
Chapter 5

Nonlinear generation of modes on

a symmetrically kinked bar.

The situation to be studied in this chapter, a bar kinked symmetrically at points B and

B' and rigidly clamped at its extreme ends, C and C', is shown schematically in Fig.5.1.

We concentrate our attention on symmetric modes to reduce the algebra - antisymmetric

modes can be treated similarly and there is no coupling between the two classes.

5.1 Linear analysis.

As our method of analysis looks at the effect of nonlinear forces on the linear modes of a

bar, it is necessary first to calculate the linear solution to the equation of motion of the bar.

In the simplest linear approximation, the equation of motion for any straight section of bar

may be written
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where 4' is the normal displacement, p is the density of the material, S is the cross-sectional

area, h is the radius of gyration, E is Young's Modulus, D is a measure of damping and T1

is the tension in the bar. Adopting this co-ordinate system for the section AB of the bar

with length L, a simple change of notation gives the equation of motion for the bent end

BC with length 1,
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Figure 5.1: The kinked bar and its coordinate system.

where ( is the normal displacement and T2 is the tension along this section. The co-ordinates

are defined in Fig. 5.1.

For simplicity we will consider only movies symmetric about the midpoint of the bar.

Symmetry then requires the following conditions at point A:

	

=0	
3

at x = 0.	 (5.3)
ax	 Ox?

The solution to equation (5.1) is therefore

= [an cos a n a . + bn cosh ct„x] sin(w„t 0„) exp(
t

)
	

(5.4)
Tn

where a, and bn are constants dependent. only on further matching conditions at point B,

w„ is the mode frequency, and 7, is derived from the damping coefficient D. Boundary

conditions at the clamped end C, namely

=0	 and	 =0	 at. y = 0	 (5.5)

give the solution to the equation (5.2) as

C(y) =	 any – sinh ct„y)	 bni (cos c:, fl y – cosh a n y)] sin(Len t	 0,) exp(	 )	 (5.6)
Tn

where again the constants a:, and b, depend on matching conditions at. point B. We assume

for the linear approximation that T1 = T2 = 0 so that in both equations (5.4) and (5.6),

= K 2E	
(5.7)

C'
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Zi  

Figure 5.2: Second-order displacements at the kink.A and 6 are positive and z 1 , z 2 negative
as drawn.

Matching conditions at the point B can now be used to determine the relation between

a„, bn and a,, b:, and also the mode frequency w and decay time r, . For continuity at B

we must equate the components of displacement and write quite generally, as illustrated in

Fig. 5.2, with	 z 2 for (L),((1) respectively, these quantities being negative as drawn,

z l =	 ,5 sin 0 z 2 cos 0

–A = -1-- ,5 cos 0	 z 2 sin 0	 (5.8)

where A and 45 are the displacements parallel to the x and y axes respectively, arising out

of second order changes in length of the and may therefore be equated to zero in first.

order. This reduces (5.8) to

= z2 cos (15	 and	 0 = z 2 sin 0	 (5.9)

so that, provided 0 � 0, then z i = z2 = 0 and point B remains fixed. Furthermore since

bending moments at. B must. be finite and continuous,

and
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(5.10)

(5.11)
ax a y2

These conditions then relate a n , b,,, a;, and bni and produce an equation relating the frequen-

cies le n of the vibrational modes to the lengths L and l of the bar sections,

sinh
+	 an 	

anL  1 r cos a ri l sinh	 – sin a n d cosh aril
[	 an.L cos L	 	  – 2 cos a„L = 0. (5.12)sin 

cosh a„Li	 1	 cos a, 1. cosh anl
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Figure 5.3: Fequencies of the svnunctric modes of a kinked bar with central length 30cm
and thickness 0.6►un as the length 1 of t he clamped end sections is varied.
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Figure 5.4: Force balance at the kink.

Fig. 5.3 is a plot of the variation of the frequencies of the first four synunetric modes

with the length 1 of the section BC while L, the length of section AB, remains constant.

5.2 Nonlinear forcing terms.

As suggested earlier,there are two separate nonlinear forcing terms to be considered. The

first, and as it turns out the more important one, arises from the coupling of tension and

shear forces of the bar sections. Fig. 5.4 shows the shear and tensile forces present on the

bar sections AB and BC. Balance of forces at the bend B requires

+ F2 COS 0 — T2 sing) 0

Tl - F2 sin 0 - T2 cos (/) = 0

which in turn leads to

sin 0

Since F1 and F2 are shear forces at. point. B, they may be written

(5.13)
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where we use the approximation that and C are the linear modes previously derived. It

is clear from equations (5.15)-(5.18) that. T1 and T2 are of first order in 4- and ( ; however

their inclusion in equations (5.1) and (5.2) is such that the forcing terms Tl aax2 i and T2

are second order. For a single mode	 of frequency w on the bar, it is clear from (5.15)

and (5.16) taken with (5.17) and (5.18), that these forcing terms have frequency 2w.

The second nonlinearity to be considered arises from the unbalanced moments around

point B. This time the nonlinear driving mechanism is derived independently of the linear

modes and applied later to the linear solution. Equations (5.1), (5.2). (5.4), and (5.6) still

hold but the boundary conditions at point B are now written as the full equations (5.8) to

include the second-order change in length of the bar that was neglected in the linear case.

These length changes are given by

foL
A

[ 1	 ,9! ) 2] 2

dx – L
49 

(5.19)

for section AB and
1	 x- 211-

f 1+ ( LI )	 dy –	 (5.20)
Oy

for BC. Thus for a bar vibrating with frequency w, point B undergoes both a static and an

oscillatory (2w) displacement. Fig. 5.2 illustrates the oscillatory displacement around the

static displacement of B. We may neglect. the static displacement as it is not significant in

our investigations, so that we write the nonlinear displacements f 21 ,,) and C21 w as

and

( x ) cos 2wt

C2u)	 :: 2(Y) COs 2,et

It. should be noted that and are solutions to equations (3.1) and (5.2) but with dif-

ferent matching conditions at point B from the linear solutions. Hence. neglecting damping,

we may write

e cos a 2x f cosh cf2x

e (sino 2 y – sinha 2 y) + f (cos a 2y cosha 2 y) .

(5.23)

(5.24)

As we have said, point B may no longer be taken to be fixed as in the linear case. However

we will approximate by assuming that	 angle 0 remains unchanged and that there are
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no linear modes of frequency 2w initially present. For the linear modes we would have had

= ((I) = 0
- a( 11	 (5.25)ax	 ay ;y=i

whereas for the nonlinar modes, to a first approximation,

ae
=0	

I
=0.n

aX x=L	 ay ly=i
(5.26)

Equation (5.26) relates c to f and c' to f'. Furthermore the geometry of Fig. 5.2 gives, at

point B, since z 1 and z 2 as drawn are negative,

h.1	 -6 sin cb + 2 cos 0	 (5.27)

z2	 -A sin ch --1- z1 cos q3 .	 (5.28)

Together with equations (5.21)-(5.24) we now have sufficient conditions to express the am-

plitude e of the nonlinear 2w mode in terms of the amplitude a of the linear w mode initially

present on the bar.

The forcing mechanism at point B that we are considering at present is the result of

unbalanced bending moments M 1 and 112 on the two sections of the bar, where

2 ,(9

--ESK 2	 2""	 (5.29)
ax 2

.924L
/11 ,) = -ESK 2

	

	 	 (5.30)
aye

The total unbalanced moment M =	 - M2 then appears as a driving term in equations

(5.1) and (5.2) of the form

and

(5.31)

(5.32)

where 6(x) is the Dirac delta function. The frequency of this driving term is once again 2w.

The length changes A and 6 of equation (5.19) and (5.20) lead to a further nonlinearity

which we should point out, though we will not investigate it in detail. As well as a concen-

trated moment of frequency 2w at the kink, these contractions give rise to tension forces

and T2 in the two parts of the bar, also at, frequency 2w. Indeed the tension T it would be
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present for the same reason in a straight bar with rigidly clamped ends. The driving term

arising from this tension has the form

, 824:

	

Tl
 ax 2	

ay2	
(5.33)

and is of third order and frequency 3w. It:; importance can be expected to be less than that

of second order terms at frequency 2w already discussed.

