
Chapter 1

Introduction

In acoustics, as in almost any analytical field, the traditional approach to solving a problem

is to describe it in the form of an equation and then to linearize this equation. In kinematic

terms this means that the motion of the oscillating system is assumed to be small when

compared to its structural dimensions. The unknown quantity whether it. is displacement,

velocity or pressure need only be included in the equation of motion if it is of first order;

higher order terms are considered negligible. The consequences of this seemingly small

assumption are far-reaching and, together with a range of techniques developed to solve the

linear equations, they account for most. of our present knowledge in acoustics.

Amongst the predicted phenomena of linear theory, the two most telling are probably

that the frequency of oscillation of a s )7stern is independent of the amplitude and, the

existence of modes of vibration such that each mode is independent. of any other mode so

that the total vibration is a linear superposition of the individual modes that may at any

stage be separated into its constituent parts.

Thus it is quite obvious that for some problems, for example a string plucked with large

amplitude such that its frequency decreases as its amplitude decays, the linear approach is

insufficient. it was this ver y problem tlia- prompted the first. detailed investigation into the

theory of nonlinear vibrations of elastic s . .ructures (Carrier 1945). a paper we shall examine

in more detail in chapter 2. Carrier's paper is typical of most of the work done on nonlinear

problems up till very recently, that is, having realised the problem is not linear so that all

the elegant techniques for solving linear equations of motion are not in the main, helpful,

the investigator needs to develop new methods of solution. This is done by assuming the

system responds with a particular, simple solution and then iterating successively until the
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solution converges to a reasonable approximation of the actual response.

For example one common method. t he perturbation method. expands an assumed so-

lution in terms of the nonlinear parameter ! .;o that accuracy may be increased simply by

inclusion of higher order terius from the e> passion. A trial solution is taken from the

linearized problem and then substituted into the equation with as many of the nonlinear

expansion terms present as necessary to obtain an adequate approximation to the actual

response. Another method, the method of slowly varying parameters, we shall be using in

chapters 3 and 5. It has an advantage in that it enables us to determine not. only the steady-

stat e periodic motions but also the transient process corresponding to the perturbations of

the oscillations. Time method is used with equations of the form

Le2x 4 g(x.	 (I	 (1.1)

where g(x, ;i') is weakly nonlinear.

We know that if g(x,	 , 0 then (1.1) reduces to

4 a 2 x = 0	 (1.2)

the solution of which is just.

x	 asin(wt 4- 0)	 (1.3)

where a and 0 are constants and

(1:1
ou.vos(cet 4- 0).

clt

Now if g(x,i') is sufficiently small we may assume that the solution to (1.1) will be of the

form

aWsin(wt 0(t)) (1.5)

where a and 0 are functions of t, to be determined such that the derivative of (1.5) is of

the same form as (1.4)
dx

(,(/),,cos(wf	 0( t )) .	 (1.6)

Substitution of (1.5), (1.6) and the second derivative of x, obtained by differentiating (1.6)

with respect to time, then gives us the equations

do
11(j	 sin0.0	 c5)	 (1.7)

g(r ,

	

cos(wt + 0) .	 (1.8)
di	 aw

(1 .4)
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These equations are exact for the functions (1(0 and 0(t) when the solution of (1.1) is of

the form (1.5), but. they themselves are still difficult to solve. We therefore assume that the

the nonlinearity and rate of change are both small so that a(t) and O(t) change only slowly

over one cycle. Thus if we calculate the average values of a. and 0 over one period, (1.7)

and (1.8) may be written as

1 	 f 2 r

Kai g(a sin , a“." cos 0) cos 0 d0:>
27-w Jo
1	 f 2 7r

Ke\/ii( a sin 0, ac.,) cos 0) sin 0 do)
\27N.4:

( 1.9 )

(1.10)

where 0 = wt + and the brackets (,) it dicate that only terms with near zero frequency

should be retained.

With the increase in interest in nonlinear problems and the development. of high powered

electronic computers enabling numerical solutions, it is becoming relatively straightforward,

though by no means simple, to include no linear terms in equations of motion and to choose

an appropriate method of solution. In chapters 3 and 5 we shall be solving such problems

for a string and a bar respectively and shall show the calculated results approximate well

to the experimentally obtained responses.

Yet there are systems for which these methods appear to fail. The equations of motion

may be completely determined with no random parameters and still the output appears

random. Such systems are said to be chaotic and have recently generated a great. deal of

interest not only with mathematicians who first started exploring the ideas but also with

engineers and physicists who are realising that, many physical systems in nature, hereto

described as random may actually be chaotic. It. is interesting to note too, that. if certain

parameters are changed by a small amount the chaos may disappear and the response

becomes periodic. A good introduction to chaos is contained in a work by Crutchfield,

Farmer, Packard and Shaw (1986).

One of the earliest reported chaotic iystems was discovered by Lorenz (1963; see also

Tongue 1985). In his investigations into atmospheric turbulence., Lorenz studied equations

of the form

--ax H- cry	 (1.11)

Tx – y	 (1.12)

xy	 (1.13)
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Figure 1.1: Phase Space flow of (a) a system that comes to rest under the influence of
friction and (b) a system that cycles periodically without coming to rest.

for which he found that suitable values of a and r would cause the system to respond

chaotically.

Chaotic systems are best depicted in phase space where the coordinates are usually

velocity and position. The system's state can then be illustrated as it changes in time;

either continuously, called a flow, or at discrete time intervals, called a mapping. For

example, a system that comes to rest under the influence of friction, will have a flow that

approaches a single point, called an attractor (Fig.1.1a). Systems that do not come to

rest but cycle periodically, have flows represented by closed orbits called limit cycles, (Fig.

1.1b). A Poincare mapping of such a system, where the state of the system is measured at

discrete time intervals equal to the period of the motion, will obviously be a single point.

Some systems have two or more possible modes of vibration so that their attractor depends

on the initial conditions of the system.

Slightly more complicated systems such as those with quasi-periodic motion where, for

instance, the system may be being driven at a frequency slightly off its normal resonant

frequency, display torus shaped attractors. Despite their seemingly complicated behaviour

such systems are still predictable in their motion.

Chaotic systems have what are known as "strange attractors "„ that is, their response is

a hounded oscillation containing a continuum of frequencies so that a Poincare mapping will

contain a seemingly random array of points within an infinitely detailed surface (Fig.l.2).
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Figure 1.2:	 A strange at tract or uilculat ed by the author using the equation
+ 0.02X + x(1 + 0.3x	 0.1 •2 ) = 25 sin t .

Furthermore two points infinitely close on the strange at tract or may strongly diverge within

a few cycles, illustrating the unpredictable nature of chaotic motion.

With this in mind Holmes (1979) ideniified Lorenz's findings as a strange at tractor along

with similar types of results obtained in si udies of population dynamics. fluid dynamics and

models of the earths magnetic field. He has written a thorough and fairly mathematical

study into chaos as found for the Duffing oscillator

---	 H- ckx 3	 F cos(,..•t)	 (1.1-1)

in which he shows not only its chaotic behaviour for a range of values of F. but also

establishes Poincare mapping as a suitable means by which to study chaos.

