
Chapter 1

Introduction and Contribution

After Grossman and Morlet introduced the Continuous Wavelet Transform

in their seminal paper [3], wavelets unified or at least attracted large number

of researchers in diverse fields such as mathematics, signal/image processing,

computer vision, statistics etc. For this reason it experienced an explosive

growth in the last decade. It is this fascination about wavelets which at-

tracted me to work on this thesis. Though initially I was trying to work on

Wavelets and Applications with no specific focus, later on the research got

focused on Wavelet Filter Banks and Digital Watermarking. Thus the thesis

consists of two parts, wavelet filter banks and Digital Watermarking.

Many results of wavelet theory were already in use before wavelet theory

came to the attention of the signal processing community, in the form of

quadrature mirror filters [35, 34] and pyramid algorithms [19, 14]. It was

Burt and Adelson's pyramid algorithm [19] which inspired Stephane Mal-

lat to develop Multi-resolution Analysis in conjunction with Yves Meyer.

Wavelet theory introduced two new concepts to the filter bank community,

regularity and vanishing moments. The theme of the first part of the the-

sis is to construct various filter banks with vanishing moments. The first
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part attacks three kind of filter banks, M-band Bi-orthogonal Filter Banks,

Double Density Filter banks and Its Generalizations and Filter Banks on the

Hexagonal Lattice.

Wavelet transform decomposes the frequencies into uniform subbands in

the logarithmic scale. In the two band setting each low pass subband is sub-

divided repeatedly to achieve uniform subdivision in the logarithmic scale.

The M-band wavelet transform can achieve finer subbands via decompos-

ing each low pass subband into M components. The M-band bi-orthogonal

wavelet transform is a natural extension to the M-band orthogonal wavelet

transform. M-band bi-orthogonal wavelets are discussed in chapter 4. Like

with classical approaches [16, 1, 38], our approach first designs scaling filters

and then completes the filter bank to obtain wavelet filters. The design of

scaling filters is similar to that of Daubechies et all. [1]. My contribution

in this chapter is on filter bank completion with the constraints that each

wavelet filter is linear phase symmetric and the analysis ( synthesis) filters

are of same size. We first show how K-Regularity of scaling filters trans-

fer into vanishing moments of wavelet filters. Then we construct the filter

banks with shortest symmetric analysis wavelet filters. However, the general

problem remains unresolved.

The traditional discrete wavelet transform suffers shift sensitivity in that

a shift in the input signal may cause unpredictable change in the transform

coefficients. Removing shift sensitivity implies having translation invariance.

Translation invariance is highly sought by computer vision and pattern recog-

nition community. By dropping critically sampled property we can improve

on the translation invariance of the wavelets. Such wavelets are more com-

monly referred to as framelets. One way of getting rid of critically sampled

property is to add more subbands. This way, we lead into Double Density
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Filter Banks (DDFB) and its generalizations. The double density filter banks

are discussed in chapter 5. My contribution in this chapter is a factorization

approach to construct wavelet filters. We first analyse how K-regularity of

scaling filters transfers into vanishing moments of wavelet filters. The major

steps of our approach is similar to that of Selesnick's [18], but we provide a

more direct factorization approach for certain special cases of DDFB's and its

generalizations. We identify that the determinant of the transfer polyphase

matrix of wavelet filters is crucial in obtaining simpler factorization meth-

ods, and show when determinant of the transfer polyphase matrix of wavelet

filters is a real number. Then we provide alternative factorization methods

and number of example DDFB's explicitly solved. We also discuss how our

approach generalizes into Multiple Density Filter Banks (MDFB's).

Traditionally discrete images are represented on a rectangular lattice. It

has been shown that hexagonal lattice can optimally pack points and also

has improved directional selectivity. Chapter 6 discusses two dimensional

filter banks on the hexagonal lattice. Our initial goal of the chapter is to

construct hexagonal wavelet filters from hexagonal scaling filters. Mainly

due to the complexity of the two dimension, we were unable to obtain a

systematic approach for the design of hexagonal wavelet filters. However, I

have provided analysis of such filters with regularity.