5.3 Solution.

The equation5of motion (5.1) and (5.2) must now be modified to include the nonlinear

forcing terms specifically. To do this we suppose that un(t)1/),(x) represents the normal

modes over the whole range of x from 0 to L 1, with V•n (x) = C(r) for 0 < x < L

and '11',(x) ((L + 1 – x) for L < x < L 1. Let us further suppose that the .•, are

normalized over this whole range - they are of course orthogonal. Now we want to examine

the behaviour of mode p of frequency wp and small amplitude in the presence of a large-

amplitude mode m, where cep ti 2c.e, . Equations (5.1) and (5.2) for mode p can be written

in combination as

d2 up	.2 cil 'Op 	dup	 T(m)
u 		  — L h,

P dt	
M(2m)--

d
b(x – L)	 (5.34)	  rn

dt 2 	P dx 4	dx2	 dx

where T(m) = T1 for 0 < x < L and T2 for L < x < L 1. T(rn) and um vary with

frequency 4.4.:m and I1i(2m) with frequency 2

Now we multiply both sides of (5.34) by 'Op(r) and integrate over 0 < x < L	 1,

remembering the orthonormality, to get

	

d2 2p D du	 M(2m) dipr71
-4- 6C

2
u 	 [Ti(m)/l	 T2 (m)/2 1	 (5.35)

dt 2	 P P	 p dt	 pS	 p	 dx	 L

where

	

rL	 d2w,(x)
= J

o "
op( x ) 	 dx	 1	 t',•p(x) 

d	
dx	 (5.36)

	

da,2	 x2.

The second and third terms on the right side of (5.35) are forcing terms, both with frequency

.

The relative importance of the contribution made by the tension terms T and moment

term M in (5.35) is not immediately clear and may vary from case to case. For the relatively

thin bar examined in our experiment, theory suggests that the tension terms are clearly

dominant and indeed the moment term is so small it can be neglected.
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If we had been interested in the third order 3w terms set out in (5.35) then these would

enter (5.35) similarly as [T;I1 TT/2 ]. Since the integral /1 does not vanish even for a

rigidly clamped bar, this mode coupling mechanism is always present. This is in counter-

distinction from the case of a rigidly supported string, for which the equivalent integral

vanishes identically.

The differential equation (5.36) for the pth mode has the general form

d2up
dt2

where g contains both damping and forcing terms. If we write

up = ap sin(wpt -- Op)	 (5.38)

where both ap and Opare slowly varying functions of time, then (5.36) is in the standard

form for treatment by the method of s'.owly varying parameters. The procedure is now

analogous to that used in our previous analysis of the string and the resulting equations are

a
(dp ) 13,a, cos [(2wm – wp )t 20, – ep 1 —

7P
(5.39)

wp2 up = g(t)	 (5.37)

and
n2
— in	 •	 r

(O.19 ) = /3, 	  slit {(2w, — wept 20, — p]
a

(5.40)

where the mode coupling coefficient

T a) ct 2 I
13m = 	rn

m(a) 2 T
2

4pS:,:p
(5.41)

follows from (5.35) and we have assumed that wp	 2w, . Tl a) and 11 a) represent the

tension terms from (5.15) and (5.16) divided by the time-dependent amplitude of motion.

Since all that is driving mode p assuming it to start from zero amplitude, is the second

harmonic of mode m, and since we assume a, 	 ap , we can write

ern = const.	 Bp =
 iirn	 p
	 (5.42)

and then (5.40) gives
a2

2wm – cep f3m –r1 sin(20, – Op°)

a

where 0° is the value of Op at t = 0. Inserting (5.42) and (5.43) in (5.39) then gives

(5.43)

(a) = )8,a, {1
}(2w, — Cip) 2 0,p2 1

3,7,2 a4rn
ap

Tp
(5.44)
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Clearly the rate of increase of ap is greatest if the resonant condition cep	 2,4.7, is closely

satisfied, as indeed we should expect.

In the experiment to be described, the amplitude of mode m is initially large and then

decays exponentially, while the amplitude of mode p is initially near zero. Equation (5.44)

predicts that ap will rise to a maximum, which depends on the behaviour of a rn , and then

decay towards zero.

This behaviour can be made explicit for the simple case in which the decay times Tr„t

and rp are constants and wp is exactly equal to 2cc, . Integration of equation (5.44) for the

case of no initial excitation of mode p then gives

ap (t) _ T, _ 9 rp
7 

(5.45)

where a;)„ is the initial amplitude of mode m. In the more general case, integration of (5.40)

and (5.44) can give beatlike phenomena superposed on a curve of the same general shape

as given by (5.45).

Another simple case that can be solved explicitly is that of continuous excitation of

mode m to amplitude 47, . This is equivalent to letting 7- 77, --, oc, so that

a (t)	 /.3,a°,, 2
rp (1 – exp( -

-t
))

TP

5.4 Admittance of the bar.

(5.46)

Since mode conversion is significant. only when one normal mode has nearly twice the

frequency of another, the dimensions of the bar are important. Choosing for our experiment

a galvanised steel bar of thickness 0.6mm, and length 30cm between B and B' (refer to Fig.

5.1), the length of the ends B C and B 1 C I necessary to achieve an appropriate resonance

can be calculated. Fig. 5.3 shows how the resonant frequencies of the symmetric modes

vary with change in length of the bent er ds. The figure shows us that for such a bar, if the

bent ends are about 9cm in length, then the third synunetric mode (w 3 ) will have twice the

frequency of the second symmetric mode (w2).

A bar of these dimensions was clamped between two tilting vises and the admittance

characteristic at its centre point A determined with a Bruel & Kjaer impedance head type

8001 in conjunction with an integrator and a dual channel FFT spectrum analyzer (see

Fig.5.5). The length of the bent ends was varied until w 3 was closely equal to 2w 2 , the

Tr r i rp 2t -
Omer: -- —

t
)[ exp(	 ) exp(

7P I
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Figure 5.5: Experimental arrangement to measure the admittance of the clamped kinked
bar.
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final length being approximately 8.8cm. The admittance curve measured is shown in Fig.

5.6 together with the admittance calculated for such a bar using the linear theory and

neglecting damping.

It is worth noting here the shape of admittance curve in as much as the whole curve

appears raised for lower frequencies. While this may seem slightly surprising at first it is

quite simply explained by considering the characteristic admittance of a bar vibrating such

that its motion is primarily one of bending (Skudrzyk 1968). Like that of the string the

admittance of the bar is inversely proportional to the phase velocity c but unlike the string

the velocity for a bar is not independent of the frequency, varying instead like ti^(as shown

in chapter 4). Hence the raising of the admittance curve for smaller values of ce

5.5 Preliminary experiments.

The mode shapes for ‘.i.)2 and w3 were measured, again using a shaker at the centre of the bar

but this time the bar was shaken with a frequency equal to the resonant frequency w 2 . A

Bruel k Kjaer subminiture accelerometer was moved along the bar at 1cm intervals between

the centre and one end. The signal was fed via an amplifier through an appropriate filter

so that the amplitudes of the second and -third modes could be measured on an oscilloscope

screen. Fig 5.7 shows the results. The measurements were then repeated for the third mode

alone while the bar was shaken at a frequency equal to ce 3 and the same mode shape was

observed. Incidently, we can see that, provided the shaker had negligible amount of (.0 3 on

its waveform while vibrating with frequency Lv 2 , the amplitude of the third mode generated

by the second is quite significant.

The mode shapes enabled us to determine appropriate points to pluck, hammer or shake

the bar in subsequent. experiments in order that we should have particular proportions of

w2 and i.v3 initially present.