Ueda (1979) investigates the transition of a system from periodic motion to chaotic

motion. He uses a particular Duffing oscillator given by the equation

+ x 3 = F cos t	 (1.15)

and records the Poincare mapping and power spectrum as the parameters k and F are

varied. Ueda concludes that the road to chaos is through multiple frequency splitting

(period doubling, tripling. etc.) as a cr tical parameter is changed. That is, for a given
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Nonlinearity
parameter

Figure 1.3: Bifurcation Tree showing universal behaviour in the road to chaos.

force and decay rate, a system may display periodic motion with a period of T . If the

force is then increased (or the decay rate decreased) to a particular value the motion will

bifurcate so that it oscillates with, say, twice the period, 2T . If the force is increased still

further there comes a point where the period again bifurcates so that it is now 4T before

the motion repeats itself. If the force is increased past a critical value there comes a point

where the period is 2°"'T so that the motion although still bounded never repeats itself.

This is chaos.

A major breakthrough in the understanding of chaos came when Feigenbaum (1980) dis-

covered universal behaviour in the road to chaos. If we represent the road as a "bifurcation

tree" which is simply a graph of how the limit cycle in phase space splits up as bifurcations

occur, then two numbers become apparent (Fig.1.3), such that, for large values of i,

A'
	

= 4.6692	 (1.16)

and
ti	

2.5029 .	 (1.17)
(i+1

These numbers are the same for almost all chaotic systems and have since been measured

in a variety of experiments.

The reason why a particular system may become chaotic, however, is yet to be deter-

mined. It has been suggested (Holmes and Moon,1983) that the existence of both stable and



CHAPTER 1. INTRODUCTIOA

unstable equilibrium states for a system may be a necessity for chaotic behaviour. Thus for

small forcing terms the motion may take place within a potential well and will be periodic.

If the force is increased however, it may become large enough to make the system jump

from one equilibrium point to another. This rather elegant conjecture was soon disproved

by Tongue (1985) with the example

:2: -t 0.1:r 4-	 3	 F cos(,et)	 (1.18)

which has only one stable equilibrium point at the origin and no unstable equilibria yet still

displays chaotic behaviour for particular values of F and

There is obviously much work still to he done towards the understanding of chaos itself

but there is no doubt that we have now, a powerful new tool with which to investigate

nonlinear systems.

In chapter 7 we shall describe the behaviour of the gong in terms of coupled Duffing

equations and shall see how this may produce both bifurcations and chaos depending on

the forcing and damping terms. Duffing oscillators have been used as examples in the

study of chaos (Holmes, 1979; Ueda. 1979; Tongue, 1987), for single mode systems. Most

pertinent, to our investigations is the study by Tongue(1987) in which the author exaniines

a generalised form of Duffings equation. In particular, he points out the dangers involved

in numerical integrations of equations with insufficient time steps. Fig. 1.4 is a Poincare

map as shown by Tongue for the equation

0.2.i •	= 0.3 cos(1.2t)	 (1.19)

The small dots depict a strange attractor generated with time steps equal to 0.2618. How-

ever, if the time steps are reduced t o 0.0654 the Poincare map shows that. the response is

actually periodic with five points. Still smaller time steps cause no further change in the

map. Clearly, we must take particular are with numerical integrations in our search for

chaotic motion.
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Figure 1.4: Poincare Map of i• — X + X3 = 0.3 cos(1.2t). The small and large dots were
generated with time steps equal to 0.2618 and 0.0654 respectively indicating that care must
be taken to choose small enough time steps when integrating numerically [from Tongue
1987].
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GLOSSARY OF SYMBOLS COMMONLY USED IN CHAPTERS
2 AND 3 FOR THE STRING.

position along string

t	 time

y( r, t)	 transverse displacement

z(x ,t)	 transverse displacement. [no-mal to y direction;

v(x ,t)	 longitudinal displacement.

u(t)	 temporal component of y(xA)

(.r.,.')	 characterist ic function

radial frequency

a	 amplitude

O phase angle

0	 (Let + 0)

et	 transverse velocity

c l	 longitudinal velocity

T	 tension

To	 tension in rest position

F	 Young's modulus

S cross-sectional area

p	 mass per unit length

1,	 string length

6	 apparent increase in string length

AL:	 difference between driving :requency and actual mode frequency

Zo	 characteristic impedance of the string

B	 mechanical admittance of the bridge

ZB	 mechanical impedance of the bridge

C	 compliance of the bridge

F	 force on compliant bridge

D	 damping

3 decay constant (total system)

decay constant (due to bridge only)

decay constant (due to viscous and internal losses of the string)

mode coupling coefficient



Chapter 2

Review on the Nonlinearity of the

String

It is well known from the standard analysis of the motion of stretched strings (Morse 1948)

that they can be excited in such a way that particular modes have zero amplitude. Thus for

example, for the case of an ideal string sti etched between rigid supports. in which situation

all the modes are harmonics of the fundamental, the nth harmonic and all its multiples

nin(m = , 2, 3....) are absent if the string is excited by plucking or striking it at a point

of its length from one end.

These conclusions are modified only in detail if the theory is extended to include the

stiffness of a real string or the incomplete rigidity of real end support s, both of which make

the modes of a real string slightly inharmonic (Morse 1948). It is always possible, according

to the standard linear theory, to eliminate a particular mode from the motion by applying

the excitation at one of the nodes of that mode or, more generally, in such a distribution

that the excitation function is orthogonal to the mode shape function.

It comes as something of a surprise, therefore, to find that in practical cases, for example

in musical instruments with plucked or hammered strings, these modes are not actually

absent from the motion. Rather, they typically begin with near- zero amplitude, rise to a

peak after a time of the order of 0.1 seconds, and then decay.

As we have already mentioned, in a linear system the normal modes are uncoupled

and, in the presence of viscous damping forces, each mode will simply decay with its own

characteristic lifetime. Clearly then, the phenomena described above can only be a result

of nonlinear mechanisms corning into operation.

10
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Figure 2.1: Displaced element of string.

Like most. other systems, the stretched string is linear to only a first. approximation. It

has long been recognized that the major cause of nonlinearity is the fact. that any small

transverse displacement of the string must. make a second-order change in its length and

therefore in its tension. Such. a change in tension may well be negligible in small amplitude

vibrations but as linear theory depends on the restoring force being constant for the string,

large amplitude vibrations will quite obvioilsly he affected.

Although the basic cause of nonlinearit3 in string vibrations has been known for a long

time, Carrier(1945) appears to have been the first to publish a detailed theoretical analysis.

He gives a detailed solution for the free vibration of a string with fixed end supports in which

he both derives and solves the equations of motion valid at large amplitudes. In his paper

he considers the dynamic equilibrium of an (lenient. of the string, deformed into a plane

curve as depicted in Fig. 2.1 such that it undergoes both a transverse displacement y(x,1)

and a longitudinal displacement. v(x, i ). Tin apparent change in length of the element leads



(2.5)

(2.6)

(2.7)
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to a change in tension, written as

T — To -= ES {[
10,„y__2 +( ay \ 2 21-

0x)
(2.1)

where To is the tension in the rest. position, E is the Young modulus of the string material

and S is the cross-sectional area. The equations of motion in the transverse and longitudinal

directions are written
0

—[T sin
ax

a2y

P
(2.2)

and
a,	 a2,t,

0;
[T	 _ p ate

respectively where
ay

= tai	 ( 	

Equations ( 2.2) and ( 2.3) reduce quite simply to the linear equations if	 < 1 and

as < 1 , so that ( 2.1) becomes

T — To ES—
Oy

Ox

and, from A ti sink	 and cos A	 1, ( 2.2) becomes

02 y 	02y
T— = p 	 -a x 2 	 at 2

and ( 2.3) becomes

P

Carrier solves the nonlinear equations by using a perturbation procedure. Fig. 2.2 shows

how the ratio of nonlinear period to linear period varies with 'TT: , which is essentially

(amplitude) 2 . Thus one may understand why a string plucked with a fairly large amplitude

"twangs" as the amplitude decays with time. Fig. 2.3 shows results for the variation in non-

linear period with the tension at rest position, for three different values of ES .( amplitude),

a graphical representation of why steel strings with a relatively high modulus of elasticity

"twang" so much more noticeably than gut strings which have a lower modulus.

