GENETICS OF GROWTH IN MICE WITH

PARTICULAR REFERENCE TO

THE APPLICATION OF NONLINEAR

MODELS

bу

ANDREW CHRISTOPHER PARRATT

A Thesis Submitted to the University of New England, Australia In Fulfillment of the Requirements for the Degree of Doctor of Philosophy

1983

This thesis and the research associated with it was undertaken whilst the author was a holder of a Commonwealth of Australia Postgraduate Scholarship 1979-1982.

TABLE OF CONTENTS

Acknowledge	ments			i
List of Tab	les			ii
List of Fig	ures			v
Thesis Summ	ary			viii
Chapter 1	GENER	AL INTRO	DUCTION	1
Chapter 2	WEIGH MATUR	T, WEIGH	D GENETIC ANALYSIS OF T GAIN, FRACTION OF D INTAKE AND FEED	
	2.1	Introdu	ction	13
	2.2	Materia	ls and Methods	14
		2.2.1	Mice	14
		2.2.2	Management	14
		2.2.3	Characters Studied	17
		2.2.4	Statistical Procedures	17
		2.2.5	Expected Direct and Correlated Responses to Selection for Weights, Growth Rates and Feed Efficiency	21
	2.3	Results		21
		2.3.1	Means, Standard Deviations and Coefficients of Variation for Body Weights	21
		2.3.2	Heritability Estimates for Body Weights	23
		2.3.3	Correlations Among Body Weights	27
		2.3.4	Means and Coefficients of Variation for Fraction of Maturity	33
		2.3.5	Heritability Estimates for Fraction of Maturity	33
		2.3.6	Measures of Growth Rate; Weight Gain, Relative Growth Rate (RGR) and Absolute Maturing Rate (AMR)	37

		2.3.7	Heritability Estimates for Growth Rate Measures	45
		2.3.8	Means and Coefficients of Variation for Feed Intake and Feed Efficiency	49
		2.3.9	Heritability Estimates for Feed Intake and Feed Efficiency	53
		2.3.10	Associations Between Weight, Cumulative Food Consumed and Feed Efficiency	57
		2.3.11	Phenotypic and Genetic Correlations	61
	2.4	Discuss	ion	71
Chapter 3	NONL	INEAR MOD	DELS AND THEIR STRUCTURAL	
	PARAM	METERS AS	DESCRIPTORS OF GROWTH IN	
	Α ΜΟΙ	JSE POPUL	ATION	
	3.1	Introdu	oction	79
		3.1.1	Growth Models as Output Descriptors	80
		3.1.2	Growth Models as Input/ Output Descriptors	97
		3.1.3	Experimental Objectives	109
	3.2	Materia	ls and Methods	110
		3.2.1	Models Describing the Weight/Age Relationship	111
		3.2.2	Models Describing the Weight/Feed Intake Relationship	114
		2 2 2 2	Statistical Procedures	
		3.2.3		116
		3.2.4	Predicted Direct and Correlated Responses	118
	3.3	Results		118
		3.3.1	Weight/Age Models	118
		3.3.2	Parks' Model of Weight, Feed Intake and Time	147
		3.3.3	Predicted Direct and Correlated Responses	156
	3.4	Discuss	ion	159

Chapter 4	MATERNAL EFFECTS AND PARTITIONING OF THE
	PHENOTYPIC VARIANCE FOR GROWTH, FEED
	INTAKE, FEED EFFICIENCY AND PARAMETERS OF
	NONLINEAR GROWTH MODELS

	4.1	Introdu	uction	168
	4.2	Materia	als and Methods	170
		4.2.1	Preweaning Growth	170
		4.2.2	Postweaning Growth	173
		4.2.3	Statistical Methods	173
	4.3	Results	5	178
		4.3.1	Comparisons Between Means of Cross-Fostered and Non- Cross-Fostered Mice for Weight, Weight Gains, Fraction of Maturity, Feed Intake and Feed Efficiency	178
		4.3.2	Comparisons Between Characteristics of Nonlinear Models Estimated for Cross- Fostered and Non-Cross- Fostered Mice	182
		4.3.3	Components of Variance	182
	4.4	Discuss	sion	197
5			AL AND STATISTICAL PROPERTIES GROWTH MODELS	
	5.1	Introdu	uction	200
	5.2	Materia	ils and Methods	204
		5.2.1	Distribution Properties of the Model Parameters and Derived Characters	204
		5.2.2	Correlation Structure Between Parameters of the Same Model	206
		5.2.3	Bias and Nonlinearity Measures of the Models	