5.6 Damping.

A measurement. of the free decay of each mode was necessary for quantitative comparison

of theoretical and experimental results. The decay of the second mode was measured by

plucking the bar close to the centre so that it had significant amplitude which was then

observed, as it decayed , on a storage oscilloscope. The experiment was repeated for the
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Figure 5.6: Mechanical admittance at the centre point A of a synurietri . c.ally kinked bar (a)
as measured and (b) as calculated.
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Figure 5.7: Mode shapes for the second and third modes when the bar was shaken at w2.

measurement of the decay of mode three, this time the bar was plucked close to the bend

so that the proportion of mode three compared with the lower modes was at least as large

as possible.

The results showed that while the second mode decayed exponentially with time such

that 72 =0.26 s, the decay time for the third mode appeared to change with amplitude,

becoming longer for smaller amplitude. Clearly, with several modes present on the bar we

must expect. interaction terms that will effect the apparent. damping. Our investigations are

not. however concerned with the exact damping behaviour of the bar and so we considered

it. adequate to take as an average decay rate for the third mode, of 73 =0.25 s.

5.7 Measurements of nonlinear generation.

The first real check for the behaviour described in (5.44) was to shake the bar, at. a frequency

equal to w2 on a node of the third mode, using a subminature accelerometer positioned at

the centre point A of the bar to measure the amount. of third mode generated. Positioning

of the shaker on this mode was to ensure that. any t.o 3 component present. as distortion in the

shaker output was of negligible consequence to the result.. it. served the purpose of ensuring

that the only point. "clamped" into vibrating at w 2 only by the presence of the shaker, was



CHAPTER 5. SYMMETRICALLY KINKED BAR
	

68

Figure 5.8: Weighted piano hammer used to strike the bar.
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Figure 5.9: Measured amplitude a 3 of the third mode as a function of the amplitude a2
of the second mode for a kinked bar shaken at. the node of the third mode. The curve is
0 3 =const. x 03).



. CHAPTER 5. SYMMETRICALLY KINKED BAR 	 70

a node of Lo3 .

The result of this measurement is shown in Fig. 5.9 and has the form

a3 = 250a22	(5.47)

where a 2 and a3 are both measured in metres. This agrees with the limiting form of equation

(5.46) as t 0 . As we discuss in a moment, the bar has a value of r 3 equal to about 0.25s so

that we conclude that the coupling coefficient 02 has a value of about 1000 m's- 1 for this

particular bar. The actual value calculated from the rather involved expression in equations

(5.35) and (5.36) was about 2560 m -1 s -1 . In view of the approximations involved and the

significant effects of minor departures from the condit Aion	 24.o2 as shown by (5.44), this

result represents moderately satisfactory agreement.

The theory was further examined in a second experiment, in which the bar was struck

with a weighted piano hammer (Fig. 5.8) on a node of the third mode, the objective being

to excite the bar into a vibration that initially excluded this mode and to observe the modes

subsequent amplitude. The vibration signal from a subminiature accelerometer, positioned

as before at the centre of the bar, was recorded on a Nagra IV tape recorder and later

analysed with an appropriate filter to determine the time behaviour of both the second and

third modes. The analysis showed that the second mode decayed more or less exponentially

in time with 72 = . 2 6 s while the third mode grew from near zero to a maximum in a time of

order 0.1 s before decaying slowly to zero. A typical trace is shown in. Fig. 5.10. The peak

amplitude reached by the missing third mode, and the time between the hammer blow and

this peak, were both plotted as functions of a 2 , the initial amplitude of the second mode.

These measurements are shown in Fig. 5.12 along with the behaviour predicted by theory.

Fig. 5.11 shows the calculated behaviour of the third mode amplitude when the bar is

hit so as to make its initial value zero. Comparison with Fig. 5.10 shows that the general

predictions of the theory are qualitatively similar to the experimental behaviour.

For a more quantitative assessment of the theory we must turn to Fig. 5.12 which shows

the predicted maximum amplitude and time to reach that amplitude plotted alongside the

experimental data. It must be noted however that the theory relies on the measurement

of the decay constants r2 and 73 and that while the second mode decayed exponentially

with time, the decay time of the third mode, as we noted earlier, appeared to change with

amplitude. The approximation involved here may describe in part the small descrepencies

between theory and experiment shown in Figs. 5.10 - 5.12.
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Figure 5.10: Oscilloscope trace of the behaviour of the third mode amplitude with time
when a kinked bar is excited by a han-uner blow close to a node for this mode. Total
tracelength is 1 s.
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Figure 5.11: Calculated behaviour of the third mode amplitude a3 as a function of time
for different initial amplitudes of the second mode excitation (shown as a parameter), with
simple linear damping assumed.
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Figure 5.12: Calculated (open circles, full curve) and measured (filled circles, broken curve)
dependance of the third mode peak amplitude a 3 and time delay on the initial amplitude

°a of the second mode for a kinked bar struck at a node of the third mode.2
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The approximate agreement in slope and magnitude between the experimental and theo-

retical curves in Fig. 5.12 supports the general behaviour described by equation (5.45). The

value of the parameter 02 implied by the experimental results is about 4000 m -1 s -1 which is

rather larger than the theoretical value near 2560 rn -1 s' deduced from the physical dimen-

sions of the bar, but the level of discrepancy is quite acceptable given the approximations

in the theory and the uncertainty in the behaviour of 73 .

While it is quite obvious that further careful analysis and experimentation to determine

the decay of the third mode as it is affected by amphude and interactions with other

modes may improve our results quantitatively it must be remembered that the object of

our exercise was to identify the major physical mechanisms responsible for anode coupling.

The reasonable agreement between theory and experiment that we have shown gives us

confidence that we have indeed succeeded in our identifications. We have chosen therefore

to press on and follow up the rather tempting speculation that similar mechanisms may

he largely responsible for the transfer cascades observed in large-amplitude vibration of

symmetrically flanged gongs.

More generally, we should expect mode coupling and energy transfer of this type to

occur in all plate-like systems having a sharp kink or crease. Whether or not. a significant

amount of energy is transferred to the higher mode will depend upon the extent to which

there is agreement between the frequency of a higher mode and that of the second harmonic

of some other mode being driven to a large amplitude.
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GLOSSARY OF SYMBOLS COMMONLY USED IN CHAPTERS
6 AND 7 FOR THE GONG.

r	 radial position

angular position

t	 time

u(r,t)	 circumferential component of displacement

w(r,t)	 normal component. of displacement

x(t)	 temporal component of uy(r, t)
a	 amplitude of motion

b	 motion centre

radial frequency

wo	 small-amplitude frequency of fundamental mode

forcing frequency relative to ;.4,0

rn	 effective mass

c	 rigidity factor

k	 damping parameter

X0	 height of dome

h	 thickness

p	 density

R	 radius of curvature

F	 stress function

E	 Young's modulus

A	 second-order nonlinearity parameter

B	 third-order nonlinearity parameter

force per effective mass



Chapter 6

Review of the gong.

We have already stated in our "motivation" our belief that the "shimmer" of a gong is

due to high frequency modes of vibration excited by nonlinear couplings to modes of lower

frequencies. 'While there is very little work published on the acoustics of the gong, what

there is does at least. attempt to deal with nonlinear behaviour. Most related to the problem

at hand, is a semi-quantitative investigation into the acoustics of a Tarn-Tarn (Rossing and

Fletcher 1983(a)). The analysis included in this investigation, however, does little more

than outline the form of the nonlinear equation of motion, a generalised version of the

equations we have already encountered in Chapters 3 and 5 for the nonlinear string and

bar respectively. Furthermore they propose that a number of hammered bumps situated in

concentric rings around the gong's centre may play an important role in the transformation

of energy between axisymmetric and asymmetric modes. Indeed they may, but the gong

we are to investigate does not have such bumps and yet still displays mode coupling, albeit

not quite so magnificently!

