trace element characteristics of the more evolved representatives are

at variance with those expected from partitioning relationships of

immiscible liquids (Watson, 1976; Eby, 1980).

THERMOGRAVITATIONAL DIFFUSION

It was concluded from earlier discussions (see Chapter 6) that

the process of thermogravitational diffusion seems incapable of producing

the complete range of compositions represented in the Nandewar Volcano.

Although the more mafic members of the suite may be 'primary' partial

melts of a relatively Fe-rich upper mantle source region, it seems most

unlikely that the salic types, especially the rhyolites, could have been

formed in this manner. The apparent inadequacy of the crystal fraction-

ation, liquid immiscibility, and other models so far considered to account

for some of the compositions in this range, requires that the process

of thermogravitational diffusion be considered as a possible alternative.

Appraisal of this model in the genesis of the more evolved Nandewar
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rocks is necessarily speculative since very little is known of the

operation of this process in magmatic systems. Information from field
relations and possible pre-extrusive magmatic relationships are poorly

constrained for the Nandewar rocks compared to zoned ash-flow tuff units

for which this process has previously been invoked (e.g. Hildreth,

1979,1981; Mahood, 1981a). In the case of zoned ash-flow eruptives,

the regions of the magma chamber sampled can be identified with some

degree of confidence, whereas the possible order of extraction of a

series of small intrusive plugs from a magma chamber (if indeed they

were derived from a single chamber) is unknown. Even if the comenditic

and trachytic magmas were derived from a single compositionally zoned

magma chamber, the individual intrusive bodies are likely to have undergone

further differentiation subsequent to their emplacement.

Recognition of geochemical trends which appear to be characteristic

of this process is therefore very difficult, especially since these

trends vary somewhat from subalkaline (Hildreth, 1979) to mildly pera-

alkaline systems (Mahood, 1981a). These difficulties are enhanced in

the Nandewar rhyolitic rocks where significant loss of alkalies and

certain incompatible trace elements occurred during eruption.

Thermogravitational diffusion has only previously been proposed

to explain marked variations in trace element and isotope chemistry over

quite narrow ranges in major element composition. Hildreth (1979)

suggested that compositional gradients develop by diffusion processes

in the uppermost portions of silicic magma chambers where convection

becomes inhibited by progressive development of a stable density gradient,

Calculated viscosities (Table 7.6) and Rayleigh numbers indicate that

active convection should occur in even relatively small chambers containing

trachytic and comenditic magmas. This would possibly be expected to

disrupt compositional and density gradients which develop in response to

thermal gradients within a magma chamber. However, if a series of actively

convecting cells of different composition can develop (see Chapter 6

for discussion of possible mechanisms), then convective-driven diffusive

differentiation may be capable of operating over a broader compositional

range appropriate to the Nandewar intermediate and silicic variants.

Some support for this suggestion is provided by the Thirsty Canyon

Tuff in southern Nevada (Noble, 1965; Noble and Parker, 1974). It is
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a compound cooling unit composed of at least a dozen individual ash

flows ranging from trachyte to comendite and pantellerite in composition.

Trachyte, trachytic soda rhyolite and trachyandesite lavas were erupted

synchronously from the Black Mountain Volcano and interfinger with

the intermediate to silicic tuffs. It is clear from this example that

melts ranging from trachyte to peralkaline rhyolite coexisted, probably

within a single magma chamber, and were erupted within a short period

of time. It is not clear by what process the trachytic and comendite

members are related, although Noble (1965) and Noble and Parker (1974)

suggest that they were not produced by fractional crystallization from

a single parent magma. By analogy with mass-balance calculations for

the Nandewar lavas, a relationship for the Black Mountain trachytes and

comendites by fractional crystallization would appear to require excessively

large degrees of crystallization (-50 weight percent). Even larger

degrees of crystallization would be required to produce the extreme

enrichments in incompatible trace elements which characterize the Black

Mountain pantellerites (see Table 6.6, No.14). It has been argued

previously that such large degrees of crystallization would necessarily

prevent this range of liquids coexisting in a single magma chamber.

The suggestion that the more evolved members of the Nandewar

suite (which display similar compositional trends to the Black Mountain

eruptives) were produced by thermogravitational diffusion or a similar

form of liquid-state differentiation is of course speculative. Further

detailed studies of eruptives covering a similar compositional range,

but with more closely constrained field relations enabling more precise

determination of eruptive sources and compositional variation with time,

are clearly required to ascertain the viability of this model in

generating the relatively evolved members of transitional alkaline suites.