Finally, we looked at an application of wavelet transform, digital water-

marking of images in wavelet domain. When watermarking images we hide

invisible signals in the images to improve the security of such images. These

watermarks are usually random signals which are added to the image or some

meaningful signals such as images. A particular watermarking algorithm is

discussed in chapter 7. Our goal in the design of the watermarking algorithm

is to achieve compression tolerance. Our approach is to embed each bit of
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a binary watermark image into a feature of the original image in wavelet

domain. This feature is simply a rectangular area of the original image in

wavelet domain. We further discuss algorithms to organize feature blocks

and binary watermark images into a multi-resolution structure, which will

enhance the compression tolerance.

The thesis is organized as follows. The foundational aspects are discussed

in chapters 2 and 3 while original work and results are discussed in chapters

4, 5, 6, and 7. The chapter 2 is devoted to the discussion of foundational

aspects of filter banks while chapter 3 is devoted to the discussion of foun-

dational aspects of wavelet bases.

In watermarking, my publications are [4, 5, 26]. In wavelet filters banks,

two articles are in preparation, Theory and Design of Biorthogonal M-band

wavelets and Theory and Design of Double Density Filterbanks and framelets.



Chapter 2

Filter Bank Theory

Dense sets of data are collected or sampled for speech, image and video are

filtered to extract features, clean noise, compress etc. Commonly, filtering

involves transforming the raw data by a convolution. The purpose of filtering

may vary and can be to accentuate the desired properties at the expense of

nuisance, decorrelate, or simply to express the data or signals in a domain

or a language which simplify our purpose. After certain modification in

the transform domain, we may want to represent the data or signals in the

original form via a reverse transform. Thus filtering usually constitute a two

stage process , a forward filtering ( forward transform) and a reverse filtering

(reverse transform).

Filtering of signals is better organized into filter banks. Thus filter banks

are convolutional structures that have been used in sub-band coders for

speech, image, and video signals. In a filter bank, a data sequence x(n) is

decomposed into M channels, called sub-bands, by convolving with sequences

hi (n), i 0, 1, M — 1, called the analysis filters, then down-sampled (or

decimated) by Mi on each channel, then up-sampled (or expanded by Mi on

each channel, and then convolved with the sequences hi (n),i = 0, 1, ..., M —1,

5
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Figure 2.1: The general filter bank

called the synthesis filters, and finally recombined to give y(n). Thus each

channel or subband consists of a forward filter, a down-sampler, up-sampler

and a reverse filtering stage. When y(n) = x(n), or up to a delay, i.e.

y(n) = x(n — d) for some delay d, we say that the filter bank is a perfect

reconstruction filter bank. When the number of data samples generated in

all the channels after down-sampling is equal to the original number of data

samples, we say that the filter bank is maximally decimated in which case we

have 11/1-1 = 1. When down-sampling factors are equal we say that thei=o m,

filter bank is uniform. The structure of the classical maximally decimated

filter bank problem is given in Figure 2.1.
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2.1 One Dimensional Filter Banks

The fundamental tool of analyzing discrete time signals is the z-transform

[21]. The two-sided z-transform can be defined as

+oo

X (z) =	 x(n)z -n	 (2.1)
n=—oo

where x(n) represent the value of the signal x at the time n. When we

denote signals in time domain we represent them using lowercase letters

while when we represent them in z-domain we denote them in uppercase

letters. A similar convention is used to denote filters. The nth coefficient of

the filter h is denoted by h(n) while the z-transform of the filter is denoted

by H(z). The difference between a filter and a signal is that the filter is a

linear operator. When we want to denote a filter we alternatively use lower

case letters or uppercase letters, i.e. h or H. Instead of solving the equations

in time domain, we solve them in z-domain since z-domain simplifies many

operators such as convolution (H * X(z) = H(z)X(z)), which are rather

tedious in time domain. Thus in z-domain, the filtering of a signal x by the

filter h is given by H(z)X(z).

It can be seen that z-transform converges uniformly for all z zi if it

converges uniformly for z = zi . Thus, in general, the Region Of Convergence

(ROC) of z-transform is an circular region in the z-plane. The unit circle

plays a special role when we talk about z-transforms. The set of points such

that z 1 is defined as the unit circle. When ROC of the z-transform

includes the unit circle, z-transform reduces to the discrete time Fourier

transform which is defined as

+00

X (w) = X (e3w ) =	 x(n)e-'w
	

(2.2)
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Figure 2.2: The decimator and expander

2.1.1 Decimators and Expanders

The frequently used operations in signal processing are decimators and ex-

panders. An M-fold decimator (down-sampler) takes an input sequence x(n)

and produces the output sequence yD (n) defined as

YD(n) = x(Mn)	 (2.3)

where M is an integer. Thus the decimator retains every Mtn, sample. The

M-fold expander (up-sampler) takes an input sequence x(n) and produces

the output sequence yE (n) defined as

x(n'), if n = Mr?!
YE(n) =	 (2.4)

0,	 otherwise.