Carrier also looks at the three-dimensional problem by allowing deflections in the plane

of z normal to the plane of y and shows how the string may vibrate so that each particle

follows a quasi-elliptical path. This was shortly followed by a letter (Harrison 1948) in

1 +

(2.3)

(2.4)
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Figure 2.2: Comparison of periods obtained by linear and nonlinear theories (from Carrier
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Figure 2.3: Period v.s. initial tension. (1) Vanishing amplitude (linear theory) (2),(3)
increased amplitude.(From Carrier 1945).
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Figure 2.4: Amplitude-frequency characteristics of a string in its fundamental mode (from
Lee 1957).

which the author reports on an experiment whereby he observed such circular vibration of a

string forced to vibrate near its fundamental frequency. While Harrison offers a qualitative

explanation for the phenomenon as an "autoparametric excitnient as considered by the

Mathieu-Hill theory" he does not attempt any analytical study of it.

It was Lee (1957) who extended Carrier's theory to include forced vibrations near reso-

nant frequencies. Lee introduces an approximation to Carrier's equation for tension (2.1) ,

by assuming v = 0 and 2 is small, although not negligible as assumed by the linear theory,

so that the change in tension then becomes

T –T0 = 1 ES (----aY ) 2 .	 (2.8)
2	 ax

This approximation is later justified by Murthy and Ramakrishna (1965) who claim that

since Carrier assumed that the string vibrates with an amplitude such that it obeys Hooke's

Law and that for most materials departures from Hooke's Law occurts before 0 becomes
aylarge one may quite easily assume that 0 and hence	 are small compared with unity.

Lee attempts to demonstrate both theoretically and experimentally two effects; a jump

phenomenon whereby discontinuities in the amplitude of vibration are observed as the

driving frequency is changed, and a hysteresis effect as the frequency for which these jumps

occur depends on whether the freqency is being increased or decreased. Fig. 2.4 shows that

Lee gets good qualitative results i however) ltis theoretical calculations were fairly limited and
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Figure 2.5: Comparison of theoretical and experimental results of the amplitude-frequency
characteristics of a string (from Oplinger 1960).

quantitative agreement seems to elude him.

Oplinger (1960) considerably extends Lees theory so as to cover both amplitude of mo-

tion and tension vibration as functions of frequency. In addition he simplifies the equations

of motion by assuming that, provided the longitudinal wave speed is very much greater than

the transverse wave speed, then the tension will tend to remain uniform along the length

of the string and may therefore be written as

2ES r L aY ) dxT To +	 n2L	 ax I

This in turn, produces an equation of motion for the string

aye
	 L ( a ) 2	 02y

C 
2 [1 +  

ES	 y
dxl 	  = 0	 (2.10)

at 2	 2T0L	 ax	 ax2

c 2
	 7:9_where c = .

Oplinger solves this equation by assumirg a periodic driving function and separating

the variables of y(x , t). This leads to solutions that are elliptic cosine functions. His

experimental results show quite good agreement with theory (Fig. 2.5) . It is interesting to

note, however, that although be reports on the presence of the out-of-plane vibrations and

even mentions that. Harrison had previously observed them, Oplinger does not attempt to

explain their presence but merely hopes to eliminate them by use of a slot parallel to the

motion under observation.

(2.9)
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Murt.hy and Ramakrishna (1965) seek to explain not only the jump phenomena and

hysteresis effects investigated by Lee and Oplinger but also the so far neglected out-of-

plane vibrations of the forced string. This they do by considering the motion of the string

in two perpendicular planes. much the same as Carrier did some twenty years earlier for

the free vibrations of a string.

An element of the string is then considered to be deformed into the space element ds,

so that

ds	 (cL,• 2
	

dye	 d2,2);
	

(2.11)

and the local tension in the string may he written as

ds – dx
T = To+ ES dx.

To+ ES { 1 RaY)2	 az) 2 1

2	 ax	 ■ax )	 8

aa .	 (yr 2	 aa x,) 2 ) }

(2.12)

Assuming that there is an externally applied force, f(x)coswt per unit length and using

Hamilton's principle of a vanishing first variation of the Lagrangian L = KE– PE together

with the clamped end conditions, Murthy and Ramakrishna derive the following equations

of motion

a2 y 	 ;:)2	
3 2 02y ( ay ) 2	 I 2  a (ay ( az ) 2 )	 1c ti,j).rY2	 c1	 f(x) cos wt	 (2.13)0/2	 2 Ox 2 \Ox	 2 Ox Ox KO.r

and
c2 8 2 .7.	 3 2 d 2 Z 	 2	 1(.2 0	 ( ay 2	 _ 

0--	 (2.14)012	 t ax e 	 2 cl ax e Ox )	 2 1 Ox	 sax ) Ox •

in which ct and c 1 represent the transve;-se and longitudinal velocities as they are for the

linear string. Clearly, if = 0 initially, then it will stay zero but if 0 then the tension

will parametrically excite oscillations in I be :–plane at frequency w, and so the string will

whirl. The particular solutions to the equations obtained by the authors show remarkable

agreement with the experimentally obtained response of a forced string as can be seen in

Fig. 2.6.

By the time Morse and Ingard (1965) had revised and extended Morse's original text,

nonlinear oscillations were regarded as sufficiently important that a whole chapter is devoted

to them of which a sizable segment considers large-amplitude string vibrations. They solve.)

however, for the more general case, when longitudinal motion is not neglected, and so require

three coupled nonlinear equations instead of the two deduced by Murt.hy and Ramakrishna.
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y direction

z direction
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132	 136

Figure 2.6: Experimentally observed amplitude-frequency response of the string in the y
and z planes compared with the theoretical curves (from Murthy and Ramakrishna 1965).
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The equations, which quite obviously red ice to the linear equations of motion if second and

higher order terms are omitted, are

a2,

ate

2 (92,1, 1 (c

2 '

e)

taxC i 	 9

a2y
2 a2 y 1 2 2	 a

cl)012 ,	 0,1,2

02: 02y

c 2 1	 ,	 2
c

2	 1

2	 0
c	 )

Ox0t2 t a.r2

+	 (1 – 2– )1
ax	 ax

(;)y ) 2	 ( a z  2

ay) 2 + ( Da:,	 a;.1.,Y 
d	

) (2.15)

	

2 	 v 7

Lax	 ()x 	 ax	 ar

0:	 ay
	 	 1

2

ax ax

Or

0,r	 \ax	 ((:):) Ox

0v)1

(where v again represents the longitudinal displacement along the x axis) and show coupling

not. only between the two transverse modes but also between longitudinal and transverse

modes. It is pointed out that this latter coupling may also, in some circumstances, be an

important source of indirect coupling bet ween transverse modes.

Following the documenting of nonlinearity for the large-amplitude vibrations of a string

in standard texts, there have been a few more papers dealing, in most part, with the

nonplanar vibrations or the whirling of the string. In particular Anand(1969) and Gough

(1983) both revert to Carrier's original problem of nonlinear free vibrations of the string

but use Morse and Ingard's equations of motion to include longitudinal motion.

The nonlinearity of the string is undeniably well established but existing treatments

provide little insight into the present problem, namely the coupling between transverse

modes of different frequencies within the same plane of vibration. It is with this in mind

that we shall spend the next chapter in\ estigating, both theoretically and experimentally,

the more general situation in which the supports of the string are not completely rigid.



