
CHAPTER 3

NONLINEAR MODELS AND THEIR STRUCTURAL PARAMETERS

AS DESCRIPTORS OF GROWTH IN A MOUSE POPULATION

3.1	 INTRODUCTION

The growth curve of an animal fed ad Libitum is commonly

characterised by a sigmoid curve, the rate of growth being initially

low but increasing until it reaches a maximum and then slowly de-

clining to zero at the animal's mature size or weight. 	 This type

of growth, although not ubiquitous, is nonetheless sufficiently

common as to have warranted considerable investigation into the

development of equations to describe this type of curve.

Two approaches to the historical development of growth

equations have been made. One school is devoted to the mathematical

description of growth in purely empirical terms, and the other is

more concerned with the aetiology of growth, that is, with the 'why'

of growth (Parks, 1972b). More recently, attempts have been made

to reconcile the two approaches and combine them (Blaxter, 1968;

Parks, 1972a, 1972b, 1975, 1982; Monteiro, 1975; Roux, 1974, 1976).
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3.1.1	 Growth Models as Output Descriptors 

I. The Polynomial Function.

Considering m repeated observations, as in the growth curve

of an individual, a simplistic view is the construction of a poly-

nomial of degree n < m in terms of time, t. 	 Such a method has been

used to create a large number of tables of smooth growth data

(Brody, 1945).	 The basic problem is well known and documented;

extrapolation of polynomials produces nonsense.	 Functions of the

polynomial type can be used safely only within the range of the

experimental data.	 Although polynomials are formidable mathema-

tically and often provide very good fits to the data, 'goodness of

fit' is not necessarily sufficient justification for using a function

(Grossman, 1969).

II. Brody's Exponential Function.

Brody (1945) divided the growth curve into two segments, the

division being the point of inflection in the weight/age curve.

His analysis of growth data from a number of different species

appeared to show that the slope of the curve just prior to t' (Fig.

3.1) was different to the slope just past t'.	 This he associated

with age at puberty and as a discontinuity in the growth rate curve.

Growth prior to t' was designated as being the 'self-accelerating'

phase and after t' the region of 'self-inhibiting' growth. 	 Thus,

Brody (1945) suggested two independent growth curves.

The first describes growth prior to puberty or the point of
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	Figure 3.1:	 Sigmoidal growth pattern.
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iinflection, where the instantaneous rate of gain dWt is proportional
dt

to the growth already made.

The function describing the instantaneous growth rate was

dW
t 

dt	
= kW

t
(3.1)

where, k is the growth rate constant or, as will be shown, the

exponential growth constant, and W t , is the weight of the animal at

time t.

Re-arranging 3.1 and integrating with respect to time, from

t' to t, Brody obtained

dW
t 

= kdt

It dWt 
t'

dt
t'	 =

f

Wt

In W
t 

- in W
t' 

= k (t-t')

W	 = Wt'e
k(t-t')

t 
(3.2)

where, in is the natural logarithm, and W t . = initial weight when

t'	 =	 0.

wt

The second curve describes growth in the 'self-inhibiting'

phase.	 The premise is that the tendency for growth is limited and
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the rate of gain is proportional to the amount of growth to be made

in order to reach the mature weight, A.

Instantaneous growth rate was described as

dW
t

dt

where, k' is the growth rate constant.

Re-arranging equation 3.3 and integrating with respect to

time from t' to t

dW
t 

(A-Wt.)
-k'dt

t dW
t 

f
t' 

(A-W
t'

)	 =	 -k'	
f

t' 
dt

=	 A-(A-Wt.)e
-k' (t-t')

W
t

(3.4)

where, Wt , is the initial weight of the animal.

Criticisms of Brody's model stem from his reasons for split-

ting the growth curve into two segments at the point of inflection.

The argument for the discontinuity being related to age at puberty

is dubious, for example, in chickens the point of inflection occurs

at about 12 - 14 weeks of age, where age at sexual maturity is about

20 weeks (Grossman, 1969).	 Brody, however, argues that many such

discontinuities may occur in the growth curve.	 The true basis for

-k'(A - W t .)	 (3.3)
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criticism is more aligned to the subjectiveness with which the

partitioning may be done.

A further criticism of Brody's approach is that k (equation

3.2) is not necessarily equal to k' (equation 3.4).	 Although not

a serious criticism, since growth rate may change over the total

growth curve, the estimated values of k and k' will depend upon the

partitioning.	 Finally, it is well documented that correlations

exist between pre- and post-pubertal weights, a fact not recognised

by partitioning the growth curve.

III.	 The Bertalanffy Function 

Bertalanffy (1938, 1957, 1960) suggests that the rate of

growth of an animal is the result of the processes of anabolism and

catabolism. In the equation

dW
t

dt	 =	 Wt	 °4t
(:3.5)

a and 13 are the constants of anabolism and catabolism. 	 Based on

Bertalanffy's exposition of the 'surface rule', M was used as a

metabolic index.	 Three metabolic types were suggested

1) Metabolic rate is proportional to a surface or the 2/3 power

of weight (M = 2/3), e. g ., fish and mammals.

2) Metabolic rate is proportional to weight itself (M = 1).

3) Metabolic rate is intermediate, i.e. neither proportional to
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the surface area or to liveweight (2/3 < M < 1).

Re-arranging and integrating 3.5 with respect to time

tt
dW

t 
f	 i	 - - B f dt = - B (t-t')

(1	 11--\
t'	 "w t`' (3

...% t'
	 i	 t'

W
t 

=	
(  1  )

,
(1-M)

)	 exp (-13 (1-M) (t-t'))] 1-M

this is commonly reduced to

1/ 3	1/,	 1/	 -k't/
Wt=	 - (A	 Wo 3 ) e	 313 (3.6)

where Wo = Wt ,, the initial weight at t = 0

A	 mature weight

M is inserted, based on the metabolic type of animal. 	 In

mammals, the value 2/3 is commonly used.

From equation 3.6 the weight at maximum rate of gain or point

of inflection (POI) is given by

8A
W 	-
POI	 27

Substituting this result in 3.6 and solving for t, age at the point

of inflection is given by

1
t	 =	 (3.296 + 3log

n 
( A - (A 1/ 3 - W

o
1/

3 ))).
POI	 k
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Richards (1959) objected to some assumptions contained in the

derivation of Bertalanffy's growth equation.	 For example, Richards

suggested that values of M > 1 are rejected, not because they do not

occur biologically, but with such values the constants for catabolism

(Q) and anabolism (a) would be negative, invalidating their inter-

pretation as such.

Possibly the most severe criticism of a Bertalanffy function

is the 'pretence' of biological foundation. 	 The conclusion that

anabolic factors act in proportion to surface area and catabolic

factors in proportion to volume is based on rationalisation rather

than evidence and thus is yet to be proved.

IV.	 The Gompertz Function 

The Gompertz function was originally developed to describe

death rates in a population.	 The Gompertz presents rate of gain as

a function of the weight of the individual and the gain to be made.

dW
t 

dt = kWt (9n A-Zny (3.7)

Integrating 3.7 with respect to time,

dW
t

t, t	

k	 dt

f 
w( knA-9,n1/17 =

t'

-t'-t1)

t
-(ZnA-knW

t
oe

W = Ae (3.8)
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where A = mature weight

W
t' 

= initial weight at t'

k = growth rate constant

t = time.

From 3.8, the weight at maximum gain or the point of inflection

is given by

W =
POI

A	 A 

2.7183

Substituting this result in 3.8 and solving for t, age at

point of inflection (POI) is

t	 = 1 (knA - knW
o
) + t'

POI

if W
o
 is birth weight at t' = O.

Although the Gompertz equation has no biological meaning, it

has been used widely and in various forms (Brody, 1945; Laird et al.,

1965; Laird and Howard 1967; Parks, 1970; Roux, 1974). 	 In

situations where extensive growth data are available, this equation

often fails to fit the last 'linear' part of the growth curve, as it

tends to overpredict the growth response (Laird et al., 1965;

Meissner, 1977).

Roux (1976) and Meissner (1977) suggest that the criticisms

relating to the lack of biological meaning do not apply when the

Gompertz is written on the logarithmic scale, because then it is

equivalent to the law of diminishing returns.	 Roux (1974, 1976)
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attests to the biological significance of the 'law of diminishing

returns' by illustrating how the parameter describing the proportional

growth rate with time can be partitioned. 	 The logarithmic form is

given as

X
i = a i -exp (-yt)
	 (3.9)

where, X i = lnWt , a i = A at t = co,	 = constant and y = proportional

growth rate which can be expressed in terms of its components:

Y = C (1 + b
2
2
 + b

3
2
 + b

4
2

)
	

(3.10)

where C is a constant and b2, b3, b
4
 are distribution coefficients

of heat production, protein and fat.

