
Chapter 5

Double Density Filter Banks

and Framelets

In this chapter we look at the design of oversampled filter banks and the

resulting framelets. The undecimated wavelet transform is known for its

shift invariant properties and has applications in areas such as denoising

[29]. The framelets we will design in this chapter will have improved shift

invariant properties over decimated wavelet transform. Shift invariance has

applications in many areas particularly denoising [22, 40, 20] and coding and

compression [56].

We will look at a special class of framelets from a filter bank perspective,

in that we will design double density filter banks (DDFB's) as shown in

Figure 5.1. Using the basic multirate identities we obtain the following

expression for Y(z).

Y(z) = (H0 (410(z) Hi(z)Hi(z)H2(412(z)) X(z)

12: (110(410(-2) + H1(411 (-Z) + H2 (412(-Z)) X(—z).
(5.1)

56
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Now, for the perfect reconstruction, i.e. Y (z) = X(z), it must be neces-

sary that

Ho(z)Ho(z) + Hi (z)Hi ( z) H2 (z)H2 (z) = 2,	 (5.2)

Ho(z)Ho(—z) 	 H2(z)H2(—z) = 0.	 (5.3)

Alternatively we can write the above perfect reconstruction conditions in

the polyphase domain. Given the following polyphase matrices:

Roo(z) 17101(z)
	

Hoo(z) Hoi(z)

	11(z) = flio(z) Ilia (z) and 1/(z) = 1110 (z) Hii(z)
	

(5.4)

11-20(z) 1121(z)_	 H20 (z) H21(z)_

where H(z) is the type 1 analysis polyphase matrix, and II(z) is the

type 2 synthesis polyphase matrix, we can write the perfect reconstruction

conditions as

[H(z)] T ft(z) = I. 	 (5.5)

5.1 Constraints on The Scaling Filter

We first formalize the low pass nature of scaling filters for the double density

filter banks.

Definition 7 A filter A(z) is said to be a possible scaling filter if Af (0) =



CHAPTER 5. DOUBLE DENSITY FB'S AND FRAMELETS 	 58

vo(n)

Hi(z)
	

2
	 vi (n)	

fit

H2 (z)
	 v2(n)

Ho(z)
g(n).

Hi(z)

H2(z)

Figure 5.1: The double density filter bank

The following lemma provides the relationship between the zeros of the scal-

ing filters at the aliasing frequency 7r and the first vanishing moments of

wavelet filters.

Lemma 8 Let Hof (0) = 	 1-161.(0) = 12- . Then the following are true.

• If at least one of Hi (0) and 1-60) are nonzero, Hof (7) = 0, and

N(70= 0 then :fi'if (0) = 0 and 1:4f (0) = 0.

• If at least one of H1 (0) and il2(0) are nonzero, Hof (7) = 0, and

kot. (7) = 0 then Hif. (0) = 0 and 160) = 0.

• If HRO) = 0, H2 (0) = 0, Hl (0) = 0, and H2 (0) = 0 then Hof er) = 0,

and Ho (7) = 0.

Proof: First, we prove the first case and the second follows similarly. We

can write equation 5.3 in frequency domain as

Hcf) (w)flo f (c.,) + 7r) + Hif (w)ilifjw + 7r) + H‘ (w)il‘ (co + 	 = 0	 (5.6)

from which we can deduce the following after substituting zero and 7r for w

respectively.

Hi(0)Hi(7r) H2(0)f-I2(7r) = 0	 (5.7)



and find a contradiction. Substitute Hif (7) = kH2(7) and if1(7) =

(70
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HI	 f(0) H2 (7r)N(0) = 0	 (5.8)

The equation 5.2 can be written in frequency domain as

Hg(w)kf,(w) 	 f(w)Hif (w) 	 (w) = 2	 (5.9)

from which we deduce that

Hi (0)Hi (0) + H‘(0)11(0) = 0.	 (5.10)

Since at least one of H1(0) and 11‘(0) are nonzero, the coefficient matrix

of the equations 5.10 and 5.7 must be singular. Thus,

ilif(0)17/‘ ( 7r ) — iTi f (0)//if (7) = 0.	 (5.11)

Now we have the following system of equations in variables Hl (0) and thf (0).

f.(0)fi( 0 ) H2 (7r) — fl2(0)flif (7) = 0

Hi(0)Hi(7r)+H2(0)HZ (7r) = 0
	 (5.12)

The coefficient matrix of the system has full rank since

H1(7)111(7) 112(7)11(7r) = 2.	 (5.13)

To see this, we assume

in equation 5.13 to see the contradiction. Since coefficient matrix has full

rank, we must have /60) = 0 and H2 (0) = 0.

The third case is easier. Substituting w = 7 in equation 5.6 we get

Hof (7)i-lof (0) = 0, which implies Hof (7) = 0. Similarly we get ficf, (7) = 0

after substituting w = 0 in equation 5.6.	 V
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Thus unlike in the wavelets which corresponds to the maximally deci-

mated filter banks, vanishing moments of the high pass filters are not guar-

anteed simply by enforcing zeros at the aliasing frequency for the scaling

filters in general. But vanishing moments of the high pass filters are still

guaranteed for the orthogonal like double density filter banks.

Corollary 1 Let Ho be the scaling filter of a orthogonal like double density

filter bank and H1 and H2 are the wavelet filters. Then Hl (0) = 0 and

H2 (0) = 0 if and only if Hof (7) = 0.

Proof: It follows immediately from Lemma 8 since vanishing moments for the

analysis wavelet filter implies vanishing moments for the synthesis wavelet

filter and vice versa. 	 V

Now, the issue of design of scaling filter is driven by three main con-

straints.

• Necessary conditions for perfect reconstruction.

• Vanishing moments for wavelet filters.

• Smoothness for scaling functions.

5.1.1 Necessary conditions for perfect reconstruction

In the two-band maximally decimated filter banks, for perfect reconstruc-

tion it is necessary that the scaling filters, Ho(z) and Ho(z), satisfy the

bi-orthogonality constraint, Ho(z)Ho(z)[,, 2] = 1. Thus most of the designs

were dominated to ensure this bi-orthogonality constraint [11, 1, 16]. In the

design of double density filter banks we no more have the bi-orthogonality

constraint. Thus strictly speaking we do not have bi-orthogonal or orthog-

onal double density filter banks. But we will design bi-orthogonal-like and
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orthogonal-like double density filter banks. We use the term orthogonal-like

when the analysis filters and synthesis filters are related via, HZ (z) = HZ (z-1)

for i E {0, 1, 2}. When the filters are not orthogonal-like we say the double

density filter bank is bi-orthogonal-like. Thus we can select scaling filters as

we like and complete the filter bank such that it satisfy the perfect reconstruc-

tion. But vanishing moments for the wavelet filters do impose constraints on

the design of scaling filters.

5.1.2 Vanishing moments for wavelet filters

First we will look at necessary conditions which must be satisfied by the

scaling filters such that wavelet filters has a given number of vanishing mo-

ments. The following lemma gives the minimal number of higher derivatives

of scaling filters which vanish at the aliasing frequency.

Theorem 10 Let the analysis wavelet filters has at least kw vanishing mo-

ments and the synthesis filters has at least Kw vanishing moments. Then

Ile) (7) = 0 and flof(z) (7) = 0 for i E {0..K,} where Km = min(kw , Kw).

