
Chapter 3

Wavelet Theory

An oscillating function of time and/or space is usually referred to as a wave.

Fourier analysis is wave analysis where it expand signals or functions in terms

of sinusoids. A wavelet is a small wave, which has its energy concentrated

in time. Wavelets allow both time-domain analysis and frequency-domain

analysis simultaneously due to its energy localization both in time and in

frequency. Thus wavelets are very suitable for the analysis of transient,

time-varying, or non-stationary phenomena.

A signal f (t) is often represented as a linear decomposition given by

f ( t ) =	 ai0i(t)	 (3.1)

where the sum may be finite or infinite. When coefficients can be calcu-

lated by inner products:

a l = (f(0,0 1 (0) = f MOO) dx.	 (3.2)

we say the collection {0 1 (t)} 1 ez is a frame, and the individual functions

1 (t) as atoms. When the representation is unique, we refer to the frame as
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a basis. An important question is that, given frame coefficients of a signal,

can we recover the signal? Such questions are answered by frame theory. It

also addresses such issues as completeness, stability and redundancy of linear

signal representations.

Whether we can recover a signal from its frame coefficients, is the equiv-

alent of perfect reconstruction in filter bank theory. Such issues have led to

a more precise definition of a frame.

Definition 1 (Frame) The collection {0/(t)}/ Ez is a frame of a Hilbert space

R if there exist two constants A > 0 and B > 0 such that for any f E R,

Allf112 5 >_j 1(L0/)1 2 5 BlIf 12
	

(3.3)

When A = B the frame is said to be tight.

A frame defines a complete and stable signal representation, which may

also be redundant. When the atoms {0 1 (t)} are normalized such that wi ll =

1, this redundancy is measured by the frame bounds A and B. If A > 1 then

the frame is redundant and A can be interpreted as a minimum redundancy

factor. The frame is an orthonormal basis if and only if A = B = 1. When

the collection {0 / (t)} 1E z linearly independent, the frame is said to be a Riesz

basis.

The reconstruction of f from its frame coefficients is done with a dual

frame fii) / (t)l icz. We can construct the dual frame such that, Mallat [48],

and

1
A llf1 2 5_ >_2 (L6) 2	1/3=11f112 (3.4)

( f , 0 i)Cbi = > ; (f,11)01 	 (3.5)
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where A and B are the frame bounds of {bl(t)}lEz.

Wavelets are two-parameter atoms, / j,k (t), and {0j,k (t)} (j,k)E z2 is a frame.

Thus wavelets come from frame theory, and in particular wavelets constitute

Riesz bases. Let { i,k (t)} (j,k)E z2 be the dual frame of {0j,k(t)}(j,k)Ez2. The

atoms, j,k (t), of the dual frame are usually referred to as bi-orthogonal

wavelets. Due to explosive development in the wavelet theory the term

wavelet is rather abused, but we use the term wavelets when they form Riesz

bases, and we use the term framelets when they form more general frames

(possibly redundant).

One of the index of wavelets run through the scale space while the other

run through the time. Thus wavelet representation of a signal is a multi-

resolution representation. Most of the earliest wavelets constructed were

dyadic wavelet representations. An attractive property in these systems is

that each wavelet basis function, 0,,k (t), is constructed by translation and

dilation of a single basis function OM known as the mother wavelet:

1 ik
0j,k(t) = , 	

t- 2
	(3.6)

	y9.7	 23	 ) •

We also expect the dual wavelet 2Pi,k (t) to satisfy

— 24\
z-Pj,k(t) = 	 	

t
	(3.7)

2V23 ( ' /

But in general such duals do not exist, Chui [23, Pages 13-14] When we refer

to wavelets we refer to wavelet bases where the wavelet base and its dual base

satisfy equations 3.6 and 3.7 respectively. Under certain conditions, Cohen,

Daubechies and Feauveau [1], f(t) E L 2 (R) can be decomposed in the wavelet

basis or its dual basis:

f ( t ) =	 UM, zPi,k( t ))0i,k( t )	 (f(t), 0i,k(t )) j,k(t).
	

(3.8)

.i,kEz	 j,kEZ



CHAPTER 3. WAVELET THEORY 	 25

Now the wavelet transform of f relative to the dual 77) of b at (j, k) is

defined to be

-
(f (t),	

+" 1
,-bi,k(t)) = 	

23
	 f	

( t
(t)0 	 2i 

2j0 
dt.	 (3.9)

V	
\  — 

3.1 Multi-resolution Analysis

As shown by Stephane Mallat the atoms which form a wavelet frame can

be structured to span a sequence of subspaces which constitute a multi-

resolution approximation.

Definition 2 (Multi-resolutions) A sequence {Vi } jEz of closed subspaces of

L 2 (R) is a multi-resolution approximation if the following 6 properties are

satisfied:

V (j, k) E Z 2 , f (t) E V3 <=> f (t — 24) E Vj,

Vj E	 C

Vj E Z, At) E <=> f ( 2) E V3+1,

lim Vi = n V = {0}33--H-oo
—}-00

+00

—liH-co
lim Vi = Closure	 U V3 ) = L 2 (R). 	 (3.14)
3 

There exists 0 such that 10(t — n )}nEz is a Riesz basis of Vo.

j — co
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The function OM is known as the scaling function. If we define

	

0.; ,k (t) = 2 -j/2 0(2 -2 t — k)	 (3.15)

then it follows that, for every j, {0j,k (t)} kE z constitute a Riesz basis for V3.

