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Abstract—In this paper we discuss a model that is able to
segment textures using active contours. Our technique is based
on active contour techniques using curve evolution. We build our
model on properties of human vision, in that we segment the
textures in a certain feature space. We will show the advantages
of using modulus feature spaces. Wavelet coefficients are shown
to exhibit local features both in space and frequency domains.
We will implement our model in modulus wavelet subbands.

I. INTRODUCTION

The idea behind the active contour image segmentation
is that a contour evolves subject to constraints imposed by
the image such as image gradient. The active contour image
segmentation algorithms can be implemented using classical
snakes [4][7] or level sets. In both these implementations
active contours are energy minimizing curves and hence are
formulated as energy minimization problems.

The curve evolution models are particular interest to us.
When the curve (or the front) evolves in the normal direction
of the curve we arrive at the following evolution scheme [5]:

∂φ

∂t
+ F |∇φ| = 0 (1)

The speed F is normally modelled by mean curvature
thus resulting in mean curvature motion. The mean curvature
evolution equation is given by [5], [6]

∂φ

∂t
+ |∇φ|div

(
∇φ
|∇φ|

)
= 0 (2)

The mean curvature motion has been extensively used to
model geometric flow. In the level sets implementation the
evolving curve is normally embedded in the zeroth level set.
They have shown to be able to undergo automatic topologic
changes.

Active contour segmentation algorithms have been devel-
oped where object mean can be used to discreminate textures
[6]. However mean fails to discreminate many textures in the
presence og high variances. Julesz [2] has proposed a statistical
description of texture that is consistent with human visual
perception which is now recognized as the Julesz conjecture.

A texture is defined as a homogeneous random field (RF)
u(x, y) on a finite lattice (x, y) ∈ L ⊂ Z2. The Julesz con-
jecture quoted in [3] states that: there exists a set of functions
fk(u) such that samples drawn from any two RFs that are

equal in expectation over this set are visually indistinguishable
under some fixed comparison conditions. Mathematically,

E(fk(u)) = E(fk(v)),
∀k ⇒ samples of u and v

are perceptually equivalent.
(3)

Thus as long as we find the right feature functions f we can
use the expectation as the discrimanatory variable. However,
we use feature functions which are evaluated at each pixel
location to enable active contour segmentation.

II. ENERGY MINIMIZATION MODEL

Lets define u : DI → R be the image which we want
segment into two partitions. Lets define the feature function
f : DI → RN , where N is the number of feature dimentions,
be the feature space where the feature function is evaluated at
each image location, i.e. pixels.

We use the following external energy model:

E1(C, c1) + E2(C, c2) =∫
inside(C)

(f(x, y)− c1)T D(f(x, y)− c1)dxdy+∫
outside(C)

(f(x, y)− c2)T D(f(x, y)− c2)dxdy

(4)

where c1 and c2 are constants and D is a diagonal matrix
with positive values.

It can be seen that when c1 is the mean of the feature space
f inside the contour C and c2 is the mean of the feature space f
outside the contour C, E(C, c1, c2) = E1(C, c1)+E2(C, c2)
achieves its minimum for the given contour C. To see this we
calculate the partial derivatives of E(C, c1, c2) with respect
to c1 and c2.

∂(E(C, c1, c2))
∂c1

= −2D
∫

inside(C)

(f(x, y)− c1)dxdy

∂(E(C, c1, c2))
∂c2

= −2D
∫

outside(C)

(f(x, y)− c1)dxdy

When c1 and c2 are the mean of inside and outside regions
of the contour C, the above two partial derivatives vanish. If



we further assume that for each feature dimension the feature
value of a texture object is approximately constant, it is clear
that when C is the contour seperating the objects E(C, c1, c2)
achieves its global minimum. We have the following result.

Theorem 1: Let u : DI → R be an image function and
f : DI → R be a feature function of the image. Let the
feature image f consists of two homogeneous random fields
R1 and R2. Let D1, D2 be a disjoint partition of DI resulted
from the two random fields such that D1 ∪D2 = D. Let R1

has µ1 mean and R2 has µ2 mean. Then if µ1 6= µ2,

E(C, c1, c2) =
∫

inside(C)

(f(x, y)− c1)2dxdy+∫
outside(C)

(f(x, y)− c2)2dxdy
(5)

achieves its infimum at the object boundary.
Proof: Let the DI is arbitrarily partitioned into DA ∪DB

such that DA and DB are disjoint. Let RA and RB are the
random fields corresponding of DA and DB . Let R1 and R2

has variences σ1 and σ2 and density functions p1(µ1, σ1) and
p2(µ2, σ2) respectively.

Since R1 and R2 are homogeneous random fields, it is clear
that the densities of RA and RB are given by

pA(µA, σA) = kAp1(µ1, σ1) + (1− kA)p2(µ2, σ2)

and

pB(µB , σB) = kBp1(µ1, σ1) + (1− kB)p2(µ2, σ2)

respectively where kA and kB are given by

kA =

∫
DA∩D1

dxdy∫
DA

dxdy

and

kB =

∫
DB∩D1

dxdy∫
DB

dxdy
.