The down-sampling by M and the up-sampling by M are symbolically

represented as in figure 2.2.

We also use the operator notation, M] for the decimator and [1' M] for

the expander. It is evident that the decimator in general results in loss of

information while expander does not cause loss of information. The decima-

tors and expanders as building blocks leads to multirate signal processing, see

Vaidyanathan [36]. The advent of polyphase representation [28, 37] lead to a

great simplification of the theoretical results and efficient implementations.
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2.1.2 Polyphase Representation

The essential idea of polyphase representation is to avoid unnecessary com-

putation of the filter outputs. For example, it is not necessary to compute

filter outputs of the analysis filter bank at all discrete time instants since

only every Mth output is required. A given z-transform X(z) can be written

in the form of either 1,

M-1

X(z)
	

Xk(2" M) Type 1 polyphase	 (2.5)
k=0

fed
where Xk (z) = En x(Mn k)z -n , or

M-1
X(z) =

	

	 Zk Xk(Z M) Type 2 polyphase
	

(2.6)

k=0

where X	
def

k is alternatively defined as Xk(z) = En x(Mn — k)z-n.

Lets Hi (z) and Hi (z) denote the z-transforms of the analysis and synthesis

filters. Then we write HZ (z) and Hi (z) as

M -1

	

Hi(z) =	 Z-k fiik(ZM),	 (2.7)

k=0

M-1

	

H(z) =	 z 1  liz,k(ZM)
	

(2.8)

k=0

1 Note that the type 2 polyphase representation has been alternatively defined in [36]

as
M-1

X(z) =	 -(111-1-k)Xk(Zin
k=0



0

{zrn R(z) for k = mM
[1, M]zk R(zM ) =

otherwise.
(2.12)

FILTER BANK THEORY

fii,k(z) def h i (Mn+k)z',
n

10

(2.9)

11,,k(z) def hi (Mn — k)z'. (2.10)

CHAPTER 2.

where

Now we analyze perfect reconstruction constraints of the filter bank.

2.1.3 Perfect reconstruction Filter Banks

We consider perfect reconstruction constraints of uniform filter banks only,

i.e. Mi = M [36, 43]. From figure 2.1, we have

Vi (z) =	 M]fli(z)X(z)
-M-1 -M-1

= [A, M] Z-kfli,k(ZM)1
(2.11)=0	 -k=0

M-1

=	 fli,k(Z)Xk(Z)
k=0

where Xj are type 2 polyphase components of X(z) while	 are type

1 polyphase components of Hi . The last step follows from the fact that
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Similarly, for the synthesis bank we have

M-1	 M-1
zkYk (zm) = Y(z) =	 {[t M114(z)1Hi(z)

k=0	 i=0
M-1

=	 Vi(zm)Hi(z)
i=0

M -1 M -1

(2.13)

z3Vi(zm)Hi,j(zm)
i=0 j=0

where Yk and Hij are type 2 polyphase components of Y and Hi respec-

tively. Equating like powers of z we get

M -1
Yk (z) = > Hi,k(z)Vi(z).	 (2.14)

i=o

We define type 1 polyphase component matrix of analysis filters and type

2 polyphase component matrix of synthesis filters as

flo,o( z )	 flo,i(z)

Hi,o(z)	 1114(Z)	 .-

(z)

(2.15)

HM- 1,0(z) flm_ i ,o(z)	 HM- 1,M-1(z)

110,0(z) 110,1(z) Ham-1(z)

111,0(z) 111,1(z) Hix_1(z)
Hp (z) =

HM- 1,0(z) Hm_ i,o(z) Hm_1x_1(z)

We can write equations 2.11 and 2.14 in matrix form as

(2.16)

v(z) = iip (z)xp (z),	 (2.17)
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yp (z) = HI;(z)v(z)
	

(2.18)

where

Xp( Z ) = [X0(4 X1 (Z), XM-1(4T,

yp(z) = [Yo(Z), Yi(Z),	 Ym_1(z)]T,

v(z) = [Vo(z),	 Vm_1(z)r.