Given f(t) E L 2 (R), its approximation, fj (t), in V is given by

f,(t) = > 	 f, ig;3,00,,k
	

(3.16)
k

where {0i,k (t)} kEz is the dual frame of {0.;,k(t)}kEz. The dual basis

fcbj,k (t)} kE z constitute a Riesz basis for the dual space Thus we have

a dual multi-resolution analysis and q(t) is known as the dual scaling func-

tion or bi-orthogonal scaling function where ch(t) is a Riesz basis for V0 and

	

ii5j,k (t) = 2 -i12 5(2-j t — k).	 (3.17)

Now the wavelets {0i,k}kEz and the dual wavelets {Pi,k}kez forms Riesz

bases for the detail spaces W.; and I7V.; such that

e W3 =	 and V e	 =	 (3.18)

The bi-orthogonality implies that W.; is orthogonal to V and t/i7.; is or-

thogonal to 17i . When 0(0 is orthogonal we have only one multi-resolution

hierarchy {173 }jEz and W.; is orthogonal to

Since	 E V0 , it can be decomposed in {0(t — n)} 7, E z such that

1	 (t +cc

/ h[n]0(t — n)	 (3.19)
2 

n = — oo

with

h[n] = (3.20)
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Similarly since b () E Vo, it can be decomposed in {0(t — n)},,,,E z such

that

	 	 t)
= E g[n]o ( t— n)

n = — co	

(3.21)
1

with

g[n]	 1 t 	
0(t — n)).

(	 2 

The Equations 3.19 and 3.21 are known as the refinement equations.

Similar results can be obtained for the bi-orthogonal scaling function and the

wavelet function. It is the sequences h[n] and g[n] (and the hi-orthogonal

sequences 14n] and g[n]) , which connect wavelet theory to the filter bank

theory.

3.1.1 Fast Wavelet Transform and Filter Banks

The multi-resolution analysis has been used to develop the fast wavelet trans-

form by Mallat [45, 46, 48]. Let

dj [n] =	 ai[n]= (f,(7)i,n)•	 (3.23)

Then the transform values at resolution 2- (j+1) is given by [48, pages

254,267]

aj+i (z) = il(z)ai (z)	 2] dj+i (z) = 0 (z)aj (z) 	 2]	 (3.24)

where H(z), 0(z), aj (z), ai+i (z) and dj+i (z) are z-transforms of h[n],

g[n], ai [n], ai+i [n], and dj+1 [n] respectively. We can recover a i from ai+i,

and di+1 via [48, pages 254,267]

(3.22)

aj (z) = H(z)a1+i (z2 )	 G(z)di+i (z 2 )	 (3.25)



+00 -h (2-Pw)) and (A,(w) = H
p=1

+00 h(2-P
OP) =

p=1

(3.26)
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where H(z) and G(z) are z-transforms of h[n] and g[n] respectively. Now

it is clear that H(z),and G(z) are analysis filters, and H(z) and G(z) are

synthesis filters of a perfect reconstruction filter bank.

3.1.2 Filter banks and Wavelet Bases

In practice, we first design h and h and see whether it leads to stable bi-

orthogonal wavelet bases. In the two band filter bank setting, once we design

h and h there will not be any degrees of freedom left for the design of g and

We can obtain the basis functions 0 and 0 from the infinite products:

The convergence and stability of the above infinite products is not always

guaranteed and such issues are studied in [1, 17].

3.2 Generalizations of the Dyadic System

General wavelet systems were designed by generalizing the refinement equa-

tion. One way of generalizing the refinement equation is to generalize the

scaling parameter from dyadic to a more general rational number. In par-

ticular we can generalize the scaling parameter to any integer M > 2. Such

systems are known as M-band wavelet systems. M-band wavelet systems

were mainly motivated from M-band filter banks. The refinement equation

for the M-band scaling function IN has the form

+00

ho[n]Oo(t — n).	 (3.27)
n=—co
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Now the each subspace V is spanned by T O,j 7 k (k E Z) which is defined

as

7,bo,j ,k(t) = M-312 1,b0 (M-3 t — k). 	 (3.28)

The detail space W.; is spanned by M — 1 wavelet functions, Oi (i E

{1..M — 1}), which has the refinement equation:

+00

hi[n]Oo(t — n)	 E {1..M — 1}). (3.29)

Unlike in 2-band setting, M-band systems offer extra degrees of freedom in

the design of wavelet filters hi (i E {1..M— 1}), Steffen, Heller, Gopinath and

Burrus [38]. Like in 2-band systems, hi (i E {0..M— 1}) and h i (i E {0..M-

1}) form analysis and synthesis filters of a M-band perfect reconstruction

filter bank.



Chapter 4

M-band Bi-orthogonal Filter

Banks and Wavelet Bases

Central to 2-band wavelets of Daubechies and M-band wavelets of [38] is

the low pass scaling filter with a specified order of regularity. One approach

to constructing M-band wavelets would be to start with a multi-resolution

analysis (MRA) as in the 2-band case [16, 17, 1, 30, 45, 46] with a scaling

factor of M. In this approach one first constructs the scaling filter and then the

wavelet filters and wavelets. This approach was followed in Steffen, Heller,

Gopinath and Burrus [38], but was restricted to orthogonal M-band wavelets.

In our work, we discuss more general M-band bi-orthogonal wavelet bases.

In this case, we first design bi-orthogonal pair of scaling filters. The wavelet

filters and wavelets follow from this bi-orthogonal scaling filters.

Definition 3 (Bi-orthogonal pair of scaling filters) A bi-orthogonal pair of

scaling filters (4,120 ) consists of two sequences ho(n) and ho(n) that satisfies

the following linear and quadratic constraints:

E ho(k)ho(Ml — k) = 8(l), 	 (4.1)
k

30
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	>_2 ho(k) = \AM), Yho(k) = NAM).	 (4.2)

The quadratic condition does not arise in practice, since one usually de-

sign a single scaling filter ho and then find a dual scaling filter h i) by solving

the linear constraints. It is also the same condition satisfied by the low pass

filters in a bi-orthogonal filter bank, i.e.

MV/0 (z)H0 (z) = 	 Ho ,k (z)Ho ,k (z) = 1.	 (4.3)

The linear condition arises from the elegant wavelet analysis which will

be discussed later. We will define bi-orthogonal wavelet filters in relation to

bi-orthogonal scaling filters and filter bank theory.

Definition 4 (Bi-orthogonal wavelet filters) Given a pair of scaling filters

(11, 0 ,h 0 ), we define bi-orthogonal wavelet filters h i , hi ,i E M — 1} such

that the bi-orthogonal scaling filter and bi-orthogonal wavelet filters together

are filters of a bi-orthogonal filter bank.