The Roux model is discussed in greater detail later.

V.	 The Logistic Function.

The logistic function developed in 1838 by Verhulst (cited

by Grossman, 1969) has been used extensively to describe weight by

time data.	 It has the following properties: firstly, there is a

point of inflection (when rate of gain is maximum); secondly, there

is an upper asymptote, where rate of gain tends toward zero; and

thirdly, zero is the lower asymptote or limiting point.

Equation 3.11 is the rate of gain equation from which the

logistic can be derived and indicates that the instantaneous rate of

gain is a function of both growth already made and the potential for
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growth to be made.

AdW
t 
- kW (

-
Wt

)
dt	 t A

(3.11)

Re-arranging and integrating 3.11 with respect to time from

t' to t, we obtain

dW
t

A-W= kdt
W
t'( 	 A

t'
)

t	 t
1	 1 

f dW ( 	  +	 ) = k f dt
t W

t 1	
A-W

t'

t'	 t'

(A-W,,)	 - k(t-t')	 -1
Wt = A [1+ ( 	 )e (3.12)

where A = mature weight

W = initial weight; at t' = 0, Wt , = Wo

t'	 = initial age;

k = growth rate constant

Solving 3.12 for weight at the inflection point

W POI = A/2'

Thus, weight at the point of maximum gain is exactly one half

of the mature weight. 	 Similarly, if we substitute W pm in 3.12, age

at point of inflection is found as

tPOI = 
1/ 
k [kn(A-Wt ,) - Wt ,] + t'

when, Wt . = Wo and t' = O.



dW	

(Wt ) Z ) - kW (1 - (r)z)dt
(3.14)

90.

t POI = li k 	211 (A-Wo )	 Wo]

The first problem with the logistic is already apparent,

namely, the curve is symmetrical about the point of inflection.

Empirically, the growth curves for a number of species of animals

have been shown to be asymmetrical (Grossman, 1969).	 Criticisms

of the logistic generally follow the same arguments as those against

the Gompertz, Brody and Bertalanffy and will not be considered

further at the moment.

VI.	 The Generalised Logistic 

Nelder (1961) described a four parameter function defined by

the differential equation

W
t 1/0dW

t = kWt [1 - ( T–)	 ]
dt

(3.13)

This function is a generalization of the logistic equation.

When e = 1.0, equation 3.13 is equivalent to 3.11. 	 To overcome the

initial restrictions on 3.13, namely that e be greater than zero,

Nelder (1962) reparameterised 3.13 to

by letting z =	 .	 Integrating 3.14 with respect to time, from t'

to t,

A

Wt = 
(1 + [()- ile

-zk(t-t1),1/z

"t'
(3.15)
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The interpretation of z must be similar to e; however, both

are difficult to specify in relation to the biology of the animal.

The most important consequences of equation 3.15 are the

resulting point of inflection co-ordinates.

W	 = A/(z + 1) 11 zPOI

and

t =
POI

kn (Az -Wt z ) - kn (Wt , z ) - kn(z)
+ t'

zk

The point of inflection is not fixed as a proportion of the

final weight (A), so that this function is much more flexible than

any of the previous equations.

VII.	 The Richards' Function 

Richards (1959) proposed that the Brody, Bertalanffy, Logistic

and Gompertz were all special cases of the general indeterminate form;

Wt = A (1 + be -kt ) M	 (3.16)

M	 1	 upper sign (-)

M < 0	 lower sign (+)

M = (1-m) -1 used by Richards

A = asymptotic weight as t ^ cc

b = 'a constant of integration'

k = commonly referred to as the maturing index, also sometimes

referred to as the 'intrinsic growth rate constant' (Grossman,

1969).
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Fitzhugh (1976) has explained, in detail, parameter deri-

vation and characteristics of equation 3.16.	 A summary of some

of the relationships to the other functions are shown in Table 3.1,

which is adapted directly from Fitzhugh (1976).

VIII.	 Derived Characters 

A number of characters with plausible biological meaning

can be derived from the various growth functions.

a
	

Point of Inflection (P.O.I.) 

Inflection in the growth data marks the approximate weight

of the animal at which the rate of increase begins to decrease.

The rates prior to the P.O.I. and after the P.O.I. determine the

shape of the weight-age curve.

Although inflection has often been associated with sexual

maturity, this association is purely empirical and as such, any

conclusions or inferences re garding the point of inflection must

be treated with caution.

Any interpretation concerning the inflection should involve

the relationship that exists between the P.O.I. and asymptotic

limits.	 If an individual's asymptotic weight is under genetic

control, then the P.O.I. is also under genetic control.

Nevertheless, it is difficult to conceive the inflection point as

bein g anything other than the age and weight at which the

complexities of an energy dependent system have reached a maximum.
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Models which have fixed inflection points are obviously

of less value in terms of their biological applicability when com-

pared with those having variable inflection points.

b) Asymptotic Weight 

Genetically, the asymptotic weight represents the size

potential of the animal. 	 It is interpreted as being the average

size at maturity independent of short-term fluctuations due to

environmental variations in nutrition and climate.

All functions described, except the polynomial, enable

estimation of the asymptotic weight directly from the equation

(Table 3.1).

c) Grossman (1969), Brown (1970), Brown et aZ. (1976)

and Fitzhugh (1976) describe a number of characters that can be

derived from growth equations relating weight to age.	 Brown et

al., and Fitzhugh were concerned with the Richards' function and

its special cases. 	 They proposed a number of characters based

on the Richards' function (equation 3.16) which are summarised

below and in Table 3.1.

1.	 The instantaneous absolute growth rate:	 The instantaneous

absolute growth rate is the ratio of differentials of the derivative,

-kt	 —	 -kt -1dW
t = t_MkW

t
be	 (1 + be	 )

dt

-kt	 -kt -1
= + MAkbe	 (1 + be	 )



if p
t
 = W

t
/A, then

dW
t	 = MkWt (p

-1/M-1
)

dt

2. Instantaneous growth rate and absolute maturing rate:

Formulae for the instantaneous growth rate (W t
-1

dW/ dt ), and abso-

lute maturing rates (A ldW/dt) are presented in Table 3.1.

3. Weighted average lifetime rates:

Absolute Growth Rate
0.5 MAk

2M-1

Absolute Maturing

Rate
	 0.5 Mk

2M-1

Relative Growth Rate	
M-1

Mk

4. Instantaneous rates at the P.O.I. (W	 ,t
POI POI

Absolute Growth Rate
Mk 

=	 ( M-1 ) WPOI

Absolute Maturing

Rate	 N ( m 
M-1	

1M-

Relative Growth Rate	
M-1

Mk

In addition to the above characters, Fitzhugh and Taylor

OS.
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(1971) have suggested an 'equation-free' model, W t = ptA.	 The

primary concern is the attainment of an adequate measure of the

mature weight.	 They suggest a number of growth traits that may

be derived from their model,

Average absolute growth rate (A.G.R.)	 = Wt -Wt /(t2-t1)
2	 1

Average absolute maturing rate (A.M.R.) = (112-p1)/(t2-t1)

Average relative growth rate (R.G.R.)	 = znWt -knWt /(t2 -t 1 )2	 1 

They also suggest the use of 'age at a given degree of

maturity' (t ) as a measure of time taken to mature. 	 t is similar

to the 'k' parameter of the nonlinear models (Fitzhugh, 1976), both

attempt to characterise individuals as either early or late maturing.

Fitzhugh (1976) suggests t p or zn to allows more flexibility than

k, since k is a constant of the whole growth period. 	 The use of

t is less likely to obscure interesting sources of variation in

maturing patterns.

In addition to characters derived from the various growth

functions, interest in the directly measurable characteristics of

growth are of considerable importance. 	 Knowledge of the associ-

ations between various growth function characters and such traits

as weight gains over specific growth periods, specific weights,

feed conversion efficiency, feed conversion ratio and feed intake

is of considerable importance in determining selection criteria

and responses.
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3.1.2	 Growth Models as Input/Output Descriptors 

I.	 Blaxter and Monteiro's model of energy intake and 

retention.