Now we arrive at

yp (z)	 1/77:(z)//p(z)xp(z).	 (2.19)

Since Mlz- kX(z) = Xk (z), for 0 < k < M —1, we can express equation

2.19 in the graphical form as in the figure 2.3. When Y(z) = X(z), it must

be that

H7:(z)ilp(z) = I.	 (2.20)

The most general form of HpT (z)f1p (z) has the form

HT (Z)flp(Z) = CZ—m

	 °rXM—r	 ZIrXr	
(2.21)

IM—rXM—r 13M—rXr

for some integer r with 0 < r < M-1, some integer m, and some constant

c 0 [36]. Under this condition the reconstructed signal is y(n) = cx(n — d),

where d = Mm — r. The result can be easily seen by first writing both X(z)

and Y(z) in terms type 2 polyphase representation and then multiplying X (z)

by cz-d and finally equating polyphase components of Y(z) and cz-dX(z).
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Figure 2.3: The polyphase form of uniform filter bank

We are interested in the case where HpT (z)i/p (z) = I. From here on-wards,

when we say perfect reconstruction, we mean Y(z) = X(z).

The above polyphase analysis is very useful in designing and implement-

ing filter banks. The following fundamental result is also useful in deriving

certain properties of filter banks, see Gopinath and Burrus [43].

Lemma 1 Let Hi i E	 M — 1} denote the analysis filter bank. Assume

that for all i, Hf(co) < oo. Then there exists a synthesis filter bank with

filters HZ i E {0,	 M — 1} if and only if Hp (z) has full rank for all z on the

unit circle (i.e. z = e iw ), or equivalently if detilp (ejw ) � 0 for all w.

Proof: If Hp (z) has full rank for all z on the unit circle, then it has full

rank for all w, is hence invertible and therefore iii7 1 (ejw ) is well defined. Take

Hp (ejw ) = Hp T (ejw ). From Hp (ew ), the numbers h i,j (n) and hence Hi (n) can

be obtained.	 V
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2.1.4 Orthogonality Vs. Bi-orthogonality

Unitary filter banks are a special case of perfect reconstruction filter banks

where synthesis (or analysis) filters are determined from analysis (or syn-

thesis) filters via time reversal: h(n) i = In this case, we have

Hp (z) = p (z) where Hp (z) is paraunitary (or unitary on the unit circle)

such that Hp (z- 1 )Hp (z) = I [35, 34, 36]. We alternatively use the terms,

unitary, paraunitary, or orthogonal to refer to such filter banks.

When the filter bank is not orthogonal, we say the filter bank is bi-

orthogonal. Further, the equation 2.20 implies the following:

flp (z)H:(z) = I

M-1

fli,k(Z)Hj,k(Z) = (5(i — j) for i, j = 0, 1,	 M — 1	 (2.22)
k=0

M]iii (z)Hi (z) = 6(i — j) for i,j = 0,1, ..., M — 1.

The above equations are sometimes known as the bi-orthogonality con-

straints. They also imply that the product filters Hi (z)Hi (z) are M-band

interpolating. We say a filter ,R(z), is M-band interpolating if r(Ml) = 6(/).

The equations 2.22 also implies that the M-shifts of the time reversed hi,

are orthogonal to h i . This is a direct consequence of [1, M]ili (z)Hi (z) = 1 in

time domain

1.:hi(k)hi(Ml — k) = 5(l).	 (2.23)

2.1.5 FIR Perfect Reconstruction Filter banks

A filter h is said to be realizable if convolution with the sequence h(n) can

be implemented, Gopinath and Burrus [43]. Finite Impulse Response (FIR)

filters are a special class of realizable filters. A filter is said to be FIR if

H(z) is a Laurent polynomial. Most of the filter bank theory has dealt with
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FIR filters. FIR filter bank theory includes all orthogonal and bi-orthogonal

wavelet bases with compactly supported wavelets.

Given a set FIR analysis filters ( or synthesis filters), FIR synthesis filters

(or analysis filters) does not always exists. The following result characterize

FIR filter banks.

Lemma 2 h i and h i form an FIR filter bank if and only if det(Hp (z)) or

det(Hp (z)) is of the form czk for some integer k and constant c( 0).

