
Chapter 7

ulti-resolution Watermarks

A digital watermark is an identifying digital pattern that is inserted into a

digital document and can be visible or invisible. For audio or video data, the

watermark is a signal that is added such that it cannot be removed without

damaging the original data. Such watermark signals are usually impercepti-

ble. In this chapter we only consider digital watermarking of digital images.

Images can be watermarked in spacial domain or transform domain.

Our approach is mainly algorithmic in that we embed a binary water-

mark image, e.g. a Logo, in wavelet transform domain. In the section 7.1

we discuss advantages of using simple images, (small binary images), as the

watermark signals. In the section 7.2 we discuss issues relating to resolv-

ing rightful ownerships. The sections 7.3, 7.4, and 7.5 describe our wa-

termarking algorithm. Firstly in section 7.3, I discuss the feature based

watermarking process in that each watermark image (a binary image) bit is

embedded to a feature of the image in the wavelet transform domain. In

section 7.4, I will discuss Multi-resolution watermark Channels in that we

discuss a structure and an order in which the watermark image bits are em-

bedded. In section 7.5, I will discuss a wavelet transform which can be used
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for binary images.

7.1 Copyright Enforcement with Watermark

Images

All watermarking techniques cannot be used for all the scenarios which de-

mand some kind of image security. The watermarking techniques should

be developed to provide valid legal arguments to particular image security

applications. In [54] its argued that watermarking algorithms which uses

the original image in the detection process cannot be successfully used for

resolving rightful ownership. Our watermarking algorithm require the origi-

nal image in the detection process and is designed for copyright enforcement

applications where the authenticity of the original image does not arise.

Copyright enforcement deals with the illegal distribution of copies. Along

this distribution chain, images may undergo legitimate or illegitimate mod-

ification such as compression. Such modification processes may introduce

noise into the detected watermark signal. Such noise may completely change

the meaning of the watermark bit sequence if it represents a message. If

the watermark signal is an image, we may still recover the meaning of the

watermark after noise removal of the detected watermark image.

7.2 Resolving Rightful Ownerships

Consider one generates a watermarked image 1 -„, which is visually close to

the original image I using a watermark W. In [42], they argue that coun-

terfeit watermarking schemes can allow multiple claims of ownerships. We

call this scenario 1. In [54], they present a simpler scenario in which right-



CHAPTER 7. MULTI-RESOLUTION WATERMARKS
	

100

ful ownership can not be resolved, which we call scenario 2. In both these

scenarios they argue that the true owner should be able to detect the water-

marks without using a second image (original image). In the following, we

will discuss a modified scenario 1 which allow watermark detection with the

original image.

In scenario 1, consider the situation where the possessor of /-„, creates a

counterfeit original I, by subtracting his own watermark W, from 1 -„, such

that _Li is a watermarked version of the fake original 1-, by the watermark

W. In this situation the suspected image ft, is a watermarked version of

images I and I, by watermarks W and TV, respectively, and hence rightful

ownership cannot be resolved.

We argue that the problem of scenario 1 is the resolution process. Assume

the watermark detection is done by the court of law or any trusted party who,

upon the access to the watermarks and the original images, do not give them

to the other party. Suppose the ownership is claimed by a particular party

by detecting a watermark in the suspected watermarked image as well as

suspected original image. If the watermark is not destroyed by the counterfeit

original image creation process, the true owner can detect the watermark W

in both _rw and I,. But the fake owner can detect the watermark TV, in 4, but

not in I since 147, is not embedded in I. Thus the fake owner can only claim

the ownership by removing W from I. The robustness of the embedding

process must guarantee that such removal is hard if not impossible.

Scenario 2 is more powerful and simpler than scenario 1. In this case, the

possessor of Li, simply argue that Li, is the original image and the owner of

I somehow took It, and subtracted W to create I. As a solution to Scenario

2 and scenario 1, Craver et. all. [42] suggest that the watermarking schemes

should not be invertible.
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7.3 Feature Based Watermarking

When each watermark bit is embedded into a feature extracted from the

image, we call its feature based embedding [4, 55, 6]. We consider features

which are blocks of values of the image in wavelet domain. When the wa-

termark is an image, the size of such feature blocks tends to be small due to

the large number of watermark bits which are required to be embedded.