Blaxter (1968) derived the following equation to describe

the increase in body mass with time,

1-n	
k	 A	

n-k
fk

W-W = k (M-M ) m W	  [1	 exp (-

	

f	 n 	 (3.17)
o	 m	 o k

f An	B

Equation 3.17 is the approximate solution of the differ-

ential equation relating rate of energy intake and rate of

energy retention, expressed as

Mk
f
	AW

n
k
f

dW
t 

dt	 B	 Bk
m

BdW
t	 AW

or	 M
k
f
dt k

m
(3.18)

3.18 redefines 3.17 as the relationship between rate of

energy retention and feed intake above maintenance, where for both

3.17 and 3.18

BdW
t

dt - rate of energy retention (B = caloric value of grains)

kf = efficiency of utilisation of metabolisable energy

(M.E.) for growth and fattening

AWn = fasting metabolism expressed in terms of body mass
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k
m
 = efficiency of utilisation of metabolisable energy

for maintenance

M = rate of intake of metabolisable energy.

Equation 3.17 illustrates the asymptotic approach of body

mass to a new value of M when the animal's diet is changed from a

maintenance value, Mo to a new value M, and then kept constant.

It is also notable that as B decreases, that is, the less fat and

higher the contents of protein and associated water, the more rapid

the approach to the new equilibrium.

Monteiro (1975) adopted a similar approach, but under the

simplifying assumptions,

i) animal growth is composed primarily of two components, fat

and fat-free tissue plus an increase in the contents of the

digestive tract,

ii) nutritive requirements for the deposition of these tissues

are independent of the age and stage of growth.

Equation 3.19 attempts to partition feed intake between

maintenance requirement and feed utilised for growth of fat and non-

fat components.

F
t =

t
 pM

0.73 
(1-0.54 kn p.) + (I) (W t-W0 ) + yWt b + k	 (3.19)

i=1

where,	 F
t
 = cumulative food intake up to time t
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= a coefficient representing the expected mature main-

tenance requirement per unit of mature metabolic body

mass

p. = the degree of maturity in body mass at time i = 1, 2,

3 ... t

M = estimated mature body mass

(1) = 'fat' parameter, which includes a conversion coeffi-

cient of fat

W = body mass

= 'fat-free' parameter, which includes a conversion

coefficient of fat-free tissue.

b = parameter estimating the relative changes in body

composition occurring during growth

k = constant, which represents fat-free body mass in feed

units at time t = O.

Both equations 3.17 and 3.19 imply an additivity of the

growth processes in the ordinary scale, which is not necessarily so

for the total growth period from birth to senescence.	 A problem

with this approach arises from the very high correlation between

maintenance requirement and energy retention (Roux pers. comm).

In essence this would make estimation of the conversion coefficients,

ch and y, incalculable by conventional least squares procedures.

II.	 Parks' Input/Output Models 

Parks (1970) extended the work of Brody (1945) and Hendricks,

Jull and Titus (1931) by observing that 'the law of diminishing

returns' describes the relationship between at libitum feed intake
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and age - thus describing the animal as an input-output device.

Parks has since elaborated on this approach (Parks, 1972a, b;

1973; 1975; and 1982).	 The mathematical basis for the model

formulation is by the differential equation

dW _ I dW N /dFN
dt 	 kar"crti (3.20)

dW
Simply stated, growth rate, 	 is a product of the 'true'

dt ,
d 	 dF

growth efficiency, 	 , and feed intake, 
df 

.	 The term 'true'
dF

growth efficiency is used because it is the ratio of the differ-

ential change in output, dW, to the differential change in input,

dF.

Parks' theory suggests that a combination of three continuous

functions, related directly by equation 3.20, could describe weight

in the time and food domains. 	 The three equations are

dF

dt	
(C - D) (1 - exp (-t/ t* )) + D (3.21)

dF
feed intake at time twhere, a-

	

D	 = initial feed intake at t = 0

	

C	 = mature feed intake

	

t*	 = time taken to reach approximately 63% of the mature

feed intake.

Integrating 3.21 over time

Ft = C(t-t* (1-D/C) (1-exp (-t/ t* )))	 (3.22)
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where, Ft = cumulative food consumed to time t

Parameters C, D and t* are as above.

The Liveweight-Cumulative Food Consumed function is given

as

Wt = (A-We ) (1-exp (-(AB) 
F
t)) + W

o
A

(3.2 3 )

where, Ft is given by equation 3.22

A = estimated mature weight

(AB) = 'efficiency' factor

W
o
 = initial liveweight.

Substituting 3.22 into 3.23

Wt = (A-We ) (1-exp ( [-(AB)C/ A ]	 (t-t*(1-D/c) (1-exp (-t/t*))))) + Wo

(3.24)

Equations 3.21, 3.22 and 3.23 form the basis of Parks' theory of

growth in the food-time domains. 	 Equation 3.24 relates feed intake

and weight in the time domain.

When information is not available on feed intake, a common

situation for animal data, C and (AB) cannot be estimated.	 The

relation (AB)C/ A is replaced by k so that equation 3.24 becomes

Wt = (A-W0 ) (1-exp ( -k (t-t*(1-exp (-t/ t* ))) ) ) + Wo

(3.25)



where, W is weight at time t,

parameters A, Wo and t* are synonymous to the above

k = Brody's maturing rate constant.

Parks (1982) suggests that by plotting the input and output

relations in a 3-dimensional plane we arrive at a more useful

approach to growth.	 After standardisation of the three variables

so that

102.

a) Fraction of maturity at age t;
Wt

Pt A

b) Standardised age; T = t/t*

c) Normalised Food Equivalents; Z = C(AB)Ft/ A

Figure 3.2 shows a plot of the animal's growth against these

variates.	 Parks named this curve the 'biotrace' of the animal.

A further geometric representation of growth in the 3-dimen-

sional euclidean space promoted the concept of the ad Libitum growth

phase curve.	 Time (t), feed intake (q*) and weight (W) are plotted

together (Fig. 3.3).	 The weight versus q* plane, with height A and

width C, is called the Growth Phase Plane (Fig. 3.4).

The diagonal from the ordinates (0, 0) to (C, A) has slope

A/C equal to T
o' 

the 'Taylor Time Constant', which can replace the

relation A/ C in equation 3.24.	 From equation 3.20, Parks reformu-

lates the input/output relations in the following way for the ad
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Normalised
growth curve

/
/

/
,/

/ Normalised law
of diminishing
return.

Growth biotrace

N

Normalised curve
of cumulative
food consumed

Figure 3.2:	 Normalised growth curves (Source: Parks (1982)).
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G rowth phase
space curve

Figure 3.3:	 Growth in a 3-dimensional plane (Source: Parks (1982)).
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Figure 3.4:	 The growth phase plane and Taylor diagonal

(Source:	 Parks (1982)).
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libitum feeding situations,

d
t

dq*	

t*
(  1  ) 

t
q*	 (A/T ) t*	 (3.26)

0

and	 dW	 (AB)qt
dt + ( 	 	

= (AB)cit
A	 '

where, qt is dF/dt, the feed intake function (eq. 3.21).

(AB)q t is the liveweight equivalent of feed intake which

dW
is partitioned between growth, 	 and 'no-growth', (

(AB)q*
)W

dt ,	 A	 t'

The 'no-growth' component includes maintenance requirements, purely

in an energetic sense, and also unknown factors contributing to a

portion of the feed intake being directed to other than to weight

gain.

Park's equations 3.20 - 3.24 appear to satisfy the require-

ments for characterising both the output and input relationships

of growth, namely, that growth is continuous and possesses contin-

uous rates of change of all orders, the first order of change being

dW
dt •

Parks utilised concepts of the above equations for growth

in both time and food domains to formulate the biological inter-

pretations for the nonlinear parameters. 	 In addition to the descrip-

tions given above, Parks (1982) presents the following:

t*	 The internal resistance to build up

of appetite.

C/t* or A/To t*	 Internal drive of the animal to increase
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its appetite toward the maximum C.

q*(t)	 Rate of change of the cumulative food

consumed, Appetite.

'efficiency of maintenance' of equili-

brium weight.	 Changes in To relate

to changes in the liveweight equivalent

of feed intake being directed toward

growth in body mass.

Z(t) = (AB)F(t)/A; the body weight

equivalent of cumulative food consumed

in units of the mature weight, A.

There are few examples of the application of equations 3.21,

3.22, 3.23 and 3.24.	 Parks (1982) has subjected his modelling

techniques to a vast array of weight and feed intake data and attests

strongly to their appropriateness in a number of situations.

III.	 Roux's Input/Output Model 

Roux (1974, 1976) attempted to link two fields of growth

curve analysis, combining the empirical descriptions of the Gompertz

equation and multivariate allometry, with biological principles of

growth.

Several authors have recognised the concept of allometry in

growth (Huxley, 1932; Brody, 1945; Bertalanffy, 1960).	 The

principle of allometric growth simply states that the relative growth

of a body component is in constant ratio to the relative growth of

the body as a whole.	 Roux (1974, 1976) and Meissner et al. (1975)

have attempted to relate body mass, the components of the body (e.g.

fat, protein) and heat production to cumulative food intake by an

T0

z( t)
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allometric equation describing an input-output system of growth.