Proof: From equation 2.20, HpT (z) fc l (z) and hence

1 

etil' p (z) adj(IIP(z)).d 
(2.24)

Since the adjoint of a Laurent polynomial matrix is a Laurent polynomial

matrix, the above equation holds with Hp (z) a Laurent polynomial if and

only if det(i/p (z)) = cz k for some integer k.	 V

2.2 Two-Dimensional Filter Banks

For simplicity of notations we consider only two dimensional signals though

the following results on sampling, down-sampling and up-sampling general-

izes to more than two dimensions. We are concerned with two dimensional

discrete time images of the form x(t) where x is sampled at discrete locations

t [t 1 , t . The geometry of these discrete points can be chosen in variety

of ways. We will discuss two special cases, rectangular sampling and hexag-

onal sampling. In rectangular sampling, the values of t i and t 2 are integer

multiples of T1 , T2 respectively. This sampling points can be described by

Vn where V is a diagonal matrix with T1 and T2 along the diagonal and n is

an integer vector. The columns of V forms a rectangle, and hence the name
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rectangular sampling. In general V can be any real valued matrix which we

call the sampling matrix. For example, a special case of hexagonal sampling

is given by the sampling matrix:

V =

Down-sampling is parameterized by a nonsingular down-sampling matrix

K with integer entries. Down-sampling along the horizontal direction and

2 0
vertical direction by two results in the down-sampling matrix

0 2
Down-sampling by K results in det(K) number of sub-latices known as cosets.

For each of these cosets we associate polyphase shift vectors ki defined by

{kr; : (K-1 ) T ki E [0, 1) 2 , k r; E Z 2 1.	 (2.25)

Thus for K =

	

	
2 0 , polyphase shift vectors are given by [0, O] T , [1, O]T,
0 2

[1, 1] T , and [0, 1] T . Note the polyphase shift vectors given above are for the

rectangular lattice where V = I. For a more general sampling lattice V, the

polyphase shift vectors, k i , are given by the mapping

k, =	 -1)T kri	 (2.26)

The frequency domain counterparts of polyphase shift vectors, the down-

sampling modulation vectors ki are defined as 27r (K- 1 ) T k i . For the rect-

angular sampling lattice down-sampling modulation vectors are given by

[0, 0] T , [7r, 0] T , [7r, 7r] T and [0, 7d T . For the hexagonal lattice, down sampling

modulation vectors are given by [0, 0] [- 7' OF [, 7rF, and [—	 7r] T ./51	 v3'



Yf (w) = 	 xf (K_T (co 27k))
1(1 Z-d

kEN(KT)

(2.30)
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The Z-transform in two dimensions is defined as

X(z) —	 X(k)Z—k
	

(2.27)

where z = [zo zi ] T and k = [ko k i ] T Z —k = Zo—k°Zi—ki . This summation

does not, in general, converge for arbitrary z, see Lim [44]. If it converges

for all zi of the form

z l = Ow',/ E 10,11,w/ E

it reduces to the Fourier transform X f (w), which is defined by

Xf (w) ='(k)e'
Tk

L—a
k

where CO T = [wo C i]T

(2.28)

(2.29)

We can establish the following relation for the down-sampling of x(n) by

K to obtain y(n), Vaidyanathan [36, page 583]:

where Ar(K T) is the set of polyphase shift vectors. The up-sampling of

x(n) by K to obtain y(n) can be represented as

Y.f (w) = Xf (KTw).	 (2.31)

2.2.1 Perfect Reconstruction Filter Banks

The conditions for perfect reconstruction in Z-transform domain can be easily

generalized for multiple dimensions. In this section we analyze the perfect

reconstruction conditions in Fourier domain. By applying convolution with

analysis filter, then applying the down-sampling operator followed by up-

sampling and convolution with synthesis filter, and finally summing up for

all the subbands we get the following condition for the perfect reconstruction:



IKI-1	 1K

I 	 H(w)1{1
fl;f(w + k i )x f p ► 	 = xf (w)	 (2.32)

k=0	 i=0
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where k i are the down sampling modulation vectors In the above equa-

tion, the terms Xf(1.41 — 1}) are known as aliasing terms.

For perfect reconstruction, it must be that the aliasing terms are canceled.

Thus we require

E1KO-1 Hif (w)Af (w fc 1) = 0,
EK10- 1 Hif (w) flif

(w 
k2)	 0,
	

(2.33)

Hi (w ) Ilif (W	 = 0.

After aliasing cancellation the remaining term must be X f (w). Thus we

require

Hof (w ) fg (w ) + Hif (w ) flif (w ) + ... H 1f1( 1 _1(w)AfK i -1(w ) = 1-(1	 (2.34)

We gather the above results into the following lemma.