CONCLUSIONS

An important, albeit negative result of this study evident from

the field, mineralogical and chemical data, is that while the transitional

alkaline lavas (and intrusives) of the Nandewar suite comprise a

cogenetic suite, not all are related by simple closed-system fractional
crystallization.
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The major and trace element variations amongst the mafic

members (i.e. trachyandesites and hawaiites) cannot be adequately

accounted for by removal of the observed phenocryst phases. It was

therefore tentatively suggested that these lavas and perhaps also the

tristanites may represent 'primary' partial melts of a relatively Fe-

rich upper mantle source region. Production of the tristanites by

fractional crystallization of the most evolved trachyandesites is not

precluded by the major element mass-balance calculations. However,

poor agreement for some calculated trace element abundances and the

paucity of phenocrysts and cognate cumulate inclusions in the trachy-

andesites and tristanites does not support their relationships by this process.

Production of the mafic trachytes by fractional crystallization

of a tristanite magma involving separation of the major phenocryst

types seems feasible. However, generation of the peralkaline trachytes

and comendites from the mafic trachytes by this process requires

inordinately large degrees of crystallization and in many cases satisfactory

mass-balance is not achieved for either the major or the trace elements.

Instead it is tentatively suggested that the trachytes and

comendites may be related by some form of liquid-state differentiation.

Although the capacity of the thermogravitational diffusion process to

generate this range of compositions is as yet unproven, it seems the

most appropriate contender from the available range of genetic models.

Loss of a F- or H
2
0-rich volatile phase appears to be an adequate

mechanism by which peraluminous and metaluminous rhyolites l can be related

to the comendites. Alkali loss and variable loss of Fe, Mn and certain

incompatible trace elements is considered to have accompanied the loss

of volatiles. The extent to which this occurs probably reflects the

activity of the various volatile constituents in the melt and the degree

of complex formation.

Acceptance of the conclusion that the closed-system fractional

crystallization model (widely adopted as the principal mechanism for

the genesis of these suites in the past) does not provide a satisfactory

explanation for the genesis of all of the Nandewar lavas, leaves the

vexing problem of a suitable alternative control(s). Whilst, the ad hoc

genetic models tentatively proposed above have some relevance, it is

acknowledged that they are far from compelling. Careful examination of

1 It should be noted however, that these eruptives are essentially devoid
of diagnostic peralkaline groundmass phases.
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the literature on transitional suites similar to the Nandewar suite

also showed that closed-system fractional crystallization models may

not be generally applicable in their genesis. Further studies of these

suites aimed at quantifying in more detail the relationships between

alleged parent and daughter products are obviously required. Wider

acceptance of the shortcomings of crystal fractionation models should

lead to more detailed examination and evaluation of alternative genetic

controls.



CHAPTER 8

SUMMARY OF CONCLUSIONS

The Nandewar Volcano, outcropping over an area of some 800 km2,

is a Miocene shield volcano located approximately 26 km east of Narrabri

in north-eastern New South Wales. The major conclusions arising from

the field, petrographic, mineralogical, chemical and genetic synthesis

of the Volcano are listed below.

1) Petrographic and chemical data indicate that the Nandewar

Volcano is dominated by a mildly potassic lineage extending from by -

normative trachyandesites to comendites via tristanites and mafic to

peralkaline trachytes. Transitional hawaiites also occur, but more

'evolved' sodic eruptives have not been found.

2) Although the trachyandesites, hawaiites, tristanites and

trachytes (the main shield-forming sequence) are collectively the most

abundant volcanics, alkali rhyolites comprise the most voluminous eruptive

type. Peralkaline trachytes and comendites represent only a relatively

minor proportion of the extrusive/intrusive members of the suite. Field

and geochronological data indicate that volcanism commenced with extrusion

of the volumetrically important alkali rhyolites to form exogenous domes.

Extrusion of the main shield-forming sequence began with hawaiites and

trachyandesites. Later eruptives generally became more silicic with

time, varying in composition from tristanites, mafic and peralkaline

trachytes to occasional mafic comendites. The volcanic pile was subsequently

intruded by peralkaline trachyte and comendite plugs and dykes.

3) The dominant mineral compositional trends throughout the

volcanic series have been studied in some detail, employing microprobe

analyses. Olivine 
(Fo88-50) 

is a relatively prominent phenocryst phase

in some trachyandesites and hawaiites. Olivine mg-values and modal

olivine content decrease with increasing Si0 2 content and decreasing

ill-value of the hosts. The most Fe-rich olivine microphenocrysts (Fo10)

occur in peralkaline trachytes.

