
Chapter 1

PRELIMINARIES

The purpose of this introductory chapter is to recall some

important concepts and theorems from functional analysis which will be

used throughout the sequel. §1.1 contains basic definitions, (counter)

examples and results which indicate the motivation for our particular

study of fixed points for nonexpansive mappings in Banach spaces. In

§1.2 we state, without proof, fundamental results, some of which are well-

known and can easily be found in standard references, for example, Day

[1973] or I)iestel [1984]. §1.3 contains proofs of some technical lemmas

basic to much of the theory for nonexpansive mappings in Banach spaces.

1.1	 Preliminary Definitions

Definition 1.1.1:	 Let X be a set and let IR+
 denote the positive

real numbers. We define a distance function d: X x X -*IR+ to be a

metric if the following conditions are satisfied:

Ml	 d(x,y)	 0	 for all x,y E X

M2	 d(x,y) = 0	 if x = y

M3	 d(x,y) = d(y,x) 	 (symmetry)

M4	 d(x,y)	 d(x,z) + d(z,y)	 for all x,y,z C X

(triangle inequality)

The set X with metric d is called a metric space and is

denoted by a pair (X,d). 	 We may denote the space by X alone when

the metric d is understood.
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Definition 1.1.2:	 A sequence (xn) of points of a metric space

X is said to converge to a point x and we write xn x, if corres-

ponding to each e > 0 there is a positive integer N such that

d(x
n
,x) < c for n	 N. In other words x

n	
x if lim d(x

n
,x) = 0.

n-*:

Definition 1.1.3:	 A sequence (xn) of points of a metric space

X is said to be a Cauchy sequence if for each c > 0 there is a

positive integer N such that d(x m ,xn) < e for all m,n �. N.	 That

is, points in the "tail" of the sequence are arbitrarily close together.

In a metric space all convergent sequences are Cauchy but the

converse is not generally true.

Definition 1.1.4:	 A metric space X is said to be complete if

every Cauchy sequence of points of X converges in X.

Definition 1.1.5: Given a vector (linear) space 	 a norm 11 • 11

on X is a mapping x ►-3-11x	 from X into the set 12
+
 of positive real

numbers which satisfies the following axioms:

N1	 11x(1 = 0	 if and only if x = 0

N2	 IlAx11	 1A111x11	 for all x' X and A C F where F

is either the field of real numbers or the field of

complex numbers

N3	 ilx+yll	 11x11 + 11)1
	

(the triangle inequality).

A vector (or linear) space X on which a norm 11'11	 is

defined is called a normed vector space or a normed linear space and is

denoted by a pair (X,H) or X if the norm is understood. The norm

function fulfils our intuitive concept of distance from the origin.
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Every normed linear space is a metric space with a metric d

defined as d(x,y) =

Definition 1.1.6:	 A normed linear space X is called a Banach

space if it is complete as a metric space.

Definition 1.1.7:	 Let X and Y be normed linear spaces. A

linear mapping T: X Y is said to be continuous at a point x o E X

if VE > 0 36 > 0 such that

II '15(-Txj <6 for all x satisfying 	 < 6 .

Equivalently, T is continuous at x o C X if

implies Txn	Tx 0 .
Xn	

X o

T is said to be continuous if it is continuous at every point of X.

Continuity in other topologies is defined later. Unless otherwise stated,

"continuous" means "norm continuous".

Remark 1.1.8 - Dual Spaces:	 In the sequel, unless otherwise stated,

X will denote a Banach space with elements x,y,..., and X* will

denote its first conjugate (dual) space with elements f,g,....	 That is,

X* is the linear space of all continuous linear functionals f: x IR

(or	 if X is a complex Banach space), endowed with the usual norm:

IifII = sup{lf(x)1 : 114	 11 .

X** will denote the second conjugate (dual) space of X or

the conjugate (dual) space of X* with elements F,G,...

For any vector x in a Banach space X, the evaluation

functional 5Z, mapping X* into IR (or 0 which to every f C X*

assigns the value f(x) of f at x. is a continuous linear functional,

•
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that is, an element of the space X**.	 Moreover, 011 = (Ix!' and the

canonical mapping of X into X** defined by J : X-+ X** : xl÷ X is

linear and one-to-one. We denote the image J(X) of X under J by

R.

Definition 1.1.9:	 A Banach space X is called reflexive if the

canonical imbedding J : X	 X** : x	 X is onto. That is, if X = X.

Example 1.1.10:	 For 1 < p < 00 the Banach spaces t	 and

L [a,b] are reflexive. This follows immediately from the general form

of continuous linear functionals in such spaces. For example, in the

space t (1 < p < 00) the general form of a continuous linear functional

f is given by the explicit formula:

CO

f[(xl,x2,...)] =	
yixi

i=1

with (y1,y2,•••) E .e.	 where 1
- + 1- = 1.

q	 p 

Moreover, Ili is equal to the norm of (y,,y2,...) in t .	 This allowsQ

one to identify the dual space t * with ,t	 so that t ** E t .
P	 ci	 P	 P

Similarly, (L [a,b])* al L [ab] where 
1

- + 1- . 1 so that
P	 a	 P q

(L [a,b])**	 L [a,b] .

The spaces C[a,b], Z i , L 1 [a,b], too and the subspaces c and co

of t are not reflexive.00

In the space Z i every continuous linear functional f is of

the form (1.1) with (yi,y2,...) C t. and the corresponding norms are

equal, so that the space t l * may be identified with the space C.



C0 **
 = co'
** -

S.

Similarly, (ya,b])* Er= Wa,13].	 c* m £ 	 and t*	 so,0

If a normed linear space X is of finite dimension n, then

X* also has dimension n, from which it follows that: every finite

dimensional normed linear space is reflexive.

The details of the preceding statements on reflexivity can be

found in any standard functional analysis text, for example, Kreyszig

[1978].

Definition 1.1.11:	 Given a vector space X, an inner product

<,> on X is a mapping of X x X into IR or (; that is, with every

pair of vectors x and y there is associated a scalar which is written

<x,y>

and is called the inner product of x and y, such that for all vectors

x, y, z and scalars a we have

IP1	 <x+y,z> = <x,z> + <y,z>

1P2	 <ux,y> = cc<x,y>

---
IP3	 <x,y> = <y,x>	 (complex conjugation or symmetry if

F is real)

IP4	 <x,x> >. 0

<x,x> = 0	 if and only if x = 0.

An inner product space is a vector space X with an inner

product defined on X.



An inner product on X defines a norm on X given by

ilx II = /<x,x>

and a metric on X given by

d(x,y) =	 I<x-y, x-y> .

Hence inner product spaces are normed linear spaces.

Definition 1.1.12:	 An inner product space X is called a Hilbert

space if it is complete in the metric defined by the inner product.

Hence Hilbert spaces are Banach spaces.

It is well known that:	 every Hilbert space is reflexive.

Definition 1.1.13:	 Let T be a mapping of a set X into itself

(in this case we will refer to T as a self mapping of X).	 A point

x E X is said to be a fixed point of T if Tx = x. In other words, a

point which remains invariant under a mapping is known as a fixed point.

Definition 1.1.14:	 A topological space X is said to have the

fixed point property (or X is a fixed point space) if each continuous

function T : X -+ X has at least one fixed point.

6.

Example 1.1.15:	 The closed interval {-1,1] has the fixed point

property (FPP). For let T : [-1,1] 	 [-1,1] be a continuous function.
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Define a new function F as F(x) = T(x) - x for each x E [-1,1].

We see that F(-1) 	 0 and F(1)	 0. Therefore by the Weiestrass

Intermediate-Value Theorem, there exists a point x o C [-1,1] such

that F(x 0 ) = 0. This gives T(x 0 ) = xo.

Definition 1.1.16: 	 Let X = (X,d 1 ) and Y = (Y,d 2 ) be metric

spaces. Let T : X	 Y be a bijection of X into Y. 	 Then T is

called an isometry if and only if

d 2 (Tx,Ty) = d 1 (x,y)	 for all x,y C X .

In particular, if X = Y and the metrics d 1 and d 2 are the same,

then T : X .+X is an isometry if

(1.2A)	 d(Tx,Ty) = d(x,y)	 for all x,y C X .

Definition 1.1.17:	 A self-mapping T : X -0- X of a metric space

X is said to be nonexpansive if for all x,y C X

(1.2B)	 d(Tx,Ty)	 d(x,y) .

T is said to be contractive if for all x,y C X, x * y ,

(1.2C)	 d(Tx,Ty) < d(x,y) .
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Definition 1.1.18:	 A self-mapping T:X -* X of a metric space

X is said to satisfy a Lipschitz condition if there exists a real number

k > 0 (the Lipschitz constant) such that for all x,y E X

(1.20)	 d(Tx,Ty)	 k d(x,y) .

In the special case when k E [0,1), T is called a strict

contraction.

Remark 1.1.19:	 We readily see that the following implications hold,

none of which are in general reversible:

strict contraction (1.20)
4

contraction (1.2C)

isometry (1.2A)	 nonexpansive (1.2B)
4

Lipschitz (constant k < 1)

4
continuous

The following example shows that a contractive mapping may fail

to have a fixed point.

Example 1.1.20:	 Let X = x E IR x ; 1	 and set

T : X	 X : x	 x	
1
— .	 Then it readily follows that T is contractive.
x

Indeed if x,y E X, x < y, then

T(y) - T(x) = T'(c)(y-x)

for some c with x < c < y.

Hence

(Y) - T(x) I	 (1 -	 ) I y -x < I y -x I •

Clearly T has no fixed point.
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However, if a contractive mapping T	 (and hence a strict

contraction) has a fixed point, it will always be unique: for if

x 1 ,x 2 are fixed points of T, that is Tx 1 = x l and Tx 2 = x 2 , then

d(x l ,x 2 ) = d(Tx 1 ,Tx 2 ) < d(x l ,x 2 ) .

But this is impossible unless x l = x 2.

0

It is of great importance in the applications to find out if

nonexpansive mappings have fixed points.

One of the best known theorems in connection with fixed points

of a mapping in a metric space is that given by Banach [1922] and known

as the Banach Contraction Mapping Principle (Theorem).

The statement and proof of the theorem is given as follows:

Theorem 1.1.21:	 Let (X,d) be a complete metric space and

T :X-+X a strict contraction. Then T has a unique

fixed point (that is, the equation Tx = x has a unique

solution).

Proof:	 Let x o E X be arbitrary. Set x l = Tx 0 , x 2 = Tx 1 = T2x 0,

X 3 = Tx 2 = 
T 3 x	 and in general let

0

T x o
n	

•xn = Txn-1 =
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We shall show that the sequence (xn) is a Cauchy sequence. In fact,

without loss of generality, taking n < m for n,m E N, we have

d(xn ,xm) = d(Tnx0,Tmx0)

k d(T
n-1

x o ,T
m-1

x 0 )	 for some k E [0,1)

k
n
 d(x 0 ,xm_ )n

= k
n
fd(x 0 ,x 1 ) + d(x l ,x 2 ) + • + d(x

m-n-1,
x
m-n

)1

(by the generalized triangle inequality)

• kn d(x 0 ,x 1)11 + k + k2
•
▪ + k

m-n-1)

(by repeated use of T as a strict contraction)

▪ k
n 

d(x 0 ,x 1 ) 1 l k	 (since k E [0,1) ,
CO

1 + k + k 2 +	 + k
m-n-1 

<	 kJ = 	
1 

1 - k
j=0

Since k < 1, the quantity k
n	 1

d(x0,x1) 1	k is arbitrarily small for

sufficiently large n.	 That is,

(1.3)	 d(xn,xm)	 k
n
 d(x0,x1) 	

1 

1	 k

4. 0	 as n (and hence m)
	

CO

Thus (x
n
) is a Cauchy sequence. Since X is complete, the sequence

(xTi ) converges in X.	 Now let

lim
x	 u .

n-±co n
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u.

Now by virtue of the continuity of the mapping T

lim	 lim	 lim
Tu = T	 x =	 Tx =

n4.00 n	 n-±00 	n	 n±Do 

x

Thus the existence of a fixed point of T is proved. Uniqueness of u

has been proved already (see remarks after Example 1.1.20). Hence the

theorem.

Remark 1.1.22: (i) The construction of the sequence (xn) in the

above theorem and the study of its convergence are known as the method of

successive approximations.

(ii) The theorem has been applied to test existence

and uniqueness of solutions to differential and integral equations as

has the method of successive approximations.

(iii) The method of successive approximations can

be used not only for the proof of existence of unique fixed points u

but also for finding an approximate value. Namely, the points xn are

the successive approximations to u. The error of approximations may be

estimated by the inequality

k	
n

d(x
n'

u)	 d(x x )
1 - k	 °' 1

which is obtained by passing to the limit for m .+ co in the inequality(1.3)-
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(iv) As the following (simple) examples show, the

conclusion of the Banach Contraction Mapping Principle fails to hold if

T is more general, for example, a nonexpansive mapping.

Example 1.1.23: (i) The identity mapping I : X	 X on any space

X is an isometry (therefore nonexpansive) and every point of X is a

fixed point of I.	 So uniqueness of fixed points of isometries (hence

nonexpansive mappings) fails.

(ii) The mapping T : IR ÷ IR x ft x + 1 is an

isometry (therefore nonexpansive). T has no fixed points since

Tx =x+ Itx Vx E1R. So existence of fixed points of isometrics (hence

nonexpansive mappings) fails.

(iii) This example comes from Browder [1965b]. The

mapping T : B[c o ] -÷ B[c o ] : (x1,x2,...)	 (1,x1,x2,...)	 is a non-

expansive mapping (in fact an isometry) since 11Tx -Ty 11 = Ilx-y co for all

x,y E B[c o ].	 T is fixed-point free, that is, T does not have any fixed

point since (xl,x2,...) = (1,x1,x2,...) would simply mean that

1
	 x 2	. . = 1 which is not in B[c o ]. Hence T has no fixed points.

Definition 1.1.24:	 A subset K of a normed linear space X is

convex if x,y E K implies that 	 x + (1-X)y E K for X E [0,1]. That

is, given any two points in K, the line segment joining them also lies

in K.

B[X] is always convex.
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Definition 1.1.25:	 A metric space X is said to be compact if

every sequence in X has a convergent subsequence. A subset K of X

is said to be compact if K is compact considered as a subspace of X,

that is, if every sequence in K has a convergent subsequence whose

limit is an element of K.

A compact subset of a metric space is closed and bounded. The

converse of this result is, in general, false.