Chapter 3

Nonlinear generation of missing

modes on a vibrating string.

Consider the string shown in Fig. 3.2(a). It is stretched with tension T between two

supports, one at x = 0 which is rigid and one at L which is rigid in the x direction

but which has a mechanical admittance (velocity/force) equal to 1 7/3 (x) in the y direction

at angular frequency w. Such an arrangement is analogous to that of a string on a piano,

harpsichord, or guitar, the compliant support being the bridge that is attached t.o the

soundboard. There are, however, important differences between this idealised situation and

a more realistic model of a musical instrument bridge such as shown in Fig. 3.2(b). We

shall return t.o this point later.

If we assume, as is usually true in practice, that the tension is low enough that the

velocity of transverse waves on the strin t is very much less than that of longitudinal waves

(Murthy and Ramakrishna 1965) then the tension T can he taken as uniform along the

string, and the displacement y. assumed to lie in a single plane as is appropriate for our

experiment to be described later, obeys 1 he equation

82 y 	a2y	 ay
p 	  T 	  D—80	 0 ,2	 ot

where p is the mass of the string per unit length, and the coefficient D is a measure of the

viscous losses to the surrounding air and internal to the string itself.

(3.1)

19



Figure 3.1: The string and bridge arrangement, of a violin
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(a)  

	•Y
BL

Figure 3.2: The system to be analysed. A flexible string under tension T is atta. ched to a
rigid support at x = 0, and its other end is atta ched to a bridge with lateral mechanical
admittance YB . (a) shows a highly idealised system while (b) is a closer approximation to
reality.

3.1 Rigid Supports

The elementary solution for this problem is well known (Morse 1948) when both supports

are rigid, so that 17B (w) = 0. The damped normal modes have the form

y„(x,t)= an sin 
(717 X sin ( 0)7,1	 0„) exp	 ,	 (3.2)

where

2,o
T = 

D(w)
aad c=

(01.
(3.3)

Finite stiffness of the string raises all angular frequencies w„ and introduces further in-

harmonicity (Morse 1948). But since this effect is both small and nearly independent of

amplitude, in the interest of algebraic simplicity we ignore it in our discussion. The fun-

damental nonlinearity, as has been mentioned in the previous chapter, arises because of
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the second-order change in the length of the string with vibration amplitude. This length

increase is given by

A f	 (2) 2 	L	 (3.4)

so that the tension becomes

T = To + 
ESA	

(3.5)

where E is the Young's modulus of the string material and S is the string's cross-sectional

area. Inserting a sum y = yn of the form (3.2), into (3.4) and neglecting terms of fourth

or higher order in (1) gives

71-2ES
T To f- 	 	 n2u2 11 – cos 20..4 + On )] exp -

-
-
-2t

8L 2 	 rnn

The first part of the sum in this expression gives a quasi-static increase in the tension,

varying as	 n2an2 exp 	 	 This causes, from (3.3), a proportional increase in the fre-

quencies of all the modes, the increase dying away with time, and is responsible for the

characteristic twang of vigorously plucked strings, particularly if they are of metal rather

than gut or nylon, so that the Young's modulus E is high. The remaining terms in the sum-

mation contribute oscillatory component s of the tension, the frequency 2..' being associated

with mode n.

Including (3.6) in the equation of motion (3.1) and multiplying both sides of the resulting

equation by the spatial part of the pth mode yp namely sin PLC , then integrating over x = 0

to 2. = L removes all terms except those varying like sin(prx) leaving

d2 u 	 72ES	 D du

dt2
	  w2 u

P 
= —

8 L	
n2a2, [1 -- cos 2(wnt On )] exp(

2t
)up	

p dt	
(3.7)

p
P 	

71

where

urn = am sin(wm t 4- Om) •

The differential equation (3.7) for the pth mode has the general form

d2 u

dt2

where the function g contains both damping and forcing terms and depends upon the

amplitudes of all the other mode vibrations. This equation is in the standard form for

treatment by the method of slowly varying parameters discussed in Chapter 1, for which

(3.6)

w 2
u = g(t)

P

(3.8)

(3.9)
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each of the modes u, is assumed to have the form as described in (3.8) where a and are

slowly varying functions of t. The further assumption that

duP = ap( t)")p cos [""pt	 c5p(t)]
dt 

(3.10)

establishes a limitation on the allowed forms of a and p. Finally with (3.8) and (3.10)

substituted into (3.9), the resulting equation is multiplied by cos 6 o:r sin 6, where 6 is given

by

Op = Lep t -4- Op 	(3.11)

and averaged over one period -a:, all terms being neglected except those that change slowly

over this time. The resulting equations are 

(dp )
• 2

1  f27 g(t) cos 0,d0,
7rwP

--D
(3.12)

and

-1	 [27 
g(t) sin Op dOp

- 274.epap

E S O( pr ) 2  1 
(3.13)

L	 L	 2pc.cp

Thus the change in amplitude of a particular harmonic is proportional to the initial

amplitude and contributes a simple damping factor. The frequency however changes like

the change in tension. The lack of any dependance of (d p) on ag for q p shows that a

string held between two rigid bridges cannot experience the mode conversion we wish to

understand. We must therefore turn our attention to the case in which the admittance

17B (c.e) of the support at x = L is finite.

3.2 Compliant bridge at x = L

Consider again Fig. 3.2(a). When the string is in equilibrium the supports are in equilibrium

too and this may be taken as the reference position for their displacements. When the string

is displaced, however, there will be a component of the tension equal to T sin x, where x is

the angle the displaced string makes with its equilibrium position, acting on the support.

In the linear approximation x is assumed to be small so that sin x tan x which is equal to

(op)



'On
W., X )

= sin –
C

Wn X
Yn = si n 	 exp(jwt)

so that
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the slope of the string at x = L. If the support at x = L has finite mechanical admittance

YB ( “)) then the termination condition at this bridge is just

ay

at
== —YBTO 

ay

 " x=L
(3.14)

The termination condition at x = 0, a rigid support, remains

y(0, 0= 0	 (3.15)

It would be possible to apply this condition without restriction to the lossy string de-

scribed by (3.1).but it helps the clarity of the argument and is also adequate for our practical

purposes to make some simplifying assumptions. The first of these is that the bridge admit-

tance YB (ce) is always small compared with the characteristic admittance -1p, of the string so

that the bridge is nearly a node for the string motion. The second is that the energy losses in

the system can be partitioned between those at the bridge, giving decay time constants 7- 7,, ,

and those associated with viscous or internal losses along the string, giving decay constants

Tn , so that the combined decay constaLt rn is given by

1	 1	 1

rn	 7-n	 rn

(3.16)

where it is now riin ,rather than 7,, that is related to D(w) by (3.3). The third is to assume

that the bridge itself behaves as a simple linear system so that Y B (w) can be written as an

amplitude-independent complex function of w when the time-variation of the normal modes

(3.2) is written as exp(jwt).

With these assumptions in mind, we follow the procedure outlined by Morse(1948) to

derive an expression for the characteristic frequency of the nth mode, remembering that our

derivations are an adaption of Morse's as we have only one nonrigid bridge. We assume a

characteristic funtion of the form

which together with (3.14) leads to

nrc [	 in1(17B)1-- 1 – To	 (3.19)
1,	 L J

wn
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and
1 ToRe(YB)

/,
(3.20)

where Re(YB ) and /m(YB ) are, respectively, the real and imaginary parts of the bridge

admittancel-B.