Perhaps more helpful to our particular investigations are two published works (Rossing

and Fletcher 1983(b) and Fletcher 1985) which present qualitative and quantitative accounts

respectively for the frequency shifts hear] in certain types of gongs. Although the analysis

here is really concerned with frequency shifts, we shall find that this is quite an important

phenomenon occurring for our gong and may have a significant role to play in the exchange

of energy between harmonically related modes. It is therefore worth our while to consider

the quantitative analysis (Fletcher 1985) in the hope that it may throw a bit of light on

a part. of our problem. Fig.6.1 shows the profile of the gong analysed, which is similar

to ours. Fletcher sidesteps the rigorous analyses of domes (we shall touch on these later)
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Figure 6.1: Profile of the gong analysed by Fletcher (1985).

and presents a rather elegant and simple analysis based on the actual mode shape of the

fundamental synunetric mode. By considering the pattern to have no nodal lines or circles

within the boundary, (a point we shall also contend with later) he derives an equation of

motion for this fundamental mode
2c

	

o2 x =	
0	 —	 3 3	 2)w	

—	
m x + xox — 2k

2x(2)

where coo is the small-amplitude frequency limit, m is the effective mass and c is a rigidity

factor. He then assumes a solution of the ;dorm

x = a cos(wot + 0) b	 (6.2)

and solves (6.1) using the method of slowly varying parameters to find the variation of a

and with time. While the results of this analysis show a frequency shift, with amplitude

they also suggest that the amplitude itsel simply decays exponentially in time. Fletcher

does, however, suggest a refinement of the approximation based on the fact that, physically,

the form of a. should really be written as

x = b	 cos(wot	 (k)	 a 2 cos(2wot -4- q5)	 a3 cos(3,..cot + 95)
	

(6.3)

as suggested by the right-hand side of (6.1). Quite obviously we now have harmonics of

the fundamenal mode but with the same spatial pattern. 42 2 and 0 3 can then be generated

nonlinearly from a l so that, for small amplitudes, which, considering the rigidity of the

gong we shall be investigating is certainly true in our case, a 2 varies like 04 arid a3 as a3, .

Apart. from the aforementioned articles however, there is a scarcity of quantitative infor-

mation on the gong itself. Since our specimen is little more than a spherical shell surrounded

by a conical flange, a review of shells is therefore in order.

(6.1)
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Benchmark Papers in Acoustics Volume 8 (Kalnins and Dym 1976) contains an illu-

minating introduction to its chapter on shells with a historical synopsis on the important

papers published so far in the field. As our interest lies in spherical shells and in particular

in the transverse vibrations of shallow spherical shells, we shall not dwell too much on the

more general aspects.

Much of the foundation work done on spherical shells appears to have been done by

Reissner. In particular (Reissner 1945) lie derives a system of equations to describe the

static deformation of thin shallow shells, where shallow refers to a ratio of height xo to base

diameter r of less than

hEv,2 v 2 F _	 v2 w —(1 — U)	 CI

and
1	 2	 2C/

D V 2 VW V F==P—  R

where F is a stress function, u and w are circumferential and normal components of the

displacement. respectively, E is Young's Modulus, h is the thickness of the shell, D is a

rigidity factor equal t ° 12
E113

1,2) ' v is poissons ratio, R is the radius of curvature, p is an

external load potential and 1 -2 is the load potential such that v = p . After an early

attempt (Reissner 1946) at modifying the equations for the dynamic case and solving them

by an approximate method, Reissner later realised (Reissner 1955) that for vibrations that

are predominantly transverse, longitudinal inertia terms may be neglected in comparison

to the transverse inertia terms. This then greatly simplifies the dynamic equations so that

he finds
02 v2i , hE v2 w = 0	 (6.6)

and

D	 2	 1 \7 2 	
492,tv

V- w —	 F — ph, 	  p(r, t)
at2
	 (6.7)

which, after separation of variables, gives the spatial solution w(r) for displacement as a

sum of Bessel and modified Bessel functions,

w(r) = Ci Jo(Ar) C2Y0( \r) C3-to(Ar) C4K0((Ar) + Cs	 (6.8)

where
A4 oh w 2	 hE

	

D	 R2D
	 (6.9)

(6 .4)

(6.5)
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Establishing boundary conditions then enables determination of the constants and a

relationship for the frequency of the modes. For example, for the clamped shell Reissner

obtains

w =
(	 h	 + K 4 147., 2zi 

p	 a1 12(1 — v)
(6.10)

where u = Act and K 4
 = 48(1 + 0'4 which corresponds to the frequency of a flat plate

when K = V = 0 ,

E 2 h p, 4 2
=	 (6.11)

P	 a2 12

The computation involved in obtaining the individual frequencies for the axisymmetric

modes is obviously rather involved and Reissner only does it for the lowest mode of a

clamped and a free shell in order to compare them with his earlier approximate results.

Equations (6.4) and (6.B) are again used (Johnson and Reissner 1958) to investigate,

this time, the nonsynunetric transverse vibrations of a shallow spherical shell.

Hoppman (1961) refers to Reissners early attempt at solving the dynamic equations

for symmetric vibrations and solves them himself by a more exact method. His work is of

particular interest, not so much for the brief analysis, but rather that he includes numerical

examples in his results. Unfortunately the ratio of physical dimensions he uses in his

examples does not correspond even approximately to that of our gong and can therefore

throw little light on our situation.

Kalnins (1961) analyses the complete spectrum of frequencies for spherical shells, de-

ducing that it can be divided into three parts corresponding to the three dominant modes

of vibration: thickness-shear, longitudinal and transverse. While he goes far beyond what

is necessary for our uses, it is interesting to note that, although he determines that for

nonsynunetric vibrations none of the three modes can exist uncoupled, he does confirm

Reissner's earlier assumption that providing the frequencies of vibration are of the order of

( E. )	 ,then the vibrations are predominantly transverse and the other inertia terms ma y,3 

indeed be neglected.

Up till here all investigations appear to have been theoretical. We have the equations

of motion for transverse vibrations of spherical shells, simplified so as to be solvable for

shallow shells and solved for particular boundary conditions and physical parameters to

give mode frequencies. Hoppman and Baronet (1963) saw the need at this point to dispel

doubts as to the applicability of these results and so present an experimental investigation



CHAPTER 6. REVIEW OF THE GONG.	 80

Figure 6.2: Nonaxisyn-unetric mode shapes of clamped and hinged shallow spherical domes
as measured by Hoppmann and Baronet (1963).

into the mode shapes and frequencies for both symmetric and asymmetric vibrations of

isotropic shells with either clamped or momentless (hinged) boundary conditions. Their

experimental arrangement involved steel shells vibrated by means of an electromagnetic

oscillator at the apex. The results of this experimentation are particularly interesting for

a few reasons. Firstly they show reasonable agreement between theory and experiment.

Secondly, the asymmetric mode shapes shown have nodal lines that do not cross in the

centre but, look like solutions for a system whereby the radial and angular components are

not separable (Fig.6.2), although theory obviously states their separability. This somewhat.

surprising result. is most likely caused by the fact that the oscillator was situated at the

centre of the shell thereby forcing that. point to vibrate and thus the mode shapes to become

a combination of synunetric and asynunetric modes. This phenomenon will he dealt. with

in a little more detail in chapter 7 when we come to examine the mode shapes of the gong.

Finally the authors point out. that the fundamental synunetric vibration has two nodal

circles, one at. the boundary and the other closer to the centre. As the height of the dome

is decreased, the latter circle approaches the boundary until, in the limiting case of a flat.

plate, the two circles are coincidental on tle boundary. This then suggests that. Fletcher's

analysis for the frequency shifts of the gong (Fletcher 1985) may not. be strictly correct. as
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he approximates his gong to be a rigidly clamped dome and assumes a mode shape for the

fundamental with no nodal lines or circles within the boundary.
2

x. _
h

w
h	

1

1	 2 0

uyp
Figure 6.3: Maximum forced response versus frequency ratio for hinged spherical caps (from
Grossman, Koplik and Yu 1969).

Thus with the establishment of the free transverse vibrational modes of a shallow spher-

ical shell, we turn to nonlinear investigations on them. Grossman, Koplik, and Yu (1969)

investigate the effects of curvature on the axisyrrunetric vibrations of spherical shells with

various edge conditions. The effects of curvature are introduced into the equations for dis-

placement and strain and, as with most nonlinear equations a series of approximations must

be made to solve the resulting equations of motion. The exact analysis need not concern us

here as again there is a dependency on boundary conditions and physical parameters that

do not fit our gong but. the results are interesting if we consider the trends they depict. Fig.