However, if X is a finite dimensional normed linear space,

then any subset K c X is compact if and only if K is closed and bounded.

Unless otherwise stated, compact will mean "norm compact".

Compactness in other topologies will be defined in the next section,

§1.2.

Having defined the necessary terms, we are now in a position

to state a second "classical" fixed point theorem. It is known as the

Schauder Fixed Point Theorem, and is as follows:

Theorem 1.1.26 (Schauder 1930): 	 Let K be a compact convex

subset of the Banach space X and let T K -4- K be a

continuous function. Then T has a fixed point in K.

(More generally, the norm topology could be replaced by

any locally convex topology for X, for example, the weak,

or on a dual space, the weak-star topology. These topolo-

gies are taken up in the following section, §1.2.)
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Remark 1.1.27:	 The work in this thesis is motivated by a combi-

nation of the hypothesis of the two "classical" fixed point theorems we

have stated above. Examples 1.1.20 and 1.1.23 suggest that to obtain

positive results in the problem of existence of fixed points for non-

expansive mappings T, it is necessary to impose conditions or properties

much stronger than completeness on the domain of T. Our purpose will be

to investigate additional (geometrical) properties on the Banach space

X, for example, uniform convexity (in every direction), normal structure,

Opial's condition, near uniform convexity etc., which ensure the existence

of fixed points for nonexpansive mappings. We therefore will adopt the

approach of Browder [1965a, 1965b], Ccihde [1965], Karlovitz [1976a, 1976b,

1976c], Kirk [1965] and others who considered fixed points for nonexpan-

sive mappings in Banach spaces. It is to be noted, that Belluce and Kirk

[1969], Cheney and Goldstein [1959], Edelstein [1964], Kirk [1969] and

others have studied fixed points for nonexpansive mappings in metric

spaces; we will not, however, pursue these generalisations.

1.2 Fundamental and Well-Known Results

In this section we collect together, without proof, standard

results which we will frequently mention in the sequel.

"Riesz's Lemma" states:	 Let Y be a proper closed linear

subspace of the normed linear space X and 0	 0 < 1. Then there is

an x E S(X) for which 	 -yil > 0 for every y E Y.
8	 0

Our first result is a consequence of Riesz's Lemma:
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Theorem 1.2.1: For each closed bounded subset of the normed

linear space X to be compact it is necessary and sufficient

that X be finite dimensional.

That is, in order for each bounded sequence in the normed

linear space X to have a (norm) convergent subsequence it is

necessary and sufficient that X be finite dimensional.

Remark 1.2.2:	 If X is infinite dimensional, then S(X) is not

compact, although it is closed and bounded.

The next result, due to Grothendieck, conveys the notion that

in normed linear spaces (norm) compact sets are small - both algebraically

and topologically. But first of all, a definition.

Definition 1.2.3:	 Let K be a subset of a normed linear space X.

The closure of the set

	

Xx.AXX"D"=1; x x	 xk
 C K1

•	 1, 2' .**, k	 1, 2,—,
1=1	 i=1

is called the closed convex hull of K and is denoted by co K.	 It is

easily seen that equivalently co K may be defined as the smallest closed

convex set in X which contains K. In other words, an element x in X

belongs to co K is for any E > 0 there exists a finite sequence of

	

vectors xi,x2,...,x
k
 C K and a sequence X X ... X	 of non-negative1 , 2'	 ' k

real numbers such that

A l + X2 + 
• •	 Ak = 1

and

11A 1 x 1 +	 + X x - xil	 E .



Theorem 1.2.4 (see Diestel 1984, for details): 	 If K is a

compact subset of the normed linear space X, then there is

a sequence	 ) in X such that	
itx

n II n il = 0 and

K c co {xn }.

That is, any (norm) compact subset K of a normed linear

space is contained in the closed convex hull of some null

sequence.

Theorem 1.2.5 (a theorem of Mazur):	 If K is a (norm)

compact subset of a Banach space X then co K is (norm)

compact.

As indicated by theorem 1.2.1, the norm topology is too strong

to allow any widely applicable subsequential extraction principles. This

fact-of-life leads ut to consider other, weaker topologies on normed

linear spaces which are related to the linear structure of the spaces.

The two weaker-than-norm topologies of greatest importance in

Banach space theory are the weak (w-) topology and the weak-star (w*-)

topology. The first (the weak topology) can be defined in every normed

linear space. In order to get any results regarding the existence of

convergent or even Cauchy subsequences of an arbitrary bounded sequence in

this topology, one must assume additional structural properties of the

Banach space. The second (the w*- topology) is defined only in dual

spaces.

16.
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Definition 1.2.6 - The weak topology:	 Using the dual space X*

of a normed linear space X, we introduce the weak topology of X in

the following way. For a given c > 0 and a finite number of elements

fl,f2,...,fn C X*,	 let

v(0; fl,f2,...,fn; c) = {x C X: if i (x)I < c,	 i = 1,2,...,n).

We denote by V the family of all sets V(0; f ,f ,...,fn ; E) for any

choice of E and any finite sequence f ,f ,...,fn .	 It may be easily

verified that V satisfies the assumptions for a basis of neighbourhoods

of zero in a linear space; translation will carry these neighbourhoods

throughout X.	 Thus, we can make the following definition: A topology

defined by the basis V of neighbourhoods of zero in X is called the

weak topology of X.

Alternatively we could describe the weak topology of X in

terms of nets. Take the net (xa); we say that (xa) converges weakly

to x o , and we write 

if and only if

f(x0t )	 f(x 0 )	 for every f E X* .

Every weakly convergent net (x a) is necessarily bounded;

that is, if (xa
) is a net in X such that xa
	

x o , then 3 M > 0

such that

11
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Moreover, the norm of its limit is less than or equal to le infli	 ;

that is, if (x
a
) is a net in X such that x	 xo, then

a

(1.4) Hx	 lam
a	 a

so the norm is a weak-lower-semicontinuous (w-l-s) functional on X.

The space X endowed with its weak topology, which is

obviously coarser than the usual norm topology, is a linear (addition

and scalar multiplication are continuous) and Hausdorff (weak limits are

unique) topological space. In the sequel by the terms weakly closed

set, weakly compact set, weak closure of a set etc. we shall mean closed

or compact set, closure of a set etc. in the weak topology. Unqualified

topological terms will refer to the norm topology of X, sometimes

called the strong topology of X.

The norm topology of a Banach space X and its weak topology

are equivalent if and only if X is of finite dimension.

The following theorem states one of the fundamental results

in the geometric theory of Banach spaces:

Theorem 1.2.7 (Mazur): If K is a convex subset of the

Banach space X, then the closure of K in the norm

topology coincides with the weak closure of K. that is,

E kw.

A few choice consequences (due to Mazur) follow:
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Corollary 1.2.8:	 If K is a convex set in the Banach space X,

then K is norm closed if and only if K is weakly closed.

Corollary 1.2.9:	 The weak closure of every bounded set K of a

Banach space X is contained in its closed convex hull; that is,

-w
K c co K.

Equivalently, if the sequence (x n) converges weakly to x,

then for every E > 0 and any positive integer m there is a finite

sequence X1,X2,...,Ak of nonnegative real numbers such that

11 	 X1 m+1 + X,xm+2 + • . + A
k
x
m+k 

-

where A l + X2 + . . + A
k
 = 1.

•

Remark 1.2.10:	 The weak topology is defined in a projective manner:

it is the weakest topology on X that makes each member of X* continuous.

In this case, it is sometimes denoted by u(X,X*). 	 As a consequence of

this and the usual generalities about projective topologies, if Q is

a topological space and T	 X is a mapping, then

T is weakly continuous if and only if fT is continuous for

each f E

Let T : X	 Y be a linear map between the normed linear

spaces X and Y.	 Then T is weak-to-weak continuous if and only if

for each g E Y*, gT is a weakly continuous linear functional on X;

this, in turn, occurs if and only if gT is a norm continuous functional

on X for each g E Y.
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Now if T : X 4- Y is a norm-to-norm continuous linear map it

obviously satisfies the last condition of the previous paragraph. On the

other hand, if T is not norm-to-norm continuous then T(B[X]) is not

a bounded subset of Y.	 Therefore, the Banach-Steinhaus theorem directs

us to a g E Y* such that gT(B[X]) is not bounded, so gT is not a

bounded linear functional. Summarizing we get:

Theorem 1.2.11:	 A 'linear map T : X Y between the

normed linear spaces X and Y is norm-to-norm continuous

if and only if T is weak-to-weak continuous.

Definition 1.2.12 - The weak* topology:	 In Remark 1.2.10 we

defined the weak topology on X, denoted by u(X,X*), to be the

weakest topology on X such that every member f of X* is continuous.

Similarly, a(X*,X***) denotes the weak-topology on the dual space X*;

that is, the weakest topology on X* such that every member F of X**

is continuous. A typical basis set for o(X*,X**) is

V(0; F1,F2,...,Fn; c)	 {f C X* : HFi fH < E,	 i = 1,2,...,n] .

A more interesting topology on X* with which we will concern ourselves
J.\

is the weak* topology. The w''-topology on X*, denoted by u(X*,X), is

defined to be the weakest topology such that every evaluation

f(x) is continuous. The family N'-* of sets

V*(0; Xl,R2,...,Rn; E)	 {f C X* : 1Ri (f)1 < c,	 i =

{f C X* : If(x)1 < E,	 i = 1,2,...,nJi 
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(e > 0; x,,x2,...,xn E X) defines a basis of neighbourhoods of zero for

the w*-topology a(x*,X) on X.

As with a(X,X*) we can describe a(x*,X) in terms of nets.

We say that the net (fa) converges weak* to fo E X*, and we write

fu	 fo

if and only if

	

fa (x)f o (x)	 for all x C X .

Remark:	 F E X** is w*-continuous if and only if F	 "Z for some

In general, the weak topology in the dual space X* of a

Banach space X is finer than the weak* topology. It is clear, however,

that these two topologies coincide if the space X is reflexive.

The most important feature of the weak* topology is contained

in the following compactness result.

Theorem 1.2.13 - Banach-Alaoglu Theorem: For any normed

linear space X, 130(* .1 is w*-compact.

The w*-topology is a loca l ly convex Hausdorff linear

topology and so the separation theorem applies. In this

case it allows us to separate points (even w*-compact

convex sets) from w*-closed convex sets by means of the w*-

continuous linear functionals on X.



22.

Theorem 1.2.14 - The basic separation theorem: If K is

a Ww*)-compact convex subset disjoint from the w(w*)-closed

convex subset C, then there exists a continuous (w*-continuous)

linear function f such that

sup f(C) < inf f(K)

As seen in the preceding results, regardless of the normed

linear space X, w*-closed bounded sets in X* are w*-compact. How

does a subset K of a Banach space X get to be w-compact? The two

are related as shown in the next result. But note the following:

w-compact sets are norm closed and norm bounded.

Let K be a w-compact set in the normed linear space X. If

f E X* then f is w-continuous, therefore f(K) is a compact set of

scalars. It follows that f(K) is bounded for each f E X* and so K

is bounded. Further, K is w-compact hence w-closed and so norm closed.

That is, K w-compact K(norm) closed and (norm) bounded. But the converse

is in general false, for example, B[c o ] and B[t i ] are closed and

bounded but not w-compact.

In fact, the next result, stating the fundamental property of

reflexive Banach spaces, provides more examples of sets which are closed

and bounded but not w-compact, namely balls in any nonreflexive space.

Theorem 1.2.15 - Bourbabi-Kakutani: A Banach space X is

reflexive if and only if its unit ball BTXJ is w--compact.
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From Theorems 1.2.7 and 1.2.15 it follows immediately that:

in a reflexive space every bounded closed convex set is w-compact.

Theorem 1.2.16 - Eberlein-Smulian: A subset K of a Banach

space X is w-compact if and only if K is weakly sequentially

compact.

In other words, K c X is w-compact if and only if every

sequence (x
n
) in K has a w-convergent subsequence (xn ) with

x
n 	

x E K.
k

Note that K c V is w*-compact if and only if every net in

K has a subnet converging w* to an element of K.

One final result to be quoted is a consequence of Phillips'

Lemma.

Theorem 1.2.17:	 In Zi (= C 0 *) weak and norm convergence are

equivalent; that is, fn 74) f implies fn f%

This result is sometimes referred to as the Schur Property and

we say e1 is a Schur space.

Before concluding this section, some remarks are called for

regarding the following two properties which are the subject of our

subsequent investigation.

The weak fixed point property (w-FPF);	 For every nonempty w-compact

convex subset K of a Banach space X and each nonexpansive mapping
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selfmapping T : K	 K, there exists x o E K with Tx o = x • and ino'

the case of a dual space X*,

The weak-star fixed point property (0-FPP): 	 For every nonempty

w*-compact convex subset K of X* and each nonexpansive selfmapping

T : K	 K, there exists x o E K with Tx 0 = xo.

We note that for a dual space X* w*-FFP W-ITP.	 A natural

advantage of w*-FPP is the ready supply of w*compact sets guaranteed

by the Banach-Alaoglu Theorem 1.2.13. For a reflexive space these two

fixed point properties coincide and, by Mazur's Theorem 1.2.8, imply that

every nonexpansive mapping of a bounded closed convex set has a fixed point.

The existence of fixed points for nonexpansive self-mappings of

weak (weak*) compact convex sets can be seen as a wedding of the Banach

and Schauder Fixed Point Theorems.

1.3 Preliminary Lemmas

This section contains standard tools, arguments and lemmas which

will be used constantly in what follows to derive fixed point results.

Sufficient conditions for X(X*) to have the w-FPP (w*-FPP)

are obtained by pursuing the following "natural" line of argument:

Lemma 1.3.1 (existence of minimal invariant sets): 	 Suppose

K is a nonempty w(w*)-compact convex subset of a Banach

space X(X*) and T:K-±K a nonexpansive selfmapping of K.

Then K contains a nonempty w(w*)-compact convex subset Ko

which is minimal for T (that is, T(K 0 ) C7 K0 and no strictly
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smaller nonempty zd(w*)-compact convex subset of K o is

invariant under T).

Proof:	 Denote by (I) the family of all nonempty w(w*)-compact

convex subsets K' of K which are invariant under T (that is,

T(K') c K').	 The family clp is nonempty since K E (1).	 In an obvious

manner (I) may be ordered (partially) by the relation of set inclusion.