Equation (3.19) may quite easily be written in the form

where

nrc
= 	n LT en

I Tn(YB)To
Ci

(3.21)

(3.22)

Thus the string behaves, for each mode, very much like a normal lossy string supported

rigidly at x = 0 and L bn . The eigenfunctions, for the linear approximation, will still

have the form (3.2) but with (3.19) and (3.20) inserted and with I replaced by L

3.3 Nonlinear forcing term

For the more general nonlinear problem to which we now turn, the force on the compliant

bridge is, to sufficient accuracy from (3.2) and (3.6)

(To +	 Tn ) L."‘ A, sin 0, –
71	 TTi

F = –T 

where

Tn A„ sin(Om 29n ) (3.23)
n

Tn
 ES 

n2a 2 exp( 
–2t

)Euz Tn

and

A,	 (_i)n+1 (f) nanexP(--Tt)n

On ;"--' Wnt

(3.24)

(3.25)

the approximations arising from neglecting bn in comparison with L in appropriate places.

The force F acts upon the compliant bridge and its attached string, which are mechan-

ically in series since they have the same displacement velocity. To the approximation to

which we are working, the problem is thus equivalent to that of a rigidly supported string

of length L	 , acted upon by the force F at the point 2. = L, which is a distance br, from
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one end. The resistive part Re(1B) of the bridge admittance may also be localized at this

point.

The equation of motion for the string is now formally, comparing with (3.1),

p a te 	 a2y 
D	

R , ay
 To a22	

--=
at 

—	 b(x – L) F(t)b(x – L)	 (3.26)
a 

where y = 0 at x = 0 and x = L 6p for the pth mode, the form of which is given by (3.2)

with I replaced by L -4- 6, and with bp given by (3_22). The form of R i is clearly related to

T by (3.20) but need not concern us for the moment.

Multiplying (3.26) by the spatial part of yp , namely sin (1+7  ), and integrating over

x = 0 to L bp gives

a2u	 au	 2
F(t) sin 	

P at 2P	 L 76n) 2 UP R P	 F(	 Pr"'at	 L	 + bp

where R is related to D and R ` , and the pth normal mode is now represented by

up = a sin(wp t 	)

(3.27)

(3.28)

when F = 0 . This serves, if we wish, to relate R to 7-p . Using (3.3), assuming (5p < ,

and then using (3.22.), we can rewrite (3.27) as

02up	 –2 aup 	 2pr
–+ pUp = 	 	 ( 1)P 	 ToIrn(YB)F(t)	 (3.29)

at 2 7P dt

There is an equation of this form for each of the modes p. In cases of practical interest, the

damping is small so that -rp < ‘,4-- and the resonances are so narrow that only those terms in

F(t) with frequencies very close to w need to be considered. We note, incidently, that the

forcing term involving F(t) is proportional to the bridge admittance 1 .-B , and so vanishes

for a string supported on rigid bridges, in agreement with our earlier discussion.

3.4 First-order solution

The differential equation (3.26) for the pth mode has the general form (3.9) and may be

solved using the method of slowly varying parameters as described earlier for the case of

rigid supports. The resulting equations are

aP
Tp

(3.30)(a) = E E Opa rn a2, sin [(Ley, 4 2w, + wp )t (chn, + 2 on + )1 –
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and (4) E v. ±Oparnan2
	  cos [(w, + 2w, + wp ) + (Om + 2On -± Op )]	 (3.31)

an m	 P

where only the terms m + 2n + p = 0 are retained. The mode coupling coefficients Op are

given by

= 
7-4ToES
	 Im(YB )	 (3.32)

32pL5wp2

It is also important to note that in the expressions (3.30) and (3.31) the ± before wp is

independent of that before 2w, but tied to the leading ± in (3.31). The signs of the cpj

follow those of their related wi . Hence we see that modes rn and n will couple to generate

mode p only if m + 2n = ±p.

A solution to the general problem thus requires consideration of the pairs of coupled

equations (3.30) and(3.31) for all modes of the string. For our present problem, however,

a much simpler procedure suffices. Suppose the string is excited so that only two modes

n and m have appreciable amplitude, and a third mode of interest. p, has zero initial

amplitude. We further suppose that modes n and m are either not coupled, in the sense

that m ± 2n � 1mi, 3n m, and similarly with in and n interchanged, or that any such

coupling is small enough to be neglected. Then the forcing term F will be zero at mode

frequencies (4.1, and wn , as can be seen by (3.23), except for some small self-interaction which

simply lead to frequency shifts as in (3.13), and each of these modes will decay exponentially

as shown by

a,	 an° exp	 (3.33)
Tn

ammo exp (3.34)
)

If n and m are chosen so that one or more of the combinations 1m ± 2n1, n ± 2mI (including

3n or 3m ) is equal to p, however, then the forcing term F for mode p will not. vanish.

In the simple case in which w,, and wr, are harmonically related, the frequencies of these

driving terms near wp will be the same, although not nesessarily exactly equal to wp unless

it too is part of the same harmonic relationship. Provided the dicrepancy between wp and

the driving frequency is riot too large, the phase of mode p (which is initially undetermined)

can adopt a value such that the actual oscillation frequency w pi ,given by (3.8) as

LA: p =	 )

	

(3.35)

13p
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is equal to the driving frequency. This is simply the phenomenon of off-resonance driving as

expressed in this formalism. Once the iritial phase has been determined in this way, ( 9p )

remains nearly constant, only tracking the quasi-static tension change, and the value of (a)

can be determined. There is an inverse relationship between the magnitude of these two

quantities, given explicitly by (3.30) and (3.31), as is always the case for systems slightly-

away from resonance.

The general problem requires numerical methods at this stage unless the relevant fre-

quencies ce, and (A:, are harmonically related, for the general solution will involve beats and

similar fluctuation phenomena. Suppose, however, that we neglect all driving modes except

m and n driving mode p through the coefficient Op , and let

■A e p = (0 p)	 CO p (3.36)

Then from (3.31), in abbreviated notation,

cos[
Au, aP P (3.37)=

Oparria;,"

and this can be substituted back into (3.30) to give

a
(ap) _a Opman2 1 (3.3 8)Lu.,pap	 2 1

,3papa.F,

It. is clear from the general form of (3.38) that, if a, and a, are both initially proportional

to some pluck amplitude A while ap is zero, then ap will rise at a rate proportional to A3,

go through a maximum as a, and a, decay, and then decay itself with a time constant

tending towards rp . It is also clear that the excitation of mode p will be most efficient

when all the modes are nearly harmonically related, so that L.Lep is small, and when the

decay times T are long.

Another conclusion that follows from the general form of (3.38) is that not all modes

can be driven by this mechanism but only those for which p = I2n m . In particular

if the modes are essentially harmonic and the string is plucked near its centre so that no

even modes are excited, then the mechanism cannot provide subsequent excitation of any

of these even modes.
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3.5 Theory for a realistic bridge

The idealized bridge shown in Fig. 3.2(a) and considered in our theory above differs signifi-

cantly from the more realistic bridge shown in Fig. 3.2(b). For the realistic bridge structure,

it is an adequate approximation for our present purpose to assume that the bridge itself is

quite compliant in a direction par/allel to the string, with the necessary longitudinal rigidity

being provided by the short angled length of string between it and the hitch-pin. We can

then assume that the tension T of the s-,ring is the same throughout its whole length.

The analysis of the previous section still applies to this structure, with the admittance

17B being interpreted as applying to the transverse behaviour of the bridge and string tail

together. However, as we shall see in a moment, there is also a further nonlinearity of

second order rather than third order which can dominate the behaviour in certain cases.