4) Ca-rich pyroxene is a common phenocryst and groundmass phase

throughout the series, ranging in composition from augite	
/

(Ca4_Mg
44Fe9)
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in the hawaiites and trachyandesites to ferrohedenbergite (Ca46Mg 3Fe 51 )

in the comendites. Tschermakitic Ca-rich pyroxenes and partially resorbed

aluminian bronzites in several trachyandesites are considered to have

crystallized from their host melts at approximately 6 to 8 kb. Groundmass

pyroxenes in the peralkaline trachytes and comendites display significant

NaFe
3+
 Ca(Mg, Fe

2+
) substitution, and range in composition up to almost

pure aegirine (NaFe
3+

Si
2
0
6
).

5) Amphibole (edenite) is a rare groundmass phase in several

trachyandesites. Amphibole is more common in the mafic trachytes (richterite

to ferro-richterite with subordinate katophorite and arfvedsonite) and

is relatively abundant in the groundmass of peralkaline trachytes and

comendites (arfvedsonite).

6) Titanomagnetite is the dominant Fe--Ti oxide phase occurring

both as a phenocryst and groundmass phase throughout the series. Only

occasionally does it coexist with ilmenite. The ulvOspinel content

of the titanomagnetites varies somewhat irregularly with host-rock composition,

but tends to be highest in the most 'evolved' eruptives. Fe-Ti data

indicate that magmas spanning the compositional range trachyandesite

to comendite generally crystallized under conditions of decreasing T

and fo g which were broadly parallel with the FMQ synthetic buffer curve.
The older alkali rhyolites differ from the trachyandesite-comendite

spectrum because they appear to have suffered pervasive oxidation during

eruption, possibly as a result of selective loss of H
2 

following dissociation

of H
2
O.

7) Aenigmatite of relatively restricted compositional range

is a common groundmass constituent of peralkaline trachytes and comendites.

The presence of aenigmatite rimming titanomagnetite and ilmenite micro-

phenocrysts in several specimens provides some support for the existence

of a 'no-oxide' field in T-fo
2 space.

8) The abundance of plagioclase phenocrysts varies considerably

in the more mafic variants, and phenocrysts are less abundant in more

'evolved' types and absent from peralkaline eruptives. Comparatively

rare, sieved, reverse-zoned plagioclase phenocrysts in some trachyandesites

may represent relatively high-pressure precipitates. Phenocryst and

groundmass alkali feldspar compositions in the trachytes and comendites

display a relatively restricted compositional range (Or26-49) 
with a
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concentration in the range 
(Or34-42) 

which corresponds to the experimentally-

determined composition of the minimum in the Ab-Or series. Alkali feldspar

phenocrysts in the mafic trachytes are zoned from relatively Ab-rich

cores to more Or-rich rims, whereas those from peralkaline hosts display

the reverse trend.

9) Major, trace element and isotopic data indicate that the

Nandewar volcanics derived from a common upper mantle source with specific

trace element and isotopic characteristics.

10) Major and trace element mass-balance calculations seeking

to interelate the various members of the mildly potassic series do not

favour a genetic model based on closed-system fractional crystallization.

Mass-balance constraints are especially evident for the hawaiites and

trachyandesites whose compositions cannot be bridged by reasonable crystal

extracts based on observed phenocryst assemblages. An alternative inter-

pretation of the genesis of these particular magmas has been suggested,

and this is based on progressive partial melting of relatively Fe-rich

amphibole-bearing upper mantle peridotites. A range of hypothetical

upper mantle source compositions has been presented, and these have

been modelled by adding to the composition of a relatively Fe-rich 'depleted'

peridotitic residuum various proportions of potential derivative melt

compositions.

11) Major and trace element mass-balance calculations do not

preclude derivation of the tristanites and mafic trachytes by fractional

crystallization of the most 'evolved' trachyandesites. However, this

interpretation does not accord with the predominantly aphyric character

of the most 'evolved' trachyandesites and the extreme rarity of cognate

cumulates in all rock types. Generation of the tristanites by quite

small degrees (-5 percent) of partial melting of a relatively Fe-rich

upper mantle peridotite has been evaluated. Although this model is

feasible in terms of major element mass-balance constraints, it is open

to criticism because it requires unrealistically Fe-rich source peridotites

(mg<70) as defined by Fe-Mg exchange partitioning data available at

the present time.