Proof: We prove the Theorem by mathematical induction. The case for

i = 0 is covered by the Lemma 8. Now we assume that the Lemma is true

for i = 1 — 1, i.e. Hof( ' ) (7) = 0 and le i) (7r) = 0 for i E {0../ — 1}. By taking

the l' derivative of equation 5.6 and substituting w -= 7T we get

Hof (' (7 )H, (o) = 0
	

(5.15)

which implies Ho l) (7) = 0. Similarly, by taking the i t ' derivative of equation

5.6 and substituting w = 0 we prove that i/of(1  (7) = 0.	 V

The vanishing moments of wavelet filters imposes further constraints on

the scaling filter. The following Lemma indicates that the corresponding
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product filter Po(z) = Ho(z)110 (z) of the scaling filters must have the coifiet

like property, i.e. zeros of higher derivatives at zero.

Lemma 9 Let analysis wavelet filters A. and 112 has K1 and K2 vanish-

ing moments and the synthesis wavelet filters Hi. and H2 has K1 and K2

vanishing moments. Then

Po
(i)Po (0) = 0	 1 < i < min(Ki	 K2 k2 ).	 (5.16)

Proof: Let Pi (z) = Hi (z)1-11 (z) and P2 (z) = H2 (z)1-12 (z). Then the

equation 5.2 can be written as

Po(z) + (Z) + P2(z) = 2.	 (5.17)

Now the result follows after taking the derivatives of the above equation in

the frequency domain and then substituting w = 0.	 V

The above results are useful in the design of bi-orthogonal-like scaling

filters. Now we ask the reverse question which is useful in the design of

orthogonal-like scaling filters and wavelet filters. How would the zeros at

aliasing frequency at the derivative of scaling filters automatically transfer

to the vanishing moments of wavelet filters?

Theorem 11 Consider an orthogonal-like double density filter bank with Ho

as the scaling filter and Hi. and H2 as the wavelet filters. Let Hof(z) (7)	 0

for i E {0...K0 } and that Pof(z) (0) = 0 for i E {1...2K3 } such that K, < Ko.

Then for 0 < i < KS Hr) (0) = 0 and Hr) (0) = 0.

Proof: We prove by mathematical induction on i. For i = 0, the hypoth-

esis is true by Corollary 1. Assume the hypothesis is true for 0 < i < 1 — 1.



Hi(7 ) 171i (1) (°) H2( ) 1-4°) (°) =
if2(7)/e)(0) —	 )i-f  (0) =

(5.23)
0
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We will prove the hypothesis for i = 1 by contradiction. Assume that at

least one of H1 ct) (0) and 14f(1) (0) are nonzero. Taking the Ph derivative of

the equation 5.6 and substituting w = 0 and w = 7F, we get

H1 (1) (0)flif (7r) 	 (7) = 0,

Hi (7)flif(i) (0) + H2(r)f-1-2 l) (0) = 0.

Taking 2/ th derivative of the equation 5.2 we get

2	 2/ 

PO 
( 2l ) (co) +	 (zi)  an  Hf (w)

con r

d21—n

d 	 1—n 11- (W )	 0.n 
r=1 n=0

Substituting w = 0 we get

(5.20)

Hif(i) (0)111 (i) (0) +	 (0)ir/r) (0) = 0.	 (5.21)

By the assumption, the coefficient matrix of the equations 5.21 and 5.18

must be singular. Thus we get

ii2(701-11 (17 	- H1(7r)fir	 = 0. 	 (5.22)

Consider the following system of equations:

Using a similar argument as in Lemma 8 it can be shown that the coefficient

matrix of the system has full rank and hence fi1 (1) (0) = 0 and fir ) (0) = 0.

Thus in the orthogonal-like setting we get HI (1) (0) = 0 and Hr) (0) = 0,

which is a contradiction. 	 V
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5.1.3 Smoothness of the scaling filter

The most popular way of achieving smoothness for the scaling filter is to en-

force polynomial interpolation property for the scaling filter. The conditions

for polynomial interpolation are well known as we have seen in the chapter

4. We will enforce a factor (1 + z- 1 ) K° for the scaling filter Ho(z), which in

turn results in Hof(1) (7) = 0 for i E {0..K0 — 1}.

5.2 Design of the Scaling Filter

We will discuss a technique due to [18]. In that, Selesnick describes a max-

imally flat symmetric FIR filter which was originally described by Herrman

[32]. Let Po(z) be the product filter which must satisfy the constraints

Pof (0) = 2, Pof(i) (0) = 0 for i E {1...2K,}, Pe ) (7) = 0 for i E {0...2K0 }, and

Po(z) is symmetric, then the product filter is given by

Po(z) = 2
z + 2 + z _ i \ Ko Kc-i

4	 /	

KO + n — 1_ (—z + 2 — z-1)n
77,	 i	 4

	 (5.24)
(

n=0

Now orthogonal-like scaling filters can be obtained by spectral factor-

ization of the product filter while bi-orthogonal-like scaling filters can be

obtained by polynomial factorization and appropriate regrouping of the fac-

tors.



Ho (z)=

111 (z) =

fli (z) =

\ 2

— Z -1\ Kh
(z),

2
(1	 Kh

Ai(z),
2

Ao(z),
71 + Z

(5.25)
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5.3 Example Designs: Bi-orthogonal-Like Ad

Hoc designs

We assume that both scaling filters have regularity K1 and wavelet filters

have regularity Kh such that

Ho(z) =
(1 +

Ao(z),
2

Kh
A2 (z),H2 (z) = (1 —2z-

(1 —	 -
H 	 = 	 	 A2(z).

2 )

Now the perfect reconstruction conditions can be written as follows.

(1 _ ,,- 1 )Kh
2

- Z) Ah

2	
(Ai(z)Ai(z) A2(z)A2(z))

— (1 + 2 
2

Ao(z)Ao(z),

Kh

Ai(z)Ai(—z) A2(z)A2(—z))

(1 + z- -
2 

Z)K1
2 

Ao(z)Ao(—z).

(5.26)

When the scaling filters are appropriately designed we can divide RHS

of each of above equations by ( 1-r) (
Kh

1 -2-2 ) 11- h and i-r 	 (1+
2
z)

1
Kh

respectively. Then we get the following system of equations.

(rh 
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A i (z)Á i (z) A 2 (z)A 2 (z) = B(z)

A i (z)A 1 (—z) A 2 (z)A 2 (—z) = C(z)
	 (5.27)

The determinant of the system is given by

A(z) =	 (Z)A2(	 - A 1 (-z)A2(z). 	 (5.28)

Note that A(z) = —A(—z) and hence A(z)[,, 2] = 0. The solutions of

the system can be written as

-
A i (z)	 	 z\(A2(—z)B(z) — 2(z)C(z)),

o(z)
-

A 2 (z) = 	 z) ( A i (—z)B(z) Ai(z)C(z)).A( 
(5.29)

Example 2 We design a double density system with K 1 = 2 and Kh, = 1.