6.3 shows the response curves for a shell with hinged edge conditions for the curvatures

= 0 and zi) = 2. There is obviously a transition from a hardening to a softening type

of nonlinearity. Fig. 6.4 shows how the linear fundamental frequency for a particular shell

changes with curvature. Note the obvious dependence on boundary conditions.

All this brings us back to our own case. We have a shallow spherical dome and thus

may expect. behaviour, both linear and nonlinear as described above but we have most.

unusual boundary conditions, a conical flange. While we may therefore take this review

as a basis for our investigations, the obvious reliance of the exact. behaviour of a spherical

shell on boundary conditions must warn us that. we are, together with Fletcher and Rossing,

attempting to solve the nonlinear where tile linear is not yet fully established.

=0
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Figure 6.4: Linear fundamental frequency versus rise for fixed, clamped, hinged and freely
supported spherical caps (from Grossman, Koplik anelYu 1969).





Chapter 7

The gong.

One only has to consider the linear analysis of the transverse motion of shallow spherical

shells (Reissner 1955) to realise that an attempt at a rigorous and quantitative analysis of

mode coupling on the gong would not be realistically possible at this late stage. Indeed one

would have to devote ones entire thesis alone to do an adequate job on it. We shall therefore

reverse the trend followed in chapters 3 and 5 of analysing the situation theoretically and

performing experiments to confirm the predictions made. In this chapter we shall use

the generalised predictions made in chapter 5, namely that mode coupling and energy

transfer should occur in all plate-like systems having a sharp kink or crease as we found

it happened for the kinked bar. We shall attempt to show experimentally that this does

indeed happen. We shall see that the system is highly complicated and may even require

an analysis involving bifurcation and chaos theory for a multimode system, indeed a thesis

in its own right!

7.1 Description of the gong used.

The gong we used in our experiments (Fig.7.1 & Fig. 7.2) was made by the Zildjian company

from a 2mm thick bronze alloy. The central domed section of the gong had a base diameter

of 50cm and a dome height of 5mm. It was quite obviously well within Reissner's definition

of a shallow dome whereby the ratio of the dome height to the base diameter should be less

than 1/8.

The dome was surrounded by a 5cm conical flange. In the very centre of the gong was

a 1.25cm diameter hole via which some sort of lathe may have held the gong during its

84
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Figure 7.2: Cross-section of gong showing dimensions.

making. Over the entire surface, dome and flange, there was a series of concentric rings,

centred on the centre of the gong seemingly pressed into the metal as it spun in the lathe.

These rings will tend to increase the stiffness of the gong for the nonaxisymmetric modes

and hence raise their frequencies whilst having little or no effect on the axisymmetric modes.

The gong appears to have been made by a method quite different from the ancient craft.

of hammering a gong into shape by hand. In fact. it seems t.o have had a making more akin

to that. of a cymbal for which, of course, Zildjians are most. famous. Whatever its origin.

the sound of our gong displays the same type of nonlinearity as a traditional chinese tam-

tam although, to the ear, not quite as obviously. Its more simple physical characteristics

however, may also prove an advantage in any attempt we make to compare theoretical

analysis with experiment.

7.2 Preliminary experiments.

Quit e obviously the first step before we even consider nonlinearity is t.o aquaint ourselves

with the normal modes of vibration of our gong. This was done by- vibrating the gong with

white noise via a pin through its centre, using a Bruel k Kjaer shaker (type 4810) and

measuring the admittance with an impedance head (type 8001) and an HP 2-channel FFT

analyzer (type 3582A). While this may cause us t.o be looking only at. the axisynunetric

modes it is appropriate considering that. in normal practice the gong is struck at its centre.

suggesting that the axisymmetric modes are the first. to be initiated.
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Figure 7.3: (a)Admittance spectrum of the gong when shaken via a pin through its centre.(b)
Velocity spectrum of the struck gong.
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sodB

0

1000 Hz

Figure 7.4: Admittance spectra for (i) the shaken gong ,(ii) the shaker and (iii) the shaker
and a short stiff spring.

The results are shown in Fig.7.3 for the frequency range of 0-1 KHz together with a

typical initial velocity spectrum for a struck. gong. Presuming the amplitude of vibration

was sufficiently small in the case of the shaken gong so that no significant. nonlinearities

came in to play, then we can see a trend suggesting that nearly integral relations between

mode frequencies could be important. for the sound of the gong.

It is, at this point., worth noting a measure taken to ensure that. the shaker does not make

the gong behave as though it has a mass fixed to its centre and hence affect. results. Fig.7.4

shows the admittance of the shaker alone, measured by means of a second shaker, and

superimposed on the previously measured admittance of the gong. While the admittance

of the shaker can be seen to be generally higher than that. of the gong, it is worthwhile, as a

precautionar y measure for later more intricate experiments. to insert a spring between the

gong and shaker. The load on the gong therefore becomes springlike; Fig. 7.5 depicts the

equivalent. circuit..

A short and moderately stiff spring had one end firmly clamped while 100g weights were

added to the other end and the extension of spring was recorded for the addition of each

weight. Fig 7.0 depicts the results as plotted as N vs in and shows the compliance of time

spring to be approximately 2.0 x 10- 4 Nm- The spring obvioslv obeys Hookes law within
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Shaker

Figure 7.5: Equivalent. circuit. for a gong shaken by the shaker with a moderately stiff spring
between gong and shaker.

Mass (kg)
A

2.0 -

1.0    

1.0	 2.0	 3.0
Extension (mm)

Figure 7.6: Compliance of the spring.
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the amplitudes of vibration we shall be using. The combined admittance of the spring and

shaker was compared again to the gong admittance (Fig. 7.4) and can be seen to be well

higher.

Having established the normal axisyninetric mode frequencies it was then quite a simple

matter to measure the individual modal patterns by shaking the gong, again via a pin

through its centre, at particular frequencies and detecting the nodal lines with a Bruel

Kjaer subminiture accelerometer (type 8307). Fig.7.7 shows the first five symmetric modes

corresponding to the first five resonance peaks in Fig.7.3. It is interesting to note the

position of the nodal circle on the lowe4 mode. If the gong was behaving as a clamped

spherical shell we would expect two nodal circles, one at the kink and another towards the

centre (Hoppmann and Baronet 1963). Clearly this is not so, but rather it. is behaving

somewhat as Fletcher(1985) suggested although the nodal circle is not situated at the kink.

By comparison all the other modes appear to have a nodal circle close to the kink. The

fact that the gong is freely suspended rather than rigidly clamped means it will have some

motion as a whole thus accounting for this shifting of the nodal circles .

A few asymmetric modes were also mapped for frequencies at which the gong res-

onated while the shaker was attached to the centre of the gong and they are depicted

in Fig.7.8(a). They are similar in shape to the modes depicted by Hoppmann and Baronet.

(1963),Fig.6.2.for their clamped spherical shell. These shapes appear to he a mixture of

axisynu-netric and asymmetric modes suggesting that the angular and radial components

of the motion are not separable unlike theor y suggests (eg. R.eissner 1955). Considering,

however. that. in both experimental arrangements. the shell was shaken at its centre it is

not. really all that surprising that the nodal lines fail to cross there. The ask-metric modes

can still he excited if they are not. exactly antisymmetric. A quick experimental check was

performed by vibrating the gong off centre at the appropriate frequncies. The results show

a better separation of radial and angular components (Fig.7.8(b)).

7.3 Frequency shifts with amplitude.

We encountered in chapter 6, predictions of a frequency shift with amplitude in the fun-

damental mode of vibration. Fletcher(1985) showed that the fundamental frequency for a

spherical dome should decrease quite sharply with increasing amplitude until the amplitude

was approximately 0.8x 0 whereupon it would rise for even larger amplitudes. In our case,
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Figure 7.7: Measured modal patterns for the first five axisynunetric modes of our gong.
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Figure -7.8: Measured asymmetric modal patterns for our gong when shaken (a) at 11w
centre and (b) at a position marked with an asterisk.
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with a dome height of 5nun and an extreme amplitude of motion of no more than that, we

expect to see nonlinear frequency shifts of the softening type.