Now it can be shown that

µA =kAµ1 + (1− kA)µ2

µB =kBµ1 + (1− kB)µ2

σA =kAσ1 + (1− kA)σ2 + kA(1− kA)(µ1 − µ2)2

σB =kBσ1 + (1− kB)σ2 + kB(1− kB)(µ1 − µ2)2

Now the error E is given by

E =σA

∫
DA

dxdy + σB

∫
DB

dxdy

=σ1

∫
DA∩D1

dxdy + σ2

∫
DA∩D2

dxdy

+

∫
DA∩D1

dxdy
∫

DA∩D2
dxdy∫

DA∩D1
dxdy +

∫
DA∩D2

dxdy
(µ1 − µ2)2

+ σ1

∫
DB∩D1

dxdy + σ2

∫
DB∩D2

dxdy

+

∫
DB∩D1

dxdy
∫

DB∩D2
dxdy∫

DB∩D1
dxdy +

∫
DB∩D2

dxdy
(µ1 − µ2)2

=σ1

∫
D1

dxdy + σ2

∫
D2

dxdy

+

∫
DA∩D1

dxdy
∫

DA∩D2
dxdy∫

DA∩D1
dxdy +

∫
DA∩D2

dxdy
(µ1 − µ2)2

+

∫
DB∩D1

dxdy
∫

DB∩D2
dxdy∫

DB∩D1
dxdy +

∫
DB∩D2

dxdy
(µ1 − µ2)2

Thus it is clear that the error of any other partition is larger
than the error of object partition σ1

∫
D1
dxdy + σ2

∫
D2
dxdy.

�
Let the step function H and the dirac impulse function δ

are given by

H(t) =
{

1 if t ≥ 0
0 if t < 0

and
δ(t) =

d

dt
(H(t))

respectively.
Then we can write the external energy equation 4 as

follows:

E(C, c1, c2) =∫
DI

(f(x, y)− c1)T D(f(x, y)− c1)H(φ(x, y))dxdy+∫
DI

(f(x, y)− c2)T D(f(x, y)− c2)(1−H(φ(x, y)))dxdy

(6)

In order to perform the gradient decent of the energy
equation, we can decompose the evolution equation of φt(x, y)
as:

∂φ

∂t
=
∂φ

∂t external
+
∂φ

∂t internal

Now external energy component of the evolution equation is
given by

∂φ

∂t external

def
=

d(E(C))
dφ

= δ(φ)
(
−(f(x, y)− c1)T D(f(x, y)− c1)

+ (f(x, y)− c2)T D(f(x, y)− c2)
)

It is clear from the above equation that if the image domain
consists only a single texture object then external energy



contribution to the evolution equation is zero. Therefore,
only locally discriminative features contribute to the evolution
equation.

Using similar steps as in [6] we arrive at the following level
set formulation of the curve evolution:

∂φ

∂t
= δε(φ)

[
µdiv

(
∇φ
|∇φ|

)
− v

− λ1(f(x, y)− c1)T D(f(x, y)− c1)

+λ2(f(x, y)− c2)T D(f(x, y)− c2)
]

III. MODULUS WAVELET FEATURE SPACE

Since
∫
ψ(x, y)dxdy = 0, the E(w), i.e. the expectation of

a wavelet coefficient, is zero. However variance of the wavelet
coefficients depends on the texture. Since coefficient mean is
the discriminating criteria of our active contour segmentation
model, we need to transform the wavelet coefficients to a
certain feature space where variance energy is transferred
into mean. The modulus feature space does exactly that. To
quantify, to what extent variance energy gets transferred into
the mean, lets assume that wavelet coefficients are zero mean
gaussian process with variance σ. It can be shown that [1]

E(|x|) = σ

√
2
π

E(|x|2) = σ2

Therefore,

E((|x| − E(|x|))2) = E(|x|2)− (E(|x|))2

= σ

(
π − 2
π

)
Thus the variance is reduced and transferred into mean.

A. Wavelet Subband Pre-Processing

Since our classification algorithm is based on the deviation
from mean, each subband may respond to a particular object
differently, i.e. may respond with a higher object mean than the
global mean or lower object mean than the global mean. When
using more than one feature space, the expectation of feature
values for each texture objects is critical since even though
each feature space may discriminate the texture objects when
combined they may cancel out discriminatory features in terms
of expectation and variance of feature values. This is indeed
the case for horizontal and vertical modulus wavelet subbands
since those subbands are orthogonal. When this occurs we
need transform some subbands into negative images to have
the same classification response for the same object. We apply
the following transform:

−abs(f(x, y)) + k (7)

where abs(.) is the absolute value function and k is some
constant. This preprocessing step improves the feature space
correlation resulting in improved homogeneity of the feature
space for a particular object.

(a) (b)

(c) (d)

Fig. 1. (a) is the horizontal wavelet subband of the original texture image. (b)
is the segmented image of the image (a). (c) is the vertical wavelet subband
of the original texture image. (d) is the segmented image of the image (c).

Fig. 2. The segmentation in the combined horizontal and vertical subbands.

IV. RESULTS AND DISCUSSION

The active contour algorithm of Chan and Vese [6] fails to
segment the texture images in wavelet domain since the mean
of the wavelet coefficients zero.

We have only used horizontal and vertical subbands of the
wavelet transform. The diagonal subband has been omitted
since it contains mixture of both horizontal and vertical
directional features. The low pass subband has been omitted
since our choice of texture images has the same mean for both
texture objects.

We have used max(x,y)(abs(f(x, y))) for the value of k
in 7. Separable wavelet subbands are capable of extracting
horizontal and vertical features of the image. When texture
objects can be discriminated using horizontal and vertical
features individual subbands are sufficient for active contour
segmentation as illustrated in figure 1. The figure 2 illustrates
the active contour segmentation with both horizontal and
vertical subbands.
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