The smallest low pass product filter is given by Ho(z)110 (z) = 2 (z+2+2- 1  ) 2
4

such that Ho(z) = f ( 1+2z-1	 ) 2 and Ho(z) =	 (1+212. We set one of the

analysis high pass filters as the Haar filter such that A 1 (z) = N. We set

A(z) = —4z. This gives us the other minimum length analysis wavelet filter

as the unit time advanced of the Haar filter such that A 2 (z) = -\/z. The

following table summarizes the filter system. Both analysis and synthesis

Analysis filter Synthesis filter

,,/	 (1+z )2 )	 + z _ 1	 2

v	 k	 2	 I

(1

V """'	 2

)

(1-z )\,/	 l	 2	 ) V24 + 3)(1-2z-1 ) ( z -1

1 2 z )'\/,Z	 =-( N/2 + 1)(1-z -1 ) (3z -1
4	 2

scaling filters are second order splines while analysis wavelet filters are Haar

filters. All the filters are symmetric except synthesis wavelet filters.
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Example 3 We design a double density system with K1 = 4 and Kh = 2.

The smallest low pass product filter is given by

Ho(z)Ho(z) 
= 2 (z+244-z-1)4

1	
( z 3 z_i)

such that Ho(z) =	 ( 1 +2 - 1 ) 4 (-Z + 3 — z- 1 ) and Ho(z) =	 (1+14. We

set one of the analysis high pass filters as the second order high pass spline

such that H1 (z) = V G ( 1 2 1 2 . We set i (z) = \/.2 and A(z) = —4z. This

gives us the other minimum length analysis wavelet filter as the unit time

advanced of the second order high pass spline filter such that A 2 (z) =

The following table summarizes the filter system.

Analysis filter Synthesis filter

V-2- (11214 ,\/- (1+z-1)4 (-z
 2' + 3 — z-1)

(
1

\/-2- 2z)2 -\/	 (1-z-1) 2
16	 2 (3z2 + 18z + 38 + 18z -1 + 3z-2)

197 0-z)2 .\/ ( 1-z12 (z 2 +) 6z + 17 + 32z- 1 + 17z- 2 + 6Z -3 + Z -4 )\	 2	 i 16 2

The example designs construct a class of double density filters where the

analysis filters are delays of each other. Thus the wavelet coefficients can be

produced by filtering by a single filter and with no down-sampling. When

analysis filters are produced by splines shifted by 7r in frequency domain as

in the above examples the resulting filter system consists of symmetric filters

when K1 - Kh is even as in example 3. To see this, when K1 - Kh is even both

B(z) and C(z) are symmetric, which results in symmetric synthesis filters.



kh
1 —1

Bi(z).
—z 1

kh
1	 —1 	

E2(z).
—z 1

Simmilarly

H20 (z)

H21 (z)
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5.4 A Polyphase based Design Approach

As with many problems in signal processing, polyphase constructions sub-

stantially simplify constraints. It is the same with double density filter banks.

Let the analysis and synthesis wavelet filters are of the form

Hi( z ) = (1 — zYchili(z),

H2( z ) = (1 — z)Rhil2(z),
(5.30)

Hi (z) = (1 — z-1)AhAi(z),

112 (z) = (1 — z')AhA2(z).

Let the type 1 polyphase matrix of analysis wavelet filters and type 2

polyphase matrix of synthesis wavelet filters are given by

flio(z)
flh (z) =	 and Hh (z) =

fl2o(z) i-121(z)_

Then from equation 5.5 it is easy to see that

Hio(z) Hii (Z)1

_H20 (Z) H21 (z)

117:11h = I —
Hoo(z)

Hoi(z)
floo(z) flo i (z)1 . 	 (5.31)

We can obtain a simplified expression for both Hh (z) and Hh (z) as in the

flio(z)

R11(z)
With a simmilar argument as in the proof of Lemma 7 it can be shown that

proof of Lemma 7. First consider the type 1 polyphase vector



and Q(z) = 	P(z). Since
(1-z-1)I'h(1-z)1h

0 1

0
z-1

1 1

(5.33)

kh

(5.34)

(5.35)

(5.36)

Hh(z) = A(z)
[1 —z"

—1	 1

Let

Kh

P(z) =
1 	 1

z- 1	 1
I—

Hoo(z)

H01(z)
[Hoo(z)	 Hoo(z)

1 —z 1 z 1— z 0

—1 1 1 1 0 1— z

1 	 1	 1 	 —1 	 1	 z-1

we get

AT (z):4(z) = Q(z).

Kh

CHAPTER 5. DOUBLE DENSITY FB'S AND FRAMELETS 	 69

Thus

hh

Hh (z) = A(z) 
1 -z 	

(5.32)

where A(z) = BT (z) . Simmilarly

Many factorization methods of Laurent polynomial matrices are crucially

dependent on the determinant of the matrix. Fortunately, for a good subclass

of double density filter banks, we have a simplified result for the determinant

of Q(z). We assume that the number of vanishing moments of analysis high

pass filters and synthesis high pass filters are equal, i.e. Kh = Kh = M. It can

be seen that the determinant of HU/h is given by D(z) = 1— Hoo(z)floo(z)—
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1 —z 	 1 —z-1
Hoi (z)Hoi (z). Since Q(z) is FIR and both	 and

—1 1

are factors off/07/h , it must be that (1 — z) m (1 — z- ) m is a factor of D(z).

We have the following Lemma.

Lemma 10 Let the high pass filters has M number of vanishing moments

each and the low pass filters, Ho and 14, have the equal regularity, Is, and

given by

110(z)110(z) — 2 ( z + 2 
4

K +n-1 (—z+ 2 —z-ln.
n	 4

Then the determinant of Q(z) is a real number when,

[ K M — 1 = 1

(5.37)

(5.38)

Proof: We have

det(HRz)flh (z)) = (1 — z) M (1 — z-l)mdet(Q(z))

= 1 — Hoo(z)Hoo(z) — Hoi(z)//01(z).

Also note that, Hoo(z)Hoo(z) + Hoi (z)Ho i (z) = Ho(z)110 (z)[, 2]. Now the

largest power of z in det(117:(z)flh (z)) is [ A -02- 1 i and hence the largest

power of z in det(Q(z)) is [/\ +Atl i M. By symmetry, the smallest power

of z in det(Q(z)) is	 [K+m-1] + M.
2

The above lemma covers some useful number of double density filter banks

irrespective whether they are bi-orthogonal-like or orthogonal-like such as

(K, M) = (2, 1), (3,1), (3, 2), (4,2), (4,3), (5, 3), (5, 4), (6,4), (6,5) etc.

(5.39)

V
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5.4.1 Factorizations for Orthogonal-like DDFB's

Note that the polyphase matrix of the orthogonal-like DDFB is a 2 x 3

lossless system [36]. Selesnick [18] designs the high pass filters indirectly by

first designing a 3 x 3 lossless system and then extracting only the first two

rows to form a 2 x 3 lossless system. We provide a more direct method for a

class of DDFB's by factorizing Q(z) when det(Q(z)) is a real number (as in

Lemma 10).

