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ABSTRACT

The general problem of magnetic exploration in a region of near sur-

face magnetic noise interference has been studied with particular attention

being devoted to the specific example of the Elura orebody underlying a mag-

hemitic noise source. Prime considerations were the relative merits of

ground level and airbrone surveys, data sampling requirements, and filter

processes by which optimum enhancement of a deep source signal could be

achieved with least distortion.

The primary objectives of the research program were to define and

quantify the signal and noise waveform parameters, to investigate the fil-

tering operations that could be applied to distinguish between signal and

noise waveforms, and to quantify the signal to noise ratio that could be

achieved from both airborne and ground level magnetic survey:, in the pre-

sence of intense near surface noise.

The characteristics of noise from the most commonly encountered near

surface sources were described and defined. A similar generalization of the

signal characteristics could not be made because of the dependence upon the

definition of each individual exploration target. In this study a limited

definition of "signal" was used. The anomaly arising from a large subsur-

face geological structure such as a lithological boundary, fault, or base

metal deposit of economical dimension was considered as "signal". The Elura

orebody was adopted as a practical model of a signal source because it was

of economic but relatively small size and it was of magnetic susceptibility

representative of many base metal sulphides. From this particular model a

magnetic signal could be precisely defined for varying depths of burial of

the source. The geological environment of the Elura orebody was described

as a case example where signal and noise sources could each be related to

their geological origin.

Having defined the characteristics of the signal and . noise being

studied, the data sampling parameters and required instrumentation could be

specified. Relevant filter techniques were proposed and an assessment of

the application of each to field data from the Elura study area was pre-

senteci. A quantitative measure of signal, signal distortion and residual

noise was obtained allowing a direct comparison to be made between the fil-



tering techniques examined and their application to data recorded from dif-

ferent sensor heights above the near surface noise source.

The data sampling and processing procedure demonstrated to produce

the best signal to noise ratio was applied to the Elura mine grid area.
The resolution and fidelity of the resulting magnetic map was shown to be

approximately five times better (as measured by signal to noise ratio ) than

previously published magnetic survey results. When the processed data was

compared with data calculated from the published structure of the Elura ore-

body, the source of the principle feature of the map was clearly identify-

able as the Known orebody. The map however also resolved previously unre-

cognized additional deep source, structural information in the area sur-

rounding the orebody. The origin of this signal has not yet been established.

The results of the case study were extended to enable specification

of theoretical depths at which the Elura orebody could have been detected,

and theoretical tonnages of mineralization of Elura composition which would

be detectable at different depths. Exploration beneath a maghemitic palaeo-

channel was finally considered as a worst case example of exploration beneath

a near surface noise source.
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