By assuming that the two variables of equation 3.27 follow

a Gompertz relationship in time, Roux suggested that an allometric

relationship would be evident between the variables.	 Thus, if the

two variables are allometrically related they can be linearily

related on a logarithmic scale.

=w (t) - a v
b

log w(t) = kn a + b in v(t)

where, w(t) is weight at time t

(3.27)

v(t) is cumulative total digestible nutrients at time t.

If x (t)	 kn v(t) and x
2
(t) = 9,n w(t), then from Roux (1976)

and Meissner (1977)

x1(t) = a
1 

-
1 
exp(- it)
	

(3.28)

x 2 (t) = a2	 exp(- 
Yt)	

(3.29)

Note, the allometric relationship between the two variables

can only hold when y from equations 3.28 and 3.29 are equal. 	 It

follows from 3.28 and 3.29 that

x(t) = (a2 	 al)	
2 lx(t)2 

or	 x
2
 = a + bx

1
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13 2	 132	 ■where, b =	 and a = (a2 -	 al)
1

(3.30)

Equation 3.30 is an allometric equation in linear form.

Roux (1976) suggested that by multivariate allometry, Y in

3.28 and 3.29 could be partitioned into biological components, i.e.

y = c(1 + b2 + b2	 h2)
3	 -4'

where, c = constant,

b2, b3, b
4
 = distribution coefficients of heat production,

protein and fat respectively.

Meissner (1977) suggested that as protein and fat contents

of the body are also related to cumulative food intake they can be

substituted in equation to 3.27 for W(t). 	 The parameters a and

for protein can be obtained from equation 3.28.

The approach of Roux to input/output modelling has obvious

appeal in the ability to differentiate between individuals in

relative growth rates of fat, protein, body heat and mass.	 How-

ever, detailed information is necessary from slaughter analyses to

provide accurate predictions.	 Roux (pers. comm.) recognises that

the model tends to suffer from disjunctures at various points on

the log-log scale, and can only be expected to hold for the period

of active growth; the model does not hold for animals at maturity.

3.1.3	 Experimental Objectives 

Within the framework of the projects' goals, set out in
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Chapter 1, a series of objectives were formulated for the studies

undertaken in this chapter.

1. to examine the accuracy and predictive ability of each

model.

2. to determine the magnitude of the genetic variation

for any particular parameter of a given model.

3. to investigate the phenotypic and genetic relationships

between the parameters of a particular model and body

wei g hts, measures of growth rate, feed intake and feed

efficiency.

4. to determine the extent to which parameters of a parti-

cular model may be used as selection criteria to change

the structure of the weight/age growth curve.

3.2	 MATERIALS AND METHODS

A detailed description of the mice and management practices

used in this study was given in Chapter 2. 	 Individual weights

were recorded from birth to 84 days old, at three -day intervals.

Feed intake measurements were recorded at three-day intervals post-

weaning (21 days of age) until the mice were 84 days old. 	 Mice

cross-fostered in group 2 were excluded from analyses to estimate

heritabilities, genetic and phenotypic correlations.



3.2.1	 Models Describing the Weight/Age Relationship 

A total of eleven algebraic models, all nonlinear, were

fitted to weight/age data from birth to 84 days old for each indi-

vidual.	 Estimates for the parameters for each model were obtained

using a modified Gauss-Newton iterative procedure.	 The models

considered and relevant properties are described in Table 3.2.

Models I to IV are specialised cases of the generalised Richards'

equation (Model V).	 Models VIa to IX were fitted by the same non-

linear regression procedure but with the proviso of constraining

the y intercept to Wo (the initial weight, weight at birth).

Parks (1982) suggests that using the parameter b, a 'scaling' factor,

in equations I to V can bias estimates obtained for the other

characteristic parameters of the models.	 For example, if we con-

sider the Gompertz equation (Model II) at time or age zero, then

W
o
 = Ae

-b

and	 b = ln(A/W0)

b is confounded with the parameter A, (an estimate of the

mature weight) and the initial condition Wo.

Similar relations can be found in Models I, III, IV and V.

However, as these five models are common in the literature on non-

linear model applications to animal weight versus age data, it was

considered essential that they be investigated in this study.

In addition to the parameters of the models described in
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Table 3.2, the points of inflection were investigated (Table 3.3).

The points of inflection were considered important for several

reasons.	 Firstly, they are directly related to parameters of the

growth functions and can aid in the interpretation of specific

models, both mathematically and biologically.	 Secondly, as the

overall aim of this research was to investigate alternative methods

for altering the structure of growth curves, these additional

characters and their relationship to the structural parameters of

the models could provide valuable additional information in devel-

oping selection criteria.	 Finally, they provide information on

the predictive ability of the models.

3.2.2	 Models Describing the Weight/Feed Intake

Relationship

Roux's (1974, 1976) and Blaxter's (1968) models were not

considered applicable to the data sets available as no information

was available on the partitioned body components. 	 To obtain an

accurate assessment of their models considerable body composition

analysis is required at different ages and body weights on a large

number of individuals. 	 This work was beyond the scope of this

study.

Parks' Model of Weight, Feed Intake and Time

Utilising both weight and feed intake information from

measurements taken at three-day intervals, postweaning to 84 days

old, individual estimates of the parameters of Parks' growth and



TABLE 3.3

CHARACTERISTIC PARAMETERS AND BIOLOGICAL INTERPRETATIONS

Model Characteristic Parameters Points of Inflection
Age( 1 )	 Weight

I A,	 k,	 b 9,11	 b/ k A/2

II A,	 k,	 b zn b/ k A/e

III A,	 k,	 Zn 3b/k 0.296 A

IV A,	 k,	 b None None

1
m

V A,	 k,	 b, m Zn(b/(1-m)/k) A	 ( m
	

)m 1

VIa A,	 k,	 t* (1) - -

b A,	 (AB),	 t*
(2)

- -

VII A,	 k A/2

VIII A,	 k A/e

IX A,	 k 0.296 A

X A,	 None None

XI C or 
A/To' 

t*
(2)

None oNone

where	 k = maturing rate parameter

b = integration parameter or scaling factor

A = estimated mature weight

m = 'shape' parameter

(AB) = 'efficiency' factor

T
o
 = 'Taylor Time Constant'

C = estimated mature feed intake

t*(1) =	 'Brody's' t

t*(2) = Parks designated this parameter as being
the animal's internal resistance to
increases in appetite.

115.

(1)
See Introduction (pages 85, 87 and 89) for formulae for age
at point of inflection for Models VII, VIII and IX.



116.

ad Zibitum feeding functions were obtained.	 The models and rele-

vant properties are described in Table 3.2. 	 Additional characters

and their interpretation are summarised in Table 3.3.

Parks (pers. comm. 1980) suggested that weights prior to

weaning should not be included in the model fitting procedure as

they are obtained prior to the animal being offered a diet of

constant composition.	 Therefore, in all analyses involving this

model Wo , the initial weight, was the weight of the mouse measured

at 21 days old.

3.2.3	 Statistical Procedures 

a)	 Nonlinear Estimation: 	 The exact statistical model

for each set of parameters consisted of the specified model (Table

3.2), plus a residual error term which was assumed to be normally

and independently distributed ( NID (0, o2 )).	 The same procedure

was used to estimate individual parameters for .all models considered.

Only multiplicative error assumptions were considered in these

analyses.	 Assumptions on the error structure of residuals are

discussed and analysed in Chapter 5. 	 An example of the models as

fitted is, for Model I:

Loge (Wt ) = Loge [A(1 + be -kt ) -1 + e
1(t)

]

where	 e
i(t) 

is the residual error term.

b)	 Criteria of Fit:	 Although a number of objective

criteria are now available for determining 'best' fit when comparing
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several nonlinear models, none can be considered as satisfying both

biological and statistical criteria (Bates and Watts, 1980; Gillis

and Ratkowsky, 1978; Ratkowsky, pers. comm.; Parks, pers. comm.).

For the purposes of the present analyses, three criteria were con-

sidered:

i)	 Pooled Residual Variances were obtained by averaging

over the groups, the error mean squares obtained from fitting each

model to the growth data of individual mice.

The coefficient of determination (R
2
) was obtained by sub-

tracting the residual sums of squares (RSS) obtained by fitting the

model from the total sums of squares (TSS). 	 These were averaged

over groups for all individuals.