Lemma 11 Let

	

Q0 ( z ) = pol:kz k	 DoTk_i _k-1
• • • + P0,0 + • • • + PO,k-1Z (k-1)

	 p
0,kZ—k

and assume that det(Qo(z)) is a nonzero real number. Let

)0,k
2
 I	 R0,0	 Ro,k_12"—(1-c-1) 	 iLD0kz-kR _:k RT

	z and Ao(z) = 	 -	 RoT k- and Ao(z) is nonsingular. Then for some Qi(z),ROk

Q 0 	 = [140(Z-1)]—T 1(z)[A0(Z)] —1
	

(5.40)

where

Q1(z) PIT k-1 Zk-1 PIT k-2 Zic-2 	 + P1,0 +	 P1
(k-2) 

7- 1,k-1Z—(k-1) •

Proof: Since Q0 (z)Q0 1 (z) = I, we have

Po,kRo k = 0

nT DT	 n
ro,k Lojc 	 u
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and

PO,k—lRo,k	 PO,k Ro , k_i — 0.
	 (5.43)

From equations 5.41 and 5.42 it is clear that

Qo(z)Ao(z) = ( PcTk Ro,k -134-1 RoT O zk	 (Po,kRoT	 Po,k_1Ro,k)z-(k-1).

Now

;V; (Z -1 )Q0(Z) Ao(Z) = (RoT po7:k 	RoT i.c p0T,k-1 RoT ozk

(RoPo,kRoT k Ro , k13o,k-1 Ro,k)z-k

From equations 5.43 and 5.42, we get

Ro,kPO,k-1R0,k
	 (5.44)

Thus it is clear that the coefficients of Z —k and zk in AoT (z -1 )Q0 (z)A0 (z) are

zero.	 V

Remark 1 Note since AoT(z- 1) z-1A0(z),

	

Qo(z) -= [Ao(z)]-1Q1(z)[A0(z-1)]-T
	

(5.45)

is also a possible factorization but it does not give us new filters!

Assuming each degree reduction step is invertible, repeating the process

given in Lemma 11, we could write

(Z-1)...ARZ-1)Q0(Z)A0(Z)...Ak(Z) = Qk+1	 (5.46)

	

where (2 k+i is a constant symmetric matrix (i.e. Q	 = Q41 ). Then

Qk+1 is orthogonally diagonalizable and let 0k+1 = ATN Ak+i . However we

require the eigenvalues of (2 k+i be positive. Then we could write

AT (z) = Ao-T (z-1)...Ak-T(z-1)Aik'+1.	 (5.47)
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We have one degree of freedom in the factorization as given by

AT (z) = Ao T (z-1)...AkT(z-1)Ak+1
cos 9 —sin 0

sin 0 cos 0
(5.48)

Such parameterization is used by Selesnick [18] to achieve near shift invari-

ance among the wavelet functions.

Example 4 Consider the (2,1) orthogonal-like DDFB with H0 (z) = .\/2 (T)2

3

and I-10 (z) 12) We get Q(z) = 8
z-1 3

which leads to.
8 8_

AT (z) =

-T
0	 0

+ z- 1
0	 —1 1	 1

2	 2.\/

—1 	 0 0	 0 1 	 -1
_2	 2\/2_

The synthesis high pass filters are given by HI (z) =
	 1	 —1 

AT(z).

\n 	 \/ 	\n- 2-This gives 111(z) = 1 — 1Z2 and H2(z) = 2 	2 
2	 2 	 2 Z 	

2 
4 z .

Table 5.1 shows parametric orthogonal-like filters for smaller values of

K and M. Clearly Lemma 11 is not always applicable since there is no

guarantee that the degree reduction step is invertible. But so far in all the

examples I have computed, I have not run into this problem. Whether it is

that we have just been lucky or that we haven't uncovered some of the hidden

results, is not yet clear to me. But in the next section when we generalize

into multiple density case, we will realize that we have been lucky in the

double density case.

Alternate ways of factorizations are also available. In the following, I will

adopt a factorization technique used for M-band bi-orthogonal wavelet filter

banks [25].
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K M Orthogonal-like double density filter

2 1 Ho(z) = —2 (1-F 2z + z2)

H i (z) = 71,- cose + —2 sin8 - 	 '-'2 sine + z2 (sine - 2cos8)

H2 (Z) = 2,2 cos° - 2sine ----z  cos° + z2 (2 sine + *cose)

3 1 Ho(z) = .--47-1/72-(1+ 3z + 3Z2 + Z3 )

6	 31z2 	 V-28z 3I/1 	 3 g4	 [,,2(z) =	 cos& +	 sin0 + z(-	 cos() +	 sine) - 	 sine - 	 sine

3	 2	 N82,z3H2	 3 lz24	 4(Z) = —	 sin0 +	 cos8 + z(4 sine +	 COSO) — 	 COSO —	 COSO,

3 2 Ho (z) = 8	 (1 1 + z) 3 (3z - 1)	 maximum phase

H 1 (z) = Z -2 ( — —	 7cose + . 7 /F sine) - 	 70 c°s8 - —2,3/Esine
+z(- V jicose + *sine) - +. 2 \ I(7,co.s0

H2 (z) = z -2 ($	 -vine + T\i-gcos0) + t	 - -0-sint9 - 2 ,,3./ cos9

+z(	 I+) sine + -ii-g cos()) + 5 '--i± 	 117) sine

3 2 Ho (z) = . /7 (1 + z) 3 (z - 3)	 minimum phase

H i 	 65(Z) = Z -2 (- 143,r5 cos0 - —1312 	 sine) - z. - 1 (cose + 14	 sine) + 1 : \ /Ecose
ine + z( 3 cose - 4	 T sine) + z2 (- ...„5/-,cose + i '52	 E sine)+a v	 /g

I/2	 e	 i74(Z) = Z -2 (- T 1 312	 -s-cose - z -1 (— —7/vin - — \ r5 sine + 714	 Icose) -	 ,s n8141v5 5
+ R_Vicos0 + z(- , 3/7-5 sine - 4	 E cos0) + z2 ( 7\ sin0 + 12521cose)

Table 5.1: Parametric Double Density Filter Banks.
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Lemma 12 Let
k	 k

	

Qo( z ) = 2_, PT 
. z
i Po,o 	 Po,iz —Z ,0,1

i=1	 i=1

k
0 1 ( Z ) = 	  RO,iZ	 RO,

T i

i=1	 i=1

and the determinant of Qo(z) is a real number. If both Ro c- _ 1 and Po are

invertible matrices, then there exists a nilpotent matrix N, with N 2 = 0, such

that

Qo(z) = 
[A0( Z-1 )1—T 1(Z)[A0(Z)]-1

	
(5.49)

where

	

k-1	 k-1

Ao(z) = 	 N — N , Q1(z ) =	 Po + P0,0 +	 Po i

	

i=1 	 i=1

Proof: Since Q 0 (z)Q 0-1 (z) = I, we have

PO,k Ro , k = 0,	 ,k Ro , k- _ + PO ,k-1 Ro , "k"

Now set

N = pi p =
Po,k-i 0,k — —Ro k 0,k-1

Then we have

N2 = 0, PO ,kN = 0, Po,k — Po,k-1 N = 0,

and hence the result follows.	 V

Remark 2 The condition that both Ro,k_ 1 and Po are invertible matrices,

is a very strong condition for the degree reduction process. All we need is a

nilpotent matrix N which satisfy

R

N2 = 0, Po,kN = 0, Po,k Po,k_1N = 0.	 (5.50)
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x(n) vo(n) Y(n).
Ho(z) Ho(z)

vi(n)
Hi(z)

vm(n)
		 HM(z) HM(z)  

Figure 5.2: The M-band multiple density filter bank

5.5 Generalizations: The -band Multiple

Density Filter Banks

In this section we look at how what we have discussed so far generalizes for

M-band multiple density filter banks (MDFB's) as shown in figure 5.2. As

with double density filter banks, multiple density filter bank has one extra

redundant subband while sub-sampling factor in each subband is M(> 2).