Lemma 3 The analysis filters 1:i-0,...,1i11(1_1, and the synthesis filters Ho, ...,

IfiKhi has perfect reconstruction if and only if it satisfies

Hif (w)flif (b) CC1 ) = 0,

EIK0-1 illf (b) ) 117(w f(2) = 0,

(2.35)

(w ) H(	 k iK	 = 0,

E1110-1 Hi(w ) fiii (W ) = K
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We can write the equation 2.35 in the matrix form:

111{,(c.o)h(w) = t	 (2.36)

Ho(w)
kf (w +

Hl (w)	 flifK1-1(w)
flif (w + 	 /if	 (CA)	 )

•••	
Ho

where

fi ct (w) =

k ^K^_1) f( IKI-1) ••• -11.1fKi_1(w

(2.37)

h(w) = [Hof(w) H1fK1 _ 1 (w)J T and t = [1K1 0 ... O] T . The matrix Ha(w)

is known as the Alias Component (AC) matrix. The AC matrix is related to

the polyphase component matrix in the sense that all theoretical conclusions

obtained from use of one of these matrices can also be obtained from the

other. In particular, in one-dimensional M-band setting, the two matrices

are related via

Ha(w) = VV*D(e 311IT (e3wm )	 (2.38)

where D(z) = diag(1z-1...z-(m-1)) and W* is the conjugate of the DFT

matrix defined by [W]km = Wkm where w = e- 273/m . Thus the invertibility

of the polyphase matrix on the unit circle given in the Lemma 1 implies the

invertibility of the AC matrix for all w.

2.2.2 Polyphase Representation

Each analysis filter Hl can be written in the type 1 polyphase form as

—k1 (2.39)
1=0
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where

h i (Kn + 1(1) n (2.40)

The polyphase matrix of a maximally decimated filter bank is a M x M

matrix Hp (z) with one row for each filter and one column for each polyphase

component. Thus

•••	 flo,11(1-1(z)

••• (2.41)Hp(z)

••• fix1-1,11(1-1(z)

Similarly, we define type 2 polyphase form for synthesis filters as

IKI-1
Hi(z) =	 zki Hi,m(zKT).	 (2.42)

t=o

Now define the type 2 polyphase matrix for the synthesis filters as

Hp ( z) =

Ho,o(z)	 Ho,i(z)

Hi ,o(z)	 111 4(z)

•••	 110,1K1-1(z)

•-• TIL IK I- 1(Z)
(2.43)

HIKI-1,1(z)

Now the conditions for perfect reconstruction can be expressed in terms

of Hp (z) and Hp(z).

Lemma 4 The analysis filters	 and the synthesis filters Ho, ...,

are perfect reconstruction filters if and only if they satisfy

HT, (z)flp ( z) = I.	 (2.44)
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As with the one dimensional case, given a set of FIR analysis filters, FIR

synthesis filters do not always exists. The following is the generalization of

one dimensional FIR filter banks.

Lemma 5 H1 and H1 (1 E {0, ..., — 1}) form an FIR filter bank if and

only if the determinant of H a (z) or 1-1,,(z) is of the form Czc for some integer

c and a constant C( 0).

The following lemma shows that the product filters, 	 are interpola-

tory.

Lemma 6 Let hi and h i form an FIR filter bank and Ifi a (z)! = Czc . Then

IKI-1

ilzf (w fck )Hif (w kk ) = Ce-'WTc for i = 0,	 — I.	 (2.45)
k=0

Proof: It can be seen that

I-6w) —  1112(w,-, )	 (2.46)
Ce-3w-

where Mi (w) is the minor associated with the Hi (w) of the system of equa-

tions 2.35. Now constructing the determinant of the system along the column

corresponding to 111(w), we get
1K I-1

Hf (co +kk )mi (w + k k ) = ce—jwTc for i = 0, ..., K — 1.	 (2.47)
k=0

from which we deduce 2.45.	 V

When Hi = we say that the filter bank is orthogonal or paraunitary,

otherwise it is said to be bi-orthogonal. Most of the filter bank theory de-

veloped is concerned with paraunitary filter banks due to the availability of

factorization methods for unitary matrices. Given the analysis filters, the bi-

orthogonal synthesis filters Hi could be obtained via equation 2.47 but such

is not popular since it can yield large filters. The equation 2.45 is known as

the bi-orthogonal constraint.
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