12) Production of the	 older	 alkali rhyolites by extensive

fractional crystallization of volumetrically subordinate mafic and peralkaline

trachytic associates is considered unlikely and is not supported by

mass-balance calculations.
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13) Production of the comendites and peralkaline trachytes

from less 'evolved' associates (mafic trachyte peralkaline trachyte

comendite) requires inordinately large degrees of crystallization (30

to 60 percent) and crystal extracts, for which there is generally little

evidence in the entire volcanic succession. Predicted and measured

trace element contents of alleged derivatives for these transitions

are strongly at variance. There is strong evidence that the trace element

characteristics of some comendites have resulted from processes other

than fractional crystallization. An alternative model based on some

type of liquid-state differentiation process (e.g. thermogravitational

diffusion) possibly aided by volatile transfer has been tentatively

suggested to explain the compositional characteristics of the most 'evolved'

variants.

14) The development of the metaluminous or peraluminous younger

alkali rhyolites which are common field associates of the intrusive

comendites is attributed to volatile-loss during extrusion of partially

crystallized comenditic magma. Similarly, the voluminous older alkali

rhyolites are regarded as the products of degassing of slightl y more

mafic comenditic magmas which have their counterparts in the main shield-

forming sequence.

15) In a detailed review, the volumetric, chemical and other

characteristics of transitional alkaline suites (for oceanic and continental

regimes) have been discussed. Closed-system fractional crystallization

is the control most often invoked in the genesis of the 'evolved' members

(M<66) of these suites, but the evidence necessary to enhance the internal

consistency of fractionation models is often lacking. This evidence

should include:

a) successively smaller volumes of successively more

'evolved' differentiates;

b) convincing major and trace element mass-balance between

the alleged parent, derivative and the observed phenocryst

compositions which are representative of the crvstal

extract; and

c) reasonable evidence of cognate cumulates (the complementary

crystal extracts) as inclusions within the eruptive sequence.
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APPENDIX I

ANALYTICAL TECHNIQUES 

SAMPLE PREPARATION

Approximately 300 g of each sample was sawn into thin slabs,

broken into chips and crushed to -150# in a tungsten-carbide vessel of

a Siebtechnik disc-mill. Contamination was assessed as negligible for

all analyzed elements.

MAJOR ELEMENT ANALYSES

The major elements Si0 2 , Ti02 , Al 203 , total Fe as Fe 20 3 , MnO,

MgO, CaO, K20 and P205 were determined by X-ray fluorescence spectrometry

(XRF) on a Philips PW1540 spectrometer at the U.N.E. Geology Department.

The method employed was that of Norrish and Hutton (1969) involving linear

calibration after sample dilution in a lanthanum oxide-lithium tetraborate

glass. Mg0 was also determined by atomic absorption spectrometric (AAS)

techniques for samples in which it was found to be at low concentrations.

The AAS results are presented in this thesis.

A Corning EEL flame photometer was used for the determination of

Na
2
0 on solutions diluted with appropriate quantities of an internal

standard (Li
2
SO

4
).

Ferrous iron was determined titrametrically against a standardized

ammonium cerric sulphate solution following dissolution of 0.5 g of sample

in a mixture of hydrofluoric and sulphuric acids. N-phenyl anthranilic

acid was used as an indicator.

Total H
2
0 was determined by weighing the cooled condensate after

heating the powdered sample at 1050
o
C for 40 minutes. H

2
0 was determined

by measuring the loss in weight after heating the sample at 100
o
C for

1 hour. H 20
+
 is reported as the difference between total H 2

0 and H
2
0 .

TRACE ELEMENT ANALYSES

Li, Cu and Zn were determined by AAS on solutions containing 1.0 g

sample/100 ml.

V, Cr, Ni, Rb, Sr, Y, Zr, Nb, Ba, La, Ce, Nd, Pb and Th were
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analyzed by XRF on pelletized powder samples following the general procedures

outlined by Norrish and Chappell (1977). Linear calibrations were obtained

for each element using the USGS and NIM international rock standards. Mass

absorption coefficients were calculated from major element analyses and

corrections were applied to remove effects of interfering peaks where

appropriate. Sc was also determined by XRF on several phenocryst and

groundmass separates.

Trace element analyses of rock samples which include data for Sc,

Cs, La, Ce, Nd, Sm, Eu, Tb, Dy, Yb, Lu, Hf, Ta, Th and U, were determined

by instrumental neutron activation analysis (INAA) in the Geochemistry

laboratory of the Atomic Energy Commission at Lucas Heights, N.S.W. REE

analyses of phenocryst and groundmass separates used for the calculation of

mineral/liquid partition coefficients were also determined by neutron

activation analysis following a radiochemical group separation.