The generalization do not have obvious generalization of our discussion

about the vanishing moments but our polyphase based design approach do

generalize for the multiple density filter banks. First we look at how we

can design the scaling filter and then we give a factorization approach for a

subclass of multiple density filter banks. Also our discussion is restricted to

orthogonal-like multiple density filter banks.

5.5.1 Design of the Scaling Filter

Same as with the double density filter banks, our motivation is to have shorter

filters while reducing the number of vanishing moments of wavelet filters.



n=0

R(x) = M
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The design approach is similar to the critically sampled M-band scaling fil-

ters [38]. In that we first design the product filter subject to the vanishing

moment constraints of the wavelet subbands and regularity constraints of

the scaling subband. Other than the equations which set aliasing terms to

zero after down-sampling, we require the following equation for the perfect

reconstruction.

	

Pd(w) + Pif (w) + + P1(1 (W ) = M
	

(5.51)

where Pi f (w) is the product filter Hf (w)Hit (w) corresponding to the ith

subband. If each high pass filter has at least L vanishing moments we must

have

Pifk (0) = 0 i E {1, ..., M} and k E {0,...,L — 1}.	 (5.52)

The above equation leads to the following maximum flatness condition on

Po:

	

Po k (0) = MS(j) k E {0,..., L — 1}.	 (5.53)

Using the same notation as in the section 4.2, a product filter of the

scaling subband with regularity K and subject to the equation 5.53 is given

by

P (x) = EA (x)R(x)	 (5.54)

where

d n	 K (x)1	 (x — 1) n	(5.55)
dx 	 x=1

and ER  (x) is as given in the section 4.2.
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5.5.2 Design of Wavelet Filters

In this section we look at how our polyphase based design approach generalize

to the multiple density case. Let the type 1 polyphase matrix of analysis

wavelet filters and type 2 polyphase matrix of synthesis wavelet filters are

given by  

111,0(Z) 	 •••

flm,o(z) ••• flm,m-1(z)

111,0(z)

HM,o(z) 	 Hm,m_1(z)

and  

Hh (z) =

Then as with the double density case it can be seen that

Ho,o(z)
Kfth =

	

	
[flo,o(z)	 flo,m-1(z)] •	 (5.56)

Ho,m-1(z)

The determinant of HU/h is not as obvious as with the double density

case but it is similar.

Lemma 13 The determinant of HUlh is 1	 —	 Ho,i(z)Ho,i(z).

Proof: It can be easily seen that

M-1

	

det(HUlh ) = det(I) —	 det(Ai)
z=o
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where Ai has ones in the diagonal except the i t/1 location as given by

1	 0 0	 0	 0
0	 1	 0	 0	 0

—Ho ,i (z)110 , 0 (z)	 —Ho,i(z)1710,z(z)	 —H0,z(z)1710,m_1(z)

0	 0 0	 0	 1	 0	 0

0
	

0 0	 0	 0 0	 1

Clearly the determinant of A i is — Ho,i (z)110,i (z) and hence the result follows.

V

Since each high pass filters has at least L vanishing moments, we can

write the polyphase matrices of the high pass filters as

Hh (z) = A(z)[R(z)]L and Hh (z) = ii(z)[R(z-1)]L	 (5.57)

where

R(z) =

1	 0 0

—1 1 0 	 0

0 —1 1	 0

0	 0	 0 ...	 1

Now we give the equivalent of Lemma 10 for the multiple density filter banks.

Lemma 14 Let the high pass filters has L number of vanishing moments

each and the low pass filters, Ho and have the regularity, K, and the

product filter of the scaling filter is given by 5.54. Then the determinant of

Q(z) = AT (z)A(z) is a real number when

L= 
[(M — 1)K L — 1

(5.58)
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Proof: We have

det(111(z)ilh (z)) = (1 — z) L (1 — z -1 ) 1' clet(Q(z))
M`-1

=	 Ho,i(z)k,i(z).
i=o

Also note that, E im. =0-1 Ho,i( )fto,i(z) = Ho(z)110(z)[,, M]. Now the largest

power of z in det(HT (z)ifh (z)) is [(m-T.+L-1] and hence the largest power

of z in det(Q(z)) is [ (m-nmic+L-1 ] L. By symmetry, the smallest power of

z in det(Q(z)) is	 [ (m---0K+L-1 + L.	 V

Note that the Lemma 11 and Lemma 12 are independent of whether the

filter bank is double density or multiple density and hence we can possibly

use them whenever Lemma 14 is applicable. For M = 3, Lemma 14 is

applicable when (K, L) = (2,1), (3, 2), (4,3), (5,4) etc. Now we will look at

an example where both Lemma 11 and Lemma 12 are not applicable.

Example 5 Consider (K, L) = (3, 2) for M = 3. We get

Q(z) =
P7 (3z + 17 + 3z-1)

•1-(2z + 43 + 15z-1)

811 (25+ 32z -1 + 3z-2)

A- (15z + 43 + 2z -1 )	 8(3z2 + 32z + 25)

243 (10z + 187 + 10z- 1 )	 —(	 + 53z + 125)241 3 ,22.2

-2+3 (125 + 53z -1 + 2z-2 ) T-43 (25z + 157 + 25z-1) I
Lemma 11 is not useful since the determinant of Ao(z) is not a monomial and

hence degree reduction process cannot be repeated. The determinant of Ao(z)

is a monomial when B = R - PT RoT k Po ,k is nonsingular since then we can0,k 0,k

construct FIR inverse of Ao(z) via. In this example it[ PoT k 	 Po,k1B-1

can be seen that B is singular. Lemma 12 is also not applicable since Po,k_1

is not invertible.

5.6 Conclusion and Further Research

(5.59)

We have developed a factorization approach to obtain double density wavelet

filters for a special case where the determinant of transfer polyphase matrix
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is a real number. We have generalized the approach to M-band multiple

density setting. We have analytically obtained number of example filters for

with small number of filter coefficients. However, optimization of such filters

was left undone since it can be done similarly as in Selesnick's [18].



Chapter 6

Towards Hexagonal Filter

Banks

We will consider the special case of hexagonal sampling where

V =

due to its special properties of directional decomposition of images. The

rectangular lattice consists of two main directions represented by the two

vectors [1 0] T and [0 1] T . A single point shifted by an integer linear

combinations of these direction vectors result in the complete lattice. In

the hexagonal lattice we have three main directions, di = [1 0], d2 =

[-1/2 0/2], and dT = [- 1/2 — //2]. With the use of these directions

we can alternatively define the hexagonal lattice as

LAT(V) — {nicii + n2d2 + n3d3 1 ( n i, n2, n3) E Ar3}. 	 (6.1)

Thus we have a three directional representation of x E R 2 given by

82
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x=<x ^ d1>d1+< x
 

d 2 > d 2 + < x d 3 > d 3 . 	 (6.2)

The directional representation is not unique. We can make the directional

representation unique by imposing the directional components to be positive.