(TSS-RSS)/n
--TSS

i=1

•
where	 n = number of individuals.

i i )	 To obtain an indication of the predictive ability

of the various models, each was evaluated at a number of weights

corresponding to a time of recording. 	 Product moment correlations

between predicted weights obtained for each model and observed

weights were calculated.	 Models that provide a good 'fit' of the

data should produce means and variances equal to those observed

and a correlation close to 1.00 between predicted and observed

weights for the same age.
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iii) The ability to assess the parameters of a particular model

in terms of a 'biological meaning'. Although, of necessity, a subjective

measure of fit this assessment of a model is important to understanding

the aetiology of growth.

The 'tests' are by no means exhaustive, but can only act

as a guide to a researcher. 	 Chapter 5 deals in much greater

detail with problems of choosing the 'best' model statistically,

examining both the biases inherent in the estimation procedure and

the structure of the residual associated with the various models.

c)	 Estimation of Genetic Parameters:	 Genetic variances

and covariances were estimated from paternal and maternal half-sib

and full-sib correlations using a mixed model least-squares pro-

cedure (Harvey, 1977).	 The assumed statistical model was 'Identical

to that presented in Chapter 2.

3.2.4	 Predicted Direct and Correlated Responses 

Utilising information obtained by the genetic analyses of

the characteristic parameters, and associated traits, expected

direct and correlated responses to selection were examined.	 Res-

ponses were calculated by assuming a single generation of selection

with a standardised selection differential of 1.0.

3.3	 RESULTS

3.3.1	 Wei g ht/Age Models 

Considerable problems were encountered in fitting the gen-

eralised Richards' function (Model V) to individual data sets.	 As
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more than 25% of the individual analyses failed to satisfy the

convergence criterion after 50 iterations, this model was excluded

from the study.	 Similar problems with this model have occurred

in other studies (Brown, 1970; Eisen et al., 1969).

a)	 Comparisons of Different Functions: 	 Residual sums

of squares, variances and coefficients of determination (R
2
) of

the nine weight-time models are presented in Table 3.4.	 The

results are pooled estimates from fitting each model to the growth

data of individual mice and averaged over individuals, groups and

sexes.	 Models I to IV are forms of the generalised Richards'

function (Model V) and as such incorporate the parameter b in the

model, whereas models VIa to X (excluding VIb) are solved for the

initial conditions and involve the value of W o , weight at birth.

In each case, models I to IV provided lower residual variances and

higher R
2 

values than their counterparts, models VII to X.	 Of

the models examined, the two forms of the Gompertz and Logistic

and the Parks' model gave the lowest residual sum of squares and

error mean squares.

Plots of each of the models for a randomly selected male

and female are shown in Figures 3.5 to 3.13.	 For each plot, the

estimates of the structural parameters and the correlations between

the parameters obtained during the fitting process are provided

with each figure.

All models varied in their ability to adequately fit the

data over various periods of growth. 	 The two forms of the Logistic

equation (Figs. 3.5 and 3.6) tended to underestimate both earlier



TABLE 3.4

RESIDUALS AND COEFFICIENTS OF DETERMINATION (R2)

OF EACH OF THE FUNCTIONS FITTED TO THE GROWTH DATA

OF INDIVIDUAL MICE AND AVERAGED OVER INDIVIDUALS,

GROUPS AND SEXES

Model	 Residual	 Sum Squaresa R
2 Residual	 Variances

(Error M.S.)

I	 Logistic 0.0513 0.9870 0.00197

II	 Gompertz 0.0420 0.9893 0.00162

III	 Bertalanffy 0.1138 0.9019 0.00438

IV	 Brody 0.0979 0.9324 0.00377

VIa	 Parks 0.0513 0.9850 0.00197

VII	 Logistic 0.0773 0.9800 0.00286

VIII Gompertz 0.0452 C).9884 0.00167

IX	 Bertalanffy	 0.1813	 0.8493	 0.00672

X	 Brody	 0.1166	 0.8973	 0.00432

aAll individuals had an equal number of data points per fit, 29.
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Figure 3.5:	 Logistic equation, Model I, fitted to individual

growth data of a male and a female.

Model W t = A(1 + be
-kt

)
-1

Parameter Estimates	 Correlations 

Male	 Female	 Male	 Female

A	 32.18	 28.19	
A	 b	 A	 b

b	 16.968	 16.968	 b	 0.209	 0.199
k	 0.1450	 0.1468	 k -0.407	 0.600	 -0.376	 0.618

Error MS	 0.0020	 0.0034
R2	0.9861	 0.9765
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Figure 3.6:	 Logistic equation, Model VII, fitted to individual

growth data of a male and a female.

A
Model W

t
 = A(1 +(—

w
 - 1)e

-kt
)
-1

0

Parameter Estimates	 Correlations 

Male	 Female	 Male	 Female
A	 A

A	 31.31	 27.18	 k -0.339	 -0.315

k	 0.1584	 0.1880

Error MS	 0.0036	 0.0061

R
2
	0.9750	 0.9560
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Figure 3.7:	 Gompertz equation, Model II, fitted to individual

growth data of a male and a female.

Model Wt = Ae -be -kt

Parameter Estimates	 Correlations 

Male	 Female	 Male	 Female
A	 b	 A	 b

A	 34.55	 29.78	 b	 0.162	 0.146
k	 3.182	 3.206	 k	 -0.699	 0.344	 -0.649	 0.374
k	 0.0666	 0.0766

Error MS	 0.0011	 0.0013
R2	0.9927	 0.9908
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Figure 3.8:	 Gompertz equation, Model VIII, fitted to individual

growth data of a male and a female.

Model W = Ae
-(tnA-9nW

o
)e-kt

t

Parameter Estimates Correlations

Male Female Male Female

A 34.98 28.59
A A

k 0.0630 0.0684 -0.763 -0.736

Error MS 0.0032 0.0088
R2 0.9820 0.9260

35	 7r
cf1
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Figure 3.9:	 Bertalanffy equation, Model III, fitted to individual

growth data of a male and a female.

Model W = A(1-be-kt)3

Parameter Estimates	 Correlations 

Male	 Female	 Male	 Female

A	 b	 A	 b
A	 30.15	 27.43
b	 0.7281	 0.7313	 b	 -0.483	 -0.482
k	 0.0788	 0.0797	 k	 -0.501	 0.909	 -0.497	 0.909

Error MS	 0.0084	 0.0082
R2	 0.9407	 0.9337
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AGE IN DAYS
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Figure 3.10:	 Bertalanffy equation, Model IX, fitted to individual

growth data of a male and a female.

= (A 1/ 3_(A 1/3_w 1/3)e-kt/3)3
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Figure 3.11:	 Brody equation, Model IV, fitted to individual growth

data of a male and a female.
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Figure 3.12:	 Brody equation, Model X, fitted to individual growth

data of a single male and female.
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Figure 3.13:	 Parks' equation, Model VIa, fitted to individual

growth data of a male and a female.
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and late growth, Model VII more so than Model II.	 A similar

pattern is evident for the Bertalanffy models (Figs. 3.9 and 3.10)

particularly at later weights.	 The two forms of the Gompertz

models shown in Figs. 3.7 and 3.8 illustrate the marked differ-

ences in possible fits when the extra parameter, b, is introduced.

The b parameter enables Model II to follow the growth pattern much

more precisely.	 Although the Brody's equation, Model IV (Fig.

3.11), describes the data set well, it illustrated one of the

pitfalls associated with a failure to define the initial weight.

This model consistently estimated negative birth weights, a situ-

ation not possible when Wo was set.	 However, when W o was set for

the Brody's equation (Model X, Fig. 3.12), there was a considerable

overestimation of mature body weights. 	 This reflects the inability

of this particular parameterisation to plateau as individuals

attain equilibrium weights.	 'The lack of a point of inflection

for these Brody models undoubtedly affects their ability to describe

the data from birth to 84 days of age.

Parks' weight model (Fig. 3.13) provides an excellent fit

to the data sets presented, giving both high R
2 

values and low error

mean squares (Error, MS).	 However, as can be seen for this example,

there was a tendency for the Parks' Model VIa to overestimate mature

weight.	 This overestimation of A has been reported elsewhere

(Brown, 1970) when using double exponential equations like Model

VIa and the Gompertz forms.

The correlations between parameter estimates, which are

obtained during the fitting process, indicate the degree of depen-

dency among parameter estimates. 	 For all models, there was a neg-
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ative correlation between parameters A and k, values ranged from

-0.988 (Model X) to -0.315 (Model VII). 	 Similarly, for all

models involving the parameter b, the correlation between b and

k was positive, values ranged from 0.909 (Model III) to 0.344

(Model II).	 Correlations between A and b were positive for the

Logistic (Model I) and the Gompertz (Model II) and negative for the

Bertalanffy and Brody models (Model III and IV, respectively).