It is easy to show that (I) is inductive. To prove this, consider an

ordered subfamily 'Y of (1).	 The intersection

K*	 n	 K'
K' E T

is a w(w*)-compact convex and invariant subset of K. All sets K' in

T are w(w*)-compact convex and the family T has the finite intersection

property. By weak compactness of K, it follows that K* is nonempty

so that K* E (I) and is a lower bound for T. 	 Now by Zom's Lemma, there

exists in 4) a minimal element, say Ko.

Remark 1.3.2:	 (i) For K a nonempty w(w*)-compact convex set

in X(X*) and T: K	 K nonexpansive, the above lemma establishes the

existence of a minimal invariant subset K o from the class of nonempty

w(w*)-compact convex subsets of K which are invariant under T. When

minimal invariant sets are referred to, they must be understood in this

sense.

(ii) K 0 = cojT(K 0 )) since co (T(K 0 )) is

contained in K o and is closed convex and invariant under T.
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(iii) If K o is a singleton, then by the invariance,

K o is a fixed point of T. Thus we note that: X(X*) has the Lo(w*)-PPP

if and only if every minimal element K o of the above type contains

precisely one point.

The idea is to find distinguishing properties which such a

minimal invariant subset would have were it to contain more than one point,

and then to seek "natural" conditions on the space which rule out the

occurrence of sets with such properties.

(iv) If K o is not a singleton (so diam K o > 0),

then the next Lemma 1.3.3 states that K o contains a sequence (x n) with

lim-Tx 11 0. We call such a sequence an approximate fixed point
n n

sequence (a.f.p.s.) for T.

Lemma 1.3.3 (existence of a.f.p.s.):	 Let K be a nonempty

bounded closed convex subset of a Banach space X, and let

T.. K K be nonexpansive. Then there is a sequence (xn) in

K such that (xn-Txn) 	 0 (that is, (xn
) is a.f.p.s.) and

furthermore (x
n
-x

n+1
) -- 0 as n co.

Proof:	 Let y o be a given point of K. Define Tn , n = 1,2,...,

by

-n) Tx x = —1 y	 (1 -71-)Tx	 for each x E K .n	 n o

Then Tn : K	 K is a selfmapping of K by the convexity of K. Further-

more, T	 is strictly contractive with
n
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1
11T
n
x - T

nYll = II	
- 1(Tx - Ty) II	 (1 —) x-	 Vx , y E K .

Hence by the Banach Contraction Mapping Principle 1.1.21, T n has a

unique fixed point, denoted by xn . That is,

T
n
x
n
 = x = —

1 
y	 (1-1)Tx .

n n 0	 n n

We have

x
n 

- Tx
n
 = 1 - (y

0
-Tx

n
) 4 0	 as n	 00 .

Also for each n E IN,

II	

1
xn - x

n+1 
= 11 71 y o - (1 --1 )Tx	 yo + (1 7.171-)Txn+111

n	 n	 n
1 i
+

= 	 1	 1 	 1

	

(	 1
li n(n+1) Y0	 1 n+1+n(n+1)))i

,T, xn
	

(1 n+i)Txn+ill

= in(+1) [y
o Txn] - (1 -	 ) [Tx - Tx	 ]il

n
1

+I	 n	 n+1

	  Hy °	Txn il + (1	 1  • II x - x	 .
n n+1	 n+1)	 n	 n+11

So	
(n+„)x 

,11 	

n	 n+1.-	 n( [4. 1) II Y -Txnll

Thus	 llx	 x	 U . 	 - Tx
n	 n+1	

0	 as n 00

That is,	 (x
n+1

) 4 0	 as 11 -5- 00

0

Remark 1.3.5:	 (i) Note that the lemma did not require K to

be weakly compact, only bounded closed and convex.
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(ii) An alternative construction of the required

a.f.p.s. would be as follows:

Defining
	

Ts : K	 K :	 (1-s)yo + sTx ,

where 0 < s < 1 and y C K is fixed, yields a strict contraction.

Clearly, denoting by x s the unique fixed point of T s , it can be

seen that [Cx -x 11 	 0	 as s	 1.
s s

A (perhaps the) fundamental property of the minimal invariant

subsets, introduced in Lemma 1.3.1, appears in the next Lemma 1.3.7. But

first of all a preliminary definition and Lemma 1.3.6:

	

Definition 1.3.5:	 We say that a point x o C K is a diametral point

of K. if and only if

stp{{1x 0 -yll : y E K) = diam K

and that K is diametral if all the points of K are diametral points.

Lemma 1.3.6: Let K o be a minimal invariant subset of a

nonempty w-compact convex set K with T: K K nonexpansive.

If tp:K 0 IR is a weak-lower-semicontinuous mapping with

IP(Tx) .5 11)(x) for every x E K o , then 4 is constant on Ko.

Proof:	 Let x o E	 K o be such that tP(x 0 ) = inf IP(K 0 ) and let

E	 {x E K 0 :Ip(x) = tp(x 0 )}.	 Then E is a nonempty w - compact convex set

which is invariant under T and so by minimality E = Ko.



We now show that nonempty minimal invariant subsets are

diametral; basing our proof on Maurey [1980/81]:

Lemma 1.3.7 (Garkavi 1961, Kirk 1965): 	 If K o is a w(u)*)-

compact convex set which is minimal with respect to invariance

under some nonexpansive mapping T.. K o K o , then Ko is

diametral.

Proof:	 Ip(x) = sup	 : y C Ko)

= sup {ix-Ty II : y E K 0 )	 (as co T(K o ) = Ko

by minimality)

satisfies the conditions of Lemma 1.3.6. Thus tl) is constant on Ko

with value

sup sup II
x--)1 = diam Ko

xa o yCK0

and so K o is diametral.

That diametral sets containing more than one point can exit

may seem somewhat surprising. However, easy examples are at hand, see

below and the next chapter where examples are given in C[0,1] and

(Z 2 ,-P4 2 vW 00 ) where 13 �. 1.

Example 1.3.8:	 In (CO311'L),	 let

29.

K	 {x =	 :xn �. 0 Vn lixL..( l)



X i + X 2 +	 + X
n 
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Then K is diametral. To see this, first note that for x,y E K we

have 0	 xn,yn
	

1 and so	
xn-yn 

I	 1 dn .	 Thus IIx -yllo0.< 1 and

diam K 1. Now for any x E K and e
n
 = (Sin) E K we have

ilx-e
n00

 ?. Ix
n

-11	 1	 as x
n
	0.

So x is a diametral point. Since x is arbitrary K is diametral.

Lemma 1.3.9 (Brodskii-ailman 1940): If K is a closed

convex set which is diametral, then for any 6 E (0,1)

there exists a sequence (xn) in K with

	

infix -x 11	 diam K .min m n

Proof:	 If daim K = 0 the result is trivial, so without loss of

generality we may assume diam K = 1. Choose points x i ,x 2 c K such

that 11 x
l -x 2 11 	1 - C.

x 3 E K with

x 
2
+ x

By convexity 1	 2 E K and so there exists

Xi + X 2 II >	 - –2 •11 x3
2

Continuing in this way we obtain a sequence xi,x2,...,xm,... with

> 1	 — •
n



We then have that
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- —6 .< x
n+1

1
Xi + X 2 +	 + X

n 

n 

1	 11

(x
n+1

-x
1
) + (x

n+1
-x

2
) + ... + (xn.1.1-xn) 11

n

-5 —1	 x
n k= n+1 k1 

1

and so we conclude that
1
-x

k
	1 - E.

n+ 

0

In the proof of some fixed point results, a refinement of the

above Lemma is more useful, and it is based on the following definition.

Definition 1.3.10:	 A bounded sequence (x n) is diametral if it

is nonconstant and if

00
dist(x

n+1
,c6 {xl,x2,...,x

n
}) - didm{x

n }n=1 '

Lemma 1.3.11 (Brodskii-Milman 1948): 	 If K is a closed convex

set which is diametral, then there exists a sequence (x
n
) in

K such that

co	
,,

dist(xn1 ,	 txx23"*, x })	 (1- 
1
—n)aiam K72

( that is, (xn) is a diametral sequence where diczm K diain{ X }CG )
n n=1
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Proof:	 We wish to construct a diametral sequence in K. Let

0 < E < diam K = d.	 As in the previous Lemma, we start with any x l E K

and construct inductively x 114.1 from x1,x2,...,x
n such that

X 1 + x2 + ". + x

xn+1 11 	 d 'n'

Then (x
n
) is a nonconstant bounded diametral sequence. For, let

x E co {x x	 x
n
} and1 , 22“"

x =	 a.x. ,	 a. �.0 and	 a. =
1 1	 1	 1

i=1	 i=1

Let a = sup {al,a2,...,an} > 0. 	 Then

X 1 + X2 +	 + Xn a.1	 v	 1,	  =	 x + L	 x.
n	 na

i=1 n na

the second member being a convex combination of
	

fx,x..Then by the

induction hypothesis,

a.
1	 11	 1	 11

d -	 x-xn÷i +	 (- - —noc ) x i -xn+1 11
n	 na	

1=1

1	 II
nHI x-xn+1 11 + (1 —)d .

na

Thus
	

d	 II 
x-xn+1	

ea
II 	 d -	 d - n.

Hence
	

dist(x
n+1)

co lx 1 ,x 2 ,...,x
n
1) 	 d .

It follows that d(= diam K) = dianitx l c°	 and that the sequence is
n n=1

diametral.	 0
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For some calculations with minimal invariant subsets, it is

convenient to know the sequence (x) more explicitly. In this directionn 

we have Lemma 1.3.12 (due to Korlovitz 1976c), which gives an interesting

and useful property of nonexpansive mappings, expressed in terms of

approximate fixed points. This is then used in conjunction with the

geometric properties of some spaces to derive fixed point results.

Lemma 1.3.12 (Korlovitz 1976c): 	 Let K o be a w-compact

convex subset of a Banach space X and Zet T: K 0 -± K0 be

nonexpansive. Suppose that Ko is minimal invariant. If

(x
n
) is an approximate fixed point sequence for T, then

for each x E Ko,

Zim	 11 = diam K o .

Proof:	 Let (yn) be any approximate fixed point sequence for T

in K , and let

IP(x) = lim sup ilx-ynil

Then 11) satisfies the assumptions of Lemma 1.3.6 and so ti) is constant

on K o with value D say. Let (y
n

) be a subsequence with
k

w
Yn ' Y.

D	 lim sup ilx-y 11 	 lim .inf ilx-y u	 ilx-yoil
xEK	 nk	 k	 nk

Then

(by inequality 1.4).
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Thus D	 sup ilx-y o 11 = diam K o (by Lemma 1.3.7).	 Now takingxeK0

to be any subsequence (xn ) of (xn) we therefore have

	

lim sup ilx-xn 
1= diam Ko

k
	 Vx E Ko

and so
	 lim x_x

n
11 = diam Ko.

Remark 1.3.13:	 This shows that the sequence (x n) of Lemmas

1.3.9 and 1.3.11 could be extracted as a subsequence of an approximate

fixed point sequence and so would itself be an approximate fixed point

sequence.



Chapter 2

NORMAL STRUCTURE

The notion of normal structure was introduced by M.S. Brodskii

and D.P. Milman [1948] and has been significant in the development of

fixed point theory for nonexpansive mappings in Banach spaces. This

notion was used by them to show that every weakly compact convex subset

of a Banach space, with normal structure, contains a point, the Brodskii-

Milman centre, having the property that all isometries of the set onto

itself leave it fixed. In other words, this centre is a common fixed

point for all isometrics of the set onto itself.

In this chapter we define normal structure, w(w*)-normal

structure and asymptotic normal structure as a generalisation of normal

structure. We discuss examples and spaces which either satisfy or fail

these geometrical conditions. Basic to the chapter is Kirk's [1965]

result which states that every weakly compact convex subset K of a

Banach space with normal structure has a fixed point for every nonexpansive

selfmapping of K.

A recent survey of results on normal structure has been given

by Swaminathan [1983].

2.1	 Preliminary Definitions

The first class of spaces known to have the w-FPP were obtained

by ruling out the existence of bounded closed convex diametral sets

35.
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containing more than one point. Such spaces are said to have "normal

structure". That is;

Definition 2.1.1 (Brodskii-Milman 1948):	 A set K is nontrivial

if diam K > 0 (that is, if K contains more than one point). A Banach

space X is said to have normal structure if for each nontrivial bounded

closed convex subset K there exists a point p E K such that

sup	 x E K) < diam K .

Any point p of K with such a property is called a nondiametral point

of K.

Remark 2.1.2:	 We will also need to apply normal structure to sets.

In this case, we say that a bounded closed convex set K has normal

structure if each nontrivial convex subset C of. K contains a non-

diametral point.

Geometrically, K has normal structure if for every nontrivial

convex subset C of K there exists a ball of radius less than diam C

centred at a point of C and containing C. That is, if p E C is a

nondiametral point of C then for some r, 0 < r < diam C, we have

c C: Br (p)

Definition 2.1.3 (Lim 1980):	 X(X*) is said to have Ww*)-normal

structure if every nontrivial w(w*)-compact convex set contains a non-

diametral point.

Remark 2.1.4:	 We will see that, in general, normal structure

w-normal structure	 w-FPP, and for a dual space, normal structure:4
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w*-normal structure	 w-normal structure, with w*-normal structure

w*-PPP. For a reflexive space all three notions of normal structure

coincide.

Definition 2.1.5:	 A Banach space is said to have (weak) uniform

normal structure if there exists a 0 < k < 1 such that for each non-

trivial (weakly compact) bounded closed convex subset K there exists a

point p E K such that

(2.1)	 sup {11P-x11: x E K}	 k diam K .

Definition 2.1.6:	 Let C be a bounded subset of a Banach space X.

Then define, for each x E C

: the minimum radius for a ball centred at
yEC

x to contain C

inf
r(C) = xEC rx (C) : the smallest possible radius for a ball

containing C and centred on a point

of C

r(C) is called the self Chebyshoo radius of C.	 Call x o C C a

Chebyshe y centre if this infimum is achieved at x o and denote the

(possibly empty) set of Chebyshev centres by r(C) 	 {x o E C	 r (C) = r(C)}xo

the set of possible centres in C for balls of the minimum radius which

contain C; that is,

x o C C(C) if and only if sup Hx	 _ inf sup 	 H
yEC u 0 Yu	 xEC yEC ux-Ylu •

r (C)	
sup
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In terms of this notation, inequality (2.1) becomes

r(K)	 k diam K .