We can also represent the Fourier and Z transforms in the three directional

representation. Let (w i , w2 , w3 ) be the Fourier domain in the directional

representation with co l + w2 w3 = 0 and n = [n 1 , n 2 , n 3 ] T be the directional

representation of a point n E L AT (V) then the the three directional Fourier

transform is defined as

X (w i, w2, w3) =	
x(n)e-3(niwid-n2w2A-n3w3)	

(6.3)
nELAT(V)

and its Z-transform is defined as

X(z i , Z2 , Z3 ) = 	 x(n)zr4Z2n2 Z3 713 . 	 (6.4)
nELAT(V)

Unless otherwise specified, when we refer to three directional representation

we refer to the unique representation. In this chapter, we omit the superscript

notation for the Fourier transform for simplicity.

6.1 Hexagonal Filter Banks Generated by a
Pair of Scaling Filters

In the bi-orthogonal setting these filters are known as conjugate mirror filters.

We have the following theorem.

Theorem 12 Consider the hexagonal lattice with

V =
 1 —1/2

0 0/2



fio(w 	 1:c3)

Then we can find delays d 1 , 	 d

Ho(w+ ki) 

Ho (w +17(2)

Ho(c.=: +17(2) 

Ho(w + k3)

3 such that

!I-0(w + fc i ) 

flop + 2)

flo(w 1(2) 

Hi (w) = 	 110(w H-Cc i ) 	 = 1, ..., 3),

= e -3wT.di Ho(co 	 fci )	 = 1, ..., 3).
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and k 1 = (-7r, —7r/13), k 2 = (7r, —7r//3), and k3 = (0, 27/0). Let

Proof: 	 The delays are d1 = (1, 0), d2 = (-1/2, 0/2),

(-1/2, —0/2).

Conversely we have the following theorem.

and

Hi ((.4,, 	 fio(co + 	 = 1 ,	 3),

(6.5)

(6.6)

(6.7)

(6.8)

and d3 =

(6.9)

Theorem 13 Let d i. = (1, 0), d2 = (-1/2, \/2), and d3 = (-1/2, —0/2)

fli
(w

)	 .di Ho 4.)	 (i = 1, ..., 3).	 (6.10)

flop + k'1) 

flo(w k2)

Ho(o fc1) 

Ho(w f(2)'

Then

(6.11)

Ho (w+C(2) 

Ho (w+1(3)
110(w + f(2) 

110(w + f(3) •
(6.12)
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These are the two dimensional multiple channel extensions of conjugate

mirror filters of two channel one dimensional case. Under these substitutions

for high pass filters, equation 2.34 becomes the Nyquist property of the

product filter Ho(w)Ho(w). It is also equivalent to the bi-orthogonal condition

between Ho(w) and Ho(w).

When Ho and f/0 are hexagonally symmetric, one of 6.5 and 6.6 can

be dropped. When Ho and E -0 are complex conjugate of each other (i.e.

orthogonal) and symmetric, both 6.5 and 6.6 are satisfied and we have the

following Corollary which was used to design filters in [33].

Corollary 2 Let Ho be cetrosymmetric orthogonal low pass filter (i.e. Ho =

Ho) in a four channel hexagonal perfect reconstruction filter bank. Then high

pass filters can be obtained by

HZ (w) =e -'WT = 1, ..., 3).	 (6.13)

6.2 Symmetric Hexagonal Filter Banks Gen-

erated by High Pass Filters

We will look at Hexagonally symmetric filter banks generated by a pair of

high pass filters. One such pair generates the scaling filters while the other

generates the wavelet filters. Such a filter bank family was developed by [2].

In this family, the high pass filters are generated by the 27/3 rotation of a

single filter. First, we define the following,

Definition 8 We say a filter H(w i ,w2 ,w3 ) is hexagonally symmetric if

H (w1, W2, W3) = 1/ (W2 1 W3 ) W = 11(w3, W 1 1 W2) .	 (6.14)
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Definition 9 We say a triplet of filters (H 1 , H2, H3) is globally symmetric

by 27r/3 if

H2 (W 1, W2 7 W3) = H1(W2 1 W3 1 W1)1

H3 (W 1 1 W2 7 W3) - H1 ( W3 1 W1 W2 ) •

We can gain much more deeper results of the above using polyphase

analysis. We first start with some definitions. We say the vectors d 1 , d2,

and d3 are globally rotational symmetric by 271/3 if R 9 (d 1 ) = d2, Re(d2) =

d3 , and Re(d3 ) = d 1 for 8 = 271/3. We can see that d i , d 2 and d3 are

globally rotational symmetric polyphase shift vectors. Then the polyphase

decomposition of the hexagonal filter H(w) is defined to be

3

H(w) = Ho(Kw) 	 'Hi(Kw).	 (6.17)
i=1

We define the polyphase vector of H(w) as [Ho(w), H3 (w)] T . We say

the polyphase vector of a filter is hexagonally symmetric if the filter is hexag-

onally symmetric. We have the following lemma.

Lemma 15 Let HP (w) = [Ho(w),...,H3(c.o)]T be the polyphase vector of the

filter H(w). Then H(w) is hexagonally symmetric if and only if

HP(w) = PHP (RTLo) 	 (6.18)

where

1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

P =
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Proof: By hexagonal symmetry we have

[ie- j < d il w >e--.i<d2l w>e-.i<d 31(,)>]H2(w ) _ [1e-.1<d21w>e-i<d3P>e-i<dilw>]1-p(RoTw).

Now the result follows by substituting

[ 1e -j<d 2 1(.0> e-i<d 3 1w> e -i<d1P1 	 p[ie-j<dilw>e-i<d2lui>e-i<d31w>]

We also have the following observation regarding the system 2.35.

Theorem 14 Let Ho and 1/0 are hexagonally symmetric and (H1 , iI2 , H3)

and (H1 , H2, H3) are globally symmetric by 27r/3. Then the system of equa-

tions 2.33 reduces to a single equation.

Proof: We rewrite equations 2.33 in three direction notation. Firstly

note that k 1 =	 k2 = (7r, -77,0), and k 3 = (0,7, -7r). Then equa-

tions	 2.33 equivalent to

WW1, w2 , W3)H0(Wi + 71, W2, W3 + 7)+

(wi , w2,	 (W1 + 7r, W2, LO3 + 70+
(6.19)

Hi (W2, W3, Wail (W2,	 + 71, W1 + 70+

(w3 ,	 , w2 )H1 (w3 + 7r, c4, 1 +	 w2 ) = 0,

Ho(wi , W2, W3) f/O( W 1 +	 Lo2 + 71,W3)+

(wi , w2, w3)111(wi + 71, W2 + 71,W3)+
(6.20)

Hi (44;2 , w3 ,	 (w2	 w3,	 TO+

(w3,	 w2) fli(w3, co l +71,w2	 7r) = 0,

Ho (W,,W2 , C.4.13 )	 ,	 + 71, 4.4.)3 + 71) +

Hi (W1, W2, W3) 17/1 (W 1	 + 7r , W3 + 70+
(6.21)

(C4...1 2 , W3, Wail (C4,2 + 7, (.4)3 + 77" C.4.4) +

(w3 ,	 w2 )H1 (w3 +	 71,W1, 	 7r) = 0.
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Firstly lets see fio(w i + 7r, w2 + it w3) is a 27r/3 rotated version of ft0(c.,.)1

7r, w2 ,	 7r). Since H0 is hexagonally symmetric

11 0 ( W1 W2, W3) = 0(W3 1 W 1 1 W2).