Chapter

		Investigated and Their Structural Parameters	206
		Structural Farameters	200
5.3	Results		208
	5.3.1	Distribution Properties of the Model Parameters	
		and Derived Characters	208

		5.3.2	Reduced Number and Altered Structure of the Data Points	211
		5.3.3	Correlation Structure Between Parameters of the Same Model	213
		5.3.4	Measures of Nonlinearity for Nonlinear Models and Model	
			Parameters	215
	5.4	Discus	sion	217
GENERAL	CONCLUSI	ONS		222
REFERENCE	ES			227
APPENDIX	1			234

ACKNOWLEDGEMENTS

I sincerely wish to express my appreciation to the many people who contributed directly or indirectly to the researches reported in this thesis. I owe much to my supervisor, Professor J.S.F. Barker, who willingly gave encouragement, guidance and showed considerable patience during my deliberations.

I am indebted to the generous aid and support given by John R. Parks during my, all to brief, stay at the University of Sydney. No one person contributed as much to the development of my understanding of growth and nonlinear models. Also, my sincere thanks to Dr. Frank Nicholas, of the University of Sydney, whose door was always open. I am much obliged to Cathy Brown, who willingly typed the drafts of this thesis, and to Beryl Bond who presented such a professional final product.

For their statistical and mathematical guidance my appreciation goes to Drs Eve and Vic Bofinger and Sue Chambers. My thanks go also to Don Fredline whose technical and comic relief made the long hours of data collection more bearable. A special thanks to Cheryl Keech whose assistance, for three months, allowed the work reported in Chapter Four to be undertaken and who helped foster closer Australian and U.S. ties.

Last, but far from least, I wish to express my gratitude to my friends, particularly Peter and Margret, and to my family. They made life bearable when I was close to intolerable.

LIST OF TABLES

Table		Page
1.1	Direct and Possible Correlated Responses to Selection for Combinations of Low and High Body Weight in Chickens	8
2.1	Mating Structure	15
2.2	Feed Composition of the Laboratory Chow	16
2.3	Characters Considered for Genetic and Phenotypic Analyses	18
2.4	The Form of the Analysis of Variance for the ^Y th Trait	20
2.5	Phenotypic and Genetic Correlations Between Weig from Birth to 84 Days of Age	hts 62
2.6	Phenotypic and Genetic Correlations Between Feed Intakes from 21 to 84 Days of Age	65
2.7	Phenotypic and Genetic Correlations for Weights, Average Growth Rate, Feed Intake and Efficiencies	5 67
2.8	Heritabilities and Genetic Correlations Between Growth Traits and Feed Efficiencies	68
2.9	Expected Direct and Correlated Responses to Selection for Weights and Growth and Maturing Rates	69 & 70
3.1	Equations and Characteristics for Special Cases of the Richards' Function	93
3.2	Growth Models and Fitted Parameters	1 1 2 & 113
3.3	Characteristic Parameters and Biological Interpretations	115
3.4	Residuals and Coefficients of determination (R ²) of Each of the Functions Fitted to the Growth Data of Individual Mice and Averaged Over Individuals, Groups and Sexes	120
3.5	Least Squares Means and Standard Errors of Estimates of Model Parameters	132

3.6	Least Squares Means and Standard for Observed and Predicted Body Weights, the Logistic (I, VII), Gompertz (II, VIII) and Parks (VIa) Models. a) Males b) Females	134 135
3.7	Genetic (r _g) and Phenotypic (r) Correlations Between Observed and Predicted ^p Weights	136
3.8	Heritabilities, Genetic and Phenotypic Correlations Between Points of Inflection (POI) and Between Parameters of the Logistic Models	139
3.9	Heritabilities, Genetic and Phenotypic Correlations Between Points of Inflection (POI) and Between Parameters of the Gompertz Models	140
3.10	Heritabilities, Genetic and Phenotypic Correlations Between Parameters of the Parks' Model	141
3.11	Genetic (r _g) and Phenotypic (r _p) Correlations Between Parameters of the Logistic Models (I and VII) and Weights, Weight Gains and Feed Efficiencies	143
3.12	Genetic (r _g) and Phenotypic (r _p) Correlations Between Parameters of the Gompertz Models (II and VIII) and Weights, Weight Gains and Feed Efficiencies	144
3.13	Genetic (r _g) and Phenotypic (r _p) Correlations Between Parameters of Parks' Model (VIa) and Weights, Weight Gain and Feed Efficiencies	145
3.14	Least Squares Means and Standard Errors for Estimates of Parameters of Parks' Models, VIb and XI	148
3.15	Least Squares Means and Standard Errors for Observed and Predicted Body Weights and Feed Intake - Parks' Models, VIb and XI	152
3.16	Heritabilities, Genetic and Phenotypic Correlations for Estimates of Parameters of Parks' Models (VIb and XI)	153
3.17	Genetic (r _g) and Phenotypic (r _p) Correlations Between Estimates of Parameters of Parks' Models (VIb and XI) and Weights, Weight Gains and Feed Efficiencies	155
3.18	Expected Direct and Correlated Responses to Selection for Esimates of Parameters of Growth Models	157
4.1	Cross-Fostering Design	171
4.2	Expectations of Causal Components for the Covariances Among Relatives Considered in This Study	175