Suppose that the bridge is in equilibrium under tension To and that this tension is

increased to T by the mechanism leading to Eq.(3.14). Then, because of the inclination of

the tail of the string, this increase leads to an additional force F on the bridge structure of

magnitude

F(t) = (T – To) sin V, . (3.39)

If the string carries modes m and n, then. from (3.6), F(t) has components of frequencies

2w„, and 2w,-, with amplitudes proportional to am and an, respectively. There is no frequency

mixing below fourth-order terms.

The effect of this force can be treated in exactly the same way as before, and the

governing equation is formally identical with (3.26;) or (3.29). The solution is given by

equations similar to (3.30) and (3.31) or, quite generally since there is only one driving

term for each mode, by an equation like (3.38). The only difference is the replacement

oparn 417,2 --=• 	 sin 1p	 (3.40)

where
onp = pn 2 73ESTo

p8L44	 Im (YB

In summary we note that this nonlinearity can drive only even modes, that it behaves

as the square rather than the cube of the initial excitation amplitude, and that its coupling

magnitude is proportional to sin '0, where 1/) is the bending angle of the string as it passes

over the bridge.

(3.41)
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String

Magnet	 Fi lter	 Oscilloscope

Support

Figure 3.3: A tensioned nichrome wire passing over two bridges 67cm apart and placed in
the field of a permanent horseshoe magnet. The emf produced by the motion of the string
was fed via a filter to a storage oscilloscope.

3.6 Experiment

The experimental arrangement consisted of a tensioned nichrome wire, 0.3 mm in diameter,

passing over two rigid bridges about 67 cm apart. The fundamental frequency was about

200Hz. A horseshoe permanent magnet produced a strong magnetic field normal to the wire
r

over a short part of its length, and the emf produced by motion gave a signal propotional to

the velocity of the string in the field region, and hence to appropriately weighted amplitudes

of the string vibration modes. The modes were isolated by feeding the signal through a

digital filter (Bruel and Kjaer type 1623) with a bandwidth of 12% or 24%, thus giving

an adequately short rise time, and were displayed on a storage oscilloscope, using the

arrangement shown in Fig.3.3. The relative response of the system to different modes was

calibrated as will be described later.

The first check of theory for rigid bridges was performed by plucking the string to a

displacement of about 3 nun at one- third of its length, giving large amplitudes to modes

1 and 2 and a carefully defined near-zero atnplitude to mode 3. No subsequent increase in

the amplitude of mode 3 was observed, in agreement. with theoretical prediction. A similar

confirmatory null result was found for mode 2 when the string was plucked at its center.

A compliant bridge was constructed by looping a thin, cotton wrapped elastic cord over
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Figure	 "The curimprli; u  bridge consisting of a thin cotton wrapped elastic cord over the
wire securing it to a lower support.
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the wire and securing it t.o a lower support as shown in Fig. 3.4. This arrangement gave

a bridge that was not only nearly ideally compliant (ie having a admittance that consisted

only of a compliance and a small series resistance), but also very substantially anisotropic.

Thus we effectively decouple the two polarizations of wire vibrations and eliminate one

source of experimental difficulty namely the whirling of the string as described by Murthy

and Ramakrishna (1965). A small pad of rubber damped the short end of the string and

minimized undesired high-frequency vibrations without. adding a significant resistance to

the bridge admittance. The string length L was about 55 cm, the tail length 1 about 12 cm,

and the angle 1i; about. 3° .

With this arrangement and using a mechanical plucking device , several series of plucks

were recorded on magnetic tape for later analysis. In one series the string was plucked close

to its midpoint in a position found to give nearly zero excitation of the second mode, while

in the other series a plucking point near one third of the string length was used so as to

minimize the initial amplitude of the third mode. In each case a range of pluck amplitudes

up t.o about 3 mm was used.

When the records were replayed for analysis, the modes initially excited were found to

decay more or less exponentially with time, while the unexcited modes grew from near zero

to a maximum in a time of the order 0.1s and then decayed slowly to zero. A typical trace

is shown in Fig. 3.5. To analyze these results, the peak amplitude reached by the missing

mode and the time taken to reach this peak were both plotted as functions of the initial

fundamental mode amplitude a? , also derived from the recording. These measurements are

shown in Fig. 3.6 for the second mode and in Fig. 3.7 for the third mode.

Comparison with theory must await the discussion of the following section, but we see

immediately that the peak amplitude of the "missing" mode, though substantially less than

the initial amplitude of the fundamental, is of quite significant magnitude. The amplitude

of this peak does not. behave in an entirely simple manner in its dependence upon the

amplitude aT of the fundamental in either case. though clearly the maximum values of both

a 2 and a3 increase with increasing a7 . The time delay to the peak amplitude decreases

significantly with increasing a7 in both cases, the measured range of variation being as much

as a factor of 3 over the amplitude range studied.
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Figure 3.5: Oscilloscope record of the growth and decay of the third vibration mode of the
string when it. is plucked at. a node for that mode. The major graticule divisions are 0.05s
apart..
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Figure 3.6: Measured values (filled circle:, broken curve) and calculated values (open circles,
full curve) of the maximum amplitude a 2 achieved by the second mode, and the time to
reach this amplitude, as functions of initial amplitude a? of the first mode.
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0.3
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Figure 3.7: Measured values (filled circles broken curve) and calculated values (open circles,
full curve) of the maximum amplitude a 3 achieved by the third mode, and of the time to
reach this amplitude, as functions of the initial amplitude a? of the first mode.
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3.7 Calibration of amplitude

As has already been mentioned, the motion of the string was measured by placing a horse-

shoe magnet over a short part of its length and observing the emf induced. Calibration

of the system involved vibrating the string elect ric:all y, by passing a current of known fre-

quency through it. A travelling microscope was placed so as to observe the string at an

antinode of its vibration and the amplit ude was measured in millimeters. The current was

then switched off and the string was allowed to decay freely with the emf subsequently pro-

duced being displayed on the oscilloscope screen. It must he noted here that the magnetic

field, situated at 4the length of the string for the purpose of this calibration, produces an

emf proportional to the velocity of the motion and this needs to be taken into account when

considering the calibration of modes of different. frequency.

3.8 Damping

The measurement of the decay of the string for various modes was done using a similar

arrangement to that used in the calibration. The string was vibrated at one particular

frequency by passing a current through it. the current was then switched off and the decay

of the mode was measured. It is important to note here that the current. through the

string had quite a pronounced effect on it s temperature and so. to avoid any change to its

characteristics. the string was cooled during the course of the measurements by a fan.

The results obtained introduce a further nonlinearity into the problem which has so far

been neglected. Consider the damping t erm 	 P in (3.30) and (3.38) which accounts for the

free decay of mode p. This linear approximation may indeed be adequate in some practical

situations, but measurements of the free decay of modes excited singly in our experiment

as described above, showed that the ti:ne constant To depended significantly on the mode

amplitude ap , with 7-p decreasing considerably for large ap . Such an effect is indeed expected

for the viscous drag exerted on the string by the surrounding air, since the Reynolds number

for our vibrating string lay typically in the range 10 to 100, which is just the range over

which the drag for steady flow past a cylinder changes from linear to quadratic ( Tritton

1977). In our case, however. much of the damping is caused by the bridge structure, for

which quite different considerations apply. Nevertheless. the form of equation suggested by
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the air-damping analogy. namely

a	 (3.42)

was found to fit the data quite adequately. with o p and --fp as experimentally determined

constants (Fig. 3.8).

Clearly, with several modes present. on the string simultaneously, as in the experimental

plucked situation, we expect interaction terms in the damping. This was confirmed by

examining the decay of a particular mode when the string was plucked rather than excited

only in that mode. The experimental results may therefore be approximated by the obvious

generalization

Tp a —	 + 	 aP	 P	 ,nP
fl

(3.43)

where only one or two of the more important terms need be included in the summation.