Now fio(w+ fc i ) = hp (W3 + 7r wl + 7r, w2 ). It can be seen that Ho (W 1 71" +

7r, w3 ) is a rotated version of 11"0 (w3 + 7F, Wi + 7r, W2). Now note that equation

6.20 is a 27r/3 rotated version of equation 6.19. Similarly equation 6.21 is a

27r/3 rotated version of equation 6.20. Hence equations 6.20 and 6.21 are

redundant.	 V

6.3 Regularity Issues

In one dimensional two band setting, the regularity linearly increases with

the power of the factor (1 + e- jw ). We would like similar factor for the

hexagonal case as well. Courant interpolating function C(w) has been used

for this purpose [2]. Courant interpolating function (CIF) is generated by

C(w) = (1 + e -3w1 )(1	 e-3w2 )(1 	 e-3w3).

Definition 10 We say that a scaling filter is CIF-Regular of order r if the

filter has a factor C r (w). We also say that a wavelet filter Hi is CIF-Regular

of order r if the filter has a factor Cr(w

6.3.1 Existence for Filter Banks Generated by A Pair

of Scaling Filters

As with one-dimensional two band setting, ( and its separable extension to

two dimensional setting), we would like to find a filter bank generated by a

pair of CIF-Regular scaling filters. In particular consider that the analysis
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scaling filter is given by Ck (w), and that the synthesis scaling filter has

a factor C l (w). With the further requirement that the scaling filters are

hexagonally symmetric, it is found that a filter bank cannot be generated by

the scaling filters as given by the following theorem.

Theorem 15 Let d 1 = (1,0), d2 = (-1/2,0/2), and d 3 = (-1/2, —0/2)

and

Hi (w) = e -3wT.dz 	 fci)	 = 1, ..., 3),	 (6.22)

= e -jwT.di Ho(u)	 fc i )	 = 1, ..., 3).	 (6.23)

Then there do not exist hexagonally symmetric scaling filter pair Ho(w) =

Ck (w) and Ho(w) such that Ho(w) has a factor Cl(w).

Proof: Case 1 > k: Let Ho(w) = C k (w)Ho' (4.,.)). Then we get

Ho(w + k1) = Ho(w +k2 ) =	 +1(3).	 (6.24)

Thus Ho(w) has a factor Ho'(Kw). Looking at the bi-orthogonal equation

2.45, this is not possible.

Case 1 < k: We prove this by contradiction. w.l.o.g assume

C (w + k i)  = Ho(w'+ ki) 

C (w +k2) Ho(w +k2)
(6.25)

where 11:3 (w) do not have a factor C(w). Then we get

(1 — e3w1 )(1	 e3w3 )Ho (co k2 ) = (1 + en(1 — eJw3 )H'o (c.o 	 1 )	 (6.26)

This implies H10 (w) has a factor C(w) , which is a contradiction.	 V
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6.3.2 CIF-Regularity of Filter Banks Generated by a

Pair of High Pass Filters

Alternatively we may design analysis high pass filters, (i E {1, 2, 3},

first. By designing CIF-Regular analysis high pass filters, we automatically

get CIF-Regular synthesis scaling filter.

Theorem 16 Let and fir3 be globally symmetric by 27r/3 and 111(w+

k i ) has a factor l th order CIF, C l (w). Then the low pass filter produced by

equation 6.38 has a factor Cl(w).

Proof: The result can be seen trivially by expanding the determinant in

the equation 6.38.	 V

6.4 Design of the Dual Scaling Filter

In this section we will discuss parametric solutions for the dual filters Gi

of a given spline analysis filter H i . We will only discuss the solutions for

the scaling filter. The solutions for the high pass filters may be obtained by

shifting the scaling filters by aliasing frequencies Cc i in the Fourier domain.

Fortunately, we can follow similar techniques discussed in [31, 1]. We will

drop the subscripts for simplicity. Let

H(w i ,c4.)2 ,w3 ) = (1 + e -3w1 ) r (1	 C3w2 ) r (1	 C3w3 ) r ,	 (6.27)

G(wi ,w2 ,w3 ) = (1 +	 Cjw2)r(1 e -jw3 ) 7. 0w w-1, -2, -3,• (6.28)

We need to find Gi (w i ,w2 ,w3 ) such that equation 2.45 is satisfied. Let

the minimum length solution is Gm' (o i ,w2 ,w3 ) such that

(1 + ciw i) 2r (1 	 e -jw2) 2r (1	 e-jw3 )2rdrn	co2, 4.03 ) 4.K..= 1. 	 (6.29)
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Note that

cr2r(wi, w2, w3)
(1	 e—juii )2r (1 	 e - jw2 ) 2r (1 — e-J,3 )2r

91

(6.30)
(1	 e-2jw1 )2r (	 e-2jw2)2r( 1	e-2jci.)3 )2r

such that

	

(1 — e-jwi 
2r ( 1	 e—ju.s2 )2r ( 1	 e—jc.o3 )2r c2r (w1, w2 w3 ) =

	

(1	 2jw1)2r( 1 — (	 e-2jw2)2r( 1 — e-2jcv3 )2r
	 (6.31)

Thus (1 — e- jwi) 2r (i — e -iwyr (i — e -3wyr c 2r (wi,(,)2,w3) has terms only

in the zeroth coset. So it must be that

c2r	 w3)(1 	 e—jwi )2r ( 1	 e—jw2 )2r ( 1	 e—jw3 )2r Gai	 ,w2,4,03 ) 4,K= 0

(6.32)

where G ia (wi ,w2 ,w3 ) is centro-symmetric and hexagonally symmetric filter

which do not have terms in the zeroth coset. Thus

(..02 (.4.13) = Cr ((.4)1, W2 7 W3)( Gmi (W1, W2, (.03)

C2r (W 1 	 ,w2 + 7 , W3 7r ) Gai (wi, w2, W3)).
(6.33)

Note that

	

G(wi , W2, W3) = C r (L01, W2, W3) Gm	 W2, C-03)

Cr Pi + 7r, W2 + 7 , W3 + 7r ) G:,(w1, W2) W3)
(6.34)

is also a dual filter.

6.4.1 CIF-Regular Parametric Dual Filters: The Gen-

eral Case

We will state a theorem which can be used to find parametric bi-orthogonal

filter for any filter.
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Theorem 17 Let k 1 = (-7r, 0, 7r), k 2 = 0), and k3 = (0, 71, -7) be

the aliasing frequencies. Let G is the minimal length bi-orthogonal filter to

H. Then any other bi-orthogonal filter GT' can be written as

Gnew (w) = G(w) S 1 ' 3 (w) H(w + k 1 ) S" (co) H (w fc2)

S2 ' 3 (w)H(w k2)

	 (6.35)

where Si - i (u.)) is a filter with coefficients in only h and jth cosets.

Proof: We will need to show that

H (w )( S1'3 (W ) HP	 S1'2(W)H(w k2) + S2'3 (W ) H	 k2)) 1,K= 0.

(6.36)

We will show only H(w)S 1 ' 3 (w)H(w	 1 ) ,j,K = 0. Similar arguments hold

for the other terms. Firstly, assume S 1 ' 3 (w)	 S(2w) has terms only in

the l st coset. In the polyphase domain we have

H(w)S(w)H(w k 1 ) =	 S(2w)(H0(2w) 6 -3 `-'' Hi (2w) Ciw2H2(2w)

+e -jw3 H3 (2w))(Ho (2w) —	 H1(2w) Cjw2 H2 (2w) — e -jw3 H3(2w)).
(6.37)

The 0 th coset of the above is

—e -23w1 S(24.,2)H0 (2w)Hi (2w) + e -23w1 S(2w)H1 (2w)Ho (2w) —

S(2w)H2 (2w)H3 (2w) S(2w)H3 (2w)H2 (2w) = 0

which completes the proof.	 V

Similar results were obtained for 2-band one-dimensional setting in [49,

30] and 2-band multidimensional setting in [49].