Watermarking will not be successful if the attacker can easily see or re-

cover the stored contents of the feature blocks. By transforming the wa-

termark bit into a broadband noise signal, we can make the attackers task

harder. We associate a broad band noise signal to each watermark bit. These

broad band signals (watermark noise signals) can possibly be the same or dif-

ferent for different watermark bits which comprise the watermark image.

Watermark Image Embedding

We add the broad band noise signal to the feature block to embed the water-

mark bit 1. We make no changes to the feature block to embed the watermark

bit 0. Let the feature block coefficients are represented as a i and the broad

band noise signal as 13i , then after embedding the watermark bit 1 we change

the feature block coefficients a i to ar = az + 13i.

Watermark Image Detection

We detect the watermark bit w /s, by correlating the feature block coefficients,

a: , of the suspected image with the associated broad band noise signal /3i.

Let ck = E ai f3i , then for an appropriate threshold tk,
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{

1 if E al 13i — ck > tk

0 if E alOi — ck < tk

For most watermarking techniques where feature block size is very large,

it is natural that ai and f3i are uncorrelated such that E(ck ) = 0. But since

our feature block size is small we will not make such an assumption.

Threshold Selection

Watermark detection is successful only if the threshold t, which we assume

temporarily independent of feature block, is chosen such that the expected

correlation of /(3i and the noise introduced by image modification, is within

— (> Oi l3i — t) and t, i.e E < t < E oioi + E -yi f3i . The left hand bound

is for correct detection of wk = 0 while the right hand bound is for the correct

detection of wk = 1. Such a threshold exists with no errors only if

Sup k 	< Infk

Unfortunately, this relation is not satisfied in practical situations. For

watermark images stored in watermark storage channels which are discussed

in the following section, we have experimentally found an optimum threshold.

Let e l be the number of errors for a watermark image where all the pixels are

1, at a particular compression ratio. Also let e0 be the number of errors for

a watermark image where all the pixels are 0, at the same compression ratio.

The graphs of el and eo are given in Figure 7.1. The optimum threshold,

top , exits when e l + eo is minimum. Also at this point e l is approximately

equal to eo. We also observed that t op is approximately equal to 
2

/3i0i as

expected. We also observed that this threshold is approximately the same at
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top	 Threshold

Figure 7.1: Threshold failure statistics

all the compression ratios as long as we perform the calculations up to the

breaking point of the channel. When the broad band watermark noise signal

is different from one feature block to another we use a > /30, as the feature

block dependent threshold.

7.4 Multi-resolution Watermark Channel

We construct a watermark storage channel which has multi-resolution char-

acteristics, with which we are able to extract binary watermark images at

different resolutions. In our framework a particular compression ratio repre-

sents a particular watermark channel resolution. We will first define binary

watermark storage location as follows.

Definition 11 A binary watermark storage location x is a binary variable

derived from the image I such that E(x 0) < k and E(x = 1) < k for given

error bound k. The function E(x) is the error caused by setting the binary

variable x true or false.

A particular channel resolution Vri consists of a set of such storage loca-

tions where r i is a compression ratio. The channel at different resolutions
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are related as

Vro C Vr l C Vr 2 C • • •

where

ro < r i < r2 < • •

We allocate binary watermark storage locations according to the following

criteria. Let STABLE(I, rk ) represent the set of watermark storage locations

such that x(I) = x(Irk ) for both x(I) = 1 and x(I) = 0 where x(I) represents

the value of storage location x of original image I and x(irk ) represents the

value of storage location x of original image compressed at compression ratio

rk.

Definition 12 A binary watermark storage location x is said to be in Vrk of

I if x E ST ABLE(I,rk ) for all i such that r k < ri.

For a given image, error bound and a compression algorithm, we will sort

the storage locations to get Vro Vri V*0 Vr2 Vrl , • • • The multi-resolution

values of the binary watermark image is stored in the channel in the order

above.