When conditions of the filter bank theory were satisfied as above wavelet

filters also satisfy the quadratic bi-orthogonality constraint:

MV-Ii(Z)Hi(Z) = 	 = 1 i E {1,	 M - 1}.	 (4.4)

It is also evident that each filter is orthogonal to all other filters on the

opposite side except its dual,i.e.

mi iii( z ) H.A z ) =	 fli,k(z)11i,k(z) = 0 i 	 j.
	 (4.5)

Combining 4.3, 4.4 and 4.5, we can write

); h i (k)hj (M1 — k) = S(i — j)(5(1)•	 (4.6)
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x(n) a(n)	 y(n)

• • •	 •	 • •

EM fl,

• • • • • •	 • •	 • • •	 • •

y(0) y(1)

Figure 4.1: The Scaling band for M=2.

4.1 Characterization of Regularity

Classical wavelet transforms are designed to preserve Polynomials (of degree

K — 1) at the scaling subband, i.e. when x(n) is a polynomial sequence

of degree K — 1, a(n) is a M-band subsampled K — 1 degree polynomial

sequence, and y(n) is equal to x(n) subject to some time shift. They are also

designed to vanish polynomials at the wavelet subbands.

4.1.1 Discrete Polynomial Preservation

An example of the scaling band is shown in figure 4.1. Suppose the scaling

band preserves discrete monomials (say up to degree K-1). When discrete

monomials up to degree K — 1 are preserved, any polynomial sequence up to

degree K — 1 is also preserved. Given that polynomial sequence spaces are

shift invariant, it is sufficient to consider output coefficient values at locations

i, 0 < i < M —1, to show the equality of the partial moments of the synthesis

scaling filter Ho. Let

a(n) = (Mn)k.

We require that

—Mn) kho(Mn + = c(i + j) k	(4.7)
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where c is a signal independent constant, j is a signal independent time

shift and 0 < i < M — 1. Note that y(i) = ,u(i , k) for 0 < i < M — 1. The

partial moments of the filter are defined as

,	 —	 n
n

Then

k	 /k
m(i , k) = >2, 	)(i) k-P (-1)P i.t(p,

p=0 \P
= c(— j)k (4.9)

But

m(0, k) = (-1) k itt(0, k) = c(— j) k (4.10)

Thus

m(i , k) = m(0, k). (4.11)

When partial moments are equal the l th (l < K) derivatives vanish at the

Mth roots of unity. To see this,

dI Ho(e 	 )
dwl

where m(l) is the Ph partial moments of Ho and 0 < n < M — 1.

The minimal degree Courant polynomial for which the l th (l < K) deriva-

-1 zm)K
tives vanish at the M th roots of unity is (	 A scaling filter with such( it

a factor is termed as K-Regular by [38].

Definition 5 A M-band scaling filter is said to be K-regular or regular of

(order K if it has a factor 1+z.order 	 K

m(i k) M i) k ho(Mn (4.8)= c(i

= (-))1
(Al -1 m(i)	 0

k=0

(4.12)
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In [38], it is shown that, among other equivalent characterizations, poly-

nomials of degree K — 1 are reproduced by K-regular scaling filter. Thus

K — 1 degree polynomials are preserved by the scaling band if and only if

the scaling filters are K-Regular.

The Mth roots of unity are aliasing frequencies of the M-band filter bank.

Thus K-regularity implies that the derivatives of the scaling filter vanish at

the aliasing frequencies. As we will discuss later, zeros at aliasing frequencies

are useful in designing multidimensional wavelets.

Alternatively, K-Regularity implies that the magnitude squared frequency

response of the scaling filter is flat of order 2K at w = 0. This Flatness

property has been used to design orthogonal wavelets [38, 36], and other

filters arising in the classical signal processing applications [32].

4.1.2 Discrete Polynomial Annihilation

A filter when convolved with a polynomial sequence up to degree (K — 1)

results in a zero sequence if and only if it has a zero of order K at the zero

frequency. When a scaling filter Ho is K-regular,i.e. polynomial sequences

up to degree K —I are preserved, we would expect the wavelet filters Ili , i E

{ 1, M — 1} on the opposite side to vanish on polynomial sequences up

to degree (K — 1). We will show that it is actually the case as a direct

consequence of equation 4.5.

Theorem 1 (Regularity of wavelet filters from scaling filter) Let Ho is a K-

regular synthesis scaling filter in a M-band filter bank and d'1,41-16f (0) 	 0 for

1 = 0,	 K — 1. Then moments up to order (K — 1) of the analysis wavelet

filters 	 i E {1,	 M — 1} vanish.



27rk	 c/1-n '0(a)	 27r. k	 0.do
	 HZ 

w M dwl-n 	Mdw
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Proof: We will prove the theorem by mathematical induction. We show

that the theorem is true for the zeroth moments of the wavelet filters. Equa-

tion 4.5 in Fourier domain can be expressed as

27ri iff (	 279
0 k	 1.M R1 Y.; M

(4.13)

In particular, wavelet filters are orthogonal to the dual scaling filter.

M-1

H
i=0 (

27i)
w

Hof 
(

c,.) —	 =0 1 � O.
M

(4.14)

Setting w to zero we get 160)H-61* (0) = 0. Since Hof (0) 0 it must be

that HZ (0) = 0. Now assume that / — 1 moments of wavelet filters vanish.

Using Leibnitz's rule for the derivative of a product (e.g., see p. 147 of [27]),

we obtain

1 = 0, K — 1

(4.15)

Setting w to zero we get

n=0	 71
d
do 

Hi (0) di n //f(0)
wn i	 dc.,., 1 - n	 °

0.

By our assumption that ://,±',://:(0) = 0 for n = 0, / — 1 and since

� 0, it must be that cìi,41-7/1(0) = 0.	 V

The converse of the above theorem is also true, i.e. vanishing moments

of order 0 up to K — 1 of analysis wavelet filters implies K-regularity of the

synthesis scaling filter.



Haf (o) fi-of(-2Air)

0	 H1 
(_ 2m7r)

27r(M-

H° 	 M
1))

( 27(M-1))
11 1	 M

277(M-1) 
M )
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Theorem 2 (Regularity of scaling filter from wavelet filter) Let H i (i G

{1, M — 1}) be analysis wavelet filters for which moments of order 0 up to

K — 1 vanish. Then the synthesis scaling filter is K-regular.

