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PREFACE

The discovery of a major gold deposit in the early 1970's, in a

remote area of Western Australia that was very poorly known

geologically, has led to the establishment of the Telfer Gold Mine

(Frontispiece) and to geological mapping and exploration in the region

by the State geological survey and by mining companies. The economic

importance and geological significance of the gold deposits prompted

Newmont Pty. Ltd. and Dampier Mining Co. Ltd. (the developers of the

mine) to instigate a Ph.D. research programme through the University

of New England.

This thesis represents the first detailed account of both the

gold deposits and their host Precambrian sedimentary rocks. Due to

the relative lack of previous geological data, and the importance of
understanding the regional geological setting of any major ore

deposit, the study had two main objectives; firstly, to provide

comprehensive descriptions and interpretations of the stratigraphy,

sedimentology and basin development of the Precambrian sedimentary

sequence; and secondly, to study and interpret the textures,

mineralogy and geochemistry of the ores themselves, and relate ore

genesis to the interpreted geological evolution of the region. The

thesis is therefore divided into two major parts, entitled the Yeneena

Group, and Mineralisation, which are preceded by a comprehensive

summary.
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SUMMARY

The Telfer gold deposits occur within Proterozoic sedimentary

rocks of the Paterson Province in north central Western Australia. In

this remote arid area two major Precambrian sequences occur, the

Archaean to Middle Proterozoic Rudall Metamorphic Complex, and the

unconformably overlying Middle Proterozoic Yeneena Group (see Figure

1.3). The Yeneena Group consists of about 9000 m of sedimentary

rocks, which have been folded about northwest-southeast trending axes,

and which have suffered lowest greenschist regional metamorphism.

Biotite granite plutons, dated at about 600 m.y., intrude the group in

the Telfer area.

The Yeneena Group can be divided into two major units, which

together comprise eight formations (see Figure 2.1). The lower part

of the group outcrops in the southwest, and consists of the Coolbro

Sandstone, and the Broadhurst and Choorun Formations. The upper part

of the group occurs in the northeast, and includes the Isdell, Malu,

Telfer and Puntapunta Formations, and the Wilki Quartzite. The upper

Malu and lower Telfer Formations are the hosts of the Telfer gold

deposits.

The Coolbro Sandstone and the Choorun Formation both consist

dominantly of fine to coarse grained quartz-rich to subarkosic

sandstones, and minor conglomerates. Cross bedding and parallel

lamination are fairly common, but outcrops are more often massive or

sheared. Both units are interpreted as fluvial deposits, although a

marine shelf environment is possible for part of the Coolbro

Sandstone. The Broadhurst Formation consists of shale, carbonaceous

shale and very minor iron formation, which are interpreted as quiet

marine deposits. The entire lower Yeneena Group was deposited on a

tectonically stable cratonic area. To date, no economic mineral-

isation, and no known gold occurrences, exist in these sedimentary

rocks.

The upper Yeneena Group is geographically separated from the

lower part of the group, and stratigraphic relationships are therefore

uncertain.	 However, the two units may be separated by an



unconformity, with . the Isdell Formation probably overlying the

Broadhurst Formation in the northeast and the Choorun Formation

farther southwest.

The Isdell Formation consists of three dolomitic facies,

consisting of varying proportions of dololutite, dolarenite and

dolomitic mudstone. These facies are interpreted as carbonate slope

and outer carbonate shelf deposits.

In contrast, the overlying Malu and Telfer Formations together

form adominantly siliclastic sequence, although the Telfer Formation

also includes thick units of carbonate. Four siliclastic facies can

be distinguished in these two formations, based mainly on grain size

characteristics and sedimentary structures. The coarsest sediments

are massive medium grained sandstones, which are interpreted as grain

flow deposits. Fine to medium grained sandstones, which are commonly

graded and contain abundant cross lamination and parallel lamination,

are interpreted as turbidites. Very fine grained massive and cross

laminated sandstones are also probably turbidites. The finest grained

facies comprises interbedded claystone and siltstone, which were

deposited from suspension and from very dilute turbidity currents.

Coarsening upwards sequences of facies can be recognised, which are

interpreted as the result of deposition on submarine fans.

The Puntapunta Formation, which conformably overlies the Telfer

Formation, consists mainly of arenaceous dolomite and lesser amounts

of carbonate-rich sandstone. Both lithologies are probably carbonate

shelf deposits. The Wilki Quartzite is a thick sandstone sequence,

much of which has been metamorphosed by intruding granites. The unit

is tentatively interpreted as siliclastic shelf deposits.

Palaeocurrent measurements suggest that the dominant

palaeoslope during deposition of the upper Yeneena Group was to the

north or northeast. Although no volcanic rocks occur in the group,

high feldspar contents of some of the sandstones (particularly in the

Isdell Formation) suggest tuffaceous sources for parts of the

sequence. The entire Yeneena Group may have been deposited either at

a continental margin or within a failed rift type of intracratonic

basin.
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The Telfer ores are stratiform bodies, generally less than 1 m

thick, which occur around the gently to moderately dipping flanks of

two en echelon doubly plunging anticlines (Main Dome and West Dome),

which are themselves part of a larger domal structure (the Telfer

Dome). The major ore body (the Middle Vale Reef, or MVR) occurs in a

claystone and siltstone unit in the upper Malu Formation, and two

widespread and two less widespread ore bodies (the E Reefs) occur in

similar host rocks in the lower Telfer Formation. The maximum areal

extent of any single ore body is about 1.5 — 2 sq. km.

