REFERENCES

Baille, I.D. 1983.

Bracewell, R.N. 1978.

Brodie, R. 1983.

Chesnut, W.S. and Cameron, R.G. 1968.

Clark, G.J. 1963.
Clark, P.J. 1981.

PV Graphics Software. *Computer Centre, University of New England (unpublished).*

IGS Graphics Software. *Computer Centre, University of New England (unpublished).*

Department of Mineral Resources, NSW 1982.
Grafton and Inverell Aeromagnetic Map. Sydney, N.S.W.

Geometrics International Corporation.
Compton scatter and altitude correction of gamma-ray spectrometer data. *Technical Report No. 4*

Grasty, R.L. 1975.

Changing Uranium Distributions During Weathering of Granite. *Chemical Geology*

Howarth, R.J. 1983.

Optimizing some parameters for airborne gamma-ray spectrometric surveying. *Geoexploration* 13, 1-12.

Kleeman, J.D. 1982.

Kleeman, J.D. 1985.

A computer-program to obtain the weights of a time-domain wave-shaping filter which is optimum in an error-distribution sense. *Geophysics* 43, 197-215.

Circuits and System. Holt, Rinehart and Winston, Inc.

Design parameters for aerial gamma-ray surveys. *Geophysics* 45, 1427-1439.
Pogson, D.J. and Hitchins, B.L. 1973.
New England 1 : 500,000 Geological Sheet. Geological Survey of New South Wales, Sydney

Porter, M.F. 1983.
MPREAD Computer Program for automatic data transfer from ORTEC-6240 γ-ray spectrometer to DEC-20R. *Department of Mathematics and Computer Science, University of New England* (unpublished)

Shaw, S.E. 1964.

Stegman, C.L. 1983.

Webster, S.S. 1984.

SUPPLEMENTARY REFERENCES

Cozens, G.J. 1983.
Gravity geophysics of the Ottery Mine area near Emmaville,
N.S.W. B.Sc. Hons Thesis, University of New England
(unpublished).

The geology and mineralization of the southwest Mole Granite
region northeastern New South Wales. B. Sc. Hons Thesis,
University of New England (unpublished).

Selected geochemical, mineralogical and petrological features
of granitoids of the New England Complex, Australia, and their
relation to Sn, W, Mo, and Cu mineralization. Econ. Geol., 67,
1241-1262.

Flinter, B.H. 1981
A study of cassiterite-bearing hornblende granitoids, in New
(unpublished).

Flinter, B.H. 1982
A new classification of the granitoids of New England,
Australia and its bearing on the associated mineralization. In
P.G. Flood and B. Runnegar (eds) New England Geology,
Department of Geology, University of New England and AHV Club.

Journel, A.G. and Huijbregts, Ch.J. 1978

Minitab 1978.
Minitab statistical package, DECSystem2060 implementation.
University of Pennsylvania.

NAG. 1981.
Library of fortran routines and programs.

Newmont. 1978.
Unpublished exploration report.

Scintrex. 1978.
Operating manual for GAD-6 gamma-ray spectrometer and GSP-4
sodium iodide detector.

R-5
Supplementary Bibliography on
Airborne Radiometric Research

Batterham P.M., Bullock S.J., and Hopgood D.N., 1983.

Bennett R.,...
Exploration for hydrothermal mineralization with airborne gamma-ray spectrometry; Remote sensing methods. Canadian Institute for Mining, Special Volume No.11.

Campbell K., 1983.

Cook B., Duval J., and Adam J.A.S.,...
Progress in the calibration of airborne gamma spectrometers for geochemical exploration; Remote sensing methods. Canadian Institute for Mining, Special Volume No.11.

Airborne gamma ray survey techniques. The Department of Energy, Mines and Resources, Canada.

Duckworth K., 1983.

Duval J.S., 1983.

Inversion of airborne radiometric data. Geophysics, Vol.43, No.1, 133-143.

Supplementary Bibliography - Page 2

Holmberg P., Blomster K, and Rieppo R.