Proof: We will prove the theorem by mathematical induction. First

we prove it for 1 = 0, i.e. if the zeroth moments of analysis wavelet filters

vanish, synthesis scaling filter vanish at aliasing frequencies. By setting w = 0

in equation 4.14, we get

0 i	 0.	 (4.16)

Lemma 1 implies ( also see equation 2.37) that the transpose of AC matrix

Ho (w)

(w)

Ho 
(w 2m7r)

Hi 
(w 

2)

fiof

Hi 
C
w

27r(M-1))
M

27r(M-1))
M

16 1-1(w) 
h-f	 (w _ 27r

M-1 L'')	 M)fjf
• • •	 I -1 (W	

27r(M-1))

has maximal rank for all w. Setting w = 0 in the above matrix, we get

which has maximal rank if and only if

flif(—t-r)
27r(M-1) 

M )

[if 	 ( 27)	 ( 274M-1) 
M ) '•• 'M-1	 M

has maximal rank. Thus the coefficient matrix of 4.16 has full rank and

hence Hcf, (- -7;12 k) ___ 0 ( k E f i,	 m	 0).



M-1
(	 27rk 

Hf)	 7	 27rk
= .1

VI	 °
\W m	 0 \	 m

k=0

(4.18)
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Now we assume that the derivatives of Hof of order upto 1 — 1 vanish at

aliasing frequencies, i.e. ddwn,, HZ (—f) = 0 (n E {0, ..., l — 1}). By setting

w = 0 in equation 4.15 we get

27rk\ d1  Tv 7 27rk)
= 0 i	 O.

\ M du)/ 11 ° \ M
(4.17)

Since the coefficient matrix of equation 4.17 has maximal rank,

0 (k E {1,...,M— 1}).

d1 rift	 2irk
f -` 1c0	 ./1/

4.2 Existence and Design of the Bi-orthogonal

Scaling Filters

Given a synthesis filter Ho (or an analysis filter), it is useful to ascertain

the existence of an analysis filter (or a synthesis filter) subject to the bi-

orthogonality constraint equation 4.3, which in Fourier domain

In the two band setting, the existence of the dual filter originates from

Bezout's theorem [1, 17].

Fact 1 If pi , p2 are two polynomials of degree n 1 , n 2 respectively, and if p i , p2

have no common zeros, then there exist 'unique polynomials q i ,q2 of degree

at most n2 — 1, n 1 — 1 respectively, so that

Pi(x) qi(x ) + p2(x) q2(x) = 1.	 (4.19)

The above result has been elegantly used by [1] to design bi-orthogonal

wavelet bases in the two band setting. They have solved for qi (x) and q2(x)



9
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by either expanding equation 4.19 using Taylor series around every zero of

either p i (x) or p2 (x), or by means of Euclid's algorithm on polynomials. To

see how equation 4.18 in the two band setting leads to Bezout's identity,

4.18 can be written as

	

(1 
+z	 1)N

	

2 	C20(z)(20(z)+

/1— z N

\ 2
(1 — z -1 ) N 00( _ zw oHz) = 2.2

(4.20)

where N is the K-regularity of synthesis scaling filter Ho(z) and N is the
N

K-regularity of analysis scaling filter Ho(z)o(z) and Ho(z) = ( 1+z -1  
) Q0 (z) and2

Ho(z) = ( 1
2 z ) Q 0 (z) . It is the product filter P(z) = Q 0 (z)Q 0 (z), which is

solved using Taylor series expansion or the Euclid's algorithm. Under linear

phase conditions, explicit formulas for P(z) were derived analytically in [1].

Even though there is no unique solution to P(z), it is the unique minimal

length solution we are usually interested in. Finally the Ho(z) and Holz)

are obtained by factorizing P(z) and moving those factors among Ho(z) and

Holz) appropriately.

Fact 2 Moving factors from Ho(z) to I10 (z) and vice versa will not violate

the equation 4.18.

In the M-band setting, fortunately the existence of the dual filter is still

guaranteed by a special case of Hilbert's Nullstellensatz [8, 50].

Fact 3 If	 are polynomials with no common zeros, then there exist

polynomials 	 so that

Pi( x ) qi(x )	 ps(x)47,(x) = 1. 	 (4.21)



n E—K(X)] 
=i 

(x — 1) n .	 (4.25)
x=

R(x) =
d

n=0
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Even though Hilbert's Nullstellensatz proves existence, it is not directly

used in solving 4.18 in the general M-band setting. Let

2

E(w) = 	

= M2 	 Emk=71 1 2(M — k)cos kw]

iv+2 [M EMk_-11 2(M — k)Tk(x)]

= E(x)

where Tk (x) is the kth Chebyschev polynomial defined by

(4.22)

2xTk_ 1 (x) — Tk_ 2 (x) k > 2

Tk (x) =	 x	 k = 1	 (4.23)

k = 0

Now the product filter P(z) = 1-10 (z)H0 (z) can be written as

P(x) = ER (x)R,(x) 	 (4.24)

Now R(x) could be found using techniques in [38, 31]. Using maximum

flatness condition at zero frequency and expanding R(x) in a Taylor series

about x = 1, it is found in [38] that

Table 4.1 provides some examples of spline scaling filters in the three

band case.

Now, we can write 7?,(x) as a product of real first and second order poly-

nomials.