The analytical procedures followed at the Lucas Heights facility

were detailed by Porrit and Porrit (1977). They involve 2 radiation periods

and 4 separate counting intervals. Short irradiations (1 minute) and long

irradiations (9 hours) are performed at thermal neutron fluxes of 5 x 10

and 5 x 10
12
 n. cm

-2 
s
-1 

respectively.

Short irradiation samples (20 to 80 mg) are irradiated individually

and allowed to decay for 20 minutes before counting at an appropriate

geometry to limit dead time to less than 20 percent. The Ge(Li) detector

is coupled to a 4096 channel analyzer, has a resolution of 2.1 key for the

1332 keV peak of 
60
Co, and a relative efficiency of 15 percent. Each

sample is counted for 10 minutes and gamma ray analysis is repeated after

24 hours.

Long irradiations are performed simultaneously for samples and

standards (100 to 200 mg). High resolution gamma ray spectrometry

measurements are made after 5 to 7 and 28 to 40 days cooling interval on

a detector having a resolution of 1.8 ke y for the 1332 keV peak and a

relative efficiency of 20 percent.

The gamma ray spectra are stored on floppy disk and processed by

computer programs devised at the Lucas Heights laboratory. The USGS

standard rock BCR-1 is used as a rare-earth standard. The rare-earth

concentrations adopted for this standard (J. Fardy, personal communication)

13
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are as follows:-

u g/g ug/g

La 25.5 Dy 6.40

Ce 54.4 Tb 0.96

Na 28.8 Yb 3.37

Sm 6.64 Lu 0.504

Eu 1.98

ISOTOPE ANALYSES

Isotope analyses were performed by Dr. H.D. Hensel at the Research

School of Earth Sciences (RSES), A.N.U., Canberra following the isotope

dilution techniques outlined by Compston et al. (1965), Arriens and Compston
(1969), Page et aZ. (1976), McCulloch and Perfit (1981) and McCulloch
and Chappell (1982).

Strontium Isotopes

Rock samples (0.06 to 0.3 g, depending on Rb and Sr concentration)

were dissolved and converted to chlorides using HF, HC10 4 and HC1. Rb

and Sr were concentrated using large and small anion exchange columns

containing Dowex AG 50W resin. Rb and Sr blanks were approximately 0.02 pg,

which would result in errors an order of magnitude less than instrumental

errors for 
87

Sr/
86

Sr.

Most Sr isotope measurements were made by magnetic-field switching

on a Nuclide Analysis Associates instrument (30.5 cm radius of curvature,

60
o
 sector). Most Rb isotope measurements were determined on a MSX mass

spectrometer (15.25 cm radius of curvature, 90
o
 sector). Both instruments

employed 6 kV accelerating voltage, Faraday cup collector and Cary electro-

meter. They were operated on-line to a HP-1000E computer which also

controlled magnetic-field peak-switching.

The remaining Rb and Sr isotopic measurements were performed on

a MSZ mass spectrometer (23 cm radius of curvature, 60
o
 sector) which was

described by Clement and Compston (1972). Rhenium triple-filament sources

were used for all determinations.

Analysis of NBS 987 strontium carbonate on the Nuclide and MSZ

instruments gave 
87

Sr/
86

Sr = 0.71022 ± 4 and 0.71027 ± 5 respectively.
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Results derived from the Nuclide mass spectrometer were normalized to the

MSZ value. All strontium isotopic ratios were corrected for variable mass
88

discrimination by normalizing Sr/
86
 Sr to 8.3752.

87
Experimental uncertainties for	 /8

6
Sr and 

87
Sr/

86
Sr are estimated

to be less than 0.5 and 0.2 percent respectively.

The Rb decay constant used in age calculations is 1.42 x 10
-11 

y
-1

and regression analysis of the data is based on the technique of McIntyre

et al. (1966).

Neodymium Isotopes 

Samples were dissolved in open beakers using a HF-HC10
4
 mixture

and then converted to chlorides by addition of HC1. The REE were separated

from the major elements in cation exchange columns using HC1 as an

elutriant. Nd was subsequently separated from the other REE in a second

column using 0.2M 2-methyllactic acid with a pH of 4.6. Total chemical

blank for Nd was -0.001 ug and hence no corrections to measured ratios

were necessary. Nd was measured as Nd on the MSZ mass spectrometer

(described above) using rhenium triple filament sources. Effects of mass

fractionation were eliminated by normalizing Nd isotopic ratios to 146Nd/ 142Nd

= 0.636151. The 143Nd/ 144Nd ratio for BCR-1 determined in the RSES

laboratory is 0.511843 ± 20.