Although these results are only for two individuals selected at

random, the same patterns were repeated over all individuals

studied.

As the two forms of the Brody and Bertalanffy models show

poorer fits of individual data sets and had higher residual vari-

ances and lower R
2 

values, it was decided to exclude these two

model types and concentrate further analyses on the Logistic,

Gompertz and Parks models.

Means and standard errors for parameters and points of

inflection of the remaining models are shown in Table 3.5. 	 For

the three types of models, the Logistic equations gave the lowest

estimates of mature weight (A) and the Parks' equation the highest,

with Gompertz values virtually at the midpoint between the two.

The two more generalised parameterisations (Models I and II) gave

higher estimates of A than their respective counterparts (Models

VII and VIII).

The rate of maturing, estimated by the k parameter in each

model, refers to the post-natal growth rate relative to the estimated

mature weight (A). Simple paired t-tests were used to compare

parameters of the different models. Though the errors were not

independent the large t values suggest that there are differences
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between k values for the three model types, although

between sexes within model type differences are not as marked.

Large k values indicate earlier maturing individuals and small k

values late maturing animals.	 In each case, males appear as

later maturing animals than females. No comparisons can be made

between models of different forms.

The points of inflection (P.O.I.) are fixed by the model

type and were calculated by the relations given in Table 3.1 in

Section 3.1.	 The values for weight at the P.O.I. for the Logistic

models are by definition	 higher than those obtained from the

Gompertz models.	 In both cases, the rate of maximum growth rate

occurred prior to or at weaning. 	 Contrary to suggestions that

the P.O.I. is closely aligned to sexual maturity (Brody, 1945),

vaginal opening was not observed in any mice prior to 24 days of

age.

The predictive ability of the five weight-time models was

examined in two ways, firstly each individual parameter set for

each model was used to generate predicted weights corresponding to

ages when actual weights were recorded (Table 3.6). 	 Secondly,

predicted weights were included in the least squares analyses to

obtain genetic and phenotypic correlations with actual weights

(Table 3.7).

For males and females, both forms of the Logistic model

followed a similar pattern, initially underestimating young weight,

overestimating mid-period weights, and underestimating later weight.

The two Gompertz models overestimated later weights for males and

133.
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females.	 Eisen etal (1969) reported similar problems with the
Gompertz equation (Model II).	 The Parks' equation gave predicted

weights higher than observed weights in both earlier and later

phases of growth for males; however, for the females it under-

estimated observed weights from 24 to 84 days old.	 For all three

model types, weaning weights were overestimated, reflecting each

model's attempt to 'smooth-out' the large increases in growth rate

from weaning to 24 days of age.

Genetic and phenotypic correlations between predicted and

observed weights reflect the general pattern taken by the fitted

functions (Table 3.7). 	 Phenotypic correlations less than unity

could be indicative of either deviations from the predicted value

due to random environmental fluctuations, or a failure of the

respective models to adequately describe the data, the most likely

explanation being a combination of both. 	 Noticeably, the genetic

correlations between predicted and observed weights were high but,

with the exception of the Parks' model, the correlation between

observed and predicted weights at 42 days were poor in comparison

to the correlations at 30 and 54 days. 	 This gives a clear indi-

cation of the poorer fits for this region of the growth curve for

each model.	 On an overall basis, there appears little to distin-

guish between the five models in their ability to act as predictors

of weights on the genetic or phenotypic level.

b)	 Genetic Analyses - Weight/Age Models 

Heritabilities, genetic and phenotypic correlations esti-

mated from paternal half-sib components of variance are presented
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for the five models in Tables 3.8, 3.9 and 3.10.

The heritabilities for the parameter estimates from each

model show a general agreement when considering the same parameter.

Heritabilities for estimated mature weight range from 0.34 for

Models VII and VIII to 0.54 for Model VIa. 	 There are few compar-

able estimates in the literature for laboratory species.	 Rutledge

et aZ. (1972), after fitting the Logistic equation (Model I) to

mouse data gave an estimate of 0.08 for A.	 McCarthy and Bakker

(1979) gave a within-line estimate of 0.87. 	 Heritabilities for

the k parameter showed general agreement between Models I, II, VII and

VIII, as values were within the range of 0.27 (Model VII) to 0.49

(Model II).	 The Parks' model gave a much higher value of 0.86

for the heritability of k.	 Models involving the parameter b gave

higher estimates of k than their counterparts.	 As with estimates

of A, there are few estimates available on the heritability of k.

Grossman (1969) gave values ranging from 0.05 to 0.67 for k esti-

mated by the Logistic equation on two populations of chickens.

McCarthy and Bakker (1979) estimated the heritability of k as 0.46.

No estimates for the parameter b were cited in the literature.

Considerable differences are shown in the heritability of parameter

b for Models I and II, 0.16 (0.08) and 0.44 (0.11) respectively.

The heritability of Parks' t* of 0.33 (0.09) is the only estimate

presently available.

Tables 3.8 and 3.9 also show heritabilities for the co-

ordinates of the points of inflection for each of the two forms of

the Logistic and Gompertz.	 Estimates for weight at the inflection

point ranged from 0.34 to 0.38 with estimates from the generalised
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TABLE 3.10

HERITABILITIES, GENETIC AND PHENOTYPIC

CORRELATIONS BETWEEN PARAMETERS OF THE

PARKS' MODEL

A

Model	 VIa 1

k t*

A 0.54(0.11)
2

-0.73 -0.06

k -0.89(0.14) 0.86(0.15) 0.23

t* 0.04(0.19) 0.09(0.17) 0.33(0.09)

1 	 •	 •	 •Heritabilities on the diagonal, genetic correlations

below, phenotypic correlations above the diagonal.

141.

2
Standard errors in parentheses.



142.

Models I and II being slightly higher than those of their counter-

parts, VII and VIII. 	 Heritabilities for age at the point of

inflection for the four models ranged from 0.53 for Model VIII to

0.63 for Model II.

Genetic and phenotypic correlations between parameters of

the five models give an indication of the potential for their

utilisation as selection criteria to change the structure of the

growth curves.	 The range of the genetic and phenotypic correla-

tions between the parameters of each model and growth traits were

examined to investigate possible repercussions of direct selection

on a single or multiple of parameters derived from any particular

model (Tables 3.11 to 3.13).

The pattern of the genetic relationships between similar

parameters of the five different models appears consistent.

Genetic correlations between the estimated mature weight, A,and

birth weight for each model are highly negative. 	 Values range

from -1.11 (0.19) for the Gompertz function (Model II) to -0.83

(0.18) for the Parks' function (Model VIa). 	 The genetic correla-

tions between A and weights at various ages gradually rise to peak

at high positive values for the correlations between 42 and 84 day

weights.	 For the two Logistic models, the genetic correlations

between A and 42 day weight (0.91 and 0.93 respectively) appear

higher than those between Aand 84 day weight (0.80 and 0.80 res-

pectively). This decline in the genetic correlations is

due to the larger sire component of variance for 84 day weight,

although the additive genetic covariance between A and

84 day weight had nearly doubled. 	 The genetic cor-
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relations between estimated mature weight for the five models and

weight gain over the four 3 week periods are essentially the same.

These were negative for pre-weanin g growth rising to maximum for

each model over the 6 - 9 week period and then declining for the

period from 9 - 12 weeks. 	 A similar pattern was evident for the

genetic correlations between A and the three post-weaning feed

efficiency measures.	 Values for these correlations were low

(-0.06 to 0.52) for the 3 - 6 week measurements, medium to high

(0.35 to 0.97) for the following three weeks, and then dropping

(0.14 to 0.10) for all models,except the Parks' function (0.51),in

the final period to 12 weeks.

For the two models involving the b parameter, Models I and

II, genetic and phenotypic correlations show virtually the same

trend.	 Parameter b is negatively correlated with birth and 21 day

weight and positively correlated with later weights. 	 The aberrant

values for the correlations of b with gain and efficiency for the

42 - 63 day periods reflect extremely low sire components of vari-

ance for both b (0.001935) and feed efficiency (0.0000053). 	 The

low additive genetic variance for b casts doubts on its genetic

correlations with other traits, but, these two are obvious extremes.