32

'R(x) = A fl(x — xj ) H 2 — 2Rezi,x+ 2.31 
2).	 (4.26)

j=1 	 3 =1

Regrouping of these factors leads to all the possible 1/0 and H0.
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K K Analysis filter Synthesis filter

2 1 ,-	 4 -1 + 3 + 6z + 1722 + 6z3 + 3z 4 - 4z5 ) )9V3
6	 + 2Z-3 + Z-4).4(1 + 2 2 -1 +	 ,z-2

(72-2	 9	 6z	 27z2+- z-1 +	 -	 +
27VT '3 3 (1 + 3z + 622 + 7z3 + 6z4 + 3z5 + z6)

27
9Z3 + 27z 4 - 6z 5 + 926 - z7 + 7z8)

1 1682 -2 	88z -1 	487	 636z,,, (112z -3 -	 +	 -	 +
-g(i + 4z -1 + 10z -2 + 16z -3 + 19z-4243V3

4 4 -358z2 + 888z3 - 693z 4 + 888z5 - 35826

+636z7 - 487z 8 + 88z9 - 168z 19 + 112211)
-5	 6	 7	 8)+16

 
z	 + 10z- + 4z - + z -

Table 4.1: 3-band spline scaling filters

4.3 Filter Bank Completion

In the two-band setting the wavelet filters are directly obtained from scaling

filters via [48, 47, 16, 1]

= zHo(—z),	
(4.27)

Hi (z) =

So there are no degrees of freedom in the choice of wavelet filters in two-band

setting. There will be degrees of freedom left in the choice of wavelet filters in

the more general M-band (M > 2) setting. In [38], a comprehensive analysis

of these degrees of freedom was given together with number of techniques of

finding such wavelet filters. But the methods of [38] apply only to orthogonal

M-band wavelet filters.

The synthesis scaling filter can be fully obtained from analysis wavelet

filters by obtaining the cofactors, which correspond to synthesis scaling fil-

ter, of the analysis polyphase matrix. Alternatively we could design analysis

wavelet filters such that the cofactors which correspond to synthesis scaling

filter are given by polyphase components of the synthesis scaling filter. The

determinant of the analysis polyphase matrix is set by the bi-orthogonality

constraint between scaling filters, [I, M]Ho(z)Ho(z) = 1. Finally the synthe-

sis wavelet filters are obtained by inverting the analysis polyphase matrix.
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We have proved the following result.

Theorem 3 Let the following be satisfied.

• The analysis wavelet filters Hi (z) E {1,	 M — 1}) satisfy

Ho ,i (z) =

where Ci,i (z) is the cofactor of analysis polyphase matrix corresponding

to synthesis scaling polyphase component Ho,i(z).

• Design Ho(z) such that [I, M]Ho(z)Ho(z) = 1.

• The synthesis wavelet filters are obtained by inverting the analysis polyphase

matrix.

Then the filter bank satisfies the perfect reconstruction.

4.3.1 Design of Spline Wavelets

Theorems 1 and 2 say that K-regularity of synthesis scaling filter implies

vanishing moments of analysis wavelet filters of order 0 up to K — 1 and

vice versa. We will construct filter banks where the synthesis scaling filters

are K-regular splines. We start with the following result which indicates the

form of analysis wavelet filters.

K
Theorem 4 Let Ho(z) = M (1+z-1+-xl'(m-1)) be the synthesis scaling

filter. Then analysis wavelet filters must be of the form

( 2') = (1 — z -1 ) K (z -l Pi	m) z-2Pi,2(zm)

(4.28)
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Proof: The analysis wavelet filters must satisfy that [I, M]Ho(Z)fli(Z)

0. Note that (1 —	 Ho(z) = \/M ( 1-M M } and hence (1 — z- 1 ) 1c Ho(z)

has terms only in the zeroth coset. Thus if P i (z) has terms on cosets other

than the zeroth coset, P2 (z)(1 — z- 1 ) 1c Ho(z) has terms on cosets other than

the zeroth coset. The result follows. 	 V

The smallest possible analysis wavelet filter is given by (1 — z')K 	i E

{1,	 M-1}. In fact we will show that the choice HZ (z) = (1 — z') lc z' for

the analysis wavelet filters leads to the synthesis spline scaling filter 110(Z) =

	  (1+z- 1 + ...+z ( m- 1 )  )K

Theorem 5 Let HZ (z) = cz- i (1 — z- 1 ) K for i = 1, M — 1 and some
K

constant c and Ho(z) = M ( 1+ "	  . Then an M-band perfect

reconstruction filter bank can be designed with the above filters as analysis

wavelet filters and synthesis scaling filter respectively. The constant c is given

by

cm-i 	 V M
det(ilp (z)) M

K

(4.29)

Before we prove Theorem 5 observe that

\zm 1 — Z—M K
(1 — z -1 ) K 110 (z) =

M

Let (1 — Z -1 ) K = Fo(zm ) + Z -1 Fi(ZM	 Z—(11/1 —1) Fm _1(ZM) (the type 1

polypase representation) and Ho(z) = Ho,o(zind-zHo,i(zn+...-Fz(m-1)Ho,m_i(Zin
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(the type 2 polyphase representation). Let

Fo(z) Fi(z) F2(z) FM-1(z)

z-1 FM-1(z) Fo(z) Fi(z) Fm_2(z)

Fp (z) = z- 1 Fm_ 2 (z) z-1 FM- 1 (z) Fo(z) FM_3(z) .	 (4.30)

z- l Fi (z)	 z-1F2(z) 	 z- 1 F3 (z)	 Fo(z)

Then the type 2 polyphase

Fp(z)

vector

110,0(z)

Ho,i(z)

H0,2 (z)

HO,M-1(z)

of (1 — z- 1 ) K Ho(z)

K-

is given by

(4.31)

	  (1m1

0

0

0

We will need the determinant of Fp (z) to prove Theorem 5.

Lemma 7 The determinant of Fp (z) is (1 — z')A.

Proof: Let T(z) = (1 — z- 1 )S(z) for some S(z). Then type 1 polyphase

representation of T(z) is given by Tp (z) = Rp (z)Sp (z) where Tp (z) and Sp(z)

are the type 1 polyphase representations of T(z) and S(z) and

Rp (z) =

1	 0 0

—1 1 0	 0

0 —1 1	 0

0	 0 0	 1

(4.32)
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Then it must be that the type 1 polyphase vector of T k (z) = (1 —

z- 1 ) KS(z) can be written as

Tpk (z) = [Rp (z)] R Sp (z)	 (4.33)

where Tpk (z) is the type 1 polyphase vector of Tk (z). Now it is clear that

the type 1 polyphase vector of (1 — z- 1 ) K is [Rp (z)J K e i where e i is the

vector with i th component equal to one and zero elsewhere ( Note: e 0 =

[1 0 0 ... O] T ). Then the type 1 polyphase matrix of the system (1 -

z-1 )Kz-i i E {0,1,	 M — 1} is [Rp (z)] K . This system must be unique

and equal to Fp (z). Thus

Fp (z) = [Rp (z)] 1'	 (4.34)

The determinant of Rp (z) is (1 — z -1 ) and hence the determinant of [Rp(z)]K

is (1 —	 V

Now we are ready to prove Theorem 5.