The ores are oxidised to depths of about 95 m, and are mined by

an open cut method. Above this depth the ores consist of auriferous

iron oxides and less auriferous quartz, and below this depth they

comprise auriferous pyrite and quartz set in kaolinitic siltstone and

claystone.

The MVR has been the most extensively studied of the ores.

Logging of drill core has proved that this ore body is stratiform and

occurs in the lowest 2 m of the Middle Vale Siltstone Member, which

conformably overlies the Footwall Sandstone Member. The top of the

ore is a sharply defined bedding plane, directly above which there is

virtually no mineralisation. The base of the MVR varies from being

sharp to diffuse, and below the ore, mineralised veins are common in

the upper few metres of the Footwall Sandstone, being of ore grade

themselves in places. The gross features of the E Reefs are similar

to those of the MVR, but there is less closely associated veining.

In the few drill cores of pyritic MVR that exist, four textural

types of mineralisation can be distinguished (their oxidised

equivalents can also be recognised in pit exposures). These are,

massive to crudely laminated granular pyrite with minor quartz,

laminated granular pyrite within kaolinitic siltstone, massive coarse

grained quartz with minor pyrite, and disseminated and vein

mineralisation in the footwall. Gold occurs dominantly within pyrite,

as small inclusions and perhaps also in solid solution. Chalcopyrite

inclusions also occur in the pyrite, and supergene chalocite is

abundant in some core intersections. The ores average about 10 ppm

xii



Au, but individual assays of over 100 ppm are not uncommon; copper

values of over 2% are also fairly common in the supergene enriched

ore.

Lateral, down-dip stratigraphic equivalents of the ores are

thin limestone and minor dolomite units, and in two core intersections

"chert" layers occur together with the carbonate. It is uncertain how

laterally extensive are these carbonate beds, but there is some

evidence that they are localised phenomena.

The pyritic ores are enriched mainly in Fe and S, and in some

samples also by Si0 2 . These elements probably represent a straight-

forward addition to the normal siliclastic sediment. Several trace

elements are also concentrated in the ores, being mainly associated

with pyrite; Au and Cu are greatly enriched; Ag, As, Co and Mo are

moderately enriched; and Zn, Cd, Hg, Ti, Sn, Pb, Zr, P, Bi, Mn, W, U

and Ni show slight enrichment in some samples. 	 Co : Ni ratios of

pyrite are high, commonly exceeding 10. b 34S values of pyrite from
the MVR at Main Dome range from +3.8 to +4.62, and values from pyrite

in the same horizon at West Dome range +1.45 to +2.05Z. Veins in the

footwall sediments at Main Dome have similar sulphur isotope ratios to

those of the MVR.

Several features of the ores suggest that the stratiform

mineralised layers either pre-date folding or were formed early in the

deformation. For example, faults which were contemporaneous with the

folding displace the ores; pyrite and quartz are sheared in places,

which probably occurred during folding; and pressure fringes occurring

around pyrite grains are thought to have formed during cleavage

development.

Certain features of the ores are considered to be of

sedimentary origin. These include; the sharp conformable tops of the

ores; the delicate layering of granular pyrite, which in one case is

cross laminated; and rare compactional features such as flame

structures and drapes over nodular quartz.

The ores have been previously described as saddle reefs, but

they are deduced not to have formed in structural dislocations during



folding, partly for the above reasons, and also because folding is

much more open than in areas where such gold deposits occur. The

granite bodies in the Telfer area are considered to have intruded the

folded sedimentary sequence at a much later date than the deformation,

and are therefore unconnected with the ore formation. Replacement of

limestone beds prior to or during early folding cannot be entirely

discounted as a possible origin of the ores, but the favoured origin

is syngenetic precipitation of auriferous pyrite from submarine

hydrothermal springs. 	 Quartz probably represents a slightly later

addition to the ores. The "chert" and limestone beds may also have

formed as a consequence of hot spring exhalations. Despite their

occurrence in a thick sedimentary sequence, apparently devoid of

volcanics, the stratiform ores show similarities of form and chemistry

with the volcanogenic Kuroko—type deposits.

The source of metals is speculated to have been deep—seated

mafic igneous bodies. This would be consistent with the pronounced

gravity high which occurs over the Yeneena Group fold belt. However,

the sulphur isotope data suggest that extensive mixing of any magmatic

fluids with connate water occurred in the sedimentary pile. Faulting

at depth, contemporaneous with sedimentation, probably controlled

sediment thickness variations over the Telfer area, and may have

provided channelways for ascending hydrothermal waters. These

thickness variations may have indirectly controlled the sites of fold

axes during later deformation. Other, structurally controlled,

quartz—rich gold deposits in the area (which are at present

un—economic) may have formed by the mobilisation of gold during

deformation.

The upper Yeneena Group is a gold—rich metallogenic province,

in which further economic gold deposits may well be discovered. Thin

syngenetic gold deposits may also occur in other sedimentary sequences

deposited at tectonically active (rifted?) continental margins.
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