The phenotypic and genetic correlations between the maturing

rate parameter, k, and all other measures of growth are similar for

the five models, being positive with weight traits prior to 42 days

of age and either close to zero or negative for traits after 42

days.	 For each model, excluding the Parks' and the Logistic

(Model VII, 42 - 63 efficiency correlation is 0.28) functions, k

is negatively correlated with feed efficiencies post-weaning.	 For
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Parks' model, this negative association is not apparent until after

the 21 - 42 day measurement period. 	 The genetic correlations

between k and weights at 21, 42 and 84 days are similar in direc-

tion, if not in magnitude, to those reported by McCarthy and

Bakker (1979).

The parameter t* from Parks' Model VIa appears to have

properties similar to parameter b of Models I and II.	 It is nega-

tively correlated to pre-weaning weights (including 21 day weight),

as are the b parameters of Models I and II, but does not show the

strong positive relationship with later weights.	 However, it

does appear to be positively associated with feed efficiency over

the three measurement periods, 0.79 (21 - 42 days), 0.50 (42 - 63

days) and 0.26 (63 - 84 days), but the error on the latter period

is relatively high and the genetic and phenotypic correlation are

of opposite sign.

3.3.2	 Parks' Model of Weight, Feed Intake and Time 

Means and standard errors for males and females, for the

estimates of parameters of Parks' models, VIb and XI, are presented

in Table 3.14. The functions are fitted simultaneously with both

feed intake and weight information being used.

The lines of fit and observed data for a male and a female

are shown in Figs. 3.14 and 3.15.

Predicted body weights and feed intake were calculated as

an indication of the predictive ability of the models. 	 These
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Figure 3.14:	 Parks' equations, Models VIb and XI, fitted to

individual growth data of a male and a female.

Weights plotted against cumulative feed intake.

Model W
t
 = (A-W

o
) (1-e

-(AB)F/A ) + W
o
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Figure 3.15:	 Parks' equation, Model XI, fitted to individual

growth data of a male and a female. 	 Cumulative

feed intake plotted against time.

Model Ft = C(t-t*(1-D/c)(1-e-t/t*))

For parameter estimates and correlations see

Figure 3.14.
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results, along with genetic and phenotypic correlations, are shown

in Table 3.15.	 Both female and male weights tend to be under-

estimated at early ages but, overestimated at later ages. 	 The

pattern is essentially the same for feed intakes, underprediction

at early ages but with only slight overprediction for later ages.

The genetic and phenotypic correlations between the pre-

dicted and observed values re-inforce the apparently excellent fit

of the models over all individuals. 	 Phenotypic correlations never

fall below 0.80 for either weight or feed intake.	 The one compar-

atively poor result was for the genetic correlation between 84 day

weights (0.69).

The heritabilities and genetic correlations between the

parameters of Models VIb and XI (Table 3.16) suggest there is con-

siderable genetic variation for all parameters. 	 The heritability

of estimated mature weight, 0.14, is much lower than estimates

obtained from other models in this study. 	 As compared with Parks'

Model VIa, both the sire component of variance and total variance

for A were reduced for this model (VIb), resulting in a lower

estimate of the heritability.	 As there are no other estimates

available on the parameters (AB), C or T o , it is difficult to make

assessments on their accuracy. 	 Parks (1982) suggested that a near

constancy of the efficiency parameter, (AB), exists across species.

However, the phenotypic coefficient of variation within this popu-

lation was 11.19%, certainly suggesting this is, at least, not

true on a within species basis.

Examination of the genetic and phenotypic correlations
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between the estimates of parameters of a model , i n this case Models VIb and XI ,

give an indication of the 'biological' relevance of the parameters

and their potential as selection criteria. 	 In Table 3.17, the

genetic and phenotypic correlations between A, (AB), C, t* and To

and weights, weight gains and feed efficiencies are presented.

In all but a few instances, the phenotypic correlations between

parameters and growth measures were extremely small.	 This was

despite the fact that both genetic and phenotypic correlations

between observed and predicted weights and feed intakes were very

high.

Genetic correlations were variable and commonly associated

with large errors. 	 The genetic correlations between estimated

mature weight, A, and the growth traits followed a similar pattern

to those of other models.	 They were negative with early weights

(-0.82 and -0.48 with birth weight and 21 day weight respectively)

and tended to be positive with later weights (0.24 with 84 day

weight), though the latter correlations were lower than those for

models describing growth in the time domain only.

The positive genetic correlations between (AB), the effi-

ciency parameter, and pre-weaning growth suggest it was primarily

associated with pre-weaning efficiency.	 The strong negative

correlations between gain and efficiency from 21 - 42 days of age

and (AB) (-0.31 and -0.88 respectively) indicate that increases in

(AB) would be detrimental to post-weaning growth.

The positive genetic associations between estimated mature

feed intake, C, and early post-weaning growth and then a negative
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genetic correlation with later efficiency suggests that the para-

meter may be directly related to the animals partitioning of feed

intake at all ages.	 The negative genetic correlations between t*

and weights post 21 days follow the pattern expected if t* is a

measure of appetite resistance, i.e., increases in t* decrease

intake and decreases in intake decrease weights. 	 As To is directly

related to A and C (i.e. T =	 the genetic correlations followed
o	 C

essentially the same trend as for A, but generally with lower

estimates and lower standard errors.

3.3.4	 Predicted Direct and Correlated Responses 

As an extension of the genetic analyses described above,

predicted direct and correlated responses to a single generation

of selection were calculated for the Parks' functions, Models VIa,

VIb and XI (Table 3.18). The two forms of Parks' models are directly

related,	 but	 the data sets available for obtaining estimates of

the parameters are different, in that feed intake is utilised for

Model VIb and XI and the initial weight was taken as 21 day weight.

Parameter values obtained by fitting the models need not necessarily

be the same.

a)	 Parks' Weight/Age Equation, Model VIa 

The contention (Section 3.1.1) that the k parameter is

directly related to the rate of maturing is supported by results

presented in Table 3.18. 	 Animals with large k values mature

rapidly and attain lower mature weights. 	 Selection on k would

place a heavy emphasis on pre-weaning growth. 	 The reliance on
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the maternal food supply could well be limiting to any actual

changes achieved by selection on k, particularly as a reduction

in mature size may limit the females biological ability for milk

production.	 The importance of understanding relationships

between k and A is discussed in detail later.

Selection to increase mature weight, as estimated by this

model, suggest that there would be correlated decreases in early

weights but increases in later weights.	 Important, in terms of

altering the structure of the weight growth curve, is the expected

increases in weight gain between 21 - 42 days and associated

increases in efficiency in this and the following three week per-

iod.	 Increases in efficiency are also combined with increases

in food consumption over the same time intervals.

Expected correlated responses to increases in t* suggest

beneficial increases in weight gain and efficiency between 21 and

63 days of age.	 Concommitant with these responses there would

be no change in birth weight or 84 day weight. 	 However, any

selection on t* would have to be reconciled with the decreases in

pre-weaning growth.

b)	 Parks' Weight, Feed Intake/Time Equations, Models

VIb and XI

As with the above, expected direct and correlated responses

to selection on any particular parameter should be treated with

some caution considering the size of the errors on some genetic

relationships and differences between heritability estimates.
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Expected correlated responses to selection on mature weight,

as estimated by Model VIb, would be essentially the same as for A

estimated by Model VIa. 	 Correlated responses to selection on (AB),

the efficiency parameter, would result in large increases in both

birth weight and 21 day weight.	 The heavy emphasis on the pre-

weaning environment could be expected to stress the role of positive

maternal effects on growth.

Although mature feed intake, estimated by C, was highly

correlated with (AB), selection to increase C would apparently

result in little change in early weights, but would increase weight

gain between 21 to 42 days.	 The correlated decrease in mature

weight with selection to increase mature feed intake appears contra-

dictory to normal expectations and should be treated with scepticism.

Though the values for t* obtained from Models VIa and XI are

similar, the genetic correlations between each of the two t* para-

meters with weights, weight gains and feed efficiencies were quite

different.	 Increases in t*, estimated by Model XI, would be expected

to decrease weights at all ages except birth, with no changes in

feed efficiency.	 Thus, increasing t* would also be associated with

decreases in food consumption. 	 As with t*, increases in T o would

be expected to decrease weights, but only in the mid-period of growth.

3.4	 DISCUSSION

During the initial phases of this study, three model types

were excluded from further analyses; the Brody, Bertalanffy models

and the generalised Richards' model. 	 The basis for the exclusion
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of these three model types was solely 	 theirinabilityto consist-

ently provide adequate fits of the data.	 Of the remaining models,

all provided adequate fits of the data in terms of the criteria

described, i.e., small residual variances, consistent predictions

of weights (and feed intakes, in the case of Model XI), and biolo-

gically interpretable parameters.