Proof of Theorem 5 : From equation 4.31 we get

K -Vm (1-mz1)

0 (4.35)
\ 	

1
Ho,p(z)	 det(Fp(z))

adj(Fp(z))

0

Thus using Lemma 7     

Ho ,p (z) = adj (Fp(z)) (4.36)
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The type 1 analysis polyphase matrix is given by

Ho ,o(z)	 flo,i(z)	 H0,2(z)	 ••• flo,m-1(z)

cz- 1 Fm_ 1 (z)	 cFo(z)	 cFi(z)	 ••• cFm_2(z)

cz -1 Fm_ 2 (z) cz- 1 FM-1(z) 	 cFo(z)	 cFm_3(z)

cz -i-Fi (z) 	 cz-1F2(z) 	 cz- 1 F3 (z) 	 cFo(z)

11,(z) =

(4.37)

A(z)) It must be that thedjaNow Ho,p (z) is given by the first column of det(f4(z)).

first column of adj(i/p (z)) is cm ' times that of Fp (z). Now it is clear from

equation 4.36 that the synthesis scaling filter obtained from Hp (z) is in fact

' A/ (1 +	 z-(m-1))1c and the constant c must be given by 1

cm-1 	
	 = N/M m
det(Hp(z))

(4.38)

V

Theorem 5 provides the simplest possible analysis wavelet filters which

lead to K-regular synthesis spline filter. Table 4.2 gives an example with

smallest analysis wavelet filters ( subject to a delay ). The problem with such

designs is that the corresponding synthesis wavelet filters tend to be large

and not symmetric.

We now provide the condition which can be used to construct all possible

analysis wavelet filters. Note we already have the form of analysis filters in

Theorem 4.

'The determinant of the filter bank can be any monomial but our representation of

analysis wavelet filters and the synthesis scaling filter enforces that the determinant is a

constant.
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Analysis filter Synthesis filter

( —4z -1 + 3 + 6z + 17z2 + 6z3 + 3z4 — 4z 5 ) $(1 + 2z-1 + 3Z -2 + 2Z -3 + Z -4 )
9 V73-

1	 1	 2CZ — ( 1 — Z—)
81c (5z-1 + 10 + 15z — 40z2+

—14z3 + 12z 4 + 8z5 + 4z6)

2	 1	 2CZ — ( 1 — Z—) &., (4z -1 + 8+ 12z — 14z2
—40z3 + 15z 4 + 10z5 + 5z6)

Table 4.2: (2,2) 3-band spline filter bank.

Theorem 6 Let the analysis wavelet filters be

Hi (z) = (1 — z -
 1 )IC z — 1 pi, zM ) z-2 ,2 ( zM )	 z— (M —1) pi _1 ( zM ))

This Hi (z) leads to the synthesis scaling filter

(1 z- 1 	 z-(m-1)\ K
M

of a perfect reconstruction filter bank when

det(P(z)) = M det(Hp(z)) (4.39)

Ho(z) = 3M

where

P(z) =

-131,2(z)

P2,1(z)	 P2,2(z) P2,m-1(z)

PM-1,1(z) Pm-1,2(z) ••• PM- 1,M-1(z)

and Hp (z) is the analysis polyphase matrix.

Proof: Let the type 1 polyphase vector of (1 — z- 1 ) Kz- i is denoted by

Ai (z). Then the type 1 polyphase vector of Hi (z) is given by

M —1

Hip(z) =	 P , i(Z) A i(Z)

/=1

(4.40)
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Let

z- 1 FM-1(z) Fo(z) Fi(z) Fm_2(z)

p (z) —
z -1 Fm_ 2 (z) z -1 FM-1(z) Fo(z) Fm_3(z)

z- 1 F1 (z) z-1F2(z) z- 1113 (z) Fo(z)

Then analysis polyphase wavelet matrix is given by P(z)Ff:m_1(z). Thus the

analysis polyphase matrix is given by

1	 0
(z) =

	

	 (4.41)
0 -P(z)

where Hp̀) /d (z) is the analysis polyphase matrix of the filter bank given in

Theorem 5 and the synthesis polyphase matrix is given by

Hp (z) =
1	 0

0 cP-T (z)_
(4.42)

Now the determinant of the analysis polyphase matrix is given by

M-11

-)
det(P(z))det(f1;1d (z)) = det(f/p(z)).c- 

Now using equation 4.29 we get the required valve for det(P(z)). 	 V

The following proposition is useful to construct analysis high pass filters

which leads to more general synthesis low pass filters. It is also useful to

provide an alternative proof to the Theorem 5.

Proposition 1 Let Hp,o(z) = A(z)eo be the synthesis scaling filter where

det(A(z)) is not necessarily a monomial. Let A- 1 (z) = B(z) where B(z) andm(z)

m(z) are not rational. Then last M-1 rows of B(z) as the analysis wavelet

filters leads to the scaling filter Hp,o(z).
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Proof: We can write

diag(1, m(z),	 m(z)) (
z
z

)
) A(z)chag(1,	 (z), ..., m- 1 (z)) = I.	 (4.43)
mB( 

Thus diag(1, m(z),..., m(z))1) as analysis polyphase matrix and

[A(z)diag(1,	 (z),	 m- (z))1T

as synthesis polyphase matrix leads to a perfect reconstruction filter bank. By

changing analysis scaling filter while keeping the same analysis wavelet filters

and synthesis scaling filter, we can construct a FIR, perfect reconstruction

filter bank.	 V

It can be seen that the proposition 1 construct analysis filters of the form

z -ib(z), i 1,	 M —1 when A(z) is a pseudo-circulant matrix since adjoint

of a pseudo-circulant matrix is also a pseudo-circulant matrix. An interesting

property to observe is that b(z)Hp,o(z) c(zM) for some c(z). Thus filters

parameterized by b(z)d(z) where d(z) do not have terms in zeroth coset, are

all orthogonal to Hp,o(z). But whether any filter orthogonal to Hp,o(z) can

be written in the form of b(z)d(z) is not true in general. As an example let

Hp,o(z) = 1 +	 z-2 — z-3 z-4 . Then z- 1 is orthogonal to Hp,o(z) but

cannot be written in the form of b(z)d(z).