We can also give an alternative definition for normal structure, namely,

Definition 2.1.7: 	 X has normal structure if and only if for every

	

nontrivial bounded closed convex subset C of X we have	 (C)	 C.

This is proved in Proposition 2.1.8.

We note that;	 X does not have normal structure 40 there exists

a closed bounded convex set C such that for each x E C, rx (C) = r(C)

rx (C)	 r(C) = a rx (C) = ri)),EC Hx-Y 1 I 1I = diam C	 r, (C) = C.

Proposition 2.1.8:	 C has normal structure if and only if

( C )	 C.

Proof:	 (.): Suppose C(C) = C.	 Then Vx C C, rx (C) = r(C).

This implies that

diam C = sup sup Hx_
xEC yEC u y

sup
r

xEC x (C)

sup
r(C) = r(C) = r (C)	 Vx C C.

xEC	 x.

Hence C is diametral, contradicting C has normal structure.

(<): Suppose C fails normal structure. Then Vx C C,

rx (C) = diam C.	 This implies that



r(C) = "P r (C)
xCC x

sup sup 
Hx 

H
xCC yCC "-Y"

= diam C .

So	 rx (C) = r(C) Vx C C.	 That is, c(C) = C, contradicting that

C(C) k C.

The following lemma states some more facts about the set C(C)

and conditions under which r(C) must be nonempty.

Lemma 2.2.9: Let C be a bounded closed convex subset of

X(X*). Then	 (C) is closed and convex. Furthermore, if

C is w(w, *)-compact, then	 (C)	 (1).

Proof:	 Assume (cn
) is a sequence in c(C) with c

n 	 c.	
For

any C > 0 choosesuch that	 He	 - cH < c.	 Thenn
oo

su

	

r ( c ) = 
xCC
inf r 

x 
(c) (C) 	

)(CC
11

sup
II 	 +c	 -x11

xeC	 n n

+ 
St1p 

II C	 - x 11xCC	 no

= C + r	 (C)
no

= C	 r(C)

39.



40.

That is, r(C)	 r
c
(C)	 c + r(C).	 Since c is arbitrary, r c (C) = r(C).

That is, c E C(C).	 Hence c(C) is closed. Since c(C) is closed,

it suffices to show that C(C) is midpoint convex. So let c 1 ,c 2 C C(C).

By convexity cl2 C2 C C.	 Then for each x C C we have

(2.2)	 II C 1 +2 C2	 X II	 + li c2-x11)

1
(C)	 r

C 
(C))

Ca.	 2

= r(C) .

But then,

(C)

	 sup 	 + c 2 	 xH	r(C)	 r

	

Cl+C2	 xEC "	 2
2

r(C)	 by (2.2).

Ci	 C2
So r	 (C)=r(C).	 Thus	 E C(C).	 That is, C(C) is convex.

cl+c2	 2
2

Finally, let (xn) be a sequence in C such that

= inf sup	
•

r rc = sup
r(C) II Y`x II	x

n
	xEC n	 yEC xEC

Then there exists a subsequence (subnet) (x
)
 such that x	 c C C.

nk	 nk
Since the norm is w(w*)-lower-semicontinuous (see inequality (1.4)) we

therefore have, for every x C C,	 limk inf
n

-x11 .
k

Thus

	r (c )	 r c (C) =	 Mc-x11
xEC

xsucpc limk inf I l xn -x11

r(C) .

That is, r
c
(C) = r(C) which implies that c C C(C), as required.



2.2 Fixed Points for Nonexpansive Mappings

The most fundamental result in the theory of fixed points for

nonexpansive mappings involving normal structure is due to W.A. Kirk

[1965]:

Theorem 2.2.1 (Kirk 1965): 	 Let K be a nonempty w(w*)-

compact convex subset of X(P') and suppose that X(X*) has

Ww*)-normal structure. Then every nonexpansive mapping

T: K K has a fixed point in K.

Proof:	 By Lemma 1.3.1 there exists a nonempty w(w*)-compact convex

subset K o	of K which is minimal with respect to invariance under T.

If K o is a singleton, then by the invariance, it is necessarily a fixed

point of T (cf. Remark 1.3.2(iii)). So suppose that K o is not a

singleton. Then by Lemma 1.3.3 K o contains an approximate fixed point

sequence (x) for T. That is,n 

lim H
n.4.03	 nx	 - lx II0

(cf. Remark 1.3.2(iv)). Then by Lemma 1.3.12, for each x E Ko,

lim 1
(2.3)	 hx -	 = diam K o .

n-*oo	n

This equation (2.3) and/or Lemma 1.3.7 implies that K o is diametral,

contradicting that K has normal structure. Thus necessarily K o is a

singleton and hence a fixed point for T.

41.

0
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Remark 2.2.2:	 Before discussing applications of Kirk's result,

we need to point out, that since normal structure is such a highly

nonintuitive notion, it requires clarification in terms of related and

perhaps better known properties. Brodskii and Milman [1948] have

restated or characterised normal structure in terms of diametral

sequences: X has normal structure if and only if X does not contain

a diametral sequence (cf. Lemma 1.3.11). Indeed, if X contains a

diametral sequence (xn) then, as can be readily seen (see for example

Swaminathan 1983, p. 203), Cri{xn} fails to contain nondiametral points

and, conversely, if X fails normal structure, then (by Lemma 1.3.11) it

contains a diametral sequence.

The following proposition gives a class of sets with normal

structure, It is actually a corollary of Lemma 1 of de Marr [1963]

which states:

If K is a nontrivial compact subset of a Banach space, then

coK contains a nondiametral point.

Proposition 2.2.3 (Brodskii-Milman 1948): 	 Every compact convex

set of a Banach space has normal structure. Consequently, finite

dimensional spaces have normal structure, since bounded closed sets are

compact.

Proof:	 Let K be a compact convex subset of X. 	 Suppose that

K fails normal structure (of course, we can suppose without loss of

generality that diam K = 1, otherwise the result would be trivial).

Then by Lemma 1.3.9 (see the construction of the sequence) there exists



a sequence (xn) in K such that for any 6 C (0,1)

xn+1 - xk	 1 - c for all k = 1,2,...,n .

In this case, the sequence (xn) has no convergent subsequence, contra-

dicting K compact, and this proves the proposition.

There exist spaces, indeed reflexive spaces, which fail normal

structure, for example:

Example 2.2.4:	 (i) In C10,11 let K	 ix(t) : 0	 x(t)

x(0) = 0, x(1) = 11.	 Clearly K is a bounded convex subset of C[0,1].

If z C K then by continuity given c > 0 there is a 6 > 0 such that

z(t) < c for 0 < t < 6.	 Clearly there is an x C K such that

6
x(t) = 1 for t ; 72--.	 It follows that Hz - x11 �. 1	 E showing that

z is a diametral point of. K. Thus C[0,1] fails to have normal

structure.

(ii)	 In t 2 ,	 let 114 = max 1.j2-..11x112,

where H.H	 is the Z 7 -norm and H.H	 is the sup-norm of. Z.-space.
2	 oo

Then

11 )( 11 2 "-.<	11 X 11	 11X112 •

Hence the two norms are equivalent and therefore the space

X 2 = (Z,' 21114
2 

v 114 
oo

) is reflexive.

43.
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Let C	 ...,Xn, ...) E Z 2 : 11X11.< 1,	 x
n 	

0 Vn} .

Then C is bounded closed convex, hence weakly compact by Theorems 1.2.7

and 1.2.15. In the new norm, diam C = 1. Each point of. C is diametral.

For if x E C and for any c > 0 choose n o such that 0..5 x	 < c
n

and let y = e
o
 E C.	 Then 1k -	 > Ix 

no 
- y

no
I > 1 - e.	 Hence

n 

every x C C is a diametral point. Thus X 2 fails to have normal

structure.

This example, due to R.C. James, is of special importance in

that it shows that:

weak compactness or even reflexivity of the Banach space are

not strong enough properties to imply normal structure.

(iii) We showed in Example 1.3.8 that in the

space c 0 the bounded convex set K	 [x = (x1,x2,...,xn,...) : xn 0Vu,

11 of the unit ball is diametral, hence c 0 fails normal

structure. Similar examples show that the spaces t i and L i [a,b] do

not have normal structure.

Remark 2.2.5:	 From the above examples we know that C[a,b], co,

t i , L i [a,b] and (t 2 , j-2-11xH v 	 ) fail to have normal structure.
2

(Indeed, van Dulst [1982] has shown that every Banach space may be

equivalently renormed so as to fail normal structure.) None-the-less
1

Baillon-Schoneberg [1981] have shown that (t 2 , 1.114 2 v 114 ) has the
00

FPP. Thus, as shown by Karlovitz [1976a] when he proved that the

reflexive space X 	 E (t 2 , jEdlx12v Hx1I ) has the	 FPP, that:
00

44.
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normal structure is not necessary for the fixed point property,

even in reflexive spaces.

Maurey [1980/81; cf. Elton-Lin-Odell-Szarek 1983] has

recently shown that c o has the w-FPP. Previous to Maurey's result,

others were only able to exhibit certain closed convex subsets of co

with the FPP. For example, Odel-Sternfeld [1981] showed that the

OD

closed convex hull of a weakly convergent sequence (including co {edn=1),

which fails normal structure, has the FPP. Also Haydon-Odell-Sternfeld

[1981] showed that weakly compact "coordinate-wise star-shaped (c.s.s.)"

subsets of c o have the FPP. A subset of K of c o is said to be

c.s.s. if there exists a point x C K (called the centre of K) such

that for all y E K and z C c o , if z(i) E CT; tx(i), y(i)1 for all

then z E K.

Maurey [cf. Elton-Lin-Odell-Szarek 1983] also showed that all

reflexive subspaces of 1, 1 [0,1] have the w-FPP.

Lim [1980] proved that 	 in its natural norm has w*-

normal structure and hence by Theorem 2.2.1 the w*-FPP. The fact that

has the w*-FPP was previously proved by Karlovitz [1976b]. Note

that in t 1 , the basis vectors (en
) form a diametral sequence, hence

by Remark 2.2.2, Z, does not have normal structure. Indeed t i fails

normal structure, since the closed convex set K 	 {(x
n
) :x

n
	0 Vn,

00

n=1 x
n
 = 1} is diametral (Vx E K, sup 	 -- yH: y E K} = diam K = 2).

Since weak compactness coincides with compactness in t i (see Theorem

1.2.7), it follows that Z i does have w-normal structure. This justifies

some of the Remarks 2.1.4 (normal structure	 w-normal structure but not

conversely).
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Day-James-Swaminathan [1971] have shown that every separable

Banach space can be renormed so as to have normal structure and hence

the w-FPP.

2.3 Uniformly Convex Banach Spaces

The main result in this section, which is due to Browder

[196Sb], exhibits a class of spaces with normal structure.

	

Definition 2.3.1 (Clarkson 1936):	 A Banach space X is said to

be uniformly convex (u.c.) (uniformly rotund, in the terminology of Day

[1973]) if and only if for each e E (0,2] there is a 6 = S(e) > 0

such that for all x,y C S(X), we have

c	 Ilx	 2 Y ll	 1 - 6 (0 •

In other words, X is uniformly convex if for any two points

x,y on the unit sphere S(X) the midpoint of the segment joining x

to y can be close to the sphere only if x and y are sufficiently

close to each other. Without loss of generality, S(X) may be substi-

tuted by B[X] in our definition of uniform convexity.

In terms of sequences, we have the following equivalent formu-

lation (Clarkson 1936):	 X is uniformly convex if whenever (xn
) and

(y) are sequences in S(X), then
n 

x + y

n	 2	 n 11	 Ilx	 0 a n

	

n	 n	
s	 co
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Definition 2.3.2: The modulus of convexity of a Banach space X

is defined to be the function on (0,2] defined by the relation

6x (c) = inf {1	 	 Yll	 114-5 1, M.< 1,	 -	 El •

It is clear that X is uniformly convex if cS
x
(c) > 0 for every e > 0.

Example 2.3.3:	 (i) Any Hilbert space (indeed, an Euclidean space

of any dimension) is uniformly convex. To show this, it suffices to

recall that in such spaces, the parallelogram identity

	

li x + Y11 2 + Il x	Y11 2 ' 2 (114 2 + HY112)

holds for any pair of vectors x and y. 	 Hence it easily follows that

6 (c)	 {1 - —
1 

34 - E 2 } > 0	 where E E (0,2] .
2

(ii) It is well known (see Clarkson 1936) that for

1 < p < 00	 the spaces t	 and L [a,b] are uniformly convex. In

the space t i , the midpoint of the segment joining points (1,0,0,...)

and (0,1,0,...) of the unit sphere Sa l ) also lies on Sa l ) so

t i is not uniformly convex. Similarly, the example of points (1,1,0,0,...)

and (0,1,1,0,...) shows that neither the space to. nor c o are

uniformly convex. Also it may be easily seen that L 1 [a,b] and C[a,b]

are not uniformly convex.

Now the main result of this section.



Theorem 2.3.4 (Browder 1965b; cf. Edelstein 1963): 	 Every

uniformly convex Banach space has normal structure.

	

Proof:	 Suppose K is a nontrivial bounded closed convex subset of

X of diam K = r.	 Let p,q E K with Hp - q ll �. 2.	 Now for any

s E	 pK put 	 -s =	 qx, 	 -s = y.	 Then we have

1

(2.4)	 HYM

Hx - yH =	 - qH

But X is uniformly convex so (2.4) implies that

1x	 Y il < 1	 S(2)
II	 2

where 6(c), the "modulus of convexity" is positive for 0 < E	 2.

Now let t = P 2 q	
By convexity of K, t E K, and by (2.4) we have

+
It 

	 Hp + q	 st.

	

II	 1 lit -	 < 1 - 6(-2 ) .II	 2	 r II	 2

So for every s E K we have

Mt - s it < r(1 - S(2)) < r

That is sup {Mt - sH : s E K} < r - diam K.	 Hence K has a non-

diametral point. Since K is arbitrary, X has normal structure.

48.
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Remark 2.3.5:	 In the following Corollary 2.3.6, we will need to

make use of a well known result of Milman and Pettis which states:

Every uniformly convex Banach space is reflexive.

We will show that all uniformly convex spaces have the FPP for

nonexpansive mappings, but more generally, so do all reflexive Banach

spaces which have normal structure (see Kirk 1965). It is still an open

question as to whether: every reflexive space has the FPP for non-

expansive mappings?