The genetic correlations and heritabilities of the para-

meters, for each model, suggest that selection on a single parameter

or parameter set would produce changes in the growth curves of mice

from this population.	 The ability to alter shape of the weight/

age g rowth curve under selection by a parameter or parameter set,

will depend upon the degree of independence among the parameters.

For the two parameterisations of the Logistic model, Models I and

VII, 80% and 40%, respectively, of the additive genetic variation

for mature weight, A, was independent of the maturing rate parameter,

k.	 Values for the two forms of the Gompertz models were lower, 31;,

for Model II and 23% for Model VIII.	 Reports in the literature

show a considerable range of estimates for the decree to which para-

meters are genetically independent of one another. 	 Estimates

involving A and K in cattle vary between 10% for Hereford weight data

(Brown, et al., 1972) and 92% for Angus (Fitzhugh, 1976). 	 For

mice Eisen et at. (1969) sugaested that 78% of the genetic variation

in k was independent of A, whereas Timon and Eisen (1969) gave an

estimate of 88%.	 The results presented in this study suggest that

there are large differences between models and model parameterisa-

tions when fitted to the same data.

The negative genetic and phenotypic correlations between
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estimated mature weight, A, and estimated maturing rate, k, for all

the weight/age models considered in this study, are consistent with

results from other studies.	 These correlations suggest that

larger (smaller) mature weights are associated with smaller (larger)

maturing rates and thus longer (shorter) maturing intervals (1.0/k).

This basic premise is supported by the trend in phenotypic and

genetic correlations between the two parameters and the observed

and predicted body weights.

The estimates obtained for A and k, for the Logistic and

Gompertz type models, permit some interesting comparisons with

estimates for other mouse populations reported in the literature.

Eisen et al. (1969) obtained estimates of k from lines of mice

selected for high and low six week weight. 	 Fitting models iden-

tical to Models I and II (the Logistic and Gompertz) they obtained

male k values of 0.085 + 0.001 and 0.045 + 0.001 respectively for

the high line, and 0.0704 + 0.001 and 0.035 + 0.001 for the low

line.	 The mean male k and A values obtained in this study (0.119

+ 0.001 and 34.37 + 0.185 for the Logistic and 0.058 + 0.001 and

37.89 + 0.222 for the Gompertz model) indicated these mice were

both heavier at maturity and approached mature weights more rapidly

than Eisen et al.'s mice.	 McCarthy and Bakker (1979) utilised the

Gompertz equation, Model II, to examine the growth of a number of

lines selected for between 14 and 22 generations on body weight.

Comparison with their estimates for parameters A and k show that

only their high five week and high ten week body weight lines had

estimated mature weights greater than those reported for the popu-

lation examined in this study.	 The apparently large mature size

and high rate of maturing for this strain of mice may explain differ-
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ences between results reported here and those reported in the liter-

ature.	 Whether there were sampling biases introduced at the initial

establishment of the population at Armidale from the Sydney population,

is unclear.	 Some consistency with Hetzel's (1978) results would

tend to dismiss this idea. 	 There was some suggestion, by Animal

Technicians at Sydney University, that the strain may have been

selected for bodyweight prior to being moved to the Animal Husbandry

Department University of Sydney, though this could not be verified.

It is, however, apparent that this population is unique in the form

of it's weight/age growth curve.

Because of the direct association between k and A, selection

to alter the form of a weight/age growth curve, utilising either

parameter, should not be undertaken without consideration of the

structural and genetic dependencies between the two.	 The exact

meaning of differences in k independent of A are difficult to quantify.

Figure 3.16 indicates various representations of the combinations

of A and k, as presented by Brown (1970).	 Diagram I represents

differences in k as differences in persistency of growth but not in

growth rate.	 Animals in this case would be gaining weight at the

same rate but would attain different estimated mature weights.

The–second diagram represents two animals with very similar growth

rates over most of the growth curve, but the lower curve would have

a higher rate of maturing.

Distinct differences in growth rate are represented in the

third diagram.	 Both animals are approaching the same mature weight

but at different rates, particularly at early ages. 	 In this case

the upper curve would have the higher maturing rate parameter.
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iii	 IV

VI

Figure 3.16:	 Diagrammatic representation of structural relations

between A and k.
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Because of the differences in mature weight, direct comparisons of

k could be misleading for situations represented in diagram IV.

In this case, it would be possible for both animals to have the

same value of k.

Diagram V represents a composite of I, II and III.	 The

differences in k may represent differences in growth rate, rate of

approach to maturity and persistency of growth.	 In the final dia-

gram, VI, the different growth curves could be represented by the

same k value but different initial and final weights.	 The results

of analysis of growth curves of mice selected for large and small

size by Parratt et al. (1982) may be indicative of this pattern.

They found positive correlated increases in k of the Gompertz and

Logistic models for both large and small lines although the asymp-

tote had significantly increased in the high line and decreased in

the low line.	 This emphasises the need for careful consideration

of the structural inter-relations between parameters if selection

is to be undertaken on parameters of any of the models considered

in this study.

Similar relational problems may be associated with the para-

meters of Parks' weight and cumulative food intake models (VIb and

XI), particularly in relation to t* and (AB), and Parks' (1982)

interpretation of the biological appropriateness of the parameters

of models VIb and XI. 	 In a re-analysis of the data of Timon and

Eisen (1970), Parks suggested t*, the parameter related to 'resist-

ance' to increases in appetite, was decreased in females reflecting

that the line selected for increased weight gain had reduced feed

intake.	 However, the reduced feed intake was offset by an increase
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in (AB) the efficiency parameter.	 In support of the change in

efficiency, T o had increased thus reducing the liveweight equivalent

of feed intake being partitioned into the no growth component (see Section

3.1.2). Results from the study of expected correlated responses described

here support Parks' interpretations.	 Increases in t* would decrease

feed intake resulting in decreases in weights at 21, 42 and 84 days,

with little change in efficiency up to 63 days of age. 	 If we at

least accept the directional changes suggested by the genetic cor-

relations, it is apparent that efficiency at early ages would be

increased but there would be a decline in the efficiency of partition

:mg of feed intake between growth and no growth components. 	 These

latter points are based on the premise that the parameter (AB) was

closely associated with pre-weaning efficiency and T o was related

to the partitioning of liveweight equivalents of feed intake.	 The

role of T
o
 in partitioning of feed intake was further illustrated by

examination of the possible correlated responses to selection on

parameter C, estimated mature feed intake. 	 Increases in C would

extend the time taken for an individual to attain its mature feed

intake.	 Animals would be slightly more efficient from birth to

weaning but as they reach their estimated mature weight they become

less efficient.	 They would consume food in excess of their weight

requirements and the proportion of the liveweight equivalents of

feed intake going to no-growth would be increased. 	 It is important

to again stress these conclusions are based on the results presented

and caution is necessary in extrapolation because of the low values

and the magnitude of the errors on the genetic estimates of some

parameters.

In terms of the McCarthy/Roberts model presented in Chapter
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1 (Fig. 1.1) it appears that selection on parameters of any of the

seven models examined in detail in this study would ellicit responses

by intervention at one or more stages of the pathways in the model.

However, there appears to be little to be gained, in terms of

altering the structure of the growth curve to a more desirable form

for livestock species, by selection on a single parameter.	 Emphasis

on parameters related to pre-weaning growth, such as (AB), would be

difficult in selection programmes because of biological limitations

to the maternal environment.

It is difficult to make predictions on the likely outcome

of selection on any parameter or parameter set in terms of the model

presented in Chapter 1. 	 If the results from studies by McCarthy and

Bakker	 (1979), Eisen et aZ. (1969) and Parks (1982) are reliable

indicators of correlated changes in parameters of certain models,

then we could expect to achieve similar results under direct selec-

tion.	 Selection would act on a number of pathways, as indeed it

does when selection is for weight or weight gain.	 The question

remains as to whether selection based on parameters of nonlinear

growth models would act on the pathways in the same or a different

manner.	 Clearly there is the need to carry out selection studies

based on the parameters of a nonlinear model. 	 However, the results

presented in this thesis would suggest that responses would not be

different to those found when selection has been for weights or

weight gain.

Utilising parameters of nonlinear models as alternative

selection criteria to alter the structure of individual growth curves

needs careful consideration.	 Although not discussed in detail here,
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statistical problems associated with utilising nonlinear models have

come under closer scrutiny in Chapter 5.	 In this study, the number

of data points available on each individual allowed accurate predic-

tions of parameter estimates; and this would not necessarily be so

in domestic livestock species. 	 Questions on the behaviour of non-

linear models, the distributional properties of parameters and their

accuracy with more restricted data sets have not been considered when

estimating genetic or phenotypic relationships.
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