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SUMMARY

The utilization of Euci/yptus foliage as a food source by Greater

Gliders (Petauroides voiems) and Brushtail Possums (Trichosur vr11p&ou1,1)

was studied in captive animals fed diets of E. reidzata and E. milifotiorei

respectively.

The rate of passage of solute ("Or-EDTA) and particulate

( 103 Pu-Phenanthroline) digesta markers was slow in both species. The mean
retention time (MRT) of the two markers was 50h and 46h in the Greater

Gliders and 51h and 46h in the Brushtail Possums. The lack of separation

between these two markers was consistent with the lack of selective

retention of fine particles in the hindgut of the Brushtail Possum.

However, fine particles occurred in greater quantities in caecal digesta of

the Greater Glider (48 DM) than in the stomach (30% DM) or faeces (16%

DM). The rate of passage of an alternative particle marker. ("Cr-mordanted

large particles (<1.0mm>0.5mm)) in the Greater Gliders, was less than half

that. of 103 Ru-P. From this it was concluded that 103 Ru-P excretion

reflected the excretion of fine digesta particles which were selectively

retained in the caecum along with solute digesta.

The foliage fed to both species was relatively low in nitrogen

compared with many other plant species, and although the NDF content was

moderate, this fibre was highly lignified (lignin:NDF 0.4-0.5. There

was little seasonal variation in foliage composition. The digestibility of

the fibre fraction of the leaves, although low, was similar t.o or higher

than that found in a range of herbivores fed browse or foliage diets.

Observations made of digesta fragments from the gut of both species with a.

scanning electron microscope showed that. mesophyll and the less lignifieci

parts of the vascular bundles were digested first. The epidermis and the

more highly lignified tissues such as vessel elements proved most reaistant

to digestion. Bacteria were the only micro-organisms observed in the

hindgut of either species, and many of these attached to plant particles by

means of extracellular materials.
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Both species maintained positive nitrogen balance on the foliage
diets but maintenance nitrogen requirements were higher than those of other

arboreal marsupials fed eucalypt diets. Greater Gliders required 0.56 g

.kglor p - 75 -d- 1 of truly digestible nitrogen while Brushtail Possums required

0.42 g N.kg‘tr°.75.(t'.	 The major nitrogen loss in the Brushtails was

faecal nitrogen and in particular NDFN.	 This was at.ttribut.ed to

relatively low feed intakes, a low digestibility of fibre and to the lack

of an effective mechanism for- retaining fine particles such as bacteria in

the caecum. In contrast, the high maintenance nitrogen requirement of the
Greater Glider . was due to the loss of more than 50% of the truly digestible

nitrogen intake in the urine, principally as N1-4. It was proposed that NH,

was excreted to balance the urinary excretion of acidic detoxification

products.

Supplementation of Brushtail Possums with polyethylene glycol

(PEG) resulted in higher intakes of dry matter (37 - 4S g . kgWhu - 75 -(3- 1 )

metabolizable energy (ME) (0.27 - 0.45 MJ . kgW° .75. d- 1 and truly dtgestible

nitrogen (0.44 - 0.64 g N . kgiAr° .75 . 67' ) and higher- digestibiliLies of

neutral detergent fibre (27 - 48%). The overall dry matter digestibility

of the diet was unchanged. These effects were attributed to the removal of

the inhibitory effects of leaf tannins on microbial enzymes by PEG.

Although E. radidtd contained significantly higher levels of

essential oils than did E. meiliockra, these were virtually completely
absorbed in both species. Most of this oil was absorbed cranial to the

hindgut and there seemed little possibility of significant. interaction with

the hindgut micro-organisms. Loss of terpenes during masticatioL occurred.

in Greater Gliders but. was an insignificant. route of loss compared t.o

absorption from the stomach and small intestine.

The major factor limiting metabolizable energy intake in the

Greater Glider was the high loss of energy in the urine. This was

attributed t.o the excretion of essential oils and phenolic compounds, their

detoxification products and nitrogen as N1-14 .	 The maintenance energy

requirement of the Greater Glider was estimated to be 0.35 MJ-kgW-°-75

The lower intakes and digestibilities of E. fl/6.22YaX=i dry matter in the



Brushtail Possum were the major reasons for the lower intake of digestible

energy compared with the Greater Glider, but lower urinary energy losses

meant that. ME intake as a proportion of GE intake was similar in the two

species.

Measurement of the concentration of short chain fatty acids (SOFA)

throughout the gut confirmed that the caecum of the Greater Glider and the

caecum and proximal colon of the Brushtail Possum were the principal sites

of microbial activity. The rate of SOFA production in vitro was 33 mmol

• kgW Q•75 -d- 1 in the Greater Glider. and 40 mmol • kgWh ° •75• d-'in the

Brushtail Possum. These rates were slow compared with most other

herbivores and this was attributed to the high degree of lignification of

the diets. Acetate was the principal SOFA produced in both species

followed by propionate in the case of the Greater Glider and by butyrate in

the case of the Brushtail Possum. SOFA production contributed 8% of the

digestible energy intake (DEI) of the Greater Glider but 16% of the DEI of

the Brushtail Possum.

The energy required for free existence of Greater Gliders was

measured (using H3 W 8 0) in mixed eucalypt forest in south--eastern

Queensland. The field metabolic rate for males was 547 kJ . k07- 1 -J- 1 . The

major energy expenditure was for basal metabolism and heat increment (43%)

followed by activity (26%) and thermoregulation (TO.	 Feed intake was

estimated to be about 50g of dry matter per day.	 Intake of water was

87 ml-kg- 1 •d-' of which 61% carne= from preformed water in the leaves and 20%

as oxidation water, with 16m1 from sources such as dew or rainwater on

leaves.

Efficient mastication and a relatively large hindgut, together
with the selective retention of fine particles in the case of the Greater

Glider, were important adaptations for utilizing Evnilvptus foliage diets.

However, it seemed unlikely that either marsupial species could survive

solely on these single species diets in the wild unless they were able to

substantially increase their intake of easily digestible nutrient:..
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