It follows from Edelstein [1963] that:

every uniformly convex Banach space has uniform normal

structure.

Corollary 2.3.6 (Browder 1965b; Gande 1965): If T is a

nonexpansive self mapping of a bounded closed convex subset

K of a uniformly convex Banach space, then T has a fixed

point.

Proof:	 Since a uniformly convex Banach space is reflexive (by

Milman-Pettis), any bounded closed convex set in it is weakly compact

(by Theorems 1.2.7 and 1.2.15). By the preceding Theorem 2.3.4, it has

normal structure. Hence the result follows from Kirk's Theorem 2.2.1.

That is, U.C. spaces have the w-FPP.



2.4 Strictly Convex Banach Spaces

Definition 2.4.1 (Clarkson 1936):	 A Banach space X is called

strictly convex (rotund, in the terminology of Day 1973) if and only if

for all x,y E X, x t y,

114 = I1Y11 = 1	 11 x 42. Y II < 1

Equivalently, X is strictly convex if and only if for

x,y E S(X), we have

114 = IIYII = li x	 2 Y il	 x =

2
Example 2.4.2:	 (i) t	 and hence t

i
 ,
	 are not strictly

2	 2
convex. For in t i , the points x = (-1,0), y = (0,1) lie on Sal),

X + Ybut so does their midpoint 	 	
(- 

1,1)
2 

2
(ii)t and hence t., c o and t. are not

2
strictly convex. For in t., the points x = (-1,1), y = (1,1) lie

2
on S(Z.), but so does their midpoint

X y 
- (0,1).

2

(iii) C[0,1] is not strictly convex. For the

1	 H	 max	 ,
points x(t) = 1 - t, y(t) = 1 - -ft we have Hxli co = tc[0,1] 11 - tl = 1,

max	 1	
==	 11 -	 - 1, 

'I x 	 = max

Hco	 tE[0,1111	 =00	 tE(0,1]
	 1.

As is easily shown, none of the spaces t i , 14 1 [0,1],	 ,	
0

and C[0,1] are strictly convex. However, we have the following

observation.

50.
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Proposition 2.4.3 (Clarkson 1936):	 Every uniformly convex Banach

space is strictly convex.

Remark 2.4.4:	 Except for finite dimensional spaces, the converse

of the above proposition is false. For example, the space

	

22	 2

Ce 2 eD" t 3 ei-D • • - 0 ,e,„ 0-) . • • ) 2

is strictly convex but not uniformly convex.

The proposition gives an easier means of deciding which spaces

fail uniform convexity.

2.5 Banach Spaces Which Are Uniformly Convex (Rotund)

in Every Direction (UCED)

In this section we give a generalization of uniform convexity

which also implies normal structure and hence the FPP.

Definition 2.5.1 (Garkavi 1964):	 A Banach space X is said to

be uniformly convex in every direction (UCED), if given any c > 0 and

d E X with	 = 1, there exists a 6 = 6(E,d) > 0 such that for

every x E X with Hx11 = 1, we have

lix +	 = 1	 + ;411	 1 - 6 .

The notion of UCED was first used by Garkavi [1964] to

characterize normed linear spaces for which every bounded subset has at

most one Chebyshev centre.



Il yn ll 	 1, n 11

	

1 for all n

x-y	 z	 as n	 c0	 -	 z = 0 .n	 n

II	 2	 H
H  n	 nH
X + y

as n

(2.5A)

(2.5B)

(2.5C)
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Day-James-Swaminathan [1971] gave the following equivalent

formulation:

Definition 2.5.2 (Day-James-Swaminathan 1971): 	 A Banach space X

is UCED if and only if for any sequences (x n), (y
n
) in X we have

Remark 2.5.3:	 The notion of UCED is a generalisation of uniform

convexity whose geometric significance is that all chords of the unit

ball B[X] that are parallel to a fixed direction and whose lengths are

bounded below by a fixed positive number have the property that the mid-

point of the chord lies uniformly deep inside B[X].

Proposition 2.5.4:	 Every uniformly convex Banach space is UCED.

Proof:	 Suppose X is uniformly convex. Let (x n ) and (yn)

be sequences satisfying conditions (2.5A), (2.5B) and (2.5C) above. By

(2.5B), itxn - yn "÷ li z il •	 But X is uniformly convex and so by

Definition 2.3.1, we have Hxn 	 yn H 	0 as n	 co .	 That is z = 0.

Hence X is UCED.
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Remark 2.5.5:	 The converse of the above result is in general false.

For example, let X be the Z 2 -direct sum of the sequences of spaces

(tn)n�.2 ; that is, let X be the collection of all sequences x = (x )
n n �.2

such that x E t 
n 

for each n and
n 

Ix1 2 =	 Hx 11 2 < co
n n

	We denote this space by (t, co ,e 3 CD	 It is reflexive and UCED (see

for example Bynum 1980, p. 432) but (Day-James-Swaminathan 1971; cf. Fluff

1980) cannot be equivalently renormed to be UC.

If X is UCED, then X is strictly convex. The converse is

not true. For example, the space C[0,1] of all real continuous

functions on the unit interval with the norm

1

	

Ilf11 = sup flf(t)l)	 (ilf(t)1 2 dt)2

0

is strictly convex, but this space is not UCED (see pp. 126-127 of

Garkavi 1964).

Proposition 2.5.6 (cf. Corollary 3 of Day-Jages-Swamdnathan 1971):

If a Banach space X is UCED, then X has normal structure and hence

the w-FPP.

Remark 2.5.7:	 The above proposition follows from the observation:

in the proof of Theorem 2.3.4 we only required "uniformity" in the "p - q"
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direction. Thus, if X is UCED, then every bounded closed convex set in

X has a nondiametral point.

Gillespie and Williams [1979] have shown that a space which is

UCED does not necessarily have uniform normal structure. Hence this shows

that the converse of the statement, "uniform normal structure implies

normal structure", is not true.

2.6 Locally Uniformly Convex (LUC) Banach Spaces

In §2.3 we introduced the notion of uniform convexity of the

norm in a Banach space. Stated in geometrical terms, a norm is UC if

whenever the midpoint of a variable chord in the unit sphere of the space

approaches the boundary of the sphere, the length of the chord approaches

zero. In this section we introduce a weaker type of convexity, which is

called local uniform convexity (rotundity, LUC). Geometrically this

differs from uniform convexity in that it is required that one end point

of the chord remain fixed.

We present an example, due to Smith and Turett [1984, preprint],

of a reflexive LUC space which does not have normal structure.

Definition 2.6.1 (Lovaglia 1955):	 A Banach space is said to be

locally uniformly convex (rotund) if and only if given c > 0 and an

element x with Hx11 = 1, there exists a 6(c,x) > 0 such that

IlYll = 1

II X

}
Ilx 2+ y 11.5 1 - S(c,x) .

- yH	 6
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x + x
is a sequence in X such that Hx11 = 1,

n
 , 1, and nil -4- 1,

2

then x	 x.
n 

It is clear from the definitions that UC	 LUC and LUC	 SC.

Example 2.6.2 (Smith-Turett 1984, preprint): 	 Smith [1978] gave

an example of a Banach space (t2, 11 . 4), which is reflexive, LUC but

not UCED. We present a proof of Smith and Turett [1984, preprint] that

the space (1 2, 11.11[) does not have normal structure. But first of all

an explanation of the norm 11 . 4 :

Recall the equivalent norm defined on c o by Day [1955]. For

u in c
o
	enumerate the support of u as (n

k
) such that

lu(nk4.1 )1 for k = 1,2,... , define Du in t2 by

Du(n) =

if n = n
k
 for some k

0	 otherwise

•and define 11141 = IlDull„ where II • 11 2 is the usual £ 2 -norm. Then

111 . 11I is an equivalent strictly convex norm on c o .	 For x = (x l ,x 2 ,. ..)

in t 2 , let

1
u = (- 11421

	 :a	 2X 2 X 2 X	 ,X .)

Equivalently, a Banach space X is LUC if whenever x E X and (x
n

)



be the element of c
o
 associated with x and define

11 x 1IL 	=	 IlluIII

Then HI
L is an equivalent norm on az, 11'11 2 )-

Now to show that (t 2 , H
L ) lacks normal structure.

By Remark 2.2.2 (Brodskii-Milman) we just need to show that

(2,11.11 L ) contains a diametral sequence. In fact, we show that the

usualunitvectorbasis(e.)in X. 2 is a diametral sequence in

H.I1L).	 For m > n,

He - en ilm	 L=

n	 m

k	 4-(m1-111-1)Y1
= (	 4- + 	

k=1

co	 1
4-k)2

k=1

andthusdiaMle.	 —
1 

.	 But, from the computation above, it follows
3

that

lim H e 	_ 	 1
m-±co	 in 	 en i L

andhencediaM{e.}= —
1 

.

11

for 1 .5	 n.

Then, if p = 1 + (1+2+...+n)

56.



He	 -	 a.e. 11 
Lin+1	

=1

n

= (11E2-1 H en+1 -	 aie- II 
2	 n 

1	 1 0	 ..) Ill1	 ,	 -al,...,-an,...,-a	 .1..0, , ,.
1=1	 ,...._,___...,

n	 n+1

	

p	 n+1

n+1
= (	 -k4)

k=1

and hence

(2.6)

Also

n+1	 2
dist(e

n+1' 
co {el,e2,...,e

n
}) %) (	 4-k) .

k=1

n

Il	 1en+	 - .	 1ot-e-	 L -� 1111
1=1

p	 n+1

(

00

4-k)1
k=1

and hence

dist(e
n+1' 

co fe
1/

e
2)

...,e
n

1

From this last inequality and (2.6), it follows that

d
17J

That is, ( ) is a diametral sequence in a2, 11 • 11
L
 ) and hencej

( .e 2 , H . I L ) fails to have normal structure.
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2.7 Uniformly Smooth Banach Spaces

We show in this section that uniformly smooth Banach spaces

have normal structure and hence the PPP.

Definition 2.7.1:	 The modulus of smoothness of a Banach space X

is defined, for T > 0, by

p
x
(T) = sup{ IIx 	 TYIIIlx

2
y Il	 1 : Hx1I = H Y M = 1 	 •

A Banach space is said to be uniformly smooth if

1im
T-*04.

( T ) = 0 .

Remark 2.7.2:	 It is known that: X is uniformly smooth if and only

if X* is uniformly convex.

Baillon [1978/79] has shown that: if X is a reflexive

Banach space whose modulus of smoothness Px. satisfies

lim	 X(I) < 1
T	 2 '

then X has the FPP; in particular he proved.

Theorem 2.7.3 (Baillon 1978/79): 	 If a Banach space X is

uniformly smooth then X has normal structure (and so the FPP

for nonexpansive mappings). Also X* has normal structure

(and hence the FPP).
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Remark 2.7.4:	 By Remark 2.7.2, X* is uniformly convex if X

is uniformly smooth. So by Theorem 2.3.4, X* has normal structure and

hence by Corollary 2.3.6, the 	 FPP for nonexpansive mappings. Thus we

need only show that X has normal structure. To this end we present

a proof by Turett [1982].

Proof (of Theorem 2.7.3 by Turett 1982): 	 Assume that X fails to

have w-normal structure. Then we have:

Step 1: There exists a sequence (x
n
) in B[X] such that x

n	0,

ilxn 	1, diaM {xl,x2,...} = 1, x i = 0 and dist(x
n
, co {xl,x2,...,

1
x

-1 
	 > 1 - 7-1 .
n 

Proof of Step 1: By Lemma 1.3.11 (Brodskii-Milman 1948 or Gossez-Lami
00

Dozo 1972, p. 567) there exists a sequence (x
n

)
n=2 

such that x
n
	0,

11)0	 1, diam {x2,x3,...} = 1 and dist(xn , co. ix 2 ,x 3 ,...,xn_1 1) > 

Defining x 1 .---, 0 yields to desired sequence. The only condition which

w
is not obvious is the last one. Since x

n
	0, by Theorem 1.2.7 (Mazur)

dist(0, CO {x2,x3,...,x 	 0 .n 

Choose yn C co lx 2 ,x 3 ,...,xn_1 1 such that Ily, 11 ÷ 0.	 Then, for
n71

A
k
	0 with	 Y, A

k
 = 1 we have

k=1

n-1

-	 xkxk ll	 lIxn	(A 1 Y 1 	 Akxk)11 - X 1 /lYnil
k=1	 k=2

dist(x	 Co {x,,x,,...,x	 }) 	 Ilynn'	 n - 1

1

?- 1 - --n - iiYn ii •

Since Hyri ll 	 0, dist(xn , co {x,,x2,...,xn_1}	 1.
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Step 2: Given E > 0, there exists norm-one elements f,g C X* and

x C X such that

f - g , f(x), g(x) > 1 - E .

That is, the dual ball B[X*] contains arbitrarily "thin" slices with

diameter near one (or more). By a slice of thickness E, we mean the

set

S(B[X*], x, c) = If E B[X*] : f(x) > 1 - E}

Proof of Step 2: For each n

	

B 1 (x
n+1) n	 fx In 	 =
n+1	 k k=1

n

Applying the basic separation theorem 1.2.14 to B 1 (x 	 ) and
1--71	n+11 

co fx.1
n

k-k=1 yields a norm-one functional fil+ , such that

1	 f
n+1

(x
n+1 

- x
k
) > 1 - 

1
- for all k	 n .

In particular, k = 1 gives 
f11+1(xn+1

) 	 1 - 1 .	 Now choose j o CIN

with 1 < j < 
2

- .	 Since x
n
	0 there exists n > j	 such that0	 6	 0	 0

(

x
f-

I f . (x ) I < -2-6 .

	

	 But then
J o no

- x.
no	 Jo	 - f. (x	 - x. ) > 1 - c,

30Nix110-x-il	
o	 n o	 Jo

 Jo

g) •

f
n

( X110 — xic)

Jo

1f
n

(x
o
 - )c ) > 1	 1	 E
no n J o	 no

II H f	 - (-f ) I 	 (f	 + f . 1 (x ) > 1 - —
no 

- 
2
E > 1 -

11 o	 Jo	 no	 Jo	 no
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The result (that is, Step 2) now follows by taking f = f
no
, g = -f.

x	 - x.	 Jo

and x = 	 no	 Jo 

11x1l o -x.11J o

Hence the theorem.

L3

Remark 2.7.5:	 It suffices to have X* c-inquadrate for some

< 1, and so, as Turett shows, it is enough to have X satisfy

lim PX (T)	 1

T	 < 2

A space X is a-inquadrate if 6(0 > 0 for some a E (0,2].