4.3	Least Squares Means and Standard Errors for Weights of Cross-Fostered and Non-Cross-Fostered Mice	179
4.4	Least Squares Means and Standard Errors for Weight Gain of Cross-Fostered and Non-Cross- Fostered Mice	180
4.5	Least Squares Means and Standard Errors for Fraction of Maturity of Cross-Fostered and Non-Cross-Fostered Mice	181
4.6	Least Squares Means and Standard Errors for Feed Intake of Cross-Fostered and Non-Cross- Fostered Mice	183
4.7	Least Squares Means and Standard Errors for Feed Efficiency of Cross-Fostered and Non- Cross-Fostered Mice	184
4.8	Least Squares Means and Standard Errors for Parameters and Points of Inflection of Non- linear Models Fitted to the Growth Data of Cross-Fostered and Non-Cross-Fostered Mice	185
4.9	Components of Variation as a Percent They Represent of the Total Variance for Characters of the Nonlinear Models	196
5.1	Number and Structure of Data Points for Reduced Data Sets	205
5.2	Means, Variances and Measures of Normality for Nonlinear Models	209
5.3	Means and Standard Errors for the Parameters of the Logistic and Gompertz Models with Reduced Data Sets	212
5.4	Correlation Structure Between Parameters of the Same Model	214
5.5	Measures of Nonlinearity for Nonlinear Models and Model Parameters	216

LIST OF FIGURES

Figure		Page
1.1	Simplified Scheme of Energy Utilisation	2
2.1	Least Squares Means for Body Weights From Birth to 84 Days of Age	22
2.2	Standard Deviations and Variances for Weights at Six-day Intervals	24
2.3	Coefficients of Variation of Body Weight for Males and Females	25
2.4	Heritabilities of Body Weight	26
2.5	Genetic and Phenotypic Correlations Between Consecutive Body Weights	28
2.6	Genetic and Phenotypic Correlations Between Birth Weight and Later Body Weights	30
2.7	Genetic and Phenotypic Correlations Between 84 Day Weight and Preceding Body Weights	32
2.8	Least Squares Means for Fraction of Maturity	34
2.9	Phenotypic Coefficients of Variation for Fraction of Mature Weight	35
2.10	Heritabilities for Fraction of Mature Weight	36
2.11	Least Squares Means of Body Weight Gain for Males and Females	38
2.12	Least Squares Means of Relative Growth Rate for Males and Females	39
2.13	Least Squares Means of Absolute Maturing Rate for Males and Females	40
2.14	Coefficients of Variation of Body Weight Gain for Males and Females	41
2.15	Coefficients of Variation of Relative Growth Rate for Males and Females	42
2.16	Coefficients of Variation of Absolute Maturing Rate for Males and Females	43
2.17	Heritabilities for Body Weight Gain	46
2.18	Heritabilities for Relative Growth Rates	47

2.19	Heritabilities for Absolute Maturing Rate	48
2.20	Feed Intake from 21 - 84 Days	50
2.21	Coefficients of Variation for Feed Intake	51
2.22	Feed Efficiency from 21 - 84 Days	52
2.23	Phenotypic Coefficients of Variation for Feed Efficiency	54
2.24	Heritabilities for Feed IntakeFrom 21 - 84 Days	55
2.25	Heritabilities for Feed Efficiency	56
2.26	Feed Efficiency Versus Body Weight for Males and Females	58
2.27	Feed Efficiency Versus Fraction of Maturity for Males and Females	59
2,28	Weight Plotted Against Cumulative Food Consumed, 21 - 84 Days	60
2.29	Phenotypic, Genetic and Environmental Correlations Between Weights at all Ages and 42 Day Weight	64
3.1	Sigmoidal Growth Pattern	81
3.2	Normalised Growth Curves	103
3.3	Growth in a 3-dimensional Plane	104
3.4	The Growth Phase Plane and Taylor Diagonal	105
3.5	Logistic Equation, Model I, Fitted to Individual Growth Data of a Male and a Female	121
3.6	Logistic Equation, Model VII, Fitted to Individual Growth Data of a Male and a Female	122
3.7	Gompertz Equation, Model II, Fitted to Individual Growth Data of a Male and a Female	123
3.8	Gompertz Equation, Model VIII, Fitted to Individual Growth Data of a Male and a Female	124
3.9	Bertalanffy Equation, Model III, Fitted to Individual Growth Data of a Male and a Female	125
3.10	Bertalanffy Equation, Model IX, Fitted to Individual Growth Data of a Male and a Female	126
3.11	Brody Equation, Model IV, Fitted to Individual Growth Data of a Male and a Female	127