The frequency shift of the fundamental mode for a moderate strike was roughly measured

as follows: The Bruel Kjaer subminiture accelerometer was attached near the centre of the

gong and the signal generated by striking the gong was fed, via an amplifier, into a Nagra

IV tape recorder. The signal could then he analysed repeatedly on a Hewlett. Packard

Spectrum Analyser (type 3582A). By triggering the spectrum analyser externally with a

variable delay trigger pulse, the velocity spectrum was obtained for 0.5 sec time intervals.

The results in the following table show that the fundamental varies in frequency from 90

Hz initially, corresponding to a fundamental amplitude of about 1.4111111, to 96 Hz in the

small-amplitude regime for amplitudes of less than 0.63nun.

Amplitude(mm) Frequency(Hz)±2 Times)

1.4 90 0

1.2 92 0.5

1.1 94 1.0

0.92 94 1.5

0.77	 94 2.0

0.63	 96 2.5

0.6	 96 3.0

0.48	 96 3.5

A quick graphical comparison of the;e results with those predicted by Fletcher (1983)

shows reasonable agreement in how the frequency of the fundamental mode changes with

amplitude (Fig.7.9).

The frequencies of the higher modes were also seen to change with time and therefore

one suspects, with amplitude. however complexity of the system is too great for any

meaningful results to be extract ed. The growth of resonance peaks at harmonics of the

fundamental appears to suggest. mode coupling but the initial presence of modes close to

those frequencies makes further investigations by this method impossible.
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Figure 7.9: Calculated motion centre b and frequency w for vibrations of amplitude a on
a spherical shell of dome height. ;r 0 when the normalised shell thickness /--1 has the valueso
shown as a parameter (from Fletcher 1983). For our gong ±- 	 0.4. The dashed line depicts

a: 0

the amplitude 1.4nun.
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7.4 Preliminary investigations into mode coupling.

Bearing in mind that we have so far, only our generalised results for the kinked bar to base

a hypothesis on. we begin our mode coupling investigations with an experiment similar to

that performed on the bar. Our hypothesis is that the gong. being essentially a spherical

shell with a kink around it, should display second and third order nonlinearities such that

the amplitude of the second and third harmonic modes of a particular frequency should vary

with the fundamental amplitude, a l ,like a i and ai respectively. Furthermore, if these higher

modes are generated to large enough amplitudes, they in turn, could then generate their

own harmonic modes by similar methods. This means that, for a particular fundamental

frequency of amplitude al , we might expect to see a 2 varying as ai and a 4 varying as a2

and therefore al and so forth.

With the shaker again attached to a pin through the centre of the gong and a spring, as

mentioned earlier, between the gong and the shaker to avoid a mass loading on the gong,

the system was set to vibrate at the small-amplitude fundamental frequency of the gong, 96

Hz. The accelerometer was attaiched to the gong at a point on the nodal circle of this mode

thus ensuring that measurements of the amplitudes of harmonic modes were actually higher

modes of vibration and did not have the same spatial pattern as the fundamental mode

(Fletcher 1985). The output of the accelerometer was then displayed. via an amplifier and

appropriate filter. The amplitudes of the first three higher harmonic modes were measured

as a function of the fundamental amplitude at the centre of the gong. Fig.7.10. depicts the

amplitudes a 2 a3 and a4 of the second. third and fot:rth harmonics respectively, each as

a function of the fundamental amplitude a i . on log-log axes. The slopes of the resulting

straight lines are 2.0 0.2, 3.0 0.3 and 4.1 ± 0.3 respectively. Clearly the trends agree

with our hypothesis, that is. the amplitudes of the second. third and fourth harmonics

vary as al ,al and al respectively. Furthermore, although a 2 is present with relatively

small fundamental amplitudes, a 3 and (14 are negligible until a l has reached 0.3n-mi, in

line with their being higher order nonlinearities and therefore requiring larger fundamental

amplitudes to be generated significantly.
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Figure 7.10: Amplitudes of the first three harmonics of the fundamental as they vary with
the fundamental amplitude.
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7.5 Random behaviour.

The investigation mentioned above into our cascade hypothesis, while unexciting in itself,

produced an unexpected and interesting phenomenon. At particular frequencies and am-

plitudes the gong began to resonate at, what was obviously to the ear, more than just the

fundamental frequency with a few overtores. Subharmonics could be heard clearly and, for

some frequencies, the sound built up t.o the polyphonic "shimmer - of a struck gong.

Fig.7.11 compares the frequency spectrum of the gong's velocity with the frequency

spectrum of the forcing term. This latter spectrum enables us to ensure that there was no

significant coupling between the motion of the gong and the motion of the shaker such as to

cause the forcing term to be nonlinear. We see from Fig. 7.11 that a force of amplitude 7.8N

and frequency 91 Hz causes the period of the gong t.o bifurcate so that 45 Hz is generated
r

wherea,sta periodic force with amplitude of only 6.5 N and frequency 181 Hz the resulting

motion of the gong is polyphonic.

By placing a Bruel k Kjaer Capacitive Transducer (type MM 0004) a short distance from

the accelerometer already on the gong, the displacement. of that point could be observed as

a function of velocity. We can see in Fig.T.12(a) the bifurcation of state space into two for

the forcing frequency of 91 Hz. For the more complicated case when the gong was forced

at. 181 Hz, the orbit was recorded at a set point once per cycle by use of the intensity

modulator on the storage oscilloscope thus displaying Poincare points. Fig.7.12(b) shows

that the motion is clearl y more than simple bifurcations although the attractor obtained is

rather featureless compared to calculated attractors. We need t.o consider two aspects of the

situation however that ma y account for this. Firstly the large number of degrees of freedom

may make the attractor very complex and secondly the experimental set-up allowed motion

of the gong as a whole and this may have blurred the detail of the attractor.

It became clear during the course of the measurements that the type of behaviour

depended acutely on the frequency at which the the gong was being forced and that. a

change in frequency by just a fr;Lct.ion of a hertz could produce a very different. result.

Just how the behaviour changes with amplitude and frequency can be seen in Fig.7.13. It

must be noted here that the size of the shaker available for our experimentation limited the

magnitude of the force we could apply to the gong to less than 8 N. A further complicating

factor arises from the fact that the final behaviour arrived at by the gong may take quite

a number of seconds to evolve, depending on the exact frequency and amplitude of the
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Figure 7.11: Velocity spectrum for the gong compared to that. of the force (a) when the
gong is forced at 9111.z and (h) when the gong is forced at 181Hz.
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Figure 7.12: (a)Bifurcation of the state space orbit into two when the gong is vibrated at
91 Hz. (b) Strange attractor depicted by observing one point per orbit when the gong is
vibrated at 181 Hz.
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Figure 7.13: Response of the gong for varying frequencies and amplitudes of the force.
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driving force. The Poincare points could be observed in such cases splitting from, say. 4

points to 8 points to many points for a particular steady forcing amplitude. Furthermore.

the points occasionally became rings suggesting that the driven frequency was not quite

a perfect subharmonic of the forcing frequency. The presence of such motion meant that

the exact determination of the number of bifurcations occuring could become difficult. Fig.

7.13 is labelled "quasi-periodic" in areas of parameter combination where this difficulty

could he incurred, and as such, the behaviour displayed in these areas must be taken as an

estimation of what is happening.

While it must be remembered that we set. out to investigate the struck gong as opposed

to the periodically forced gong. the above phenomenon is actually more relevant. than may

at. first he apparent. The fact that the sound at times appeared t.o be very similar to the

sound of a struck gong after the higher modes have built up. suggests that we may have

here a similar mechanism for mode conversion. It is worth our while therefore to look a bit

more closely at the situation.

7.6 Chaos.

Had it not been for the investigations into strange attractors and chaos within the last

decade. one might he forgiven at this point for describing the above phenomenon as a result

of the complex behaviour of a multimode system and doing little more than tabulating a

series of experimental results. Bearing in mind however, that chaotic motion is described as

bounded oscillations with an infinite array of frequencies and, furthermore, that the road

to chaos is along multiple bifurcations . we must, recognize the above results as an exciting

practical example of chaotic motion.