That is, there exists a E (0,2] and 6 > 0 such that Ijx - yll <

whenever x,y E S(X) and H x	 > 1 - S.	 Clearly, X is UC if and
2

only if X is a-inquadrate for every a E (0,2].

2.8 Inheritance of Normal Structure from a Subspace

In this section we present a lemma which Giles-Sims-

Swaminathan [1984, preprint] recently used to give an example of a

reflexive Banach space which has normal structure, but which lacks the

geometrical properties UCED (and therefore UC by Proposition 2.5.4),

LUC and WUKK (see Chapter 4).



Lemma 2.8.1 (Giles-Sims-Swaminathan 1984): 	 If a Banach space

X contains a closed subspace M of finite codimension (or a

subspace with complement a Schur space, for example,

X = t. i (M) and with weak uniform normal structure, then X

has w-normal structure.

Proof:	 Assume X fails w-normal structure, then by Lemma 1.3.11

there exists a sequence (x
n
) with

{co x x
n
})	 diam c6 {x } c°	 = 1.1,dist(x

n+1' 	 n n=1

Since any translate of a subsequence of (x n) also has this property we

IV

may without loss of generality assume that x
n
	0.	 Now, let P be

the linear projection from X to M, then x - Px
n
	0 in the finite

T1

dimensional complement of M and so we may choose N o so that

1-k	
IIxn - Px

n 
< E <	 for n	 N o .

2(1-1-k)

then diam C = 1, C is diametral, indeedLet C = c6 Ix
n
}
n=No

He - )(il , 1 for all c E C, and for each c E C	 - Pc 	 e.n 

[To see this last inequality note that x may be approximated arbi-
CO

trarily well by an element of the form	 A
=N	

xn where a
n 
> 0 and

n
_	 n

1 and
0

xn(xn	 pxn)1
	

sup Hxn - Pxn1

From this it follows that diam P(C)	 1 + 26 and so by the uniform

normal structure of M there exists m o E P(C) with
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0

- Pc II < k(1 + 2c)	 for all c E C .

But then, choosing c o E C with Pc o	mo we have, for all c E C

ilc o 	 c 11--‹ 	-	 ±111)co -Pc I+

.5 2s + k(1 + 2c)

< 1

contradicting the diametrality of C.

2.9 Asymptotic Normal Structure

Motivated by a method often employed in proofs of fixed point

theorems for nonexpansive mappings (see Lemmas 1.3.1, 1.3.3 and 1.3.12)

Baillon and SchOneberg [1981] introduced the following generalization of

the concept of normal structure.

Definition 2.9.1 (Baillon-Schneberg 1981): 	 A Banach space X is

said to have asymptotic normal structure, if for each nontrivial bounded

closed convex subset K of X and each sequence (x) in K satisfyingn 

xn -0 as n	 co , there is a point p E K such that
n+1

lim inf Hx, - pH < diam K.

Evidently normal structure implies asymptotic normal struc-

ture, since if p E K is a nondiametral point and if (x
n
) is a

sequence in K then
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lim inf lix
n -
	 lim sup lix

n -11÷00 	 n-

< diam K ,

but the converse is not true, as we see below in Theorem 2.9.4.

Using Lemmas 1.3.1, 1.3.3 and 1.3.12, BaillonandSchOneberg

proved that:

Theorem 2.9.2 (Baillon-Scharleberg 1981): 	 Every Banach space

with asymptotic normal structure has the w--FPP.

The interest in Theorem 2.9.2 stems, of course, from the fact

that normal structure defines a narrower class of Banach spaces than

asymptotic normal structure. This can be seen, for example, from the

next result. But first, an explanation of the space used in the result.

Example 2;9.3:	 The reflexive space X 2 E (t2	
,,
x II 2 v II x IL)	 was

shown in Example 2.2.4(11) to lack normal structure but was shown by

Baillon-SchOneberg [1981] to have the w-FPP.

The reflexive space x
3
2 _ GE 2 , -1 114 2 v 114 .) also lacks

normal structure but has the w-FPP, a fact first established by Korlovitz

[1976a] using Lemma 1.3.12 and some detailed calculations in the space

(2, 11-11 ).

We give a general definition for these spaces.

Let IS �. 1 and let	 be the real space t 2 renormed by

setting, for x E t2,

114
	

11X II 2 I II X 11 00 ) •



Then

111x11,	 max. {1 11 x 112, 11 x 11„}	 11x112

and so	 is equivalent to 11 . 11 •	 Hence )C	 is reflexive.

Baillon-Schiineberg [1981] proved that:

Theorem 2.9.4 (Bailion-Sch3neberg 1981): 	 (i) X has normal

structure if and only if 13 <

(ii) X has asymp-

totic normal structure if and only if 3 < 2.

Remark 2.9.5:	 Theorem 2.9.4 is equivalent to

(i)' X	 fails normal structure if and only if (3 �. 32.

(ii)' )(	 fails asymptotic normal structure if and only if P, �. 2.

From Theorem 2.9.4 we see that Kirk's Theorem 2.2.1 is properly contained

in Theorem 2.9.2. On the other hand, Theorem 2.9.4 shows (via Theorem

2.9.2) that for all (3 < 2, X13 has the w-FPP. Finally, Theorem 2.9.4

shows that Theorem 2.9.2 cannot be used to decide which of the spaces

X	 with (3	 2 have the w-FPP.

Maurey's C o result [1980/81; cf. Elton-Lin-Odell-Szarek 1983]

has settled in the affirmative the question of whether X 13 has the

w-FPP for (3 y 2.

From above we know that X 2 fails asymptotic normal structure

but has the w-FPP. Thus asymptotic normal structure 'is not essential
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for the fixed point property, even in reflexive spaces. Another

example of a reflexive space without asymptotic normal structure is:

Example 2.9.6 (Bynum 1980):	 Let t	 be	 , 1 < p < co,
P,'

renormed with

11141 = max. {11x+11,

where for any x	 (x(n)) n= , in t
	

define

x
+
 = max {x	 ,0}

x = (-x)
+
 .

We note that forfo each x C t , x
+ 

and x are in t and
1	

p
	

p

1114 -‹ i x ii-� 21311141 and so t	 (1 < p < 00 ) is reflexive. Bynum
ID,'

proves that the reflexive space t 	 lacks asymptotic normal structure.
13:.°3

However, t	 (1 < p < co) has the	 FPP.
10,'

2.10 Examples of Alspach and Lim

We have seen classical results of Browder [1965b], Day-James-

Swaminathan [1971], Kirk [1965] and others establish that every UCED

space (hence every uniformly convex space) and every space with normal

structure has the w-FPP. Unfortunately, not every space has (w) normal

structure, and it remained open (see for example, Reich 1976, 1980)

as to whether or not every Banach space possessed the w-FPP until

Alspach [1981] gave an example of a fixed point free nonexpansive

mapping on a weakly compact convex subset of L 1 [0,1] (see also

Schechtman 1982). Lim settled, also in the negative, the corresponding

problem for the w*-FPP in dual spaces.
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Example 2.10.1 (Alspach 1981):	 Let X = L	 ,1].	 Let

i iK = if C X:	 f= 1,	 0 ..< f	 2 almost everywhere} .

0
K is a closed convex subset of the order interval [0,2], hence K is

weakly compact.

min {2f(2t),2},	 0	 t < -12-.

{ max {2f(2t-1)-2,0},	 2:( t < 1 .

T is an isometry and is fixed point free. That is, L 1 [0,1] fails the

w-FPP.

Example 2.10.2 (Lim 1980): 	 Let X = C o * = -E l have the equivalent

dual norm 11 x II = maX { x
+

1.• where for the sequence x = (x.)

in t1, x
+
	(x

i
 v 0) and x = (-x)

+
.

Let

K	 E	 : x i	 0 for all 1, 11 x Ii I ..< 1 1

Then K is a w*-compact convex subset of t i and T: K	 K defined

by

67.

Let	 T : K -*K : f(t)

Tx = (1 - 114 1,

is a fixed point free isometry of K in (t i ,	 II) •
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Remark 2.10.3:	 These examples still leave open:

(1) Does every reflexive space have the 	 FPP?

The nature of T in both examples also suggests:

(2) If X(X*) fails to have w-FPP (w*-FPP) does it necessarily

fail for an isometry?



Chapter 3

OPIAL CONDITIONS

In this brief chapter, we give another condition of a more

topological type on the norm of a Banach space. This condition was

introduced by Z. Opial [1967] and will be referred to in these notes as

the zo, (w)-strict Opial. condition. We will see that this condition

links the w(w*)-topology to the norm topology and implies the w(w*)-FPP.

An interesting sufficient condition for the strict Opial

conditions is given in Theorem 3.2.4.

It is to be noted that a variant of the strict Opial conditions

formulated in terms of the Birkhoff-James orthogonality relation was

studied by Karlovitz [1976b].

3.1 w(e)-Strict Opial Condition

Definition 3.1.1 (Opia1 1967): 	 A Banach space X(X*) is said to

satisfy the 7aw, *)-Opial condition if and only if for each sequence

(xn) in X(X*) we have

w(w*)
xn 	x implies

lim inf Ilx - x II .� lim inf Ilxn - xil for all x C X(X*);n	 co

and the w(w*)-strict Opial condition if and only if

69.

w(w*)
xn 	x co implies



(3.1)	 lim inf 
llxn- 

x	 < lim inf	 - xH	 for all x	 x .c0	 00

Example 3.1.2 (Opial 1967; Lemma 1): 	 Every Hilbert space X

satisfies the w-strict Opial condition: 	 since every w-convergent

sequence is necessarily bounded, both limits in (3.1) are finite. Thus,

to prove this inequality (3.1), it suffices to observe that in the

equality

	

Ilxn- X II 2 = lixn -x oo	 Xo0 XII2

2
IIX - X	 + IIX - X II 2 + 2Re <x - x ,x - x>

	

00	 00	 co 00

the last term tends to zero as n

0

Example 3.1.3:	 It can also be checked that the spaces 42, (1	 p < 0D)

also satisfy the w-strict Opial condition. The space t i E C *0 even

satisfies the w*-strict Opial condition (see, for example, Karlovitz

1976b). On the other hand, it is shown in Opial [1967] that in the

uniformly convex spaces L [0,1] (1 < p < co , p	 2) the w-strict Opial

condition fails to hold.

Further examples may be found in the appendix. Recall that the

space	 +Hi v 11x11 1 )	 (example 2.10.2) fails to have the w*-FPP.

However, this space has the w*-Opial condition. To show this:

Assume not. Then without loss of generality we may assume

w*
there exists a sequence (x

n
) with x

n
	0, Hx

n	
1, and there
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exists an x such that lim inf
n	

xH = 1 - 6 for some 6 > 0. But

+w*
then, lim inf (xn-x) - II 1 .5 1 - 6 while xn- -4- 0 and so by the Opial

condition for 11•11	 we must have lim inf Hx n
+ 

H
1 
< 1 - 6, contradicting

Ilan II	 = 1.

Thus the w*- and hence w-Opial condition is not sufficient for

the	 w* -FPP. However,

Theorem 3.1.4 (Gossez-Lauri Dozo 1972): If X satisfies the

w-strict Opial condition, then X has w-normal structure and

hence the w-FPP.

	

Proof:	 Assume that X fails to have w-normal structure, so by

Lemma 1.3.11 (or Remark 2.2.2) there is a w-compact convex diametral

nontrivial subset K containing a sequence (x
n
) with

dist(xn+1 , co {x1,x2,...,xn}) 	 diam K .

Since any subsequence also inherits this property, we may assume that

w
x C C	 (by Mazur, that is Corollary 1.2.9)

xn
	

00	 n

where

C11 = co {xl,x2,..., xn } .

Thus, given any E > 0, there is a finite sequence Al,X2,...,X_ 	 of
no

nonnegative real numbers with



n

X.	 1

and n

x co - 	X
k
x
k

k=1
...	 —

2	
•

Also there is an	 N no + 1)	 such that for m N we have

dist(x
m
,C
n

)	 dist(x m ,C1
-m)o 

diam K -
•

But then	 diam K	 Hxm - x..11

11 0
Hxm -	 XkxkH -

k=1

dist(x ,C n ) -
m	 0

diam K - c .

Thus
m
 - x	 diam K as m 00 , and so for any x E K we have00

lim
m
inf

m x
	 diam K	 lim

m
inf Mx

m
 - x11

contradicting the w-strict Opial condition. Hence X has w-normal

structure and so by Theorem 2.2.1 (Kirk) X has the w-FPP.
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Remark 3.1.5:	 The use of Mazur's Theorem (Corollary) in the above

argument precludes an analogous proof for the w*-case and leaves us with:

Open question: Does the w*-strict Opial condition imply w*-

normal structure (at least in the dual of a separable space

X* where BIX*1 is w*-sequentially compact)?

What is known is that the w*-strict Opial condition implies the

w*-FPP. This was indirectly proved by Karlovitz [1976b] when he gave a

variant of the strict Opial conditions formulated in terms of the Birkoff

[1935]-James [1945] orthogonality relation. We present a more direct

proof by van Dulst [1982].

Theorem 3.1.6 (Karlovitz 1976b):	 If X* is the dual of a

separable Banach space and X* has the w*-strict Opial

condition, then X* has the w*-EPP.

Proof:	 Let K be a w*-compact convex subset of X* and let

T : K	 K be nonexpansive. By Lemma 1.3.3 there exists in K an approxi-

mate fixed point sequence (xn), that is, Hnn - xn 11	 0.	 Passing to

a subsequence if necessary, we may assume that

w*
x	 •X

n

Then Tx = x . Indeed,
00	 00

lim inf HTx - xn = lim inf "Tx. - Txn

lim inf I I x	 x
n

11
00

so Tx	 x	 would contradict the w*-strict Opial condition.
00	 00

a



74.

Remark 3.1.7:	 The above proof applies equally well to the w--case

without the need for a separability assumption.

The assumption that X is separable is only required to ensure

that the unit ball B[X*] is w*-sequentially compact and so the above

result extends to the dual of any "smoothable" (admits an equivalent

smooth norm) space X.

3.2 A Sufficient Condition for the Strict Opial Condition

Definition 3.2.1 (Browder 1966):	 Let D:K	 K* be a mapping of

a Banach space X into X*, p a continuous strictly increasing real-

valued function on JR+ with p(0) = 0 (that is, p is a gauge function).