6.5 Example Designs

The following lemma was proved in [2] which can be used to find the synthesis

scaling filter from the analysis wavelet filters.



1 0

z2 , z3 ) 1

—a(z2 , z3 , zi ) 0

—a(z3 , z i , z2 ) 0

Its synthesis polyphase matrix is given by

1 a(z i , z2 , z3 ) a(z2 ,z3 , z i )

0 1 0

0 0 1

0 0 0
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Lemma 16 If /10 ,..., H3 and 1/0, ..., H3 has perfect reconstruction and Ho

and Ho are hexagonally symmetric, then it satisfies

fii(w+ki) H2(w+ki) 1/3(W + 1C1)

-1/1(w H1C2) 1/2 (W -4(2) H3 (W + 1-(2)

/7/1(w + fC3) ft2(w + fc3) fI3(w + fc3)

where C is a nonzero constant and equal to the determinant of the system

2.35:

flo(w)

//op + cco

Ho (w+ 1c2)

Ho (w fC3)

H2 (w) 	 H3(w)

1-12(w +ici) H3(w +ki)
H2 (w +k 2) H3(w+k2)

i-/-2(w+k3) f/3 (w+ fc3)

(6.39)

We will look at number of filter banks mainly obtained using the Lemma

16 for the construction of synthesis scaling filters. The analysis wavelet filters

were obtained using ad hoc methods such that they leads to useful synthesis

scaling filters via Lemma 16.

Example 6 Consider the following lifting [12, 51, 52, 53] like analysis polyphase

matrix for the hexagonal filter bank.

(6.38)

0	 0

0	 0
(6.40)

1	 0

0	 1

a(z3 , z2)

0
(6.41)

0

1
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The system does not have a useful analysis low pass filter. Thus we can

design a new analysis low pass filter while retaining the analysis high pass

filters and the synthesis low pass filter. Note the three analysis high pass

filters are globally rotational symmetric by 27r/3 while synthesis low pass filter

is rotationally symmetric by 27r/3. When a(z i ,z2 , z3 ) = 1, each analysis

high pass filter is the one-dimensional Haar filter along the corresponding

directions. This specific set of analysis Haar filters are given by —1+z1 1 , —1+

z 17 1 , —1 + 21 1 and the synthesis low pass filter is given by 1 + z1 + z2 + z3.

-11+2.z/ Example 7 Select a(zi , z2 , z3 ) = 	  in the equation 6.40. Now the

analysis high pass filters are second order one dimensional high pass splines

along each directions, 	 —	 + Z -1 - 1 Z-2 -1 z -1 - 2
1 z 2

2	 2 2	 2	 3

and the synthesis low pass filter is the Caurant Interpolating Function (CIF)

+ zi )(1	 z2 )(1	 z3).

In [2], they have proposed the following algorithm to design the high pass

analysis filters, and then synthesis low pass filters, analysis low pass filters,

and synthesis high pass filters respectively.

Algorithm 1

• Design H1 and select H2 and H3 such that (H1 , H2 , 113 ) is globally sym-

metric by 27/3.

• Select Ho using 6.38.

• Design H0 using 2.45.

• Design H1 , H2 and H3 such that (H1 , H2, H3) is globally symmetric by

27/3 subject to the system 2.35.
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The algorithm is essentially the adaptation of Theorem 3 for the hexag-

onal setting and the computations are done in the transform domain rather

than polyphase domain. It can also be adapted for computations done in

the polyphase domain as well. When (H 1 , 112 , H3 ) is globally symmetric by

271/3 and the resulting Ho is hexagonally symmetric we can design Ho to

be hexagonally symmetric as well. Then we can design globally symmetric

(H1, H2, H3) subject to the two equations given by Theorem 14.

6.6 Factorization Techniques for Hexagonal

Filter banks

Since Daubechies [16] technique of wavelet design in 1-D do not have a

straightforward generalization to more than 1-D we are lead to explore sub

classes of filter banks which have simple and manageable form. Along this

line, factorable filter banks and wavelets were originally discussed by [13] and

further explored in 2-D by [9, 10].

We restrict ourselves to polyphase matrices which can be factored as a

product of factors in one variable. In factorial representation in [9, 10], each

factor corresponds to one of the main directions of the rectangular lattice. In

the hexagonal lattice we have three main directions corresponding to z1 , z2,

and z3 . Since each of these directions has the same prominence we define the

factorial polyphase matrices on hexagonal lattice in three variables . Thus

factorial polyphase matrices of order (a, 0, -y) in z1 , z2 , and z3 is defined as

a+13+1'

HP (z i , z2 , z3 ) =	 + ( zci i — 1 ) P,) Ho 	 (6.42)
=1

where the product contains a factors of z1 , 0 factors of z2 and 'y factors
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of z3 . Ho is the characteristic matrix of HP (zi , z2 , z3 ) [39].

Imposing Hexagonal Symmetry

In order to achieve successful factorization, we need to find the form of in-

vertible polyphase matrix factors, such that upon multiplication with the

original polyphase vector of a hexagonally symmetric filter, results in a new

hexagonally symmetric filter. The following lemmas provide the form of such

matrices.

Lemma 17 Let HP (w) be the polyphase vector of a hexagonally symmetric

filter H(w). Then L(w)H P (w) is a polyphase vector of some hexagonally

symmetric filter if and only if

Proof: We have

and

L(w) = P 	 eo)PT

L(w)HP (w) = PL(RTc.o)HP(RTc.o)

HP (w) = PHP (RT w).

(6.43)

Combining the above two equations we get

L(w)P = PL(RTL)).

V

Unlike linear phase conditions, hexagonal symmetry cannot be imposed

on a single degree one factor alone. We will impose hexagonal symmetry on

product terms of the form (/+ (z i-1 — 1)Pi )(I +(z2-1 — 1)P2 )(I +(z3-1 — 1)P3).

We have the following theorem.
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Theorem 18 Let Hp (z i , z2 , z3 ) be hexagonally symmetric polyphase vector

and

p2 = pplpT, 	 (6.44)

P3 - PP2PT
	

(6.45)

then (I + (zi-1 — 1)./31 )(/ (z2 1 — 1)P2)(/ (zV — 1)P3 )Hp (zi , z2 , z3 ) is also

a hexagonally symmetric polyphase vector.

6.7 Conclusion

We have investigated whether we can design conjugate mirror filters on the

hexagonal lattice. We have obtained constraints under which such filters

exist. We also investigated the hexagonal symmetry of scaling filters and

global symmetry by 27r/3 and their consequence to the perfect reconstruction

constraints. We also investigated the existence of conjugate mirror filters with

CIF-regularity, parametric solution to the CIF-regular scaling filters, and

factorization methods for certain classes of polyphase matrices of hexagonal

filter banks. However we were unable to make a major breakthrough in the

completion of hexagonal filter banks for some given scaling filters.
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