ANALYTICAL PRECISION AND ACCURACY

Precision of the major element analyses is generally considered

to be better than ± 1 percent relative. Precision for the trace elements

determined by XRF is better than 5 percent for most elements, whereas

uncertainties for the INAA analyses are, Sc (2 percent), La, Eu (3 percent),

Ce, Sm, Tb, Yb, Lu, Th (5 percent), Hf (7 percent) and Cs, Ba, Nd, Ta,

U (10 to 20 percent).

The accuracy of the major and trace element analyses determined

at U.N.E. was monitored by concurrent analysis of several international

rock standards. Analyzed and recommended values (Flanagan, 1973) are

listed in Table I for comparison.

The accuracy of the trace element analyses determined at Lucas

Heights was checked by inclusion of two unidentified standard rocks in
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TABLE	 I

Comparison of analyzed major and trace element values with

recommended values (from Flanagan, 1973) of several U.S.G.S. rocks

Wt.Percent
G-2

Analyzed	 Recommended
AGV-1

Analyzed	 Recommended
BCR-1

Analyzed	 Recommended

SiO 2 69.34 69.11 59.58 59.00 54.70 54.50

TiO
2

0.49 0.50 1.05 1.04 2.25 2.20

Al 20 3 15.29 15.40 17.24 17.25 13.63 13.61

Fe 20 3 1.08 1.08 4.40 4.51 3.58 3.68

Fe0 1.45 1.45 2.08 2.05 9.00 8.80

Mn0 0.03 0.03 0.10 0.10 0.19 0.18

Mg0 0.76 0.76 1.56 1.53 3.50 3.46

Ca0 1.95 1.94 4.91 4.90 6.95 6.92

Na20 4.07 4.07 4.32 4.26 3.32 3.27

1(20 4.49 4.51 2.90 2.89 1.71 1.70

P 205 0.14 0.14 0.49 0.49 0.37 0.36

H 0+2 - 0.55 - 0.81 0.50 0.77

H 20_ - 0.11 - 0.16 0.83 0.80

11g/g

Li - 35 - 12 12 13

v 37 35 122 125 416 399

Cr 7 7 12 12 12 18

Ni 6 5 18 19 17 16

Cu - 12 - 60 18 18

Zn - 85 - 84 125 120

Rb 169 168 67 67 48 47

Sr 476 479 659 657 337 330

Y 11 12 16 21 28 37

Zr 301 300 219 225 184 190

Nb 13 14 14 15 14 14

Ba 1922 1870 1209 1208 662 675

La 103 96 43 35 28 26

Ce 154 150 62 63 54 54

Nd 61 60 35 39 29 29

Pb 31 31 36 35 20 18

Th 25 24 7 6 7 6
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the sample set. The analyses of these standards are presented in Table II

with the recommended values from Flanagan (1973) for comparison.

MINERAL ANALYSES

The majority of electron probe microanalyses were performed at

the Research School of Earth Sciences, A.N.U. using a T.P.D. probe fitted

with a Si(Li) detector. Instrumental conditions and data reduction

techniques were outlined by Ware (1981).

The remaining probe analyses were performed at the University of

New England on a JSM-35 SEM with Tracor-Northern TN2000 EDS system.

Analytical conditions were as follows:-

accelerating voltage 15 kV

beam current 10 nA (measured with a Faraday cup)

take-off angle 35°.

The calibration standards were simple silicates such as CaSiO3

for Si0 2 , NaA1Si 206 for Na20, KA1S1 30 8 for K 20; simple oxides for Mg0

and TiO - pure metals for Zr, V, Cr, Mn, Ni and Zn; pyrite for Fe0
2'

and halite for Cl. A series of well-analyzed secondary mineral standards

were checked on both instruments and compared satisfactorily. Data

reduction techniques were the same as those described by Ware (1981).

Detection limits for both instruments are as follows:-

Si0
2'
 Al 20 3, MgO, Na

2
0, Ni0

FeO, MnO, SO3

Ti0
2' Cr 20 3 , 

V
2
0
3

Ca0

K
2
0

'
 Cl

0.1 wt. percent

0.09 "

0.08 "

0.07 "

0.05 "

MINERAL SEPARATIONS

The groundmass and phenocrysts of several strongly porphyritic

lavas were separated to determine crystal/liquid trace element partition

coefficients. Rock powders (-120#) were cleansed of fine dust by washing

and decanting. Initial separation involved repeated runs through a Franz

Isodynamic separator. Further concentration of phases was achieved by

centrifuging in diodomethane-acetone mixtures or Clerici's solution, and

finally hand-picking until >98 percent purity was obtained.
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TABLE	 II