We say that D is a support mapping of X into X* with gauge function

p if both of the following conditions are satisfied:

(i) For every x C X, D(x)(x) = HD (x) II Hxm ;

(ii) For every x C X, HD (x )11 = P(11x11)

Browder showed that:	 for 1 < p < co (-
1
 + -

J
-
.
 = 1) the space

P	 ci

has a w-continuous duality mapping into t* =	 , but not the space
P	 q

L4([0,21).

The duality mapping

S (x) -0- 2 	 x}-÷ D (x) = {f C X* : lifIl = f(x) = 1}

is norm to norm upper semi-continuous if given c > 0 and x C S(X),

there exists (5 > 0 such that for all y C S(X) and Ilx - yil < 6 we

have V (y)	 V (x) + B
E
[0]	 is norm to norm uniformly upper semi-continuous

if there is a 6 for all x.
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Remark 3.2.2:	 Browder [1966] and Opial [1967] considered spaces

with a w to w* continuous support mapping (selector for the duality

mapping 0). Opial showed that uniformly convex spaces with such a

mapping have the w-strict Opial condition. Gossez and Lami Dozo showed

that the assumption of uniform convexity was unnecessary. By a slight

modification of their argument, Sims [1982] arrives at an interesting

sufficient condition for the strict Opial conditions. This is presented

in Theorem 3.2.4. But first, some more preliminary definitions.

Definition 3.2.3:	 We say that the extended duality mapping

V :X	 2x*	 x I-+ g (x) = {f E X* : f(x) = ' I f !' 11 x 11,11 f 11 = Mx11/

= x	
x

11 v-117,1)

(x	 0)

is pseudo sequentially continuous w to w* if;

given any w*-neighbourhood N* of 0, if xn x then eventually

iY(xn ) n [1)(x.) + N*]	 (I)

(with a similar definition for pseudo sequential continuity w* to w* in

the case of a dual space).

V is pseudo sequentially continuous w to w* whenever V is

w to w* upper (or lower) semi-continuous. Since V is always n to w*

upper-semi-continuous we see that any Schur space has V pseudo

sequentially continuous w to w*. The same is true of any Hilbert space

and the spaces t (1 < p < 00). However, by a result of Fixman and Rao
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[1982], DI fails to be pseudo sequentially continuous w to w* (equal

to the w to w continuity of the unique support mapping) in L (Q,E,11)

unless every measurable subset of finite positive measure contains an

atom. The failure in L 4 [0,1] had been previously noted by Browder,

and in L [0,1] (1 < p < a)) by Opial.

Now the result.

Theorem 3.2.4 (Sims 1982): If X(V) has V pseudo

sequentially continuous 7.4), (aY') to w*, then X(X*) satisfies

the w(w*)-strict OpiaZ condition.

	

Proof:	 For the convex function IR .± IR : t	 + tyll we have

(see, for example, Roberts and Varberg 1973)

Hx +	 HxH	 g+(x + ty; y)dt

0

where

,	 lim Mx t (t+h)yll -	 t
g + (x + ty; y) = h,o+

h

= max {f(y) :fED( x+ tY  )}

Il x	 tYll

w(w*)

	

Now let x
n	

xx and x 0 E X, then substituting we obtain

H x - x011 =l xn

	

	
n

- x. 11 +	 g ((x - x.) + t(x. - x 0 ); x. - x o )dt .n

0

So

lim inf	 x0H

i
lim

n
inf

n
 - x	 lim

n
inf	 g (x

n	x
.)+t(x - x 0 ); x - xo)dt.cc	 00



By Fatou's Lemma, it therefore is sufficient to prove

limninf g
+
((xn - x.9 ) + t(x.. - x 0 ); x.. - x o ) > 0

	

for all t E (0,1) and x 0 	x03.
co

Now, for each t let

N = {g g(x. - x 0 ) >---11x00 - xoll}

w(w*)
since (x - x.) + t(x.. - x 0 )	 -÷	 t(x03 - x 0 ), for n sufficiently
n 

large there exists

fn C rt1((x - x ) + t(x. - x0))
	n 	 co

such that

	

f = 7 + g	 where	 C Nt(x. - xu))
n

and g E N* .

Thus

Tn (xco - x 0 )	 tilx. - x 0 112 + g(x.	 --t2 Ikco - x0112

and so for n sufficiently large

—
+	

f (x - x
o
)

g ((x
n
 - x.) + t(x

00
 - x 0 ); x - x 0 ) �.	

n co
00

t I x 1i-x^

> 0
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I I (xn - x00) + t(x.- x 0) I I

as required.



Open question: Are the strict Opial conditions characterized

by "pseudo continuity" properties of V?

Remark 3.2.5: van Dulst [1982; Theorems 1 and 2] has shown that:

every separable space X (separable dual space A-') may be given an

equivalent (dual) norm HI, which satisfies the w(w'')-strict Opial

condition. In particular then,	 (X, 11 . 11 1 ) ((X*, 11"111))	 has the w(w'')-FPP.

These observations naturally raise the question of how w(w*)-

strict Opial conditions relate to other sufficient conditions for the

w(w*)-FPP, for example UCED, and as we see in the next Chapter, w(w*)-

shrinking ball properties. We will show by examples that all of these

conditions are essentially independent of one another.
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Chapter 4

NEAR UNIFORM CONVEXITY AND

RELATED PROPERTIES

In this chapter we consider another generalisation of uniform

convexity (UC), namely, near uniform convexity (NUC; see Huff 1980),

and a further weakening of NUC (see van Dulst and Sims 1981) called the

weakly uniformly Kadec-Klee (WUKK) property. Both properties (NUC and

WUKK) imply the w-FPP.

We also see that the WUKK (WUKK*) property is equivalent to

the 6;w(w*)-shrinking ball property and these in turn imply w(w*)-

normal structure and hence the w(w*)-FPP. This equivalence is due to

Sims [1982]. He also shows that the 6;w-shrinking ball property in

reflexive spaces is equivalent to Huff's NUC property.

In §4.4 we introduce the concept of w(w*)-asymptotic normal

structure (Lim 1974, 1980) which are to be distinguished from the concept

of asymptotic normal structure considered in §2.9. We see that w-

asymptotic normal structure is equivalent to w-normal structure (and

hence the w-FPP) and w*-asymptotic normal structure implies w*-normal

structure (and hence the w*-FPP) but that the converse of this last state-

ment still remains an open question. We include a result in relation to

the w(w*)-shrinking ball property.
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4.1	 Preliminary Definitions

Definition 4.1.1 (Day 1973): 	 (The norm of) a Banach space X is

said to be Kadec-Klee (KK) provided that on the unit sphere sequences

converge in norm whenever they converge weakly. Such a space is also

said tohave property H. In particular such a space satisfies:

(xn) c B(X)

X 	 wX	 X	 < 1 •÷	 ("3	 co

sep(xn) > 0

Here, sep(xn) = inf { Hx
n
 - x

M
H : n	 m } .

Huff [1980] reformulated the (KK) property and introduced two

successively stronger notions, namely uniformly Kadec _Klee (UKK) and

nearly uniformly convex (NUC). We recall his definitions.

Definition 4.1.2 (Huff 1980):	 (The norm of) a Banach space X is

called UKK is for every c > 0 there exists a 6 = 6(c) > 0 such that 

(xn ) c B[X]

w
x
n	x

sep(xn) 

(UKK) 1	 6	 •  

Definition 4.1.3 (Huff 1980):	 (The norm of) a Banach space X is

called NUC if for every c > 0 there exists a 6 = 6(c) > 0 such that

(xn) c B[X]

(NUC)

sep(xn )	 c

dist(0,c6 {x	 < 1 - 6
n n=1

80.

(KK)
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Equivalently, X is NUC if for every c > 0, there exists a

= 6(E) > 0 (6 < 1) such that whenever C is a closed convex subset

of B[X] with

1 - 6	 dist(0,C)	 1 ,

we have that C admits a finite c-net (that is, there exists

xx	 xEXsuch that1, 2,—,

C
n
 U	 B [x.] .

c	 1.i=1

Remark 4.1.4:	 Huff [1980] showed that:	 X is NUC if and only if

X is UKK and reflexive.

Clearly, NUC is implied by UC so we have

UC NUC UKK KK .

Example 4.1.5:	 (t22 0 Z 33 	.. . ) 2 is NUC (Huff 1980) but cannot be

equivalently renormed to be UC.

Recall (Remark 2.5.5) that the space (Z 2	 t3 0...) 2 is

UCED and reflexive but by Huff [1980; Thereom 4] is not UKK for any

equivalent renorming.

These examples show that NUC neither implies nor is implied by

UCED.

Also every Schur space (for example, t
	

is UKK, and since

NUC spaces are reflexive, UKK 	 NUC.
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van Dulst and Sims [1981] gave a weakening of the UKK property,

called weakly uniformly Kadec-Klee (WUKK), and showed it implies w-

normal structure and hence the w-FPP. It is defined as follows:

Definition 4.1.6 (van Dulst-Sims 1981):	 (The norm of) a Banach space

X is called WUKK if there exists an E < 1 and 6 > 0 such that

(WUKK)

(xn) c B[X]

w

sep(xn )	 c

In duals of separable spaces (or more generally, in spaces for

which B[X*] is w*-sequentially compact) WUKK* and UKK* may be reformu-

lated as follows:

Definition 4.1.7 (van Dulst-Sims 1981):	 If (4.1) denotes the

property:

-
(4.1)	 (x ) c A	 Aw* n B

16
(0)
- 

sep(xn) > c

then the dual space has WUKK* if (4.1) holds for some c E (0,1) and

6 > 0, and has UKK* if for every c E (0,1), (4.1) holds for some

6 = 6(c) > 0.

Recall (Karlovitz 1976b, Lim 1980) that 	 with its natural

norm fails normal structure but has w(w*)-normal structure and hence the

A c B[X]
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w(w*)-FPP. In generalizing this result while simultaneously extending

the known conditions for w(w*)-normal structure, Sims [1982] examined

the E3Ww*)-shrinking ball properties and showed that such spaces have

w(w*)-normal structure and hence the w(w*)-FPP. He defines these

properties in the following way.

Definition 4.1.8:	 The measure of compactness for a set K, denoted

by y(K), is defined to be

(4.2)	
y(K) .	 sup inf

(x
n
)cK min Nxm xnil

where the supremum is taken over all infinite sequences of points in K.

For e C (0,1) and n E]\1 we say that a Banach space X(X*)

has the c3)-shrinking n-bail property if there exists a 6 E (0,1)

such that whenever K is a nontrivial w(w*)-compact convex subset with

(i) y(K) > £ , and

(i = 1,2,...
n	 1 1

then we have K n (
n
 fl B	 [x.]

1-6 1
i=1
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Remark 4.1.9:	 Clearly, the c';w(w*)-shrinking n'-ball property

implies the corresponding c,n property whenever c'	 c and n' � n.

If either or both c or n are omitted then the property is

assumed to hold for all permissible values of that parameter.

In terms of the above definition for y (4.2), Lemma 1.3.9 may

be restated as follows.

Lemma 4.1.10:	 If K is a closed convex diametral set,then

y(K)	 divan K.

Remark 4.1.11:	 We note the following properties of y:

(4.3A)	 (a) y(K) = 0 if and only if K is (norm) compact;

(4.3B)	 (b) If K 1 SE K 2 , then y(K 1 )	 y(K2);

(4.3C)	 (c) y(K1 U K 2 ) = max {y(K 1 ), y(K2)1;

(4.3D)	 (d) If K 1 D K2 2	 Kn 2 ..	 is a nested sequence

of nonempty sets with y(Kn) -* 0, then

K = n K
n
 is nonempty and compact.

n=1

By property (b), if
	

admits a finite c-net, then y(K)

Now if c o (K) = inf' {c > 0: K admits a finite c-net}, the "usual"

measure of compactness, then

c o (K)y(K)	 2c 0 (K) .
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(d) follows from this and the analogous result for c o due to

Kuratowskii.

4.2 The Properties WUKK(WUKK*) and c;w(0)-Shrinking

Ball Are Equivalent

Before establishing the equivalence of WUKK(WUKK*) and 6;w(w*)-

shrinking ball properties, to render the shrinking ball properties more

palatable, we have the following:

Lemma 4.2.1:	 For any c E (0,1), x(x*) has the csw,(w4)-
shrinking ball property if and only if it has the E;wr(14)*)-

shrinking 1-ball property.

Proof:	 Necessity being obvious we only prove sufficiency. Assume

the implication fails, then there is a largest n (> 1, as the

E;w(w*)-shrinking 1-ball property holds) for which X(X*) has the

c;w(w*)-shrinking n-ball property. For this n, there must exist a

w(w*)-compact convex set K, with y(K) > € and points xi,x2,...,xn,

x	 such that

(i) K c B 1 [x i ]	 (i = 1,2,...,n); 	 and

( n
(ii) A=Kni n B	 [x.])	 (pi; but/

1=1

(iii) A n B
1-6 

[x
114-1

] = (pi .

Since A is w(w*)-compact, by Theorem 1.2.14 (the basic separation theorem)

applied to (iii), there exists a WO continuous linear functional f

and k ER with



sup f(B
1-6

[x
n+1

]) < k < inf f(A) .

Let	 E	 Ix E K: f(x)	 k} and1

E 2 = ix C K: f(x)	 .

so that K = E 1 U E2

Then E 1 is a w(w*)-compact convex set with E 1 s B 1 [xn+1 ] but

E 1 n
0	

thus by the c;w(w*)-shrinking 1-ball property we
- xn+1 ] = (1))

must have y(E )	 c and so since K = E 1 U E 2 , by property (4.3C)

(see Remark 4.1.11) of y we have

y(E2) > E .

But then

E 2 C K c B
1
[x]	 (i = 1,2,...,n)i 

is a w(w*)-compact convex set with

y(E 2 ) > c such that

/ n
E 2 n ( n B 1-6 [x i]= E2 fl A	 14) ,

\i=1

contradicting the choice of n as the largest value for which the

implication holds. Hence the result.

0
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Now the main result of the section.

Proposition 4.2.2 (Sims 1982):	 X has the c;w-shrinking 1-ball

property-if and only if whenever a sequence (x n) c B[X] has

sep(x) > c and x /41- x. , we have	 00 11.� 1 - S.n	 n 

Proof: (<):	 Assume the implication fails. That is, assume X

fails the c;w-shrinking 1-ball property. Then there exists a w-compact

convex set KB [0] with1

K fl B
1-6

[0] = (15 , but y(K) > c .