Experimental values for the relevant ci arid -; parameters in (s)-' and (s mm) -1 respectively

are given in the following table for our experimental system.

Mode 1 Mode ;	 Mode 3

a 1 = 0.4

-) 1 = 0.6

; 2 1 = 2.5

0 2

")2

=

=

0.7

2.5

o 3 = 0.08

3 = 9.9

-131 = 6	 132 — 12

3.9 Admittance of the compliant bridge.

In the experimental arrangement. the bridge consists effectively of the elastic cord together

with the oblique end of the string. The static compliance of this combined bridge was found

by careful measurement of geometry. followed by a measurement. of the amount by which

the string deflection at the bridge changed when the string tension was lowered or raised.

The behaviour was linear within the accurac y of measurement. and the resulting numerical

value was

lim -1 / m( YB ) ti 0.6m mAT -1 .	 (3.44)

If the real part. of YE' is small, as we shall see in a moment. that. it is. then this implies from

(3.22) a 6 value of about 2 cm which does not change very much with frequency. This was

checked by noting the change in frequency when the compliant bridge was replaced by a
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Figure 3.8: Measured values of the decay time for modes 1,2 and 3 plotted inversely against
their relevant mode amplitudes.
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R"

Figure 3.9: Electrical analog cicuit for the mechanical properties of the bridge used in our
experimental arrangement. R and C represent the behaviour of the elastic cord, Zip is the
impedance of the tail of the string, and RBI large resistance with which it terminates.
The input admittance of this network is YB.

rigid bridge without disturbing either geometry or string tension, and the agreement with

calculation was found to be good. The frequencies of the first three modes are harmonically

related to a good approximation.

Experiment showed that the insertion of a small rubber pad at the remote end of the

string tail made little difference to observed decay times, while the decay time for the string

with its compliant bridge is about half that for the same string supported between two rigid

bridges. Since the end correction is not very sensitive to the exact value of T I , it is adequate

to assume T I = T ig = 27, for all n. The bridge may be considered as consisting of a piece of

wire cord in series with the end of the niclirome string. Thus its impedance may be written

as
cd)

ZB = R— jZo cot —	 (3.45)
Ccej

where C is the bridge's compliance and Zo is the characteristic impedance of the string.

This equation together with equations (3.19) and (3.20) and the measured 7 values and

compliances for the complete bridge structure allows for two possible values, respectively

of order 10- 2 and 10 2 Nm's, for the effective resistance R in series with the bridge

compliance. The smaller value is supported by the relatively large value of 6 referred to

above. Furthermore an independent measurement of the mechanical admittance of a similar
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piece of the same elastic cord using a Br ael and Kjaer type 8001 impedance head to measure

its admittance on a Hewlett Packard Spectrum Analyser type 3582A gave an effective series

resistance of a few times 10- 3 ./Vrri's at 100 Hz, confirming the lower resistance value. The

resistance was also found to increase with increasing vibration amplitude, an effect which is

directly associated with the change of the 7 values with increasing amplitude as discussed

previously.

To calculate approximately the frequency variation of the bridge admittance YB , an

anolog model of the form shown in Fig. 3.9 was used. The 2-port network Zij represents

the tail of the string, the large resistance R" the effect of the rubbe7 pad at the rigid bridge.

and the combination RC' the behaviour of the elastic cord. Now R" is very large compared

with the characteristic impedance pc of the string, as is shown by the negligible effect of

R' on the modes in which we are interested. We can therefore set R c>c to adequate

accuracy and replace Z i by its input impedence

i‘.el
Z 1 1	 —jpc cot
	

(3.46)
c

where is the length of the string tail. The known low-frequency limit of Irn.(YB ) given by

(3.44) and the known value of 7, from (3.42) to give Re(YB ) then allow all the quantities

in the model of Fig. 3.9 to he calculated.

3.10 Numerical solutions

For the purpose of our numerical solutions, the form of (3.43) was simply inserted into

(3.19) and (3.20). using the analog circuit of Fig. 3.9 to determine the and hence J pat

each instant. and then into (3.3S) or (3.40) for numerical integration to plot the behaviour

of the missing mode amplitude ap.

In Figs. 3.10 and 3.11 we show the calctalated behaviour of the second and third mode

amplitudes, when the string is plucked •.:o as to make their respective initial values zero. for

the particular string and bridge configuration used in our experiments. Clearly the general

predictions of the theory are qualitatively similar to the experimental behaviour shown in

Fig. 3.5.

For quantitative assessment. of the theory, its predictions of maximum amplitude and

time to reach that amplitude are shown by open circles plotted alongside the experimental

data (filled circles) in Figs. 3.6 and 3.7 The absolute values of the predicted amplitudes
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Figure 3.10: Calculated growth and decay of the second mode of the string, plucked at
a node for that mode, for first mode amplitudes ranging from 0.5 to 3.5mm (shown as a
parameter).
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Figure 3.11: Calculated growth and decay of the third mode of the string, plucked at a node
for that mode, for first mode amplitudes ranging from 0.5 to 3.5mm (shown as a parameter).
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are of the right order in each case, and these amplitudes increase with the amplitude of

the exciting fundamental with soinethir.g close to the observed slope. More specifically. the

calculated slope for log a 2 against log a l l is about 1.6 and for log a 3 against log a° is about

2.2. The general slope for the experimental curves is in each case rather less than this.

The calculated times to reach maximum amplitude are similarly of the observed order of

magnitude but are significantly too small at small pluck amplitudes and show much too

little variation with amplitude.

3.11 Discussion

It is quite apparent that while the theory can account for the observed phenomena in

a general way it is only in semi-quanti ,ative agreement with experiment. The most likely

explanation for the residual disagreements is the failure of our experimental set-up to provide

an adequate approximation to the idealized situation assumed for the theoretical analysis.

This applies in particular to the behaviour of the bridge admittance. It seems unlikely

that. the higher order nonlinear terms omitted from the analysis could be large enough to

influence the calculated results significantly although a more careful treatment of mode

self-interaction and its associated frequency shifts may be necessary.

As a final observation we remark that, when there is appreciable inharmonicity in the

string mode frequencies. whether from string stiffness or the compexity of the bridge ad-

mittance or other causes, it. is possible to have much more complex behaviour than we have

studied here. This can he seen explicitly in the case of mode 3 which. from (3.2a) or (3.30)

can he driven by mode 1 at a frequency 3w 1 or by modes 1 and 2 at a frequency — If

these frequencies are not the same then beatlike behaviour ensues. This was easily observed

in our mode 3 experiment b y fixing a mass of a few hundredths of a gram to the midpoint of

the string so as to lower the frequency of mode 1 while leaving mode 2 frequency unchanged

(Fig. 3.12). The nonlinearities we have discussed also serve to couple in the same ways the

modes that are actually excited on the string. so that t Ley exchange energy and. if they are

not ideally harmonic, fluctuate in amplitude.
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Figure 3.12: Oscilloscope record of the budlike behaviour of mode 3 observed when a mass
NV as attatched to the midpoint of the string so as to lower the frequency of mode 1 whilst
leaving mode 2 unchanged.
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3.12 Conclusions.

We have examined theoretically the nonlinear generation of missing modes on vibrating

strings and have confirmed the predictions at least semi-quantitatively by experiment. The

phenomenon has been shown to he confined to situations in which at least one of the bridges

supporting the string has a nonzero mechanical admittance. This is of course the situation

of practical importance in musical instruments.