3.12	Brody Equation, Model X, Fitted to Individual Growth Data of a Male and a Female	128
3.13	Parks' Equation, Model VIa, Fitted to Individual Growth Data of a Male and a Female	129
3.14	Parks' Equations, Models VIb and XI, Fitted to Individual Growth Data of a Male and a Female	149
3.15	Parks' Equation, Model XI, Fitted to Individual Growth Data of a Male and a Female	150
3.16	Diagrammatic Representation of Structural Relations Between A and k	163
4.1	Components of Variation as a Percent They Represent of the Total Variance for Body Weight	186
4.2	Components of Variation as a Percent They Represent of the Total Variance for Weight Gains	189
4.3	Components of Variation as a Percent They Represent of the Total Variance for Fraction of Maturity	191
4.4	Components of Variation as a Percent They	
	Represent of the Total Variance for Feed Intake	192
4.5	Components of Variation as a Percent They Represent of the Total Variance for Feed Efficiencies	193

THESIS SUMMARY

The primary aim of this study was to examine the ability of nonlinear models to describe the weight/age and feed intake/age growth patterns in mice. The objective underlying this examination was to investigate the possibility of utilising the parameters of these models as selection criteria to alter the shape of the growth curves. In association with this primary aim an investigation of the interrelationships between growth, feed intake and the efficiency of growth was undertaken.

Phenotypic and genetic analyses for weight, measures of growth rate, fraction of maturity, feed intake and feed efficiency were presented. Marked differences were found for some estimates of heritabilities, genetic and phenotypic correlation when compared with those reported for other studies on mice. A possible explanation, in terms of the differences in fractions of maturity when comparisons are made at similar ages, was proposed. Heritabilities tended to decrease with age for all measures of growth that were considered. Predicted direct and correlated responses to selection for a single generation were examined and the results obtained were consistent with predictions from two genetic models of growth proposed in the literature.

Five nonlinear models were excluded from detailed analyses because of their inability to consistently provide adequate fits to the data. These were the generalised Richards' function and the two parameterisations of the Brody and Bertalanffy functions. The seven remaining models, the three Parks' functions and two parameterisations of the Gompertz and Logistic models, were examined in detail. Genetic and phenotypic analyses showed that there was considerable variation for the parameters of each model type. Results from a simulated selection experiment based on parameters of the Parks' functions were examined. Responses obtained suggested that selection on a single parameter or parameter set would produce changes in the growth curves for the mouse population studied. However. it was concluded that results would be unlikely to produce curves that could, in domestic species, represent economically desirable growth patterns.

An examination of the role of maternal effects on growth, feed intake, feed efficiency and the parameters of the nonlinear models found significant genetic covariances between maternal and additive genetic effects. It was suggested that the rate parameters of the seven models, k, t* and (AB), were most severely affected by the maternal genetic and environmental influences. Results obtained from the cross-fostering experiment, for growth, were consistent with similar studies on mouse populations.

A detailed examination of the distributional and statistical properties of the models and their parameters estimates was undertaken. The results presented suggested that all models showed some degree of non-normal behaviour. Parameter estimates obtained exhibited both skewed and leptokurtic distributions for the popu-

ix.

lation studied. Estimates of biases in parameters estimates obtained either by simulation or calculated from the fitting process showed the parameters of the Parks' functions to be highly biased. A possible explanation for these highly biased estimates was suggested in terms of the model parameterisations and the range of data points to which the models were fitted. The generalised Logistic function was suggested as providing the best fit to the data based on the statistical and distribution criteria discussed. The Parks' models provided the most information on growth from the point of view of the biological interpretations that could be placed on the parameters.

It was concluded that the parameters of nonlinear models could be used as alternative selection criteria to alter the shape of the growth patterns for mice and possibly domestic livestock species. However, the large amount of data necessary to make accurate predictions on growth, the statistical problems associated with fitting different models and the requirement of an estimate of mature weight prior to selection may make utilising parameters of nonlinear models as selection criteria an unviable proposition.