The complicating factor in our investigations will be that we are dealing with a mul-

timode system and most of the literature on chaotic systems deals only with single mode

systems. Nevertheless it is worthwhile pursuing a simple theoretical investigation into the

motion to ascertain whether bifurcation And chaos may he causing the observed phenomena

in both the shaken and the struck gong.
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7.7 The gong as a single mode system.

Let us start by assuming the gong is just L single mode system where the mode is equivalent

to the fundamental mode of a very shallow real gong. that is, it vibrates with no nodal lines

or circles within the flange. Fletcher(19S5) has shown the equation of motion for such a

mode forced at a frequency times the mode frequency by a force per unit effective mass,

G. to be of the form

-t x +	 4- Bx"'	 G sin,/ t	 (7.1)

where k represents damping and A and B describe the nonlinearity associated with the

gong. Note too, that the small-amplitude frequency of the gong has been normalised to

unity.

If A = 0 then we have a generalised Duffing's equation. Particular examples of Duff-

ing's equation have already been shown to exhibit chaos (Ueda 1979; Tongue 1986). Ueda

investigates the particular equation

+	 + X 3 = G cos t	 (7.2)

for various values of k and. G to show the dependence of the type of behaviour exhibited, on

the system's parameters. Tongue investigates the existence of chaos in Duffing oscillators

in an attempt to discover the reason why certain systems support. chaotic motion.

As neither investigation covers the parameter values and combinations relevant, to our

gong, we must proceed with our own investigations to determine possible combinations of

k and G for non-zero A that may support subharmonic bifurcations and chaotic motion.

We have seen that. (7.1) may be written more particularly (Fletcher 1985) as

1 --
21.6-

where .r is the height of the dome. c is a rigidity coefficient due to the stiffness of the gong

and	 is the effective mass associated with the mode.

By comparing Reissner's (1946) approximate expression for the frequency of the lowest.

mode of a clamped shallow spherical shell, with his own expression for the small-amplitude

frequency of the mode, Fletcher shows that.

{	
, )1 —1

c ,__,	 I. 
+ 0.85o

111

+ 2ki

(7.4)
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where h is the thickness of the gong.

We can, therefore, determine approximate values to within 20% for the second and third

order nonlinear parameters A and B of equation (7.1). Hence, for our gong (in S.I. units),

we obtain the expression

2k1' 253x 2 16840x 3 	 G sin v t	 (7.5)

7.8 Evaluation of parameters k and G.

Comparison of (7.5), the predicted behaviour for the fundamental mode of the gong, with

the behaviour actually observed, obviously requires measurement of the damping parameter

k as well as typical forcing amplitudes.

The measurement of k was quite simple. The gong was shaken at a particular frequency

but with only a moderate amplitude to avoid too much nonlinearity, and the output from a

subminiature accelerometer, situated on the back of the gong, was fed, via an appropriate

filter to a storage oscilloscope. The time for the amplitude to decay by a factor of ewhen

the force ceased was then measured. The results for 3 different modes are displayed in the

next table. The actual calculation of k had to take into account the normalising of the

mode frequency to 1.

Frequency(Hz)

96	 0.007

180 0.0007

196 0.001_1

Determination of the normalised forcing amplitude G was not quite so straight forward.

Whilst measurement of the actual force in Newtons applied to the gong was quite simple,

requiring only a calibration between the current flowing to the shaker and the force resulting

from the current, it must. he remembered that the parameter C; in (7.5) is, in actual fact,

the force per effective mass in of the mode. To calculate in we really need to consider the

origins of the equation of motion (7.5) and to do this we must go back to R.eissner's (1955)

investigation into the axisyimnetric modes of a shallow spherical shell.

We saw in chapter 6 that the form of Reissner's equation of motion is

02u,
ph 	  -1-D72 72 w. = F	 (7.6) 7.6)

ate
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where we have written F as a function to include both the stress function of the gong and

the applied force. The spatial solution of the homogeneous equation for the axisymmetric

modes. taking into account the assumed boundary conditions of a clamped edge is, from

(6.8). just

TV (r, c) =	 T4 (r,	 =	 i Cni Jo( A n r ) + C723 /0 ( A n r ) + Cn5]

where boundary conditions give

r Ji(Aa)
Cn3 -	 1 	/i(Aa)

and

C5 = -C1 ki (Aa)
0(Aa)

 4- Jo(Aa)]	 (7.9)
II ( Au)

To obtain an equation of motion for a particular mode p of the bar we must follow a similar

procedure used in the earlier investigaticns of the string and the bar, that is, we multiply

equation (7.6) by a particular spatial solution 14 7-p (r, 0) and integrate over the surface of the

gong.

The entire procedure is messy, though fairly straight forward, and it serves little purpose

to dwell on it here. Suffice to say that the first term on the L.H.S of (7.6) supplies us with

our sought after effective mass In for the fundamental mode as approximately 0.067 times

the mass of the shell, or in our case, the flangeless gong. The mass of the entire gong is

about 5 kg so that the mass of the flangeless gong is approximately 3.5 kg leaving us with

an effective mass of the fundamental mode of approximately 230 g.

The shaker applied a force of approximately 4.4 N per ampere of current and, as it

could not take more than 1.8 amps without becoming overloaded, the maximum force it

could apply to the gong was 7.9N. Theoretical considerations therefore require values

of G, remembering that the fundamental frequency has been normalised to unity, of up to

10-4Nkri.

7.9 Computed behaviour for single mode system.

Equation (7.5) was integrated numericaly using the Runge-Kutta formula for integration

(R.ektorys 1969) and time intervals of 1--16-6 x the forcing frequency. The damping we measured

is reall y quite small and the procedure needed to he followed for at least 1000 orbits in order

to let the system settle down before observing the resulting state space.

((.7)

(7.8)
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Figure	 7.14:	 Map of G and w' values which produce bifurcations for the equation
+	 + 253x 2	16840x 3 = G sin w i t. . Bifurcation into two points is marked with

a dot. and into more points with the appropriate number.

The first series of observations were made for a range of values of both C; and w' and

supposing the fundamental mode frequency of 96 Hz was the only mode present on the

gong. G was varied in steps of 10 -5 from 10 -5 to 10 -4 and then in steps of 10 -4 from

10- 4 to 10- 3 . For values of ch/ between 0.96 and 1.05 there appears to he no combination

of G and w' within this range, that., coup:.ed with our values for A, B and k, could produce

anything more than a single orbit in stat,.. space .

However, if the forcing frequency is about. double the mode frequency then, for large

forcing amplitudes, driving the mode to an amplitude of up to lcm, and therefore rather

larger than we observed experimentally,t]ie motion was seen to bifurcate so that a subhar-

monic of half the forcing frequency was driven . The values of G and for which such

bifurcations occurred are shown on a map (Fig.7.14) where each grid point is marked with

a dot. if obvious bifurcation occured and left blank if the motion was purely at. the forcing

frequency. Fig.7.15(a) depicts the Poincare mapping for bifurcation into two points. Fig.

7.15 (h) shows a splitting into six points.

If a model of the gong as a single mode system can produce such results surely it is

worthwhile investigating a more realistic model. in truth we shall need an infinite array

of coupled equations t.o represent. the motion of the normal modes of the gong. We shall

obviously have to be content with less than this and in fact., we shall find that t.o con-y
struct a model of the gong as a two mode system we need to make a number of simplifing

A
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Figure 7.15: Bifurcations ocurring for the equation 	 + x + 253x 2 + Bx 3 = G sinwit
for (a)G = 0.0004,w' = 2.0 (b)G = 0.0012,i; = 1.8.



CHAPTER 7. THE GONG.	 106

assumptions.

7.10 The gong as a two-mode system.

We write the equation of motion of the two modes in the form of (7.1) with a modification

to the third order nonlinear term so as to make it. the result of a contribution from tension

due now to both modes. Thus we get.