Two different situations emerged from the analysis. If the nonrigid bridge has zero

admittance parallel to the string length and if the string is fixed simply to it, then the only

nonlinear process tending to mix modes or to generate missing modes is of third order. On

the other hand, if the bridge is a nonrigid support over which the string passes at an angle,

as in many musical instruments, then there is an additional second-order nonlinearity which

provides driving forces at frequencies that are twice those of any anode present on the string.

These nonlinearities, as well as generating appreciable amplitudes for modes not initially

excited on the string also serve to couple modes that are excited. In the practically impor-

tant case in which mode frequencies are not in exact harmonic relationship, these couplings

contribute fluctuations in the amplitudes of all the modes, which undoubtedly influences to

some extent the auditory perception of the sound produced.
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GLOSSARY OF SYMBOLS COMMONLY USED IN CHAPTERS
4 AND 5 FOR THE BAR.

position along the straight section of bar AB

y	 position along the kinked section of bar BC

t	 time

t)	 transverse displacement of AB

transverse displacement of AB at bend

((y, t)	 transverse displacement of BC

Z 2 	 transverse displacement of BC at bend

u(t)	 temporal component of normal mode over entire length of bar

li)(x )	 spatial component of normal mode over entire length of bar

a	 amplitude

6	 phase angle

ta."	 radial frequency

frequency

Tl	 tension along AB

T2	 tension along BC

IT	 bending moment at bend

F	 shearing force at bend

Young's modulus

S	 cross-sectional area

p	 mass per unit volume

L	 length of AB

1	 length of BC'

radius of gyration

angle between AB and BC

an

A change in length of AB

change in length of BC

nonlinear component of

nonlinear component of

D	 damping
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Chapter 4

Review of the bar.

In mechanical terms there is really no sharp distinction between what is meant by a bar

and what is meant by a string. In general, we refer to the restoring force acting on the

system under motion to describe the difference: tension is more important in the case of

the string and stiffness is more important for the case of the bar. There are, of course, an

infinite number of intermediate cases from stiff strings to bars under tension where both

stiffness and tension play a part. We shall be considering a bar under tension.

As with the string considered in chapters 2 and 3, the linear vibrational behaviour of

a bar is well understood, although the analysis is far more complex for a bar than for an

ideal string. However, since the linear analysis for the bar is somewhat less corrunon than

that for the string, it is perhaps worthwhile to briefly summarize it before proceeding to the

nonlinear analysis. We shall follow the analysis given by Morse (1948) in doing this. It is

expansion

compression

	 d x

Figure 4.1: Bent element of bar acted upon by a moment M (from Morse 1948).

48
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< dx     

M

F
	

F+dF
Figure 4.2: Bending moments and shearing forces to balance (from Morse 1948).

important to note however, that the notation we shall use for the analysis of the bar in this

and the following chapter should not be compared with the notation used earlier for the

string and that a fresh glossary of symbols has been compiled at the start of this chapter.

Consider a bar with uniform cross-section symmetric about a central plane and of length

1 and cross-sectional area S. When the bar is bent as indicated in Fig. 4.1, the lower part

is compressed and the upper part is stretched. By considering the bar as a bundle of fibres

and finding the bending moment required to bend each fibre by the angle 1 . in the length

dx (Fig. 4.2) then we quite easily deduce the total bending moment of the bar to be

M = 	 	 (4.1)
d

where E is the Young's Modulus of the bar material and K is the radius of gyration of the

cross section. If the rod does not bend much then 4 may be written as

(I) = –dx 	 	 (
2	

(4.2)
ax

where is the normal displacement, of the bar. and (4.1) reduces to

= –ESK 2 r).ax2 I (4.3)

We can clearly see therefore that. the bending moment. is a function of the distance from

one end of the bar. Thus we must balance the moments acting on the two ends of a bar

element by a shearing force F (Fig. 4.2) leading to

0111	 ,	 34'
F = 	  = –ESK 2 

8
—
x3	

(4.4)
OX
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The shearing force too, is a function of x so that the net force acting on the element of bar

may be written

dF = (—
al"

) dx	 (4.5)
ax

and this must equal the elements mass times its acceleration so that we obtain

8:4e	 84e
(4.6)p 

8,- 
= E K2 

ax4
.

As a first step towards obtaining a solution of (4.6) we assume that it may be solved by

separation of variables so that

= t 1,(x) exp(i27 vt)	 . (4.7)

The general solution is then

= [a cos( 27rpir )	 b cosh(27- pcx) + c sin(27 r ,ax)	 d sinh(27rp,x)] exp(i2rvt)

where

(4.8)

IL=

2vp
(4.9)472E0

and a, b, c, d are arbitrary constants.

This result leads to an important difference between the transverse vibration on a string

and that of a bar. We can see from the above that the phase velocity, which is equal to,

and is independent of v for a string. becomes

[47 2 E N2-

p

for a bar. That is, it is dependent on the frequency of oscillation of the bar.

We now have the general solution for the transverse motion of a bar and require only

the introduction of boundary conditions to calculate the set of allowed frequencies for any

particular case. We shall not go into this here, but in chapter 5 we shall be investigating

more thoroughly the linear analysis of a kinked bar and its allowed frequencies.

Up till this point we have assumed our bar to be ideal in as much as it has stiffness but

no tension. To be more realistic then, requires the combination of the equations of motion

for an ideal string and an ideal bar so that the intermediate case of a bar under tension T

(or similarly of a stiff string) has the equation of motion

492e _	 84e T 82

Ek 2 	  + 	 	 (4.11)
P at 2	 ax 4	 sax 2 •

U = vi	 (4.10)
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	 ei,

Figure 4.3: The ratio of nonlinear period over linear period, plotted against initial
deflection angle 00 . It can be seen that the classical theory is correct only for vanishing
80 . (Front Eringen 1951).

The general solution to this still has the form (4.7) but now

2 	 -T	 2 p	
2V

P = 87r2ESK2 8772E S t,-2 	 472E (4.12)

which clearly reduces to (4.9) when T =

The major cause of nonlinearity in the motion of a straight bar is similar to that. for

the string in that it is a result of an axial force induced in it. by its vibrations when it is

restrained in such a way that. its ends are a fixed distance apart..

Eringen (1951) gives a detailed analysis of the vibration of straight. bars, starting from

first. principles arid without the linear assumption that the deflection is small and inexten-

sional and so including on the bar, tension as a function of displacement amplitude. Solving

for the particular case of a bar with hinged ends, he obtains the result shown in Fig. 4.3

where the nonlinear period over the linear period Po is plotted against the initial deflection

angle 00 . Quite obviously the classical theory (P0 = P)is correct only for vanishing 00

and the results show the "hardening" behaviour with increase in amplitude. Further doc-

umentation of this behaviour (eg:Eisley, 1964 and Srinivasan, 1966 ) has meant that the

nonlinearity is well established and understood for any flat bar with immovable supports.
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Prathao and Pandalai (1978) examiae the vibration of bars with an initial curvature and

show them to have a rather more complicated behaviour that changes from a hardening to a

softening type depending on the amount of curvature and the initial amplitude of vibration.

There is, however, very little in the published analyses on nonlinear vibrations of bars

that has relevance to our problem. In our case the boundary conditions are rather different,

as seen in Fig. 4.4-. The bar is symmetrically kinked and it is the behaviour around the

kinks due to the motion of the bar that, actually produces the nonlinear forces we shall he

investigating. The analysis involves looking at the effects of these nonlinear forces on the

linear modes of the bar. The kinks prove to be essential to the process.
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Figure 4.4: Photograph of the symetrically kinked clamped bar to be considered in the
following chapter.
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