Comparison of INAA analyses of U.S.G.S. standard rocks

with recommended values from Flanagan (1973)

Trace Elements

lig/g

AGV-1

Analyzed Recommended

BCR-1

Analyzed Recommended

Sc 12 13 32 33

Cs 1.2 1.4 0.89 0.95

La 39 35 24 26

Ce 71 63 54 54

Nd 31 39 30 29

Sm 5.5 5.9 3.5 6.6

Eu 1.7 1.7 1.8 1.9

Tb 0.68 0.70 1.1 1.0

Yb 1.5 1.7 3.5 3.4

Lu 0.26 0.28 0.58 0.55

Hf 4.9 5.2 4.9 4.7

Ta 1.1 0.9 0.92 0.91

Th 6.1 6.4 6.2 6.0

U 2.4 1.9 1.3 1.7
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APPENDIX II

SPECIMEN NUMBERS, ROCK TYPES AND GRID REFERENCES 

The following specimen numbers refer to samples housed in the

University of New England Geology Department collection and grid references

based on the 1000 metre universal transverse mercator grid, zone 56J,

Australian National Spheroid, refer to the Horton 1:100 000 topographic

sheet. This sheet was used as a base map to prepare the accompanying

geological map.

U.N.E.
Specimen No. Rock Type

Grid
Reference

49000	 Hawaiite	 375393
49001	 Hawaiite	 475389
49002	 Hawaiite	 483398
49003	 Hawaiite	 398387
49004	 Hawaiite	 247459
49005	 Trachyandesite	 500363
49006	 Trachyandesite	 263426
49007	 Trachyandesite	 362397
49008	 Trachyandesite	 501415
49009	 Trachyandesite	 500415
49010	 Trachyandesite	 270426
49011	 Trachyandesite	 274469
49012	 Trachyandesite	 178466
49013	 Trachyandesite	 202469
49014	 Trachyandesite	 497412
49015	 Trachyandesite	 491408
49016	 Trachyandesite	 425368
49017	 Trachyandesite	 404367
49018	 Trachyandesite	 216468
49019	 Trachyandesite	 325428
49020	 Trachyandesite	 31743:3
49021	 Trachyandesite	 288467
49022	 Trachyandesite	 285468
49023	 Trachyandesite	 272469
49024	 Trachyandesite	 263467
49025	 Trachyandesite	 257456
49026	 Trachyandesite	 258454
49027	 Trachyandesite	 258452
49028	 Trachyandesite	 258450
49029	 Trachyandesite	 257452
49030	 Trachyandesite	 238467
49031	 Trachyandesite	 218471
49032	 Trachyandesite	 213473
49033	 Trachyandesite	 204469
49034	 Trachyandesite	 185464
49035	 Trachyandesite	 206473



U.N.E.
Specimen No.

Rock Type
Grid

Reference

49036	 Trachyandesite	 277470
49037	 Trachyandesite	 268468
49038	 Trachyandesite	 205470
49039	 Trachyandesite	 198468
49040	 Trachyandesite	 171472
49041	 Trachyandesite	 192461
49042	 Trachyandesite	 181657
49043	 Trachyandesite	 182648
49044	 Trachyandesite	 500364
49045	 Trachyandesite	 173669
49046	 Trachyandesite	 255535
49047	 Trachyandesite	 215532
49048	 Trachyandesite	 239748
49049	 Trachyandesite	 179378
49050	 Trachvandesite	 251465
49051	 Trachyandesite	 220536
49052	 Trachyandesite	 374458
49053	 Trachyandesite	 168670
49054	 Porphyritic Trachyandesite	 265440
49055	 Porphyritic Trachyandesite 	 271422
49056	 Porphyritic Trachyandesite 	 287411
49057	 Porphyritic Trachyandesite 	 289467
49058	 Porphyritic Trachyandesite 	 259463
49059	 Porphyritic Trachyandesite 	 257453
49060	 Porphyritic Trachyandesite 	 225469
49061	 Porphyritic Trachyandesite 	 213473
49062	 Porphyritic Trachyandesite 	 174468
49063	 Porphyritic Trachyandesite 	 286412
49064	 Porphyritic Trachyandesite 	 177375
49065	 Porphyritic Trachyandesite 	 371470
49066	 Vesicular Trachyandesite 	 198461
49067	 Tuffaceous Trachyandesite 	 197463
49068	 Tuffaceous Trachyandesite 	 418270
49069	 Tuffaceous Trachyandesite	 286413
49070	 Monzonite	 218535
49071	 Monzonite	 216533
49072	 Monzonite	 216533
49073	 Micromonzonite	 220530
49074	 Monzonitic inclusion in Alkali Rhyolite l	170525
49075	 Tristanite	 267471
49076	 Tristanite	 258451
49077	 Tristanite	 272420
49078	 Tristanite	 253457
49079	 Tristanite	 207458
49080	 Tristanite	 271460
49081	 Tristanite	 183647
49082	 Trachyte	 286410
49083	 Trachyte	 175468
49084	 Trachyte	 187640
49085	 Trachyte	 263448

1 Chemically a tristanite (see Tables 5.1 and 5.2, p 97 and 112).

306



U.N.E.
Specimen No.

