
The effects of river stage fluctuations on the
hyporheic and parafluvial ecology of the Hunter

River, New South Wales

Peter J. Hancock

B.Nat.Res. (UNE)

A thesis submitted for the degree of Doctor of Philosophy of the University of
New England.

March, 2004.



Abstract

The hyporheic zone is the area of saturated sediments underlying many gravel-bed

rivers where channel water actively exchanges with interstitial water. Through a series

of biological, physical, and chemical filtration processes, the hyporheic zone

influences the water quality of the surface stream. Lateral to the hyporheic zone is the

parafluvial zone, the saturated area below gravel bars, which can have a similar

filtration role. The ability of the hyporheic and parafluvial zones to act as filters largely

depends on surface discharge. Fluctuations in discharge are needed to prevent the

clogging of sediment pore-spaces, and to vary the rate at which nutrients and oxygen

are transported into the hyporheic zone. Sediment packing, porosity and size, the

amount of microbial and invertebrate activity, and stream topographical profile are

other factors that control hyporheic filtration. Filtration efficiency is a measure of the

rate at which dissolved nutrients and physico-chemical variables of a parcel of water

are transformed during a period of interstitial flow. It can be gauged by measuring

gradients of nutrients and physico-chemical variables along subsurface flowpaths.

From May 2000 to May 2001, the hyporheic and parafluval zones of seven sites along

the Hunter River, a large coastal river in central New South Wales, were sampled

using a hyporheic pump. Analysis of physico-chemical, nutrient, and invertebrate

fauna samples revealed that all sites displayed some degree of hyporheic and

parafluvial filtration. In general, the filtration efficiency declined with distance

downstream, with the two upstream sites showing more biological activity than other

sites. Despite this, there was no longitudinal increase or decrease in the net

concentration of either nitrate/nitrite nitrogen (NOx) or soluble reactive phosphorus

(SRP) in the downstream hyporheic zones. Most filtration occurred within the upper

40 cm of bed sediments. The most active part of the parafluvial zone was the area of

sediments within 1 m of the upstream shore-line, and efficiency often declined within

the first 10 m of the subsurface flow-paths. Deeper sediments and areas of the bar

further from the stream appeared to act as storage areas for NOx.

Two unregulated sand bed tributaries of the Hunter River were also surveyed and

displayed divergent trends in their bed filtration capacity. The fine sand of Wollombi

Brook at Warkworth limited exchange substantially, so that most of the nutrient

transformation probably occurred within the upper 10 – 20 cm of the bed. The
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remainder of the bed and bar acted as slow-release nutrient storage areas, depending on

upwelling groundwater or floods to facilitate exchange with the surface stream. In

contrast, hydrologic exchange between bar and river at Sandy Hollow, on the

Goulburn River, appeared to be less restricted than that at Warkworth, perhaps

facilitated by spear-point pumping.

In all, 71 invertebrate taxa were collected from the interstitial habitats of the Hunter

River and one of its tributaries. This fauna consisted of a mix of surface dwelling

(epigean) species and groundwater fauna (stygobites). Three families of the stygobite

crustacean superorder Syncarida were found during this study, as well as one

amphipod family and a genus of blind isopod. The occurrence of stygobites at all sites

emphasised the strong linkages between the hyporheic zone and the groundwater

aquifer. These links have probably sustained the high hyporheic activity in the Hunter

River, despite heavy anthropogenic modifications to its catchment.

Following these surveys, a conceptual model was developed and tested to examine the

effects of stream fluctuations on hyporheic filtration efficiency and ecology. High,

within-bank flows are predicted to enhance linkages between the hyporheic zone and

stream. Strategically timed pulses of water temporarily increase discharge, covering

more of the lateral bars and increasing the area available for hyporheic exchange. If the

flow is great enough, fine particles will be flushed and sediment that has become

compacted over time will be jostled loose, increasing the pore-space of the hyporheic

zone. When this is coupled with the increased hydraulic pressure that comes with

higher water levels, oxygen-rich surface water is able to travel further through the

hyporheic zone and extend its oxidising margins both vertically and laterally. All of

these processes are hypothesised to enhance bed filtration through stimulating

microbial processes such as nitrification.

Glenbawn Dam regulates flow in the Hunter River and, in 1998-99 a series of flow

rules was developed to promote environmental protection. Flow Rule 2 specifies that

the first 12 h of each flow event be allowed to pass without abstraction, followed by a

maximum abstraction of 50 %. The purpose of this rule is to re-establish small to

medium flow events. Two flow experiments were conducted at three sites to test

separate components of Rule 2 and understand its influence on the hyporheic zone. In

the first experiment, an environmental flow of 15 000 ML was released over a period
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of three days, with all the restrictions on pumping specified by Rule 2. Combined

sampling with a hyporheic pump and freeze corer indicated that the release increased

porosity of the upper 20 cm of bed at two sites and stimulated microbial nitrification.

Nitrification was also enhanced at the third site but porosity did not change, probably

due to the coarser substrata. For the second experiment, a 12 h diversion of water over

the bars at two sites revealed the effects of the initial ban on pumping. No changes in

nitrogen dynamics were observed but soluble reactive phosphorus, initially flushed

from the sediments, increased following the removal of the diversion. At one site,

densities of epigean taxa increased in the interstitial habitat during the diversion. These

experimental results show that Rule 2 enhances hyporheic processes in two ways.

First, deeper infiltration of oxygenated water allows aerobically mediated microbial

processes such as nitrification to occur in a larger volume of sediment. Second, by

covering a larger portion of the bar, the size of the hyporheic filter is extended.

This study is the first broad-scale investigation into the hyporheic zone of any large

Australian regulated river. It uncovered a rich invertebrate fauna, an active microbial

biota, and significantly improves our understanding of how environmental flows

benefit the hyporheic zone. In streams with strong connections to the aquifer, such as

the Hunter River, hyporheic biological processes can be maintained through

environmental flow releases in the surface channel. Controlled manipulations in river

stage may be a useful means of improving surface water and groundwater quality

through hyporheic and parafluvial filtration.
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