/n i X 1	 A14" BlX“xi x2) = G sin ,et	 (7.10)

B2 x 2 (	 x2) = G sino)t	 (7.11)

where the parameters n 1 and n 2 are the factors by which the frequency of modes 1 and 2

respectively differ from the fundamental mode, the frequency of which has been normalised

to unity.

If we take mode 1 as the fundamental mode of 96 Hz as in the previous model, then

nl = 1 and we have a value for A 1 and B L from our previous analysis. Estimates of A2 and

B2 for n2 other than 1 will, however, involve far more complex analysis on the motion of

modes other than the fundamental. As we are restricting ourselves at this point to merely

investigating the effect of a second mode on the response of the first mode we shall, for

simplicity, just assume that. A 2 = A 1 = A and B2 = B 1	B as previously calculated.

7.11 Results for a two-mode system.

Equations (7.10) and (7.11) can now be integrated numerically. again using a Runge-Kutta

formulation with 100 time steps per period of the forcing term. Two different situations

were investigated this time. The first consisted of a gong with normal modes of frequency

at 96 Hz and 196 Hz and the second wa y for a gong with normal modes at 96 Hz and 180

Hz. Observations were made again for a range of G and	 values. As with the previous

model, there appeared to be no combination of C; less than 10 -4 with	 that could produce

anything more than a single orbit.. Fig. 7.16 is a map showing values of C; and	 which

were found to produce bifurcation of one or both modes for G up to 10-3.

Interestingly, some of the attractors were more than just single or double points but

rather showed rings on their Poincare mapping. These of course do not represent. chaos but

rather quasi-periodic motion as mentioned in the introduction to chaos in chapter 1. Fig.

7.17 shows an example.

2V1

241"2
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Figure 7.16: Map of values of G and w' for which the coupled equations (7.10) and (-7.11)
with A 1 = A2 = 253 and 13 1 = B2 = 16840 produce bifurcations. Bifurcation into two
points is marked with a dot and into mori^ is marked with the appropriate number.
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Figure 7.17: Poincare point attractors displaying ring formation for the coupled equations
of (7.10) and (7.11) with w' = 1.9 and G = 0.0009.

7.12 Summary of the behaviour of a forced gong.

We have seen that. the model of a gong as a single mode system displays bifurcations of its

motion for particular forcing frequencies and amplitudes. Furthermore, we have seen that

the addition of a second made to our model can quite radically change the type of behaviour

observed. If we then extrapolate these resuli.s to consider a true gong with a multitude of

normal modes each governed by an equation in the form

+ 2k a -I- 72 2 X ^ A ;1' 2 --f- B	 .r2 = G sin u."'P	 P P	 p P	 P	 P P
111

(7.12)

then it is not hard to imagine how bifurcations of some. if not all. the modes could occur.

Furthermore, if we include our earlier experimental observations that the forcing of the gong

at a particular frequency causes the generation of modes at. harmonic frequencies, then we

can surinize that the resulting motion is most certainly complex and quite probably chaotic.
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7.13 The struck gong.

Let us return now to the original question of the sound produced by a struck gong. Clearly,

if there is no external periodic force, we cannot examine the motion in terms of chaos as

the attractor will just be a single point at ( x , ) = (0,0). It is tempting to investigate the

situation when the forcing term G in (7.10) and (7.11) is replaced by an impulsive

excitation at t = 0 and assume that the damping parameters A. „ are zero. However, since

the value of the damping is critical in determining the presence of chaos, it would not really

he furthering our cause to make such an assumption.

Instead, let us look a little more simply at the situation. We integrate (7.10) and (7.11)

numerically, this time with the forcing term equal to zero and the initial conditions such

that the modes may have particular initial velocities and zero initial displacements, as might

be expected for a struck gong.

If we start by assuming that only the fundamental mode = 96Hz) is excited by the

strike, then we essentially have a single mode system as there is no way the second mode can

be generated from zero initial conditions according to (7.11). Fig.7.18 depicts the extreme

displacement of the motion as it changes in time over 2 seconds, for six different initial

velocities. We can see that as the size of the initial strike is increased so too, naturally, is

the initial amplitude and so, as predicted by Fletcher (1985) (Fig.7.9), the effective centroid

of the oscillations becomes more negative. As the amplitude decays with time the centroid

of oscillations approaches zero.

If we observe now, the time taken between the peaks in amplitude then we can obtain

the results shown in Fig. 7.19 of how the frequency of the mode varies with time for the six

different initial strikes. Considering the amplitudes generated, these too reflect the results

predicted by Fletcher in Fig.7.9.

If, now, we include the excitation of a second mode by the initial strike, then these

results, and we observe in particular the frequency as a function of time, are quite obviously

affected by the coupling of the modes (Fig. 7.20), in a manner dependent. not only on the

initial velocity amplitudes but also on the harmonic relationship between the two modes

and their varying damping terms.

Finally let. us speculate on the problem of a multimoded system for which many modes

are excited by an initial strike. We cannot presume to know exactly what would happen

to the frequencies of vibration of any of the modes with their complex couplings but our
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Figure 7.18: Extreme displacement. of motion for a struck gong as determined by the equa-
tion of motion	 0.00141., x 253x 2	16840x 3 = 0 and the initial velocity as shown.
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Figure 7.19: Change in frequency with time for a struck gong as determined by the equation
0.014:1 + x + 2532.2 + 16840T 3 = 0 and the initial velocity as shown.
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Figure 7.20:	 Change _in frequency with time for a struck gong governed
hy the equations	 4 2k I i i 4 x i 4 253x? + 16840x i (x?	 =	 0 and
,F2 + 24' 2 1:2	n.2.1. 2	2534 + 16840x 2 (x 2i	= 0 and the initial velocities as shown.
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preceeding observations suggest at least that their variation in time for the first second after

the strike might, not be simple. For a reasonable sized strike the frequencies may change

by as much as 50 (7( within 0.5 seconds. If we combine this knowledge with our previous

observations of energy cascades to higher harmonic modes due to the presence of the flange

around the dome, then it is quite easy t.3 understand how the resulting sound of a struck

gong could he initially a fairly harmonic mixture of modes that. rapidly changes to, not just.

a harmonic cascade, but a polyphonic cascade as the initial modes vary in frequency whilst

driving their harmonic overtones.

7.14 Conclusion.

In the case of both the string and the kinked bar we have identified the major source of

nonlinearity that causes coupling between harmonic modes and have shown, with reasonable

experimental confidence, that our identifications were correct. The investigation into the

gong has not proved as straight-forward., nevertheless we have managed to gain an insight

into the type of behaviour it seems to display. The problem appears to divide into two

fairly distinct parts; (i) the struck gong which we originally set out to investigate and

(ii) the periodically forced gong which we came across accidently in the course of our

experimentation and which proved to be quite fascinating in its own right.

For both the string and the kinked bar the nonlinear techniques used were relatively

straight-forward. In the case of the struck gong the problem was complicated by the inclusion

of an extra dimension, nevertheless we managed to observe both a harmonic mode coupling

as suggested by an extrapolation of our results for the kinked bar, and a considerable change

in frequency for the fundamental which could he affected by the presence of other modes.

These results together suggest that the sound of a struck gong will build from the intial

modes present at the actual strike to a conglomeration of all possible modes of the gong

producing a nonharmonic crash within the order of 1 second.

The case of the periodically forced gong led us to include an investigation into chaos.

Our rudimentary results, both theoretical and, especially, experimental, strongly suggest.

that we have here a marvellous example of chaotic motion. However we were trying to

investigate a complex mu
I
timoded system with a technique not yet. fully understood for

single moded systems and our observations were therefore limited. Chaos it self. is proving

a fascinating subject to many varied areas of mathematics and physics and maybe, as more
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knowledge is gained on why it occurs and how multimoded systems are effected, we may

be able to explain more fully the motion of a periodically forced gong. Indeed it requires

only a little stretching of the imagination to speculate that. further understanding of chaos

in general may also enable us to link more closely the behaviour of the forced gong to that

of the struck gong.
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