We construct the watermark storage channel assuming that all the wa-

termark storage locations are independent from each other, i.e whether a

particular storage location belongs to a particular resolution is not deter-

mined by the values of other storage locations. With this assumption and

using a broad band watermark noise signal for all the feature blocks, we use

the following algorithm to construct the multi-resolution watermark channel.
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Algorithm 2

1. Embed True at watermark storage locations resulting from the wavelet trans-

form. Apply the inverse wavelet transform and denote the resulting image

as Pr". Similarly, embed false and denote the resulting image as I N". Let

Vrk be the storage locations at resolution r k = 1. Chose a set of compression

ratios fri l such that • • • < rk_ i < rk . Let i = k.

2. Let

Vri_i = ST ABLE(P",ri_On

STABLE(Ifal",riAn

Vr,

3. Repeat step 2 for i = k, k — 1, k — 2, • • .

Figures 7.5, 7.6, and 7.7 shows the performance of such independent wa-

termark storage channels.

7.5 Multi-scale Transform of the Binary wa-

termark Image

We transform the watermark image to a multi-resolution representation using

the filter bank as shown in Figure 7.2. Successive application of the filter

bank to low pass sub-band yields the multi-resolution representation. We

used separable filters. Other such binary wavelet filters [7] can also be used.

After our work we have learned that our binary filter bank is a special case

of morphological wavelet filters [15].

The filter bank follows the lifting approach [51]. In the analysis side,

original signal is separated into even and odd components by the down-

sampling operators. The odd values are predicted from the even values and
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Figure 7.2: 2-channel Binary Signal Filter Bank

Figure 7.3: Scan order of coefficients

the prediction error is calculated using the XOR operator. Notice, the perfect

reconstruction of the filter bank is guaranteed since

(o XOR e) XOR e) = (o XOR (e XOR e))

= o XOR false = o

where o is an odd value and e is a predicted odd value. Multi-resolution

representation of our watermark image is shown in 7.4 (b).

This multi-resolution representation of the watermark image is scanned

in the order shown in figure 7.3 and stored in the multi-resolution watermark

channel.
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UNE 
UNE

a.	 b.

Figure 7.4: (a) The original UNE watermark image (b) One level multi-

resolution transform of the watermark image.

7.6 Results and Discussion

We have used the Lena image and the bike image used in JPEG2000 stan-

dardization process for watermarking purposes. The watermarked Lena im-

age is given in Figure 7.8 for the feature block size of 2x2. We have measured

the compression performance of the watermarking algorithm under SPIRT

compression. The subjective detection performance after partial reconstruc-

tion at 20:1, 16:1 and 13.3:1 compression ratios for Lena and for the bike

image are given in Figure 7.5 and 7.7 respectively. Figure 7.6 shows the full

reconstruction of the detected watermark image at compression ratios 10:1,

8.89:1 and 8:1 for Lena image. We applied simple noise removal algorithm

which removes isolated bits and connected bits of size 2. All the detected

watermark images show that the channel has a clear breakdown size which

decreases with increasing compression ratios.

Our future work will be to improve the embedding algorithm to include

perceptual criteria, find better multi-resolution watermark channel construc-

tion algorithms and to embed multiple watermark images.
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d.	 e.	 f.

Figure 7.5: The detected watermark image for Lena at (a) 0.4bpp (b) 0.5bpp

(c) 0.6bpp and the partial reconstruction from the low pass image after noise

removal at (d) 0.4bpp (e) 0.5bpp (f) 0.6bpp.

d.	 e.	 f.

Figure 7.6: The detected watermark image for Lena at (a) 0.8bpp (b) 0.9bpp

(c) lbpp and the full reconstruction after noise removal at (d) 0.8bpp (e)

0.9bpp (f) lbpp.
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d.	 e.	 f.

Figure 7.7: The detected watermark image for bike at (a) 0.4bpp (b) 0.5bpp

(c) 0.6bpp and the partial reconstruction from the low pass image after noise

removal at (d) 0.4bpp (e) 0.5bpp (f) 0.6bpp.

Figure 7.8: The watermarked Lena image
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