Hence K contains a sequence (x
n
) with

li x - x II 0 sep(x )) > E	 for n	 m ,
Ill	 T1	 T1

which by compactness, we may assume converges weakly to x E K. But

K n B
1-6

[0] = (I)

so x 4 B1_6 [0], hence Mxil > 1 - 6, contradicting the hypothesis that

lix11.� 1 - 6.

Now (=):	 Conversely, assume the implication fails. That is,

assume that there exists a sequence (x 11) c B[X] with

n 
- x

m
H 	sep(x

n
)) > c for n	 m, and

x
n
	but that	 114 > 1 - 6 .

That is,
x	 B	 [0]

1-6
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Hence by Theorem 1.2.14 (basic separation theorem), let f E S(X*)

such that f strictly separates x from B1-6[0] and let n o be such

that for n > no

f(xn)	 -12-( f (x)	 1 - 6 ) > 1 - 6

By Phillips' Lemma (see Theorem 1.2.17)

K = co fx
n n=no

is a w-compact convex set, with y(K) 	 e such that

f(y)-(f(x) + 1 - 6) for all y E K .

But
-(f(x) + 1 - 6) > 1 - 6

SO

K fl B	 [o]	 ,
1-6

contradicting the E;w-shrinking 1-ball property.

O

Remark 4.2.3:	 The above result essentially shows that the	 w-

shrinking ball property is equivalent to UKK. In particular, by Remark

4.1.4, the w-shrinking ball property plus reflexivity is equivalent to

NUC.
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Example 4.2.4:	 (i) Recall (Example 4.1.5) that the space

(t 2 	 t3	 ...) 2 is UCED (and reflexive) but is not UKK for any equiva-

lent renorming. This shows that UCED need not imply the w-shrinking

ball property. The reverse implication also fails since vacuously every

finite dimensional space has the w-shrinking ball property.

(ii) The space (t 2 et 3 0... )2 also satisfies

w-strict Opial condition but is not UKK for any equivalent renorming.

On the other hand, the spaces L [0,1] (1 < p < co) satisfy the w-

shrinking ball property but (Opial 1967) fail the w-strict Opial condition.

This shows that the properties w-shrinking ball and w-strict Opial are

essentially independent of one another. To show a z ® 0...) 2 has
the w-strict Opial condition (recall Theorem 3.2.4):

Let x
w

 x	 O.

Then there exists k o such that x (k )	 0 and for all such k0o	 o
w

x (k a )	 x (k ).	 So fx (k )	 fx (k ).o	 o	 ^-n 0	 0 But then fx
w

 fx	 so

unique support (and hence the duality) mapping is w-w-continuous.

Further examples may be found in the Appendix.

For the weak* case in a dual space X* an argument similar

to that in Proposition 4.2.2 establishes the equivalence of the

E;w*-shrinking ball property to WUKK*. We also have:
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Lemma 4.2.5: x* has the esw*-shrinking 1-ball property if

and only if there exists k E (0,1) such that for every norm

one w*-continuous linear functional f on X* the slice of

the dual- unit ball

SI-f,k1 = {oc E X* :	 .z 1 and f(x)

has y(Sif,k1)	 E.

Proof:	 is obvious, since for any k > 1 - S where 6 is

given in the definition of the c;w*-shrinking 1-ball property, S[f,k]

is a w*-closed convex subset of B 1 [0] which is disjoint from B1_6[0].

(): Let K be a w*-compact convex set and let x be

such that K c B 1 [x].	 Assume y(K)	 c but that

K n B
1-6

where 6 = 1 - k.

Then K' = K - x is a w*-compact convex subset of B 1 [0] which is

disjoint from the closed ball B 14 [0], so by the Basic Separation

Theorem 1.2.14, there exists a norm one w*-continuous linear functional

f with

inf f(K') > sup f(B 1_6 [0]) = 1 - 6 = k .

Thus K' c S[f,k] and so

y(S[f,k])	 y(K') = y(K) > E,

contradicting our hypthesis on K, hence the result.

90.
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Example 4.2.6:	 t i satisfies the conditions of above Lemma for

any E E (0,2) - take k = 1 --2- .

4.3 The Importance of NUC and Its Related Properties for

Our Purposes Lies in the Following:

Theorem 4.3.1 (Sims 1982):	 If X(X*) has the esw(w')-

shrinking ball property for some e C 10,1), then X(X*)

has w(wA )-normal structure and hence the w(a),;')-FPP.

Proof:	 Assume K is a diametral nontrivial w(w*)-compact convex

set in X(X*). Without loss of generality suppose diam K = 1. Then

by Lemma 4.1.10 y(K) = 1 > 6 and for each x E K, K c B1[x].

Let
E
x 

= K n B
1-6

[x] .

Then E
x 

is a w(w*)-closed subset of K which is nonempty by the

s;w(w*)-shrinking 1-ball property. Further, by the full c;w(w*)-

shrinking ball property, the family {Ex : x E K} has the finite inter-

section property and by the w(w*)-compactness of K, there exists an

x o E n E.	 But then, for any x E K we have
x 

xCK

xo E Ex c

so lix o -	 1 - S, and so 0 is a nondiametral point of K, contra-

dicting the assumption on K.
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Corollary 4.3.2 (van Duist-Sims 1983): A Banach space X(X*)

satisfying WUKK (WUKK') has Ww*)-normal structure and hence

the W (w* ) -FPP .

Proof:	 By Proposition 4.2.2 the WUKK (WUKK*) property is equivalent

to E;w(w*)-shrinking ball property. By the above theorem, such spaces

have w(w*)-normal structure and hence the w(w*)-FPP by Kirk's Theorem

2.2.1.

Remark 4.3.3:	 (1) Since NUC UKK WUKK spaces which are NUC

and UKK also have the w-FPP. Similarly, UKK*

(2) A direct proof that WUKK w-FPP is also

possible namely (see van Dulst-Sims 1983) :

It suffices to show that every nontrivial w-compact convex sub-

set K of X contains a nondiametral point. Suppose not. Then, by

Lemma 1.3.11 there exists a sequence (x n) in	 K satisfying

(4.4)	 lim dist(x
n+1'

co	 ,x2,...,x
n
1) = diam K.

Any subsequence of (xn) again satisfies (4.4), so we may, by weak

compactness, assume that x n	x.	 By applying first a translation

and then a multiplication, we may further simplify the situation and

w
assume that x 	0 and diam K = 1.	 Since the weak and the norm
n 
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closure of co {x
n
} coincide, (4.4) implies in particular that

lim Hx
n 	 1. Now let e < 1 and 6 > 0 be as in the definition of

WUKK. Choose n o E IN such that Hx
n

m > 1 - 6 and such that
o

dist (x n.1.1 ,EOfx l ,x 2 ,...,x
n
1) > c whenever n	 no.

co
sequence (x

n 	xn
)
n=n-4-1*o	 o

Clearly

- x
n

1).< 1	 (n = n
o

+1
' n o +2 ' ...)no

sep(x_ - x n )	 and
no

x
n 	xn 	xno
	

no
	 no

	This contradicts WUKK since
n 	

> 1 - S.
o

4.4 Lim's w(w*)-Asymptotic Normal Structure

In Example 4.2.6 we saw that -L i has 6;w*-shrinking ball

property for any 6 E (0,2), and so we conclude Lim's [1980] result:

has w i-normal structure and hence the w*-FPP,	 But Lim actually

proved more.

	

Definition 4.4.1 (Lim 1974):	 For a nonempty bounded convex subset

K of a Banach space X and' Oka :a C A) a decreasing net of bounded

nonempty subsets of X, we define the following numbers.

For each x C K and c4 E A,

rx (Aa) = sup{11x -yH : y C Act}

Consider now the
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r(x) = inffrx (Aa) : a E A}

= l
a

 r (A )
 x a

r= inf./1-(x) : x E K} .

{
Then the set AC = xEK: r(x) =r 	 (the number r) will be called the

asymptotic centre (asymptotic radius) of . {Aa : a E Al with respect to K.

In particular, if we take Aa = B for each a E A, where B

is a nonempty bounded set, then the asymptotic centre (asymptotic radius)

is just the Chebyshev centre (Chebyshev radius) of B with respect to K.

It is denoted by

C(B,K) = {x E K : rx (B) = inf r (B)} .
yEK Y

Definition 4.4.2 (Lim 1980):	 We say X(X*) has w(w'') -asymptotic

normal structure if for every nontrivial w(w*)-compact convex subset K

of X(X*), the asymptotic centre of any decreasing net of nonempty subsets

of K with respect to K is a proper subset of K.

Remark 4.4.3:	 By Definition 2.1.6 and Proposition 2.1.8, K is

diametral if and only if C(K,K) = C(K) = K.	 So we see that:

Ww4 ) -asymptotic normal structure implies Ww*) -normal structure and hence

the Ww,*)-FIT.

Lim [1974; Theorem 1 and Corollary 1] showed that w-asymptotic

normal structure is equivalent to w--normal structure. However, no such

equivalence seems to be known in the case: that is, it is not known

whether w*-normal structure implies w*-asymptotic normal structure.
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None-the-less Lim [1980] proved that: 	 t i has w i-asymptotic normal

structure and so deduced a common fixed point result for certain semi-

groups of nonexpansive selfmappings of K.	 In fact, what Lim [Theorem 3]

proved is that:	 for any nonempty w i-closed convex subset K of ti,

the asymptotic centre of a decreasing net. {Aa : a E A} of bounded non-

empty subsets of K with respect to K is a nonempty (norm) compact

convex subset of K.

This leads naturally to the following open question.

Question 4.4.4:	 Does the w*-shrinking ball property for X* imply

that for any nonempty w*-compact convex subset K of X* the asymptotic

centre of a decreasing net of nonempty subsets of K with respect to K

is nonempty and (norm) compact?

Sims [1982] provides a partial answer to this question.

Lemma 4.4.5 (Sims 1982):	 If X(X*) has the w(w*)-shrinking

ball property, then for any nonempty w(w*)-compact convex

subset K and any bounded subset B of X(X*), the

Chebyshev centre C(B,K) is nonempty compact and convex.

Proof:	 By Lemma 2.1.9 C(B,K) is closed convex and nonempty. We

only need to prove compactness. Thus, assume C(B,K) is not compact

and without loss of generality take the Chebyshev radius of B with

respect to K, r = inffr (B) : y E K}, to be one. Then C(B,K)

contains a sequence (x
n
) with Hx

n 
x
m 

> c for al m n and some

> 0, and for each x E B, C(B,K) g B i [x]. Thus by the w(w*)-

shrinking ball property



E
x
 = C(B,K) n B1_6(x)

is a nonempty w(w*)-compact subset of K. The argument now proceeds

along similar lines to the last part of Theorem 4.3.1.
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CONCLUSION

We saw in Chapter 2 that Banach spaces with normal structure

or more generally asymptotic normal structure have the w-FPP.

Unfortunately, as we found out, not every space has normal structure

or asymptotic normal structure. In fact, we saw examples of spaces, for

example, X/f and t	 , which respectively failed these properties
P,'

but still possessed the w-FPP. Examples by Alspach [1981] and Lim [1980]

show that some restriction on the Banach space is necessary. What about

spaces which are strictly convex and reflexive? What about locally

uniformly convex spaces - we do know that LUC spaces fail normal structure?

The nature of the nonexpansive mappings on these examples also suggests:

If X(X*) fails to have w(w*)-FPP does it necessarily fail for an isometry?

In Chapter 3 we found that spaces which have the w-strict

Opial condition have w-normal structure and hence the w-FPP. But it is

still not known whether the w*-strict Opial condition implies w*-normal

structure. What is known is that the w*-strict Opial condition implies

the w*-FPP.

Chapter 4 contains another unsolved problem:	 Does w*-normal

structure imply w*-asymptotic normal structure? The reverse implication

is trivially true. Equivalence of the w-case was proved by Lim [1974].

97.

These and similar questions seem worthy of further investi-

gation.
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APPENDIX

We summarize most of the geometrical conditions, considered in

the thesis, which imply the w(w*)-FPP in terms of the following diagram,

where

denotes "implies"

/4 denotes "does not imply or possess"

denotes "implication unsolved"

	

without an accompanying arrow	 or •%:> means 2

A.N.S. denotes "asymptotic normal structure"

S.B.P. denotes "shrinking ball property"

S.O.C. denotes "strict Opial condition"

and all the other symbols are obvious from the text.

N.S.

LUC	 SC	 US	 w-A.N.S.	 A.N.S.
It	 ft	 u	 4

Hilbert	 UC	 UCED	 N.S.	 w-N.S.	 w-FPP

	

w-S.O.C.	 1t

NUC	 UKK	 WUKK	 c;w-S.B.P.

w*-A.N.S.	 w*-FPP	 w*-S.O.C. 4.> w*-N.S.
40)
w*-N.S.	 w-N.S.	 w-FPP

11
WUKK* s e;w*-S.B.P.

We also tabulate below some of the common and important (counter)

examples used to illustrate independence or (non) implication for some of



the properties above. By following the arrows above (forwards and

backwards) one can deduce further properties satisfied or failed by the

given space:

Properties satisfied (=)
Space	 or failed (4)	 Reference

(1 < p < co)	 • UC, w(w*)-S.O.C.	 2.3.3, 3.1.3

t1	 w(w*)-S.O.C., w*-N.S.;
	

2.2.4, 3.1.3
w(w*)-S.B.P.;

• N .S .

L (1 < p < 00)
	

UC;	 3.1.3
• w(w*)-S.O.C., c;w(w*)-S.B.P.

2.10.1L i p,i]	 /6. w-FPP

(z i , Hx+ 11, v Hx - 11)	 w*-FPP, N.S.;	 2.10.2, 3.1.3
w*-0.C.

;SN	 2.2.4, 2.2.5c o	N.S.;
w-FPP

C[0,1]	 4 N.S.	 2.2.4

w(w*)-FPP

3t	 * * *) 2 	 UCED:	 2.5.5, 4.1.5 
74;' a;W(Wk)-S.B.P.

2
Ge e ® e 3 O ***)2	 NUC;	 4.1.5

• UC

X (1 	 1)	 w-FPP	 2.9.5

N.S.(f3.	 32)

X	 < 2)	 A.N.S.	 2.9.4

X	 3J)	 4 N.S.	 2.2.4, 2.9.4

• A.N.S.	 2.9.4X	 2)
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