Alternate proof of Theorem 5: We can write

=	 eo	 (4.44)

where

1	 z	 z

1	 1

P(z) = 1	 1	 1 (4.45)

1	 1	 1	 1

Hp,o(z) [P(z)]''
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0 -1 (z)	 RpIt can be shown that	 (z) 

1). K	
FP(z)i)A-(Z) = (1	 z_i)

	

[ Rp ( Z )] A	 (1	 z

Now

p 

and the result follows by proposition 1. 	 V

Now we will show how to construct analysis wavelet filters which lead to

more general scaling synthesis filters.

Theorem 7 Let Ho(z) = (1 + z-(m-1))K Q(z) and write the

polyphase components of Ho(z) as Hp,o(z) = [P(z)J" Q c (z)eo where Qc(z)

(the pseudo-circulant matrix corresponds to type 2 polyphase representation

of Q(z)) is

Qo zQm—i	 zQi

Qo	 zQ2

QM-1 QM-2 ••• Qo

Then the last M — 1 rows of adj(Q c (z))Fp (z) as analysis wavelet filters leads

to the synthesis scaling filter Ho(z).

Proof:

L[p(z)]/;-Qc(z)] 	 adj(Qc(z))Fp(z)

det(Qc(z))(1 — z-1)x.

Then by Proposition 1 the result follows. 	 V

4.4 Design of Symmetric Wavelet Filters

The symmetry we consider here is the linear phase (LP) symmetry. It is

known that in some applications, particularly image coding, it is crucial to

have linear phase in both analysis and synthesis filters. Furthermore, LP
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filters allow us to employ simple symmetric extension methods to effectively

handle the boundaries of finite length signals, see Chen, Nguyen and Chan

[24]. Symmetric extension eliminates the annoying energy leakage due to

discontinuities at the borders when circular convolution and periodic exten-

sion are used to implement non LP filter banks. We will look for symmetric

wavelet filters for a given scaling filter pair( i.e. analysis and synthesis scaling

filters). We will provide solutions for some special cases. To the knowledge

of the author, the full solution remains an open problem.

A filter H(z) is said to have a linear phase symmetry if and only if H(z) =

ZMr+k H(Z -1 ). In the polyphase domain, linear phase symmetry is given by

Hp (z) = Zr+1 
ir(k+1)x(k+1)	 0	

Hp (z -1 )	 (4.46)
0	 ZJ(m—k-1)x(M—k-1)

where Hp (z) is the type 1 polyphase vector of H(z) and J is the anti-

diagonal identity matrix. Now let the analysis filters are symmetric such that

Hz(z) = ZAIr ' +k fli(Z -1 ). It can be seen that the analysis polyphase matrix

Hp (z) must satisfy

Hp(z) = DZ(z)flp ( z -1 )J(z)	 (4.47)

where D is a diagonal matrix whose entry is +1 when the corresponding

filter is symmetric and —1 when the corresponding filter is anti-symmetric,

	

and Z(z) is the diagonal matrix diag(z r° 1- 1 ,z r1+1 ,	 zrm- 1+1 ), and

J(z) = 
J(k+l)x(k+l)	 0

0	 ZAm—k-1)x(M—k-1)_

When analysis filters satisfy the equation 4.47, the synthesis filters are

either symmetric or anti-symmetric since
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Analysis filter Synthesis filter

1 ,-(-4z -1 + 3 + 6z + 17z2 + 6z3 + 3z4 - 4z5 ) (1 + 2Z -1 + 3Z -2 + 2Z -3 + Z -4 )
9 V3

a(z- 1 — Z -2 )(1 — Z-1)2
2	 3z 	 26z2+(z -1 +	 +	 -162a

+26z3 - 3z 4 - 2z5 - z6)

b(z- 1 + z- 2 )(1 — z-1)2 ffi(z-1 + 2 + 3z - 6z2

-6z3 + 3z4 + 2z5 + z6)

Table 4.3: (2,2) 3-band symmetric spline filter bank.

i-CT (z) = D Z(z -l )f-CT (z-1)J(z-1). 	 (4.48)

Example 1 We use the equation 4.47 and the theorem 6 to construct a

symmetric 3-band filter bank with (2,2) vanishing moments with the synthesis

scaling filter is the second order 3-band spline filter. From the theorem 6 the

two analysis high pass filters can be of the form a(1 — z') 2 (z -1 — z -2 ) and

b(1 — z- 1 ) 2 (z- 1 z- 2 ). We can see that equation 4.47 is applicable and

hence both analysis and synthesis filters are symmetric or anti-symmetric as

given in Table 4.3. Also notice that the one of the analysis wavelet filters

has higher regularity than the other one even though we did not enforce it.

The filter bank constructed in the example 1 is not merely a coincidence

but is a result due to the Theorem 9. Before we establish the theorem we

define linear phase symmetric matrices.

Definition 6 A linear phase symmetric matrix is an invertible matrix such

that coefficients of each row forms a linear phase filter.

Linear phase symmetric matrices can be parameterized as in Theorem 8.



CHAPTER 4. M-BAND FILTER BANKS AND WAVELETS	 52

Theorem 8 Let A be a linear phase symmetric matrix with m rows and J

be an antidiagonal matrix. If in is even, it can be parameterized as

D DJ

E —EJ

up to a matrix multiplication by a permutation matrix where D is an invert-

ible matrix with m/2 rows, and E is an invertible matrix with m/2 rows. If

m is odd, it can be parameterized as

D f DJ

E 0 —EJ

up to a matrix multiplication by a permutation matrix where [D f] is an

invertible matrix with (in + 1)/2 rows and E is an invertible matrix with

(in — 1)/2 rows.