Multala J., 1981.

Good color graphics are a lot more than another pretty display. Industrial Research and Development, November 1983, 105-108.

The utility of carborne radiometric survey in petroleum exploration of glaciated regions. Geophysical Prospecting 19, 568-585.

Webster, S.S., 1984.

Appendix B

Two-dimensional gravity modelling of the Mole Granite

Introduction

This appendix describes the two-dimensional gravity modelling procedure which was used to investigate the geometry of the Mole Granite. The computer program coded by Lawton (1978) was employed for this purpose. The program was written on the basis of work conducted by Talwani et al. (1959).

The gravity profiles which were examined in the modelling were constructed from the established gravity stations on the Bouguer gravity anomaly maps published by the BMR (1970).

A polynomial fitting procedure was adopted for removing the regional gravity from the observed Bouguer anomalies. The models were calculated and compared with the observed residual anomalies. The model used is the one that best resembles the observed residual anomalies profile.

The construction of the Bouguer anomaly profiles over the Mole Granite

Three profiles of Bouguer gravity anomalies were drawn from the known gravity stations on gravity maps H56/B2-2, H56/B2-5, H56/B2-5, and H56/B2-6 (BMR, 1970). Figure B1 shows the lines of the profiles and relative location of the Mole Granite. The Bouguer gravity anomaly profile of each line is shown as solid line in Figures B2(a), B3(a), and B4(a) respectively.
Figure B1 Illustrating the location of the Mole Granite and the position of Bouguer Anomaly gravity stations.
Figure B2 Profiles of observed and calculated residual Bouguer Anomalies of the Mole Granite at LINE-01.
Figure B3: Profiles of observed and calculated residual Bouguer Anomalies of the Mole Granite at LINE-02.
Figure B4 Profiles of observed and calculated residual Bouguer Anomalies of the Mole Granite at LINE-03.
The procedure of modelling

The removal of the regional gravity from the observed Bouguer anomalies was performed prior to the modelling. A polynomial fitting routine of the 6th order from the Numerical Algorithm Group (NAG) library on the DEC-20R computer system was incorporated to obtain the residual of the Bouguer gravity anomalies.

A density-contrast value of -200.0 Kg m^{-1} between the Mole Granite and the surrounding sedimentary rocks was assumed for determining the models.

The computer program which was used permits a free selection of polygonal geometric shapes to be calculated in the modelling procedure; however, only models with a certain geometric form will fit or closely fit the observed residual anomalies.

The selection of the geometric forms was made by utilizing the topographic information to define the upper portion of the granite. The bottom part of the granite was progressively determined using a trial-and-error procedure until the calculated model best resembled the observed profile of the Bouguer anomalies over the body of the Mole Granite. Figures B2(b), B3(b), and B4(b) depict the topographic profile of line LINE-01, LINE-02, and LINE-03 respectively.

Results of the modelling

Results of the modelling for each line LINE-01, LINE-02, and LINE-03 are shown in Figures B2(c) and (d), B3(c) and (d), and B4(c) and (d) respectively. Figures B5, B6, and B7 detail the geometric shape of the cross section of the Mole Granite in lines LINE-01, LINE-02, and LINE-03 in respective order.
Conclusions

The two-dimensional gravity modelling presented in this appendix gives an approximate view of the geometry of the cross section of the Mole granite on each given line profile **LINE-01, LINE-02, and LINE-03**.

It was found from this modelling that the maximum thickness of the Mole Granite is not more than 4.0 kilometres. The granite dips are shallower in the south-west area than in the area to the north-east of the outcropped body of the Mole Granite. This may have caused a wider area of contact metamorphism in the south-west compared with the area in the north-east.
Figure B5 Diagram showing detail of modelled cross section of the Mole Granite at LINE-01.
Figure B6 Diagram showing detail of modelled cross section of the Mole Granite at LINE-02.
Figure B7 Diagram showing detail of modelled cross section of the Mole Granite at LINE-03.