Rock Type
Grid

Reference

49086	 Trachyte	 260455
49087	 Trachyte	 264603
49088	 Trachyte	 263450
49089	 Trachyte	 297458
49090	 Trachyte	 175402
49091	 Trachyte	 172474
49092	 Trachyte	 190472
49093	 Trachyte	 171481
49094	 Trachyte	 223536
49095	 Trachyte	 272423
49096	 Trachyte	 275458
49097	 Porphyritic Trachyte	 206408
49098	 Peralkaline Trachyte	 164481
49099	 Peralkaline Trachyte 	 265436
49100	 Peralkaline Trachyte	 265433
49101	 Peralkaline Trachyte	 185380
49102	 Peralkaline Trachyte 	 301459
49103	 Peralkaline Trachyte 	 263471
49104	 Peralkaline Trachyte 	 192455
49105	 Peralkaline Trachyte 	 194468
49106	 Peralkaline Trachyte	 173469
49107	 Peralkaline Trachyte	 277463
49108	 Peralkaline Trachyte	 214680
49109	 Peralkaline Trachyte 	 280464
49110	 Peralkaline Trachyte 	 310446
49111	 Peralkaline Trachyte	 277463
49112	 Peralkaline Trachyte	 276461
49113	 Peralkaline Trachyte 	 274459
49114	 Peralkaline Trachyte	 277465
49115	 Peralkaline Trachyte 	 250462
49116	 Peralkaline Trachyte 	 180465
49117	 Peralkaline Trachyte 	 194469
49118	 Peralkaline Trachyte 	 295470
49119	 Alkali Rhyolite	 180579
49120	 Alkali Rhyolite	 181532
49121	 Alkali Rhyolite 	 244511
49122	 Alkali Rhyolite 	 208630
49123	 Alkali Rhyolite	 196588
49124	 Alkali Rhyolite	 274603
49125	 Alkali Rhyolite	 181604
49126	 Alkali Rhyolite	 175659
49127	 Alkali Rhyolite	 140465
49128	 Alkali Rhyolite	 234637
49129	 Alkali Rhyolite 	 179660
49130	 Alkali Rhyolite	 138681
49131	 Alkali Rhyolite	 209618
49132	 Alkali Rhyolite	 142511
49133	 Alkali Rhyolite	 132564
49134	 Alkali Rhyolite	 231615
49135	 Alkali Rhyolite	 230561
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U.N.E.
Specimen No.

Rock Type
Grid

Reference

49136	 Alkali Rhyolite	 266537
49137	 Alkali Rhyolite	 267538
49138	 Alkali Rhyolite	 268538
49139	 Alkali Rhyolite	 270538
49140	 Alkali Rhyolite	 270540
49141	 Alkali Rhyolite	 271541
49142	 Alkali Rhyolite	 272543
49143	 Alkali Rhyolite	 159628
49144	 Alkali Rhyolite	 151581
49145	 Alkali Rhyolite	 232539
49146	 Alkali Rhyolite	 250551
49147	 Alkali Rhyolite	 230546
49148	 Alkali Rhyolite	 232544
49149	 Alkali Rhyolite	 276558
49150	 Alkali Rhyolite	 211493
49151	 Alkali Rhyolite	 283534
49152	 Alkali Rhyolite	 204572
49153	 Alkali Rhyolite	 258642
49154	 Alkali Rhyolite	 151517
49155	 Alkali Rhyolite	 172660
49156	 Alkali Rhyolite	 174647
49157	 Alkali Rhyolite	 208712
49158	 Alkali Rhyolite Breccia 	 266549
49159	 Alkali Rhyolite Breccia	 183570
49160	 Comendite	 252454
49161	 Comendite	 258464
49162	 Comendite	 200600
49163	 Comendite	 287588
49164	 Comendite	 223660
49165	 Comendite	 179660
49166	 Comendite	 225523
49167	 Comendite	 289597

308


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	05_References-Appendices_Stolz.PDF
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52