Proof: Consider the vector space, R m, spanned by the rows of a linear

phase symmetric matrix. Since arbitrary symmetric vector is orthogonal to

arbitrary antisymmetric vector, R m consists of two orthogonal subspaces,

one formed by symmetric vectors and the other formed by antisymmetric

vectors. Thus number of rows of D must correspond to the dimension of

the subspace spanned by the symmetric vectors while number of rows of

E must correspond to the dimension of the subspace spanned by the anti-

symmetric vectors. Let ej denote the it h row of the identity matrix. Since

e3 em+1_ j = 1, ..., m/2 ( or (in + 1)/2 for in odd), D has m/2 rows if M

is even and (7n +1)/2 rows if m is odd. Also since ei —em+i _j , j = 1, ..., m/2

( or (rn —1)/2 for in odd), E has m/2 rows if m is even and (7n —1)/2 rows if

in is odd. It can easily be seen that both D and E must be invertible for the

linear phase matrix to be invertible for 7n is even while both [D f] and E

must be invertible for the linear phase matrix to be invertible for in is odd.

V
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Note that the above proof was motivated and similar to the Theorem 2.2

in Turcajova [41].

Theorem 9 Let the synthesis scaling filter is M (1+z-1+-14+z-(A1-1)

the analysis scaling filter is as constructed by the equation 4.25. Let analysis

wavelet filters are given by a iz- 1 (1 — z- 1 ) L pi (z),i = 1, ...,	 1, where

	

pi (z) = pi ll z -1 	 z-(111-2)]T

and pi is the i th row of a linear phase symmetric (M — 1) x (M — 1) bi-

orthogonal matrix. Then the filter bank is symmetric, FIR, and satisfy perfect

reconstruction.

Proof: It is easy to see that the filter bank is FIR and satisfy perfect

reconstruction due to the Theorem 6. Now we only need to show that the

analysis filters and synthesis filters are symmetric( or anti-symmetric). We

prove the symmetry by showing that the equation 4.47 is applicable. All

the analysis wavelet filters are of same size and satisfy

	

fii (z) = +z-(L+m)fii(z-1) 	 = {1,...,m- 1}). 	 (4.49)

Now using equation 4.25, we deduce that

IIo(z) = zL (m- o fio(z- i ).	 (4.50)

Since —L — M _= L(M — 1) (mod M) equation 4.47 is applicable. 	 V

Table 4.4 gives more examples of bi-orthogonal 3-band spline filter banks.

4.5 Conclusion and Further Research

We were successful in obtaining shortest analysis wavelet filters of equal size

and the number of vanishing moments equal to the degree of K-regularity
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K K Analysis filter Synthesis filter

4 2
az -2 (1 + z + Z 2 ) 4 (7Z -2 —34z-1

+57 — 34z + 7z2 )
7219a ( 1 + z—i + z -2 )2

b(z -1 — z -2 )(1 — z-1)2
30z -3	105z -2	238z-14;61) 

(1 — z )4 (5z-4 + +	 +

+378 + 378z + 238z2 + 105z3 + 30z4 + 5z5 )

c(z —i + z-2)(1 — z —i )2 6z -3	21z -2 	42z-11458c ( 1 — z)4(—z-4 —	 —	 —

—42 + 42z + 42z2 + 21z3 + 6z4 + z5 )

az -4 (1 + z + z2 ) 6 (-40z -3 + 276z-2
6 2

—768z -1 + 1073 — 768z + 276z2 — 40z3)
-2)2

196183a (1 + z-1 + 

224z -6	1008z-513122b (1 — z) 6 (28z-7 +	 +

b(z—i — z-2)(1 — z -1 )2 +3085z -4 + 7040z -3 + 12276z -2 + 16434z-1

+16434 + 12276z + 7040z2 + 3085z3 + 1008z4

+224z5 + 28z6)

32z-6 	144z-539366c (1 — z) 6 (4z- 7 +	 +

+425z-4 + 880z -3 + 1188z- 2 + 726z-1c( z —i + z-2)(1 — z —i )2
—726 — 1188z — 880z2 — 425z3 — 144z4

—32z5 — 4z6 )

1 3 az2 (1 + z + z2 ) (-4z -1 + 11 — 4z) (1 + z -1 + z-2)3

b(Z -1 — Z -2 )(1 — z-1)3 4z 	 10z2 	10z3 	4z 4162 b(1 — z)(-1 —	 —	 +	 +	 + z5)

c(z —i + z-2)(1 — z -1 )3 18b(1 — z)(1 + 4z + 10z2 + 10z3 + 4z4 + z5 )

3 3 a(1 + z + z2 ) 3 (7z -2 —34z -1 + 57 — 34z + 7z2 ) 7219a (1 + z -1 + z -2 )3

b(z-1 — z -2 )(1 — z-1)3 6z -2 	21z-11458b (1 — z) 3
 

(Z-3 +	 +

+42 + 42z — 42z2 — 42z3 — 21z4 — 6z5 — z6)

c(z —i + z-2)(1 — z-1 )3 30Z -2 105z -1 	238- (1 — Z)3 (5Z-3 +	 +	 +

+378z + 378z2 + 238z3 + 105z4 + 30z5 + 5z6)

az -2 (1 + z + z2 ) 5 (-40z -3 + 276z-2 -2)35 3 19683a (1 + Z-1 + —768z- 1 + 1073 — 768z + 276z2 — 40z3)

32z -5 	144z-439366b (1 — z)5 (-4z-6 —	 —

b(z- 1 — z- 2 )(1 — z-1)3
—425z- 3 — 880z- 2 — 1188z- 1 — 726

+726z + 1188z2 + 880z3 + 425z4 + 144z5

+32z6 + 4z7)

224z -513122c (1 — z) 5 (28z -6 +	 + 1008z-4

c(z —i + z-2)(1 — z -1 )3 +3085z -3 + 7040z -2 + 12276z -1 + 16434

+16434z + 12276z2 + 7040z3 + 3085z4 + 1008z5

+224z6 + 28z7)

Table 4.4: 3-band symmetric spline filter banks.
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of synthesis spline scaling filter. The filter banks we have developed also

have the linear phase symmetry. We are currently investigating two further

problems.

1. How can we achieve balance in filter lengths between analysis and syn-

thesis wavelet filters for a given synthesis spline scaling filter.

2. The more general problem of filter bank completion for a given arbitrary

synthesis scaling filter with K-regularity.


